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1 Introduction

Let T be a time scale and a, b ∈ T be fixed points with a < b such that the time scale
interval

(a, b) = {t ∈ T : a < t < b}
is not empty. Throughout, all the intervals are time scale intervals. For standard notions
and notations related to time scales calculus see [1, 2].

In this paper, we deal with the nonlinear boundary value problem (BVP)

y∆∇(t) + f(t, y(t)) = 0, t ∈ (a, b), (1)

y(a) = y(b) = 0. (2)

A function y : [a, b] → R is called a solution of the BVP (1), (2) if the following
conditions are satisfied:
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(a) y is continuous on [a, b] and delta differentiable on (a, b) and such that there exist
(finite) limits

y∆(a) := lim
t→a+

y∆(t) and y∆(b) := lim
t→b−

y∆(t).

(b) y∆ is ∇-differentiable on (a, b].

(c) y satisfies equation (1) and boundary conditions (2).

The main result of this paper is the following theorem.

Theorem 1.1 Suppose f : [a, b]×R → R is continuous, f(b, 0) = 0 in the case b is
left-scattered, and suppose f satisfies the Lipschitz condition

|f(t, ξ) − f(t, η)| ≤ L |ξ − η| (3)

for all t ∈ [a, b] and ξ, η ∈ R, where L > 0 is a constant (Lipschitz constant), R denotes
the set of real numbers. Suppose further that

L < λ1, (4)

where λ1 is the least positive eigenvalue of the problem

y∆∇(t) + λy(t) = 0, t ∈ (a, b), (5)

y(a) = y(b) = 0. (6)

Then the BVP (1), (2) has a unique solution.

Proof of Theorem 1.1 is presented in Section 2 and it uses a Hilbert space technique.

In Section 3, we compute the eigenvalues of (5), (6) explicitly in the cases T = R and
T = Z (the set of integers) and show that

λ1 =
π2

(b − a)2
if T = R,

and

λ1 = 4 sin2
π

2(b − a)
≥ 8

(b − a)2
if T = Z.

Finally, in Section 4, we show that in the general case of arbitrary time scale T the
estimation

λ1 ≥ 4

(b − a)2

holds and therefore the more explicit condition of the form

L <
4

(b − a)2

implies condition (4) of Theorem 1.1.
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2 Proof of Theorem 1.1

Denote by H the Hilbert space of all real ∇-measurable functions y : (a, b] → R such
that y(b) = 0 in the case b is left-scattered, and that

∫ b

a

y2(t)∇t < ∞,

with the inner product

〈y, z〉 =

∫

b

a

y(t)z(t)∇t

and the norm

‖y‖ =
√

〈y, y〉 =

{

∫

b

a

y2 (t)∇t

}
1
2

.

Next denote by D the set of all functions y ∈ H satisfying the following three condi-
tions:

(i) y is continuous on (a, b], y(b) = 0, there exists y(a) := limt→a+ y(t) and y(a) = 0.

(ii) y is continuously ∆-differentiable on (a, b), there exist (finite) limits

y∆(a) := lim
t→a+

y∆(t) and y∆(b) := lim
t→b−

y∆(t).

(iii) y∆ is ∇-differentiable on (a, b] and y∆∇ ∈ H.

Define the operators A : D ⊂ H → H and F : H → H by

(Ay)(t) = −y∆∇(t) for y ∈ D,

(Fy)(t) = f(t, y(t)) for y ∈ H.

Note that the operator A is linear, while F is nonlinear in general. The eigenvalues
of problem (5), (6) coincide with the eigenvalues of the operator A.

As is shown in [3], the operator A is symmetric and positive:

〈Ay, z〉 = 〈y, Az〉 for all y, z ∈ D,

〈Ay, y〉 > 0 for all y ∈ D, y 6= 0.

Further, A has N = dimH (where N ≤ ∞) orthonormal eigenfunctions ϕk which form
a basis for H and the corresponding eigenvalues are simple and positive:

Aϕk = λkϕk,

〈ϕk, ϕl〉 = 0 if k 6= l and 〈ϕk, ϕl〉 = 1 if k = l,

0 < λ1 < λ2 < . . . .

For any function u ∈ H we have (expansion formula and Parseval’s equality)

u =

N
∑

k=1

ckϕk, ck = 〈u, ϕk〉 , (7)
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‖u‖2
= 〈u, u〉 =

N
∑

k=1

c2

k
.

In the case N = ∞ the sum in (7) becomes an infinite series and it converges to the
function u in metric of the space H. Since the operator A is positive, it is invertible. We
have

Au =

N
∑

k=1

ckλkϕk for all u ∈ D,

A−1u =

N
∑

k=1

ck

λk

ϕk for all u ∈ H,

where ck are defined in (7). Hence

∥

∥A−1u
∥

∥

2

=

N
∑

k=1

c2

k

λ2

k

≤ 1

λ2
1

N
∑

k=1

c2

k =
1

λ2
1

‖u‖2
.

Thus we have established the following result: The operator A is invertible and

∥

∥A−1u
∥

∥ ≤ 1

λ1

‖u‖ for all u ∈ H. (8)

The BVP (1), (2) is equivalent to the vector equation

Ay = Fy for y ∈ D,

which can be written in the form

y = A−1Fy for y ∈ H. (9)

Note that the inverse operator A−1 maps H onto D and therefore if y ∈ H satisfies (9)
then y ∈ D. Let us set S = A−1F. Then we get that the BVP (1), (2) is equivalent to
the equation

y = Sy (y ∈ H).

The last equation is a fixed point problem.

