Limit-Point Criteria for a Second Order Dynamic Equation on Time Scales

J. Weiss *
Department of Mathematics and Statistics, University of Nebraska-Kearney
Kearney, NE 68849-1296

Received: November 7, 2007; Revised: January 14, 2009

Abstract

In this paper, we establish some criteria under which the second order formally self-adjoint dynamic equation $$
\left(p(t) x^{\Delta}\right)^{\nabla}+q(t) x=0
$$ is of limit-point type on a time scale \mathbb{T}. As a special case when $\mathbb{T}=\mathbb{R}$, our results include those of Wong and Zettl [11] and Coddington and Levinson [5]. Our results are new in a general time scale setting and can be applied to difference and q-difference equations.

Keywords: time scales; limit-point; limit-circle; second-order equation.
Mathematics Subject Classification (2000): 34A99.

1 Introduction

In this paper, assume that $\inf \mathbb{T}=t_{0}$, and $\sup \mathbb{T}=\infty$. We will sometimes refer to \mathbb{T} as $\left[t_{0}, \infty\right)$ which we mean to be the real interval $\left[t_{0}, \infty\right)$ intersected with \mathbb{T}. Assume that $p(t) \neq 0$ and $q(t) \neq 0$ for $t \in \mathbb{T}$ are continuous functions on \mathbb{T}. We will consider the formally self-adjoint equations

$$
\begin{equation*}
L x=\left(p(t) x^{\Delta}\right)^{\nabla}+q(t) x=0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{L} y=\left(\frac{1}{q(t)} y^{\nabla}\right)^{\Delta}+\frac{1}{p(t)} y=0 . \tag{1.2}
\end{equation*}
$$

[^0]Let \mathbb{D} be the set of functions $x: \mathbb{T} \rightarrow \mathbb{R}$ such that $x^{\Delta}: \mathbb{T} \rightarrow \mathbb{R}$ is continuous, and $\left(p x^{\Delta}\right)^{\nabla}: \mathbb{T}_{\kappa} \rightarrow \mathbb{R}$ is continuous. Let $\widetilde{\mathbb{D}}$ be the set of functions $x: \mathbb{T} \rightarrow \mathbb{R}$ such that $x^{\nabla}: \mathbb{T}_{\kappa} \rightarrow \mathbb{R}$ is continuous, and $\left(\frac{1}{q} x^{\nabla}\right)^{\Delta}: \mathbb{T}_{\kappa} \rightarrow \mathbb{R}$ is continuous. We say (1.1) and (1.2) are reciprocal equations of each other. See [7] for more on reciprocal equations and [8], [9] and [10] for other results dealing with second-order equations, and [6] and [4] for more on general theories used in this paper.

These equations are said to be formally self-adjoint because they satisfy the following Lagrange identity.

Theorem 1.1 (Lagrange identity)

(i) Let $u, v \in \mathbb{D}$. Then

$$
u(t) L v(t)-v(t) L u(t)=\{u ; v\}^{\nabla}(t)
$$

for $t \in \mathbb{T}_{\kappa}$, where the Lagrange bracket $\{u ; v\}$ is defined by

$$
\{u ; v\}(t):=p(t) W(u, v)(t)
$$

where

$$
W(u, v)(t):=\left|\begin{array}{cc}
u(t) & v(t) \\
u^{\Delta}(t) & v^{\Delta}(t)
\end{array}\right|
$$

(ii) Let $\widetilde{u}, \widetilde{v} \in \widetilde{\mathbb{D}}$. Then

$$
\widetilde{u}(t) \widetilde{L} \widetilde{v}(t)-\widetilde{v}(t) \widetilde{L} \widetilde{u}(t)=\left(\frac{1}{q(t)} \widetilde{W}(\widetilde{u}, \widetilde{v})(t)\right)^{\Delta}
$$

for $t \in \mathbb{T}_{\kappa}$, where

$$
\widetilde{W}(\widetilde{u}, \widetilde{v})(t):=\left|\begin{array}{cc}
\widetilde{\widetilde{ }}(t) & \widetilde{v}(t) \\
\widetilde{u}^{\nabla}(t) & \widetilde{v}^{\nabla}(t)
\end{array}\right| .
$$

