On Solutions of a Nonlinear Boundary Value Problem on Time Scales

Aydin Huseynov*
Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences AZ1141 Baku, Azerbaijan

Received: April 1, 2008; Revised: December 19, 2008

Abstract

We study a boundary value problem (BVP) for second order nonlinear dynamic equations on time scales. A condition is established that ensures existence and uniqueness of solutions to the BVP under consideration.

Keywords: time scale; delta and nabla derivatives; eigenvalue; fixed point theorem.
Mathematics Subject Classification (2000): 34B15.

1 Introduction

Let \mathbf{T} be a time scale and $a, b \in \mathbf{T}$ be fixed points with $a<b$ such that the time scale interval

$$
(a, b)=\{t \in \mathbf{T}: a<t<b\}
$$

is not empty. Throughout, all the intervals are time scale intervals. For standard notions and notations related to time scales calculus see $[1,2]$.

In this paper, we deal with the nonlinear boundary value problem (BVP)

$$
\begin{gather*}
y^{\Delta \nabla}(t)+f(t, y(t))=0, \quad t \in(a, b) \tag{1}\\
y(a)=y(b)=0 \tag{2}
\end{gather*}
$$

A function $y:[a, b] \rightarrow \mathbf{R}$ is called a solution of the BVP (1), (2) if the following conditions are satisfied:

[^0](a) y is continuous on $[a, b]$ and delta differentiable on (a, b) and such that there exist (finite) limits
$$
y^{\Delta}(a):=\lim _{t \rightarrow a^{+}} y^{\Delta}(t) \quad \text { and } \quad y^{\Delta}(b):=\lim _{t \rightarrow b^{-}} y^{\Delta}(t)
$$
(b) y^{Δ} is ∇-differentiable on $(a, b]$.
(c) y satisfies equation (1) and boundary conditions (2).

The main result of this paper is the following theorem.
Theorem 1.1 Suppose $f:[a, b] \times \mathbf{R} \rightarrow \mathbf{R}$ is continuous, $f(b, 0)=0$ in the case b is left-scattered, and suppose f satisfies the Lipschitz condition

$$
\begin{equation*}
|f(t, \xi)-f(t, \eta)| \leq L|\xi-\eta| \tag{3}
\end{equation*}
$$

for all $t \in[a, b]$ and $\xi, \eta \in \mathbf{R}$, where $L>0$ is a constant (Lipschitz constant), \mathbf{R} denotes the set of real numbers. Suppose further that

$$
\begin{equation*}
L<\lambda_{1} \tag{4}
\end{equation*}
$$

where λ_{1} is the least positive eigenvalue of the problem

$$
\begin{gather*}
y^{\Delta \nabla}(t)+\lambda y(t)=0, \quad t \in(a, b) \tag{5}\\
y(a)=y(b)=0 \tag{6}
\end{gather*}
$$

Then the BVP (1), (2) has a unique solution.
Proof of Theorem 1.1 is presented in Section 2 and it uses a Hilbert space technique.
In Section 3, we compute the eigenvalues of (5), (6) explicitly in the cases $\mathbf{T}=\mathbf{R}$ and $\mathbf{T}=\mathbf{Z}$ (the set of integers) and show that

$$
\lambda_{1}=\frac{\pi^{2}}{(b-a)^{2}} \quad \text { if } \quad \mathbf{T}=\mathbf{R}
$$

and

$$
\lambda_{1}=4 \sin ^{2} \frac{\pi}{2(b-a)} \geq \frac{8}{(b-a)^{2}} \quad \text { if } \quad \mathbf{T}=\mathbf{Z}
$$

Finally, in Section 4, we show that in the general case of arbitrary time scale \mathbf{T} the estimation

$$
\lambda_{1} \geq \frac{4}{(b-a)^{2}}
$$

holds and therefore the more explicit condition of the form

$$
L<\frac{4}{(b-a)^{2}}
$$

implies condition (4) of Theorem 1.1.

