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1 Introduction

The theory of time scales, which has recently received a lot of attention, was introduced
by Stefan Hilger in his Ph. D. Thesis in 1988 in order to unify continuous and discrete
analysis, see [10]. A time scale T is an arbitrary closed subset of the reals, and the cases
when this time scale is equal to the reals or to the integers represent the classical theories
of differential and of difference equations. Many other interesting time scales exist, and
they give rise to many applications (see [3]). This new theory of these so-called “dynamic
equations” not only unifies the corresponding theories for the differential equations and
difference equations cases, but it also extends these classical cases to cases “in between”.
That is, we are able to treat the so-called q-difference equations when T =qN0 := {qn :
n ∈ N0 for q > 1} (which has important applications in quantum theory (see [12]))
and can be applied to different types of time scales like T =hN, T = N

2 and T = Tn

the set of the harmonic numbers. The books on the subject of time scales by Bohner
and Peterson [3], [4] summarize and organize much of time scale calculus. In the last
few years, there has been increasing interest in obtaining sufficient conditions for the
oscillation/nonoscillation of solutions of different classes of dynamic equations on time
scales, and we refer the reader to the papers [1], [5], [7], [8], [9], [15] and the references
cited therein. In this paper, we are concerned with oscillation behavior of the second-
order half-linear delay dynamic equation

(r(t)(x∆(t))γ)∆ + p(t)xγ(τ(t)) = 0, (1.1)

on an arbitrary time scale T, where γ ≥ 1 is a quotient of odd positive integers, p is a
positive rd−continuous function on T, r(t) is positive and (delta) differentiable and the
so-called delay function τ : T → T satisfies τ(t) ≤ t for t ∈ T and limt→∞ τ(t) = ∞. Since
we are interested in the oscillatory and asymptotic behavior of solutions near infinity, we
assume that sup T = ∞, and define the time scale interval [t0,∞)T by [t0,∞)T := [t0,∞)∩
T. By a solution of (1.1) we mean a nontrivial real–valued function x ∈ C1

rd[Tx,∞),
Tx ≥ t0 which has the property that r(t)(x∆(t))γ ∈ C1

rd[Tx,∞) and satisfies equation
(1.1) on [Tx,∞), where Crd is the space of rd−continuous functions. The solutions
vanishing in some neighborhood of infinity will be excluded from our consideration. A
solution x of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative, otherwise it is nonoscillatory. Note that if T = R then σ(t) = t, µ(t) = 0,

f∆(t) = f ′(t),
∫ b

a
f(t)∆t =

∫ b

a
f(t)dt, and (1.1) becomes the half-linear delay differential

equation
(

r(t) (x′(t))
γ)′

+ p(t)xγ(τ(t)) = 0. (1.2)

If T = Z, then σ(t) = t + 1, µ(t) = 1, f∆(t) = ∆f(t),
∫ b

a
f(t)∆t =

∑b−1
t=a f(t), and (1.1)

becomes the half-linear delay difference equation

∆(r(t) (∆x(t))
γ
) + p(t)xγ(τ(t)) = 0. (1.3)

If T =hZ, h > 0, then σ(t) = t + h, µ(t) = h, y∆(t) = ∆hy(t) := y(t+h)−y(t)
h

,
∫ b

a
f(t)∆t =

∑

b−a−h
h

k=0 f(a + kh)h, and (1.1) becomes the second-order half-linear delay
difference equation

∆h(r(t) (∆hx(t))γ) + p(t)xγ(τ(t)) = 0. (1.4)

If T = {t : t = qk, k ∈ N0, q > 1}, then σ(t) = qt, µ(t) = (q − 1)t, x∆(t) = ∆qx(t) =
(x(q t) − x(t))/(q − 1) t,

∫ ∞
t0

f(t)∆t =
∑∞

k=n0
f(qk)µ(qk), where t0 = qn0 , and (1.1)
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becomes the second-order q−half-linear delay difference equation