For a proof of Theorem 1.1 (i), see Theorem 4.33 in [3].
Corollary 1.1 (Abel's formula)
(i) If x and y both solve (1.1) then

$$
p(t) W(x, y)(t)=a \quad t \in \mathbb{T}
$$

where a is a constant.
(ii) If x and y both solve (1.2) then

$$
\frac{1}{q(t)} \widetilde{W}(x, y)(t)=a \quad t \in \mathbb{T}_{\kappa}
$$

where a is a constant.
For a proof of Corollary 1.1 for the case of (1.1), see Corollary 4.34 in [3].
Definition 1.1 The set $L^{2}\left[t_{0}, \infty\right)$ is defined to be the set of all functions $f(t)$ such that the Lebesgue integral

$$
\int_{t_{0}}^{\infty} f^{2}(t) \Delta t<\infty
$$

We define the L^{2}-norm of a function $f \in L^{2}\left[t_{0}, \infty\right)$ by

$$
\|f\|_{L^{2}}=\|f\|:=\left(\int_{t_{0}}^{\infty} f^{2}(t) \Delta t\right)^{1 / 2}
$$

Definition 1.2 We say that the operator L is (Δ^{-}) limit-circle type if for every solution x of $L x=0$, we have the Lebesgue integral

$$
\int_{t_{0}}^{\infty} x^{2}(t) \Delta t<\infty
$$

If not, we say that the operator L is $(\Delta$-) limit-point type.
Refer to Wong and Zettl, [11], and Coddington and Levinson, [5], for an analysis of the differential equations case.

2 Preliminary Lemmas

Lemma 2.1 If there exists a function $\beta(t)$ with $\frac{1}{\beta} \notin L^{2}\left[t_{0}, \infty\right)$ such that $p x^{\Delta}(t)=$ $O(\beta(t))$ as $t \rightarrow \infty$ for every solution x of (1.1), then L is limit-point type.

Proof Suppose (1.1) is limit-circle type, and let x_{1}, x_{2} be linearly independent solutions of (1.1), so we have by Corollary 1.1 part (i)

$$
p(t)\left(x_{1}(t) x_{2}^{\Delta}(t)-x_{2}(t) x_{1}^{\Delta}(t)\right) \equiv a \quad t \in \mathbb{T}
$$

Then there exist constants $c, d \geq 0$ such that

$$
\begin{aligned}
a & \leq\left|x_{1}(t)\right|\left|p(t) x_{2}^{\Delta}(t)\right|+\left|x_{2}(t)\right|\left|p(t) x_{1}^{\Delta}(t)\right| \\
& \leq c \beta(t)\left|x_{1}(t)\right|+d \beta(t)\left|x_{2}(t)\right| \quad \text { for large } t \in \mathbb{T} .
\end{aligned}
$$

Thus, for large $t \in \mathbb{T}$,

$$
\frac{a}{\beta(t)} \leq c\left|x_{1}(t)\right|+d\left|x_{2}(t)\right| .
$$

It follows that for T large,

$$
\begin{aligned}
a \int_{T}^{t} \frac{1}{\beta^{2}(s)} \Delta s & \leq \int_{T}^{t}\left[c^{2} x_{1}^{2}(s)+2 c d x_{1}(s) x_{2}(s)+d^{2} x_{2}^{2}(s)\right] \Delta s \\
& \leq c^{2}\left\|x_{1}\right\|^{2}+2 c d\left\|x_{1}\right\|\left\|x_{2}\right\|+d^{2}\left\|x_{2}\right\|^{2} \\
& <\infty
\end{aligned}
$$

by the Cauchy-Schwarz inequality (Theorem 6.15, [2]). This contradicts the fact that $\frac{1}{\beta} \notin L^{2}\left[t_{0}, \infty\right)$, so L is limit-point type.

Lemma 2.2 Suppose $q \in C^{1}\left[t_{0}, \infty\right)$. If there exists a positive function β with $\frac{1}{\beta} \notin$ $L^{2}\left[t_{0}, \infty\right)$ such that $y(t)=O(\beta(t))$ as $t \rightarrow \infty$ for every solution y of (1.2), then L is limit-point type.