2 Proof of Theorem 1.1

Denote by \mathcal{H} the Hilbert space of all real ∇-measurable functions $y:(a, b] \rightarrow \mathbf{R}$ such that $y(b)=0$ in the case b is left-scattered, and that

$$
\int_{a}^{b} y^{2}(t) \nabla t<\infty
$$

with the inner product

$$
\langle y, z\rangle=\int_{a}^{b} y(t) z(t) \nabla t
$$

and the norm

$$
\|y\|=\sqrt{\langle y, y\rangle}=\left\{\int_{a}^{b} y^{2}(t) \nabla t\right\}^{\frac{1}{2}}
$$

Next denote by \mathcal{D} the set of all functions $y \in \mathcal{H}$ satisfying the following three conditions:
(i) y is continuous on $(a, b], y(b)=0$, there exists $y(a):=\lim _{t \rightarrow a^{+}} y(t)$ and $y(a)=0$.
(ii) y is continuously Δ-differentiable on (a, b), there exist (finite) limits

$$
y^{\Delta}(a):=\lim _{t \rightarrow a^{+}} y^{\Delta}(t) \quad \text { and } \quad y^{\Delta}(b):=\lim _{t \rightarrow b^{-}} y^{\Delta}(t)
$$

(iii) y^{Δ} is ∇-differentiable on $(a, b]$ and $y^{\Delta \nabla} \in \mathcal{H}$.

Define the operators $A: \mathcal{D} \subset \mathcal{H} \rightarrow \mathcal{H}$ and $F: \mathcal{H} \rightarrow \mathcal{H}$ by

$$
\begin{array}{ll}
(A y)(t)=-y^{\Delta \nabla}(t) & \text { for } \quad y \in \mathcal{D} \\
(F y)(t)=f(t, y(t)) & \text { for } \quad y \in \mathcal{H}
\end{array}
$$

Note that the operator A is linear, while F is nonlinear in general. The eigenvalues of problem $(5),(6)$ coincide with the eigenvalues of the operator A.

As is shown in [3], the operator A is symmetric and positive:

$$
\begin{aligned}
& \langle A y, z\rangle=\langle y, A z\rangle \quad \text { for all } \quad y, z \in \mathcal{D} \\
& \langle A y, y\rangle>0 \quad \text { for all } \quad y \in \mathcal{D}, y \neq 0
\end{aligned}
$$

Further, A has $N=\operatorname{dim} \mathcal{H}$ (where $N \leq \infty$) orthonormal eigenfunctions φ_{k} which form a basis for \mathcal{H} and the corresponding eigenvalues are simple and positive:

$$
\begin{gathered}
A \varphi_{k}=\lambda_{k} \varphi_{k} \\
\left\langle\varphi_{k}, \varphi_{l}\right\rangle=0 \text { if } k \neq l \text { and }\left\langle\varphi_{k}, \varphi_{l}\right\rangle=1 \text { if } k=l \\
0<\lambda_{1}<\lambda_{2}<\ldots
\end{gathered}
$$

For any function $u \in \mathcal{H}$ we have (expansion formula and Parseval's equality)

$$
\begin{equation*}
u=\sum_{k=1}^{N} c_{k} \varphi_{k}, \quad c_{k}=\left\langle u, \varphi_{k}\right\rangle \tag{7}
\end{equation*}
$$

$$
\|u\|^{2}=\langle u, u\rangle=\sum_{k=1}^{N} c_{k}^{2}
$$

In the case $N=\infty$ the sum in (7) becomes an infinite series and it converges to the function u in metric of the space \mathcal{H}. Since the operator A is positive, it is invertible. We have

$$
\begin{gathered}
A u=\sum_{k=1}^{N} c_{k} \lambda_{k} \varphi_{k} \quad \text { for all } \quad u \in \mathcal{D} \\
A^{-1} u=\sum_{k=1}^{N} \frac{c_{k}}{\lambda_{k}} \varphi_{k} \quad \text { for all } \quad u \in \mathcal{H}
\end{gathered}
$$

where c_{k} are defined in (7). Hence

$$
\left\|A^{-1} u\right\|^{2}=\sum_{k=1}^{N} \frac{c_{k}^{2}}{\lambda_{k}^{2}} \leq \frac{1}{\lambda_{1}^{2}} \sum_{k=1}^{N} c_{k}^{2}=\frac{1}{\lambda_{1}^{2}}\|u\|^{2}
$$

Thus we have established the following result: The operator A is invertible and

$$
\begin{equation*}
\left\|A^{-1} u\right\| \leq \frac{1}{\lambda_{1}}\|u\| \quad \text { for all } \quad u \in \mathcal{H} \tag{8}
\end{equation*}
$$

The BVP (1), (2) is equivalent to the vector equation

$$
A y=F y \quad \text { for } \quad y \in \mathcal{D}
$$

which can be written in the form

$$
\begin{equation*}
y=A^{-1} F y \quad \text { for } \quad y \in \mathcal{H} \tag{9}
\end{equation*}
$$