∆q(r(t) (∆qx(t))
γ
) + p(t)xγ(τ(t)) = 0. (1.5)

If T = N
2
0 := {n2 : n ∈ N0}, then σ(t) = (

√
t + 1)2, µ(t) = 1 + 2

√
t, ∆Ny(t) =

y((
√

t+1)2)−y(t)

1+2
√

t
, and (1.1) becomes the second-order half-linear delay difference equation

∆N (r(t) (∆Nx(t))γ) + p(t)xγ(τ(t)) = 0. (1.6)

If T = {Hn : n ∈ N} where Hn is the so-called n-th harmonic number defined by H0 = 0,
Hn =

∑n
k=1

1
k
, n ∈ N0, then σ(Hn) = Hn+1, µ(Hn) = 1

n+1 , y∆(t) = ∆Hn
y(Hn) =

(n + 1)∆y(Hn) and (1.1) becomes the second-order half-linear delay difference equation

∆Hn
(r(Hn) (∆Hn

x(Hn))
γ
) + p(Hn)xγ(τ(Hn)) = 0. (1.7)

Recall that for a discrete time scale
∫ b

a

f(t)∆t =
∑

t∈[a,b)T

f(t)µ(t).

In the following, we state some oscillation results for differential and difference equations
that will be related to our oscillation results for (1.1) on time scales and explain the
important contributions of this paper. We will see that our results not only unify some
of the known oscillation results for differential and difference equations but also give
new oscillation criteria which include the equations (1.3)–(1.7), where in many cases the
oscillatory behavior of their solutions was not known. In 1948 Hille [11] considered the
linear differential equation

x′′(t) + p(t)x(t) = 0, (1.8)

where p(t) is a positive function, and proved that if

lim inf
t→∞

t

∫ ∞

t

p(s)ds >
1

4
, (1.9)

then every solution of (1.8) oscillates. In 1957 Nehari [13] proved that if

lim inf
t→∞

1

t

∫ t

t0

s2p(s)ds >
1

4
, (1.10)

then every solution of (1.8) oscillates. We note that the inequalities (1.9) and (1.10) are
exact and can not be weakened. Indeed, let p(t) = 1/4t2 for t ≥ 1. Then we have

lim inf
t→∞

1

t

∫ t

t0

s2p(s)ds = lim inf
t→∞

t

∫ ∞

t

p(s)ds =
1

4
,

and the second-order Euler–Cauchy differential equation

x′′(t) +
1

4t2
x(t) = 0, t ≥ 1, (1.11)

has a nonoscillatory solution x(t) =
√

t. In other words the constant 1/4 is the lower
bound for oscillation for all solutions of (1.11). In 1971 Wong [17] generalized the Hille-
type condition (1.9) for the delay equation

x′′(t) + p(t)x(τ(t)) = 0, (1.12)
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where τ(t) ≥ αt with 0 < α < 1, and proved that if

lim inf
t→∞

t

∫ ∞

t

p(s)ds >
1

4α
, (1.13)

then every solution of (1.12) is oscillatory. In 1973 Erbe [6] improved the condition (1.13)
and proved that if

lim inf
t→∞

t

∫ ∞

t

p(s)
τ(s)

s
ds >

1

4
, (1.14)

then every solution of (1.12) oscillates where τ(t) ≤ t. In 1984 Ohriska [14] proved that,
if

lim sup
t→∞

t

∫ ∞

t

p(s)

(

τ(s)

s

)

ds > 1, (1.15)

then every solution of (1.12) oscillates. Note that when p(t) = λ
tτ(t) , with τ(t) ≤ t, (1.12)

reduces to the second-order delay differential equation

x′′(t) +
λ

tτ(t)
x(τ(t)) = 0, t ≥ t0. (1.16)