Proof Let x be a solution of (1.1), and put $y=p x^{\Delta}$. Then $y^{\nabla}=-q x$ and

$$
\left(\frac{1}{q} y^{\nabla}\right)^{\Delta}=-x^{\Delta}=-\frac{y}{p}
$$

Hence, y solves (1.2). Thus,

$$
y(t)=\left(p x^{\Delta}\right)(t)=O(\beta(t)) \text { as } t \rightarrow \infty
$$

Thus, by Lemma 2.1, L is limit-point type.
A useful corollary to these lemmas is obtained by letting $\beta(t) \equiv 1$.
Corollary 2.1 If $\left(p x^{\Delta}\right)(t)$ is bounded for every solution x of (1.1), or if every solution y of (1.2) is bounded, then L is limit-point type.

3 Riccati Substitution

Suppose y is a solution of (1.2) with $q(t) y(t) y^{\sigma}(t)>0$ for $t \geq t_{0}$. We can then make the Riccati substitution

$$
z(t)=\frac{y^{\nabla}(t)}{q(t) y(t)} \quad \text { for } \quad t \in\left[t_{0}, \infty\right)
$$

Then, we have

$$
\begin{aligned}
z^{\Delta}(t) & =\left(\left(\frac{y^{\nabla}(t)}{q(t)}\right)\left(\frac{1}{y(t)}\right)\right)^{\Delta} \\
& =\left(\frac{y^{\nabla}(t)}{q(t)}\right)^{\Delta}\left(\frac{1}{y(t)}\right)+\left(\frac{y^{\nabla}(t)}{q(t)}\right)^{\sigma}\left(\frac{1}{y(t)}\right)^{\Delta} \\
& =-\frac{1}{p(t)}+\left(\frac{y^{\nabla}(t)}{q(t)}\right)^{\sigma}\left(\frac{-y^{\Delta}(t)}{y(t) y^{\sigma}(t)}\right) \\
& =-\frac{1}{p(t)}-\frac{z^{\sigma}(t) y^{\Delta}(t)}{y(t)}
\end{aligned}
$$

We now use the following lemma, due to Atici and Guseinov [1]:
Lemma 3.1 If $f: \mathbb{T} \rightarrow \mathbb{R}$ is Δ-differentiable on \mathbb{T}^{κ} and if f^{Δ} is continuous on \mathbb{T}^{κ}, then f is ∇-differentiable on \mathbb{T}_{κ} and

$$
f^{\nabla}(t)=f^{\Delta \rho}(t) \quad t \in \mathbb{T}_{\kappa}
$$

If $g: \mathbb{T} \rightarrow \mathbb{R}$ is ∇-differentiable on \mathbb{T}_{κ} and if g^{∇} is continuous on \mathbb{T}_{κ}, then g is Δ differentiable on \mathbb{T}^{κ} and

$$
g^{\Delta}(t)=g^{\nabla \sigma}(t) \quad t \in \mathbb{T}^{\kappa}
$$

See also Corollary 4.11 and Theorem 4.8 and Corollary 4.10 in [3] for a generalization of this result.

Thus, we get

$$
\begin{aligned}
\frac{z^{\sigma}(t) y^{\Delta}(t)}{y(t)} & =\frac{z^{\sigma}(t) y^{\Delta}(t)}{y^{\sigma}(t)-\mu(t) y^{\Delta}(t)}=\frac{z^{\sigma}(t) \frac{y^{\nabla \sigma}(t)}{y^{\sigma}(t)}}{1-\mu(t) \frac{y^{\nabla \sigma}(t)}{y^{\sigma}(t)}} \\
& =\frac{q^{\sigma}(t)\left(z^{\sigma}(t)\right)^{2}}{1-\mu(t) q^{\sigma}(t) z^{\sigma}(t)}=\frac{\left(z^{\sigma}(t)\right)^{2}}{\frac{1}{q^{\sigma}(t)}-\mu(t) z^{\sigma}(t)}
\end{aligned}
$$