Note that the inverse operator A^{-1} maps \mathcal{H} onto \mathcal{D} and therefore if $y \in \mathcal{H}$ satisfies (9) then $y \in \mathcal{D}$. Let us set $S=A^{-1} F$. Then we get that the BVP (1), (2) is equivalent to the equation

$$
y=S y \quad(y \in \mathcal{H})
$$

The last equation is a fixed point problem.
We will use the following well-known contraction mapping theorem: Let \mathcal{H} be a Banach space and suppose that $S: \mathcal{H} \rightarrow \mathcal{H}$ is a contraction mapping, i.e., there is an α, $0<\alpha<1$, such that $\|S u-S v\| \leq \alpha\|u-v\|$ for all $u, v \in \mathcal{H}$. Then S has a unique fixed point in \mathcal{H}.

It will be sufficient to show that the operator $S=A^{-1} F$ is a contraction mapping on the space \mathcal{H}. We have, using (8),

$$
\begin{align*}
\|S u-S v\| & =\left\|A^{-1} F u-A^{-1} F v\right\| \\
& =\left\|A^{-1}(F u-F v)\right\| \\
& \leq \frac{1}{\lambda_{1}}\|F u-F v\| \tag{10}
\end{align*}
$$

Next, making use of the Lipschitz condition (3), we get

$$
\begin{aligned}
\|F u-F v\|^{2} & =\int_{a}^{b}|f(t, u(t))-f(t, v(t))|^{2} \nabla t \\
& \leq L^{2} \int_{a}^{b}|u(t)-v(t)|^{2} \nabla t \\
& =L^{2}\|u-v\|^{2}
\end{aligned}
$$

so that

$$
\|F u-F v\| \leq L\|u-v\| \quad \text { for all } \quad u, v \in \mathcal{H}
$$

Thus, from (10) we obtain

$$
\|S u-S v\| \leq \frac{L}{\lambda_{1}}\|u-v\| \quad \text { for all } \quad u, v \in \mathcal{H}
$$

Consequently, we see that under the condition (4), S is a contraction mapping and hence it has a unique fixed point in \mathcal{H} by the contraction mapping theorem. Theorem 1.1 is proved.

Remark 2.1 The condition that functions $y \in \mathcal{H}$ satisfy $y(b)=0$ in the case b is left-scattered guarantees the density of \mathcal{D} in \mathcal{H} (this is needed for the operator theory) and the condition that $f(b, 0)=0$ in the case b is left-scattered guarantees $F y \in \mathcal{H}$ for $y \in \mathcal{H}$.

3 Examples

In the case $\mathbf{T}=\mathbf{R}$, problem (1), (2) takes the form

$$
\begin{gathered}
y^{\prime \prime}(t)+f(t, y(t))=0, \quad t \in(a, b), \\
y(a)=y(b)=0
\end{gathered}
$$

and eigenvalue problem (5), (6) takes the form

$$
\begin{gather*}
y^{\prime \prime}(t)+\lambda y(t)=0, \quad t \in(a, b) \tag{11}\\
y(a)=y(b)=0 \tag{12}
\end{gather*}
$$

The eigenvalues of (11), (12) are

$$
\lambda_{k}=\frac{\pi^{2} k^{2}}{(b-a)^{2}} \quad(k=1.2, \ldots)
$$

with the corresponding orthonormal eigenfunctions

$$
\varphi_{k}(t)=\alpha_{k} \sin \frac{\pi k(t-a)}{b-a} \quad(k=1,2, \ldots)
$$

where α_{k} are normirating constants. Therefore in this case

$$
\lambda_{1}=\frac{\pi^{2}}{(b-a)^{2}}
$$

and condition (4) becomes

$$
L<\frac{\pi^{2}}{(b-a)^{2}}
$$

In the case $\mathbf{T}=\mathbf{Z}$, problem (1), (2) takes the form

$$
\begin{gathered}
y(t-1)-2 y(t)+y(t+1)+f(t, y(t))=0, \quad t \in[a+1, b-1] \\
y(a)=y(b)=0
\end{gathered}
$$

and eigenvalue problem (5), (6) takes the form

$$
\begin{gather*}
y(t-1)-2 y(t)+y(t+1)+\lambda y(t)=0, \quad t \in[a+1, b-1] \tag{13}\\
y(a)=y(b)=0 \tag{14}
\end{gather*}
$$