From (1.14) we see that every solution of (1.16) is oscillatory if λ > 1
4 and nonoscillatory

if λ ≤ 1
4 , with oscillation constant 1/4 (see [1]). For oscillation of half-linear differential

equations, Agarwal et al [2] considered the equation

(

(x′(t))
γ)′

+ p(t)xγ(τ(t)) = 0, (1.17)

and extended the condition (1.15) of Ohriska and proved that if

lim sup
t→∞

tγ
∫ ∞

t

p(s)

(

τ(s)

s

)γ

ds > 1, (1.18)

then every solution of (1.17) oscillates. It is clear that the condition (1.18) reduces to
(1.15) when γ = 1. From which, we can easily see that the oscillation condition (1.18)
that has been established by Agarwal et al [2] for (1.17) is not a sharp sufficient condition
for oscillation of (1.17), since the condition (1.15) that has been established by Ohriska
[14] is not sharp. For oscillation of half-linear difference equations, Thandapani et al [16]
considered the difference equation

∆((∆x(n)))γ) + p(n)xγ(n) = 0, n ≥ n0, (1.19)

where γ > 0, p(n) is a positive sequence, and proved that every solution is oscillatory, if

∞
∑

n=n0

p(n) = ∞. (1.20)

We note that the condition (1.20) can not be applied to the difference equation

∆((∆x(n)))
γ
) +

β

nγ
xγ(n) = 0, for γ > 1. (1.21)

In view of the above comments, we shall establish oscillation criteria for the dynamic
equation (1.1) on a time scale T which as a special case when T = R and T = N:
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(i) involve the oscillation conditions (1.9) and (1.10) that have been given by Hille
[11] and Nehari [13] for equation (1.8)

(ii) involve the oscillation condition (1.14) that was given by Erbe [6] for delay equa-
tion (1.12),

(iii) improve the oscillation condition (1.18) that was given by Agarwal et al [2] for
half-linear differential equation (1.17),

(iv) improve the oscillation condition (1.20) that was established by Thandapani et
al [16] for half-linear difference equation (1.19).

This paper is organized as follows: In Section 2, we establish some sufficient conditions
for oscillation of (1.1) when r(t) = 1, which partially anwers the above question. Also, by
using the Riccati transformation technique we will establish some new oscillation criteria
for (1.1) in its general form when r(t) 6≡ 1, which can be considered as a generalization
of the results that have been established by Saker [15] and as a special case involve some
results established by Agarwal et al [2] for half-linear differential equations. In Section 3,
we give several examples which illustrate the importance of our main results. Note that
the results are essentially new for equations (1.2)–(1.7). To the best of our knowledge
nothing is known regarding the oscillatory behavior of half-linear delay dynamic equations
on time scales until now so this paper initiates this study.

2 Main Results

Thoughout the paper we assume that r∆(t) ≥ 0 and

∫ ∞

t0

τγ(t)p(t)∆t = ∞ (2.1)

is satisfied. Before stating our main results, we begin with the following lemma which
will play an important role in the proof of our main results.

Lemma 2.1 Assume that
∫ ∞

t0

∆t

r
1
γ (t)

= ∞ (2.2)

holds and (1.1) has a positive solution x on [t0,∞)T. Then there exists a T ∈ [t0,∞)T,

sufficiently large, so that

x∆(t) > 0, x∆∆(t) < 0, x(t) > tx∆(t),

(

x(t)

t

)∆

< 0 on [T,∞)T.

Proof Let x be as in the statement of this theorem. Pick t1 ∈ [t0,∞)T so that
t1 > t0 and so that x(τ(t)) > 0 on [t1,∞)T. Since x is a positive solution of (1.1), we
have (r(t)

(

x∆(t)
)γ

)∆ = −p(t)xγ(τ(t)) < 0, for t ∈ [t1,∞)T. Then r(t)
(

x∆(t)
)γ

is strictly

decreasing on [t1,∞)T. We claim that r(t)
(

x∆(t)
)γ

> 0 on [t1,∞)T. Assume not, then

there is a t2 ∈ [t1,∞)T such that r(t2)
(

x∆(t2)
)γ

=: c < 0. Therefore, r(t)
(

x∆(t)
)γ ≤

r(t2)
(

x∆(t2)
)γ

= c, for t ∈ [t2,∞)T, and therefore x∆(t) ≤ a

r
1
γ (t)