Hence, we get that $z(t)$ solves the so-called Riccati equation associated with (1.2)

$$
\begin{equation*}
z^{\Delta}+\frac{1}{p(t)}+\frac{\left(z^{\sigma}\right)^{2}}{\frac{1}{q^{\sigma}(t)}-\mu(t) z^{\sigma}}=0 \tag{3.1}
\end{equation*}
$$

Notice that $\frac{1}{q^{\sigma}(t)}-\mu(t) z^{\sigma}(t)>0$ for all $t \geq t_{0}$:

$$
\begin{aligned}
\frac{1}{q^{\sigma}(t)}-\mu(t) z^{\sigma}(t) & =\frac{1}{q^{\sigma}(t)}-\mu(t) \frac{y^{\Delta}(t)}{q^{\sigma}(t) y^{\sigma}(t)} \\
& =\frac{1}{q^{\sigma}(t) y^{\sigma}(t)}\left[y^{\sigma}(t)-\mu(t) y^{\Delta}(t)\right] \\
& =\frac{y(t)}{q^{\sigma}(t) y^{\sigma}(t)}>0
\end{aligned}
$$

Hence, we have proven the following lemma:
Lemma 3.2 If $y(t)$ is a solution of (1.2) with $q(t) y(t) y^{\sigma}(t)>0$ then $z(t):=\frac{y^{\nabla}(t)}{q(t) y(t)}$ is a solution of (3.1) that satisfies $\frac{1}{q^{\sigma}(t)}-\mu(t) z^{\sigma}(t)>0$ for all $t \in \mathbb{T}$.

4 Main Results

Theorem 4.1 Suppose that $p(t)>0$ and $q(t)>0$ on $\left[t_{0}, \infty\right)$, and $\int_{t_{0}}^{\infty} \frac{1}{p(t)} \Delta t=\infty$.
(a) If (1.2) is nonoscillatory, then L is limit-point.
(b) If (1.1) is nonoscillatory, then L is limit-point.

Proof Suppose (1.2) is nonoscillatory. Let y be a positive solution of (1.2) on $\left[t_{0}, \infty\right)$, and make the Riccati substitution $z(t)=\frac{y^{\nabla}(t)}{q(t) y(t)}$. Then z solves

$$
z^{\Delta}=-\frac{1}{p(t)}-\frac{\left(z^{\sigma}\right)^{2}}{\frac{1}{q^{\sigma}(t)}-\mu(t) z^{\sigma}}
$$

Integrate both sides from t_{0} to t :

$$
\begin{equation*}
z(t)-z\left(t_{0}\right)=-\int_{t_{0}}^{t} \frac{1}{p(s)} \Delta s-\int_{t_{0}}^{t} \frac{\left(z^{\sigma}(s)\right)^{2}}{\frac{1}{q^{\sigma}(s)}-\mu(s) z^{\sigma}(s)} \Delta s \tag{4.1}
\end{equation*}
$$

Since

$$
\frac{\left(z^{\sigma}(t)\right)^{2}}{\frac{1}{q^{\sigma}(t)}-\mu(t) z^{\sigma}(t)} \geq 0
$$

for all $t \geq t_{0}$, we get that the right hand side of (4.1) goes to $-\infty$ as t goes to ∞. Thus, $z(t) \rightarrow-\infty$ as $t \rightarrow \infty$, so z, and hence y^{∇}, is eventually negative. Thus, eventually $y(t)>0$ and $y^{\nabla}(t)<0$, hence y is bounded. Thus, by Corollary 2.1 we get that L is limit-point.