We will use the following well-known contraction mapping theorem: Let H be a
Banach space and suppose that S : H → H is a contraction mapping, i.e., there is an α,

0 < α < 1, such that ‖Su − Sv‖ ≤ α ‖u − v‖ for all u, v ∈ H. Then S has a unique fixed
point in H.

It will be sufficient to show that the operator S = A−1F is a contraction mapping on
the space H. We have, using (8),

‖Su − Sv‖ =
∥

∥A−1Fu − A−1Fv
∥

∥

=
∥

∥A−1(Fu − Fv)
∥

∥

≤ 1

λ1

‖Fu − Fv‖ . (10)
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Next, making use of the Lipschitz condition (3), we get

‖Fu − Fv‖2
=

∫

b

a

|f(t, u(t)) − f(t, v(t))|2 ∇t

≤ L2

∫ b

a

|u(t) − v(t)|2 ∇t

= L2 ‖u − v‖2

so that
‖Fu − Fv‖ ≤ L ‖u − v‖ for all u, v ∈ H.

Thus, from (10) we obtain

‖Su − Sv‖ ≤ L

λ1

‖u − v‖ for all u, v ∈ H.

Consequently, we see that under the condition (4), S is a contraction mapping and hence
it has a unique fixed point in H by the contraction mapping theorem. Theorem 1.1 is
proved.

Remark 2.1 The condition that functions y ∈ H satisfy y(b) = 0 in the case b is
left-scattered guarantees the density of D in H (this is needed for the operator theory)
and the condition that f(b, 0) = 0 in the case b is left-scattered guarantees Fy ∈ H for
y ∈ H.

3 Examples

In the case T = R, problem (1), (2) takes the form

y′′(t) + f(t, y(t)) = 0, t ∈ (a, b),

y(a) = y(b) = 0,

and eigenvalue problem (5), (6) takes the form

y′′(t) + λy(t) = 0, t ∈ (a, b), (11)

y(a) = y(b) = 0. (12)

The eigenvalues of (11), (12) are

λk =
π2k2

(b − a)2
(k = 1.2, . . .)

with the corresponding orthonormal eigenfunctions

ϕk(t) = αk sin
πk(t − a)

b − a
(k = 1, 2, . . .),

where αk are normirating constants. Therefore in this case

λ1 =
π2

(b − a)2
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and condition (4) becomes

L <
π2

(b − a)2
.

In the case T = Z, problem (1), (2) takes the form

y(t − 1) − 2y(t) + y(t + 1) + f(t, y(t)) = 0, t ∈ [a + 1, b − 1],

y(a) = y(b) = 0,

and eigenvalue problem (5), (6) takes the form

y(t − 1) − 2y(t) + y(t + 1) + λy(t) = 0, t ∈ [a + 1, b − 1], (13)

y(a) = y(b) = 0. (14)

The eigenvalues of (13), (14) are (cf. [4, Chap.7])

λk = 4 sin2
πk

2(b − a)
(1 ≤ k ≤ b − a − 1)

with the corresponding orthonormal eigenfunctions

ϕk(t) = αk sin
πk(t − a)

b − a
(1 ≤ k ≤ b − a − 1),

where αk are normirating constants. Therefore

λ1 = 4 sin2
π

2(b − a)

and condition (4) becomes

L < 4 sin2
π

2(b − a)
. (15)

Since b − a ≥ 2, using the inequality

sin x ≥ 2
√

2

π
x for 0 ≤ x ≤ π

4
,

we have that

sin2
π

2(b − a)
≥ 8

π2
.

π2

4(b − a)2
=

2

(b − a)2

and, therefore, the condition of the form

L <
8

(b − a)2

implies condition (15).
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4 An Estimation for λ1 in General Case

In the case of arbitrary time scale T we have (8). Besides, from Aϕ1 = λ1ϕ1 we have

∥

∥A−1ϕ1

∥

∥ =

∥

∥

∥

∥

1

λ1

ϕ1

∥

∥

∥

∥

=
1

λ1

.

Consequently,
∥

∥A−1
∥

∥ =
1

λ1

. (16)

On the other hand, the inverse operator A−1 has the form (see [3])

(A−1u)(t) =

∫ b

a

G(t, s)u(s)∇s for any u ∈ H,

where

G(t, s) =
1

b − a

{

(t − a)(b − s) if t ≤ s,

(s − a)(b − t) if t ≥ s,
(17)

Hence

∥

∥A−1u
∥

∥

2

=

∫ b

a

∣

∣

∣

∣

∣

∫ b

a

G(t, s)u(s)∇s

∣

∣

∣

∣

∣

2

∇t

≤ ‖u‖2

∫ b

a

∫ b

a

|G(t, s)|2 ∇s∇t

so that

∥

∥A−1
∥

∥ ≤
{

∫ b

a

∫ b

a

|G(t, s)|2 ∇s∇t

}
1
2

.

Therefore, taking into account (16), we get

λ1 ≥
{

∫ b

a

∫ b

a

|G(t, s)|2 ∇s∇t

}−
1
2

. (18)

Next, from (17) it follows that

0 ≤ G(t, s) ≤ 1

b − a
(s − a)(b − s)

for all t and s in [a, b]. Therefore
∫ b

a

∫ b

a

|G(t, s)|2 ∇s∇t ≤ 1

(b − a)2

∫ b

a

∫ b

a

(s − a)2(b − s)2∇s∇t

and observing that

0 ≤ (s − a)(b − s) ≤ (b − a)2

4
for s ∈ [a, b],

we find
∫

b

a

∫

b

a

|G(t, s)|2 ∇s∇t ≤ (b − a)4

16
.

Comparing this with (18), we obtain

λ1 ≥ 4

(b − a)2
.
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