, for t ∈ [t2,∞)T where

a := c
1
γ < 0. Integrating, we find that

x(t) = x(t2) +

∫ t

t2

x∆(s)∆s ≤ x(t2) + a

∫ t

t2

∆s

r
1
γ (s)

→ −∞ as t → ∞,
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which implies that x(t) is eventually negative. This is a contradiction. Hence
r(t)

(

x∆(t)
)γ

> 0 on [t1,∞)T and so x∆(t) > 0 on [t1,∞)T. We now show that

x∆∆(t) < 0. Since (r(t)
(

x∆(t)
)γ

)∆ < 0 on [t1,∞)T, we have after differentiation that

r∆(t)
(

x∆(t)
)γ

+ rσ(t)
(

(

x∆(t)
)γ

)∆

< 0. (2.3)

Using the Pötzsche chain rule ([3, Theorem 1.90])

(f ◦ g)∆(t) =

∫ 1

0

f ′(g(t) + hµ(t)g∆(t))dh g∆(t), (2.4)

we have

(

(

x∆(t)
)γ

)∆

= γ

∫ 1

0

[

x∆(t) + hµ(t)x∆∆(t)
]γ−1

dh x∆∆(t)

= γx∆∆(t)

∫ 1

0

[

x∆(t) + h[x∆σ(t) − x∆(t)
]γ−1

dh

= γx∆∆(t)

∫ 1

0

[

hx∆σ(t) + (1 − h)x∆(t)
]γ−1

dh. (2.5)

From (2.3) we have that

rσ(t)
(

(x∆(t))γ
)∆

< −r∆(t)
(

x∆(t)
)γ ≤ 0,

since r∆(t) ≥ 0 and x∆(t) > 0 and so it follows that

rσ(t)
(

(x∆(t))γ
)∆

< 0.

This shows by (2.5) that x∆∆(t) < 0, since the integral in (2.5) is positive. Next, we show

that
(

x(t)
t

)∆

< 0. To see this, let U(t) := x(t)− tx∆(t), then U∆(t) = −σ(t)x∆∆(t) > 0

for t ∈ [t1,∞)T. This implies that U(t) is strictly increasing on [t1,∞)T. We claim there
is a t2 ∈ [t1,∞)T such that U(t) > 0 on [t2,∞)T. Assume not, then U(t) < 0 on [t1,∞)T.
Therefore,

(

x(t)

t

)∆

=
tx∆(t) − x(t)

tσ(t)
= − U(t)

tσ(t)
> 0, t ∈ [t1,∞)T. (2.6)

Pick t3 ∈ [t1,∞)T so that τ(t) ≥ τ(t1), for t ≥ t3. Then

x(τ(t))/τ(t) ≥ x(τ(t1))/τ(t1) =: d > 0,

so that x(τ(t)) ≥ dτ(t) for t ≥ t3. Now by integrating both sides of the dynamic equation
(1.1) from t3 to t we have

r(t)
(

x∆(t)
)γ − r(t3)

(

x∆(t3)
)γ

+

∫ t

t3

p(s)xγ(τ(s))∆s = 0.

This implies that

r(t3)
(

x∆(t3)
)γ ≥

∫ t

t3

p(s)xγ(τ(s))∆s ≥ dγ

∫ t

t3

p(s)τγ(s)∆s. (2.7)
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Letting t → ∞ we obtain a contradiction to assumption (2.1). Hence there is a t2 ∈
[t1,∞)T such that U(t) > 0 on [t2,∞)T. Consequently,

(

x(t)

t

)∆

=
tx∆(t) − x(t)

tσ(t)
= − U(t)

tσ(t)
< 0, t ∈ [t2,∞)T, (2.8)

and we have that
(

x(t)
t

)∆

< 0 on [t2,∞)T. This completes the proof of Lemma 2.1.