Now suppose (1.1) is nonoscillatory. Let x be a positive solution of (1.1) on $\left[t_{0}, \infty\right)$. Since $q(t)>0$, we have $\left(p(t) x^{\Delta}(t)\right)^{\nabla}=-q(t) x(t)<0$ on $\left[t_{0}, \infty\right)$.
Claim: $p(t) x^{\Delta}(t) \geq 0$ on $\left[t_{0}, \infty\right)$.
To see this, suppose not. Then there exists $t_{1} \geq t_{0}$ with $p\left(t_{1}\right) x^{\Delta}\left(t_{1}\right)<0$. Since $p(t) x^{\Delta}(t)$ is decreasing, $p(t) x^{\Delta}(t) \leq p\left(t_{1}\right) x^{\Delta}\left(t_{1}\right)<0$ on $\left[t_{1}, \infty\right)$. Then, dividing by $p(t)$ and integrating, we get

$$
x(t)-x\left(t_{1}\right) \leq p\left(t_{1}\right) x^{\Delta}\left(t_{1}\right) \int_{t_{1}}^{t} \frac{1}{p(s)} \Delta s .
$$

Thus, $\lim _{t \rightarrow \infty} x(t)=-\infty$. This contradicts the fact that $x(t)>0$ for all $t \geq t_{0}$. Hence the claim holds and we see then that $p(t) x^{\Delta}(t)$ is bounded, so by Corollary 2.1, L is limit-point.

Definition 4.1 The set $L_{\nabla}^{2}\left[t_{0}, \infty\right)$ is defined to be the set of all functions $f(t)$ such that the Lebesgue integral

$$
\int_{t_{0}}^{\infty} f^{2}(t) \nabla t<\infty
$$

We define the L_{∇}^{2}-norm of a function $f \in L_{\nabla}^{2}\left[t_{0}, \infty\right)$ by

$$
\|f\|_{L_{\nabla}^{2}}:=\left(\int_{t_{0}}^{\infty} f^{2}(t) \nabla t\right)^{1 / 2}
$$

Definition 4.2 The operator L is said to be ∇-limit-circle if all solutions of $L x=0$ satisfy $x, x^{\rho} \in L_{\nabla}^{2}\left[t_{0}, \infty\right)$. We say L is ∇-limit-point if there is a solution $x(t)$ of $L x=0$ such that $x \notin L_{\nabla}^{2}\left[t_{0}, \infty\right)$ or $x^{\rho} \notin L_{\nabla}^{2}\left[t_{0}, \infty\right)$.

Theorem 4.2 Let M be a positive ∇-differentiable function and $k_{1}, k_{2}>0$ such that there is a $T \in \mathbb{T}$, sufficiently large such that
(i) $q(t) \leq k_{1} M(t)$ for $t \in[T, \infty)$,
(ii) $\int_{T}^{\infty}\left(p^{\rho} M^{\rho}\right)^{-1 / 2} \nabla s=\infty$,
(iii) $\left|\left(\frac{p^{\rho}(t)}{M^{\rho}(t)}\right)^{1 / 2} \frac{M^{\nabla}(t)}{M(t)}\right| \leq k_{2}$ for $t \in[T, \infty)$.

Then L is ∇-limit-point.
Proof Suppose x is a solution of $L x=0$ and $x, x^{\rho} \in L_{\nabla}^{2}\left[t_{0}, \infty\right)$. Since $\left(p x^{\Delta}\right)^{\nabla}=$ $-q x$, we get that for some $c>0$,

$$
\begin{equation*}
\int_{c}^{t} \frac{\left(p x^{\Delta}\right)^{\nabla} x}{M} \nabla s=-\int_{c}^{t} \frac{q}{M} x^{2} \nabla s \geq-k_{1} \int_{c}^{t} x^{2} \nabla s \tag{4.2}
\end{equation*}
$$

Using the integration by parts formula ([2], Theorem 8.47 (vi))

$$
\int_{a}^{b} f(s) g^{\nabla}(s) \nabla s=\left.f(s) g(s)\right|_{a} ^{b}-\int_{a}^{b} f^{\nabla}(s) g^{\rho}(s) \nabla s
$$

we get from (4.2)

$$
\begin{aligned}
\left.\frac{x}{M} p x^{\Delta}\right|_{c} ^{t}-\int_{c}^{t}\left(p x^{\Delta}\right)^{\rho}\left(\frac{x}{M}\right)^{\nabla} \nabla s & =\left.\frac{x}{M} p x^{\Delta}\right|_{c} ^{t}-\int_{c}^{t} p^{\rho} x^{\Delta \rho}\left(\frac{x^{\nabla} M-x M^{\nabla}}{M M^{\rho}}\right) \nabla s \\
& =\left.\frac{x}{M} p x^{\Delta}\right|_{c} ^{t}-\int_{c}^{t} \frac{p^{\rho}}{M^{\rho}}\left(x^{\nabla}\right)^{2} \nabla s+\int_{c}^{t} \frac{p^{\rho} x x^{\nabla} M^{\nabla}}{M M^{\rho}} \nabla s \\
& \geq-k_{1} \int_{c}^{t} x^{2} \nabla s
\end{aligned}
$$