The eigenvalues of (13), (14) are (cf. [4, Chap.7])

$$
\lambda_{k}=4 \sin ^{2} \frac{\pi k}{2(b-a)} \quad(1 \leq k \leq b-a-1)
$$

with the corresponding orthonormal eigenfunctions

$$
\varphi_{k}(t)=\alpha_{k} \sin \frac{\pi k(t-a)}{b-a} \quad(1 \leq k \leq b-a-1)
$$

where α_{k} are normirating constants. Therefore

$$
\lambda_{1}=4 \sin ^{2} \frac{\pi}{2(b-a)}
$$

and condition (4) becomes

$$
\begin{equation*}
L<4 \sin ^{2} \frac{\pi}{2(b-a)} \tag{15}
\end{equation*}
$$

Since $b-a \geq 2$, using the inequality

$$
\sin x \geq \frac{2 \sqrt{2}}{\pi} x \quad \text { for } \quad 0 \leq x \leq \frac{\pi}{4}
$$

we have that

$$
\sin ^{2} \frac{\pi}{2(b-a)} \geq \frac{8}{\pi^{2}} \cdot \frac{\pi^{2}}{4(b-a)^{2}}=\frac{2}{(b-a)^{2}}
$$

and, therefore, the condition of the form

$$
L<\frac{8}{(b-a)^{2}}
$$

implies condition (15).

4 An Estimation for λ_{1} in General Case

In the case of arbitrary time scale \mathbf{T} we have (8). Besides, from $A \varphi_{1}=\lambda_{1} \varphi_{1}$ we have

$$
\left\|A^{-1} \varphi_{1}\right\|=\left\|\frac{1}{\lambda_{1}} \varphi_{1}\right\|=\frac{1}{\lambda_{1}}
$$

Consequently,

$$
\begin{equation*}
\left\|A^{-1}\right\|=\frac{1}{\lambda_{1}} \tag{16}
\end{equation*}
$$

On the other hand, the inverse operator A^{-1} has the form (see [3])

$$
\left(A^{-1} u\right)(t)=\int_{a}^{b} G(t, s) u(s) \nabla s \quad \text { for any } \quad u \in \mathcal{H}
$$

where

$$
G(t, s)=\frac{1}{b-a} \begin{cases}(t-a)(b-s) & \text { if } t \leq s \tag{17}\\ (s-a)(b-t) & \text { if } t \geq s\end{cases}
$$

Hence

$$
\begin{aligned}
\left\|A^{-1} u\right\|^{2} & =\int_{a}^{b}\left|\int_{a}^{b} G(t, s) u(s) \nabla s\right|^{2} \nabla t \\
& \leq\|u\|^{2} \int_{a}^{b} \int_{a}^{b}|G(t, s)|^{2} \nabla s \nabla t
\end{aligned}
$$

so that

$$
\left\|A^{-1}\right\| \leq\left\{\int_{a}^{b} \int_{a}^{b}|G(t, s)|^{2} \nabla s \nabla t\right\}^{\frac{1}{2}}
$$

Therefore, taking into account (16), we get

$$
\begin{equation*}
\lambda_{1} \geq\left\{\int_{a}^{b} \int_{a}^{b}|G(t, s)|^{2} \nabla s \nabla t\right\}^{-\frac{1}{2}} \tag{18}
\end{equation*}
$$

Next, from (17) it follows that

$$
0 \leq G(t, s) \leq \frac{1}{b-a}(s-a)(b-s)
$$

for all t and s in $[a, b]$. Therefore

$$
\int_{a}^{b} \int_{a}^{b}|G(t, s)|^{2} \nabla s \nabla t \leq \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}(s-a)^{2}(b-s)^{2} \nabla s \nabla t
$$

and observing that

$$
0 \leq(s-a)(b-s) \leq \frac{(b-a)^{2}}{4} \quad \text { for } \quad s \in[a, b]
$$

we find

$$
\int_{a}^{b} \int_{a}^{b}|G(t, s)|^{2} \nabla s \nabla t \leq \frac{(b-a)^{4}}{16}
$$

Comparing this with (18), we obtain

$$
\lambda_{1} \geq \frac{4}{(b-a)^{2}}
$$

Acknowledgement

This work was supported by a NATO Science Reintegration Grant.

References

[1] Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston, 2001.
[2] Bohner, M. and Peterson, A. Advances in Dynamic Equations on Time Scales. Birkhauser, Boston, 2003.
[3] Guseinov, G.Sh. Eigenfunction expansions for a Sturm-Liouville problem on time scales. International Journal of Difference Equations. 2 (2007) 93-104.
[4] Kelley, W.G. and Peterson, A.C. Difference Equations: An Introduction with Applications. Academic Press, New York, 1991.

[^0]: * Corresponding author: huseynov@email.com