In the following, we consider the equation (1.1) in the special case r(t) ≡ 1, namely,

(
(

x∆(t)
)γ

)∆ + p(t)xγ(τ(t)) = 0, (2.9)

where γ ≥ 1 is the quotient of odd positive integers and p(t) is an rd−continuous and
positive function and τ(t) ≤ t. We introduce the following notation.

p∗ := lim inf
t→∞

tγ
∫ ∞

σ(t)

P (s)∆s, q∗ := lim inf
t→∞

1

t

∫ t

t0

sγ+1P (s)∆s, (2.10)

where P (t) := p(t)
(

τ(t)
σ(t)

)γ

and assume that l := lim inft→∞
t

σ(t) . Note that 0 ≤ l ≤ 1. In

order for the definition of p∗ to make sense we assume that

∫ ∞

t0

P (t)∆t < ∞. (2.11)

Theorem 2.1 Assume that l > 0 and (2.11) holds. Let x(t) be an eventually positive

solution of (2.9) such that x(t) and x(τ(t)) > 0 for t ≥ t1 > t0. Let w(t) =
(

x∆(t)
x(t)

)γ

and

r := lim inf
t→∞

tγwσ(t), and R := lim sup
t→∞

tγwσ(t), (2.12)

then

p∗ ≤ r − lγr1+ 1
γ and p∗ + q∗ ≤ 1

lγ(γ+1)
. (2.13)

Proof From Lemma 2.1 we get there is a T ∈ [t1,∞)T, sufficiently large, so that
x(t) satisfies the conclusions of Lemma 2.1. This implies that w(t) is positive. Using the
quotient rule and equation (2.9), we get

w∆(t) = −
(

x(τ(t))

xσ(t)

)γ

p(t) −
(

x∆(t)
)γ

(xγ(t))∆

xγ(t) (xσ(t))
γ .

Since
x(τ(t))

τ(t)
≥ x(t)

t
≥ xσ(t)

σ(t)
and x∆(t) ≥ x∆σ(t),

we get the inequality

w∆(t) ≤ −
(

τ(t)

σ(t)

)γ

p(t) −
(

x∆σ(t)
)γ

(xγ(t))∆

xγ(t) (xσ(t))
γ , (2.14)
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since x∆∆(t) < 0. By the Pötzsche chain rule, and the fact that x∆(t) > 0, we obtain

(xγ(t))
∆

= γ

∫ 1

0

[

x(t) + hµ(t)x∆(t)
]γ−1

dh x∆(t)

≥ γ

∫ 1

0

(x(t))
γ−1

dh x∆(t)

= γ(x(t))γ−1x∆(t). (2.15)

It follows from (2.14) and (2.15) that

w∆(t) ≤ −P (t) −
(

x∆σ(t)
)γ

γ(x(t))γ−1x∆(t)

xγ(t)(xσ(t))γ

= −P (t) − γwσ(t)w
1
γ (t).

Then w(t) satisfies the dynamic Riccati inequality

w∆(t) + P (t) + γwσ(t)w
1
γ (t) ≤ 0, for t ∈ [t1,∞)T. (2.16)

Since P (t) > 0 and w(t) > 0 for t ≥ t1, it follows from (2.16) that w∆(t) < 0 and hence
w(t) is strictly decreasing for t ∈ [T,∞)T. It follows from Lemma 2.1 that

w(t) =

(

x∆(t)

x(t)

)γ

<
1

tγ
, t ∈ [T,∞)T, (2.17)

which implies that limt→∞ w(t) = 0 and that

0 ≤ r ≤ R ≤ 1. (2.18)

Now, we prove that the first inequality in (2.13) holds. Let ǫ > 0, then by the definition
of p∗ and r we can pick t2 ∈ [T,∞)T, sufficiently large, so that

tγ
∫ ∞

σ(t)