Thus, multiplying by -1 , we get

$$
-\left.\frac{x}{M} p x^{\Delta}\right|_{c} ^{t}+\int_{c}^{t} \frac{p^{\rho}}{M^{\rho}}\left(x^{\nabla}\right)^{2} \nabla s-\int_{c}^{t} \frac{p^{\rho} x x^{\nabla} M^{\nabla}}{M M^{\rho}} \nabla s \leq k_{1}\|x\|^{2}<k_{3}
$$

for some $k_{3}>0$.
Let $H(t)=\int_{c}^{t} \frac{p^{\rho}}{M^{\rho}}\left(x^{\nabla}\right)^{2} \nabla s$. Then by the Cauchy-Schwarz inequality

$$
\begin{aligned}
\left|\int_{c}^{t} \frac{p^{\rho} x x^{\nabla} M^{\nabla}}{M M^{\rho}} \nabla s\right|^{2} & =\left|\int_{c}^{t}\left(\frac{p^{\rho}}{M^{\rho}}\right)^{1 / 2} M^{-1} M^{\nabla}\left(\frac{p^{\rho}}{M^{\rho}}\right)^{1 / 2} x x^{\nabla} \nabla s\right|^{2} \\
& \leq k_{2}^{2}\left(\int_{c}^{t}\left(\frac{p^{\rho}}{M^{\rho}}\right)^{1 / 2} x x^{\nabla} \nabla s\right)^{2} \quad \text { by }(i i i) \\
& \leq k_{2}^{2} H(t) \int_{c}^{t} x^{2} \nabla s
\end{aligned}
$$

Thus, there exists a constant $k_{4}>0$ such that

$$
-\frac{p x^{\Delta} x}{M}+H-k_{4} H^{1 / 2}<k_{3}
$$

If $H(t) \rightarrow \infty$ as $t \rightarrow \infty$, then for all large $t, \frac{p x^{\Delta} x}{M}>\frac{H}{2}$. Then x and x^{Δ} have the same sign for all large t, which contradicts $x \in L_{\nabla}^{2}\left[t_{0}, \infty\right)$. Thus,

$$
H(\infty)=\int_{t_{0}}^{\infty} \frac{p^{\rho}}{M^{\rho}}\left(x^{\nabla}\right)^{2} \nabla s<\infty
$$

Now suppose L is ∇-limit-circle. Let ϕ, ψ be two linearly independent solutions of $L x=0$ with $p(t)\left(\phi(t) \psi^{\Delta}(t)-\psi(t) \phi^{\Delta}(t)\right)=1$ and $\phi, \phi^{\rho}, \psi, \psi^{\rho} \in L_{\nabla}^{2}\left[t_{0}, \infty\right)$. Then

$$
\begin{aligned}
1 & =p^{\rho}(t)\left(\phi^{\rho}(t) \psi^{\Delta \rho}(t)-\psi^{\rho}(t) \phi^{\Delta \rho}(t)\right) \\
& =p^{\rho}(t)\left(\phi^{\rho}(t) \psi^{\nabla}(t)-\psi^{\rho}(t) \phi^{\nabla}(t)\right)
\end{aligned}
$$

So, if we divide both sides by $\left(p^{\rho} M^{\rho}\right)^{1 / 2}$, we get

$$
\begin{equation*}
\frac{1}{\left(p^{\rho} M^{\rho}\right)^{1 / 2}}=\phi^{\rho}(t)\left(\frac{p^{\rho}}{M^{\rho}}\right)^{1 / 2} \psi^{\nabla}(t)-\psi^{\rho}(t)\left(\frac{p^{\rho}}{M^{\rho}}\right)^{1 / 2} \phi^{\nabla}(t) \tag{4.3}
\end{equation*}
$$