P (s)∆s ≥ p∗ − ǫ, and tγwσ(t) ≥ r − ǫ,

for t ∈ [t2,∞)T. Integrating (2.16) from σ(t) to ∞ and using limt→∞ w(t) = 0, we have

wσ(t) ≥
∫ ∞

σ(t)

P (s)∆s + γ

∫ ∞

σ(t)

w
1
γ (s)wσ(s)∆s, t ∈ [t2,∞)T. (2.19)

It follows from (2.19) that

tγwσ(t) ≥ tγ
∫ ∞

σ(t)

P (s)∆s + γtγ
∫ ∞

σ(t)

w
1
γ (s)wσ(s)∆s

≥ (p∗ − ǫ) + γtγ
∫ ∞

σ(t)

s (wσ(s))
1
γ sγwσ(s)

sγ+1
∆s

≥ (p∗ − ǫ) + (r − ǫ)
1+ 1

γ tγ
∫ ∞

σ(t)

γ

sγ+1
∆s. (2.20)
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Using the Pötzsche chain rule we get

(−1

sγ

)∆

= γ

∫ 1

0

1

[s + hµ(s)]γ+1
dh

≤
∫ 1

0

( γ

sγ+1

)

dh =
γ

sγ+1
. (2.21)

Then from (2.20) and (2.21), we have

tγwσ(t) ≥ (p∗ − ǫ) + (r − ǫ)1+
1
γ

(

t

σ(t)

)γ

.

Taking the lim inf of both sides as t → ∞ we get that

r ≥ p∗ − ǫ + (r − ǫ)1+
1
γ lγ .

Since ǫ > 0 is arbitrary, we get the desired result

r ≥ p∗ + (r)1+
1
γ lγ .

To complete the proof it remains to prove the second inequality in (2.13). Since w∆(t) ≤
0, we have w(t) ≥ wσ(t), and (2.16) becomes

w∆(t) + P (t) + γ (wσ)
λ ≤ 0, t ∈ [T,∞)T, (2.22)

where λ = 1 + 1
γ
. Multiplying both sides (2.22) by tγ+1, and integrating from T to t

(t ≥ T ) we get

∫ t

T

sγ+1w∆(s)∆s ≤ −
∫ t

T

sγ+1P (s)∆s − γ

∫ t

T

sγ+1 (wσ(s))
λ

∆s.

Using integration by parts, we obtain

tγ+1w(t) ≤ T γ+1w(T ) −
∫ t

T

sγ+1P (s)∆s − γ

∫ t

T

sγ+1 (wσ(s))λ ∆s

+

∫ t

T

(

sγ+1
)∆s

wσ(s)∆s.

But, by the Pötzsche chain rule,

(

sγ+1
)∆

= (γ + 1)

∫ 1

0

[s + hµ(s)]γdh

≤ (γ + 1)

∫ 1

0

[σ(s)]γdh

= (γ + 1)[σ(s)]γ . (2.23)

Hence

tγ+1w(t) ≤ T γ+1w(T ) −
∫ t

T

sγ+1P (s)∆s +

∫ t

T

(γ + 1)(σ(s))γwσ(s)∆s

− γ

∫ t

T

sγ+1[wσ(s)]λ∆s.
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Let 0 < ǫ < l be given, then using the definition of l, we can assume, without loss of
generality, that T is sufficiently large so that

s

σ(s)
> l − ǫ, s ≥ T.

It follows that

σ(s) ≤ Ks, s ≥ T where K :=
1

l − ǫ
.

We then get that

tγ+1w(t) ≤ T γ+1w(T ) −
∫ t

T

sγ+1P (s)∆s

+

∫ t

T

[(γ + 1)Kγsγwσ(s) − γsγ+1[wσ(s)]λ]∆s.

Let
u(s) := sγwσ(s),

then
(u(s))

γ+1

γ = sγ+1[wσ(s)]λ.

It follows that

tγ+1w(t) ≤ T γ+1w(T ) −
∫ t

T

sγ+1P (s)∆s

+

∫ t

T

[(γ + 1)Kγu(s) − γ[u(s)]λ]∆s.

Using the inequality

Bu − Auλ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ
, (2.24)

where A, B are constants, we get

tγ+1w(t) ≤ T γ+1w(T ) −
∫ t

T

sγ+1P (s)∆s

+

∫ t

T

γγ

(γ + 1)γ+1

[(γ + 1)Kγ ]γ+1

γγ
∆s

≤ T γ+1w(T ) −
∫ t

T

sγ+1P (s)∆s + Kγ(γ+1)(t − T ).

It follows from this that

tγw(t) ≤ T γ+1w(T )

t
− 1

t

∫ t

T

sγ+1P (s)∆s + Kγ(γ+1) (t − T )

t
.

Since wσ(t) ≤ w(t), we get

tγwσ(t) ≤ T γ+1w(T )

t
− 1

t

∫ t

T

sγ+1P (s)∆s + Kγ(γ+1) (t − T )

t
.
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Taking the lim sup of both sides as t → ∞ we obtain

R ≤ −q∗ + Kγ(γ+1) = −q∗ +
1

(l − ǫ)γ(γ+1)
.

Since ǫ > 0 is arbritary, we get that

R ≤ −q∗ +
1

lγ(γ+1)
.

Using this and the first inequality in (2.13) we get

p∗ ≤ r − lγr1+ 1
γ ≤ r ≤ R ≤ −q∗ +

1

lγ(γ+1)
,

which gives us the desired second inequality in (2.13).
Using Theorem 2.1 we can now easily prove the following oscillation result.

Theorem 2.2 If

p∗ = lim inf
t→∞

tγ
∫ ∞

σ(t)

p(s)

(

τ(s)

σ(s)

)γ

∆s >
γγ

lγ2(γ + 1)γ+1
, (2.25)

then (2.9) is oscillatory on [t0,∞)T.

Proof Assume (2.9) is nonoscillatory on [t0,∞)T, then the hypotheses of Theorem
2.1 hold. From the first inequality in (2.13) we have that

p∗ ≤ r − lγr
γ+1

γ .

Using the inequality (2.24), with B = 1 and A = lγ we get that

p∗ ≤ γγ

lγ2(γ + 1)γ+1
,

which contradicts (2.25).
Using the second inequality in Theorem 2.1 we easily get the following result

Theorem 2.3 If

p∗ + q∗ >
1

lγ(γ+1)
, (2.26)

then (2.9) is oscillatory on [t0,∞)T.

Remark 2.1 Note that when T = R, σ(t) = t and the condition (2.25) becomes

lim inf
t→∞

tγ
∫ ∞

t

p(s)

(

τ(s)

s

)γ

ds >
γγ

(γ + 1)γ+1
, (2.27)

which is a sufficient condition for oscillation of (1.17). We note that the condition (2.27)
generalizes the condition (1.14) that has been established by Erbe [6]. Also when T = N,
σ(t) = t + 1 and condition (2.25) becomes

lim inf
t→∞

tγ
∞
∑

s=t+1

p(s)

(

τ(s)

s + 1

)γ

>
γγ

(γ + 1)γ+1
, (2.28)
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which is a sufficient condition for oscillation of (1.19). We note that the condition (2.28)
may be viewed as an extension of the oscillation condition (1.20) that has been established
by Thandapani et al [16]. As a special case when τ(t) = t, the condition (2.27) becomes
the Hille condition (1.9).

Remark 2.2 We give an example which shows that the inequality (2.27) and hence
the inequality (2.19) can not be weakened. To see this let T = [1,∞), and

p(t) :=
γγ+1

(γ + 1)γ+1

1

tγ+1
, t ≥ 1,

we have that

p∗ = lim inf
t→∞

tγ
∫ ∞

t

p(s)ds =
γγ

(γ + 1)γ+1
,

and the second-order half-linear differential equation

(

(x′(t))
γ)′

+ p(t)xγ(t) = 0,

has a nonoscillatory solution x(t) = t
γ

γ+1 . This shows that the constant γγ

(γ+1)γ+1 is sharp

for the oscillation for all solutions of this equation. Note in the case when γ = 1 this
constant is 1

4 .