If we integrate both sides of (4.3) from t_{0} to ∞, we get

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{1}{\left(p^{\rho} M^{\rho}\right)^{1 / 2}} \nabla s=\int_{t_{0}}^{\infty} \phi^{\rho}\left(\frac{p^{\rho}}{M^{\rho}}\right)^{1 / 2} \psi^{\nabla} \nabla s-\int_{t_{0}}^{\infty} \psi^{\rho}\left(\frac{p^{\rho}}{M^{\rho}}\right)^{1 / 2} \phi^{\nabla} \nabla s \tag{4.4}
\end{equation*}
$$

By assumption, the left-hand side of (4.4) is infinite. But, by the Cauchy-Schwarz inequality, the right-hand side becomes

$$
\begin{aligned}
& \left|\int_{t_{0}}^{\infty} \phi^{\rho}\left(\frac{p^{\rho}}{M^{\rho}}\right)^{1 / 2} \psi^{\nabla} \nabla s-\int_{t_{0}}^{\infty} \psi^{\rho}\left(\frac{p^{\rho}}{M^{\rho}}\right)^{1 / 2} \phi^{\nabla} \nabla s\right| \\
& \leq\left\|\phi^{\rho}\right\|_{L_{\nabla}^{2}}\left(\int_{t_{0}}^{\infty} \frac{p^{\rho}}{M^{\rho}}\left(\psi^{\nabla}\right)^{2} \nabla s\right)^{1 / 2}+\left\|\psi^{\rho}\right\|_{L_{\nabla}^{2}}\left(\int_{t_{0}}^{\infty} \frac{p^{\rho}}{M^{\rho}}\left(\phi^{\nabla}\right)^{2} \nabla s\right)^{1 / 2} \\
& <\infty
\end{aligned}
$$

This is a contradiction to the assumption that L is ∇-limit-circle. Thus, we have that L is ∇-limit-point

5 Example

Fix $q>1$. Let $\mathbb{T}=\left\{q^{n}: n \in \mathbb{N}_{0}\right\}$. Consider the dynamic equation

$$
x^{\Delta \nabla}+(t \ln t)^{2} x=0
$$

Here, we have $p(t) \equiv 1$, and $q(t)=(t \ln t)^{2}$. We need to show that the three assumptions in Theorem 4.2 hold. Fix $N>0$ sufficiently large and let $T=q^{N}$. Also, let $M(t)=$ $(t \ln t)^{2}$. For (i), if we take $k_{1}=1$, we get that $q(t)=M(t)=(t \ln t)^{2}$ for all $t \in \mathbb{T}$, so certainly $q(t) \leq M(t)$ for $t \geq T$.

For (ii), consider

$$
\begin{aligned}
\int_{T}^{\infty}\left(p^{\rho}(s) M^{\rho}(s)\right)^{-1 / 2} \nabla s & =\int_{T}^{\infty} \frac{1}{\left(M^{\rho}(s)\right)^{1 / 2}} \nabla s=\int_{T}^{\infty} \frac{1}{\left((\rho(s) \ln \rho(s))^{2}\right)^{1 / 2}} \nabla s \\
& =\int_{T}^{\infty} \frac{1}{\rho(s) \ln \rho(s)} \nabla s=\sum_{k=N+1}^{\infty} \frac{1}{q^{k-1} \ln q^{k-1}} \nu\left(q^{k}\right) \\
& =\sum_{k=N+1}^{\infty} \frac{1}{q^{k-1} \ln q^{k-1}}\left(q^{k}-q^{k-1}\right)=\sum_{k=N+1}^{\infty} \frac{q^{k-1}(q-1)}{q^{k-1} \ln q^{k-1}} \\
& =\frac{q-1}{\ln q} \sum_{k=N+1}^{\infty} \frac{1}{k-1}=\frac{q-1}{\ln q} \sum_{k=N}^{\infty} \frac{1}{k}=\infty
\end{aligned}
$$

Notice,

$$
\begin{aligned}
M^{\nabla}(t) & =\frac{\left(q^{k} \ln q^{k}\right)^{2}-\left(q^{k-1} \ln q^{k-1}\right)^{2}}{q^{k}-q^{k-1}} \\
& =\frac{\left(q^{k} \ln q^{k}-q^{k-1} \ln q^{k-1}\right)\left(q^{k} \ln q^{k}+q^{k-1} \ln q^{k-1}\right)}{q^{k}-q^{k-1}} \\
& =\frac{\left(q^{k-1}\right)^{2}(\ln q)^{2}(q k-(k-1))(q k+(k-1))}{q^{k-1}(q-1)} \\
& =\frac{q^{k-1}(\ln q)^{2}\left(q^{2} k^{2}-(k-1)^{2}\right)}{q-1} .
\end{aligned}
$$

Thus, for part (iii), we have for $k \geq N$

$$
\begin{aligned}
\left|\left(\frac{p^{\rho}(t)}{M^{\rho}(t)}\right)^{1 / 2} \frac{M^{\nabla}(t)}{M(t)}\right| & =\frac{q^{k-1}(\ln q)^{2}\left(q^{2} k^{2}-(k-1)^{2}\right)}{(q-1) q^{k-1} \ln \left(q^{k-1}\right) q^{2 k}\left(\ln q^{k}\right)^{2}} \\
& =\frac{q^{k-1}(\ln q)^{2}\left(q^{2} k^{2}-(k-1)^{2}\right)}{(q-1) q^{k-1} q^{2 k}(k-1) k^{2} \ln q(\ln q)^{2}} \\
& =\frac{q^{2} k^{2}-(k-1)^{2}}{(q-1) k^{2}(k-1) q^{2 k} \ln q} \\
& \leq \frac{q^{2} k^{2}}{(q-1) k^{2}(k-1) q^{2 k} \ln q} \\
& \leq \frac{q^{2}}{(q-1)(k-1) q^{2 k} \ln q} \\
& \leq \frac{1}{(q-1)(k-1) q^{2 k-2} \ln q} \\
& \leq \frac{1}{(q-1)(N-1) q^{2 N-2} \ln q}:=k_{2}
\end{aligned}
$$

Thus, the assumptions of Theorem 4.2 hold, so we get that

$$
x^{\Delta \nabla}+(t \ln t)^{2} x=0
$$

is ∇-limit-point.

References

[1] Atici, F. M. and Guseinov, G. Sh. On Green's functions and positive solutions for boundary value problems on time scales J. Comput. Appl. Math. 141 (2002) 75-99. Special Issue on "Dynamic Equations on Time Scales", edited by R. P. Agarwal, M. Bohner, and D. O'Regan.
[2] Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 2001.
[3] Bohner, M. and Peterson, A. (Eds.). Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, 2003.
[4] Cheung, P. and Kac, V. Quantum Calculus. Springer, New York, 2002.
[5] Coddington, E. and Levinson, N. Theory of Ordinary Differential Equations. MacGraw-Hill, New York, 1955.
[6] Conway, J. A Course in Functional Analysis. Springer, New York, 1990.
[7] O. Dos̆lý, Reciprocity principal for even-order dynamic equations with mixed derivatives, Dynamic Sys. Appl., 16:2 (2007) 697-708.
[8] Erbe, L. H. and Peterson, A. Eigenvalue conditions and positive solutions. J. Differ. Equations Appl. 6 (2000) 165-191.
[9] Erbe, L. H. and Peterson, A. Green's functions and comparison theorems from differential equations on measure chains. Dynam. Contin. Discrete Impuls. Systems 6 (1999) 121-137.
[10] Erbe, L. H. and Peterson, A. Positive solutions for a nonlinear differential equation on a measure chain. Math. Comput. Modelling 32 (2000) 571-585.
[11] Wong, J. S. W. and Zettl, A. On the limit point classification of second order differential equations. Math. Z. 132 (1973) 297-304.

[^0]: * Corresponding author: weissjj@unk.edu