Theorem 2.4 Assume that (2.2) holds and that

lim sup
t→∞

tγ

r(t)

∫ ∞

t

p(s)

(

τ(s)

s

)γ

∆s > 1. (2.29)

Then every solution of (1.1) is oscillatory on [t0,∞)T.

Proof Assume x is an eventually positive solution of (1.1) on [t0,∞)T. Using Lemma
2.1 there is a t1 ∈ [t0,∞)T such that

x(t) > 0, x(τ(t)) > 0, x∆(t) > 0, x∆∆(t) < 0,
x(t)

t
> x∆(t),

on [t1,∞)T and x(t)
t

is strictly decreasing on [t1,∞)T. Then integrating both sides of the
dynamic equation (1.1) from t to T , T ≥ t ≥ t1 we obtain

∫ T

t

p(s)xγ(τ(s))∆s = r(t)(x∆(t))γ − r(T )(x∆(T ))γ .

Since x∆(t) > 0, we get that

1

r(t)

∫ T

t

p(s)xγ(τ(s))∆s ≤ (x∆(t))γ .

Since x(t)
t

is strictly decreasing and using x∆(t) < x(t)
t

, we obtain

1

r(t)

∫ T

t

p(s)

(

τ(s)

s

)γ

xγ(s)∆s ≤ xγ(t)

tγ
.
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Since x(t) is increasing, we get

tγ

r(t)

∫ T

t

p(s)

(

τ(s)

s

)γ

∆s ≤ 1,

which implies that
tγ

r(t)

∫ ∞

t

p(s)

(

τ(s)

s

)γ

∆s ≤ 1,

which gives us the contradiction

lim sup
t→∞

tγ

r(t)

∫ ∞

t

p(s)

(

τ(s)

s

)γ

∆s ≤ 1.

Remark 2.3 When T = R, Theorem 2.4 improves the results established by Ohriska
[14] and Agarwal et al [2] for differential equations. In the case when T = N and r(t) = 1
the condition (2.29) becomes

lim sup
t→∞

tγ
∞
∑

s=t

p(s)

(

τ(s)

s

)γ

> 1, (2.30)

which is a new oscillation condition for (1.19).

Motivated by Theorem 3.1 in [15], we can prove the following result which is a new
oscillation result for equation (1.1).

Theorem 2.5 Assume that (2.2) holds. Furthermore, assume that there exists a

positive ∆−differentiable function δ(t) such that

lim sup
t→∞

∫ t

t0

[

δ(s)p(s)

(

τ(s)

σ(s)

)γ

− r(s)((δ∆(s))+)γ+1

(γ + 1)γ+1δγ(s)

]

∆s = ∞, (2.31)

where d+(t) := max{d(t), 0} is the positive part of any function d(t). Then every solution

of equation (1.1) is oscillatory on [t0,∞)T.

Proof Assume (1.1) has a nonoscillatory solution on [t0,∞)T. Then, without loss of
generality, there is a t1 ∈ [t0,∞)T such that x(t) satisfies the conclusions of Lemma 2.1
on [t1,∞)T with x(τ(t)) > 0 on [t1,∞)T. Let δ(t) be a positive ∆ differentiable function
and consider the generalized Riccati substitution

w(t) = δ(t)r(t)

(

x∆(t)

x(t)

)γ

.

Then by Lemma 2.1, we see that the function w(t) is positive on [t1,∞)T. By the product
rule and then the quotient rule (suppressing arguments)

w∆ = δ∆

(

r(x∆)γ

xγ

)σ

+ δ

(

r(x∆)γ

xγ

)∆

=
δ∆

δσ
wσ + δ

xγ(r(x∆)γ)∆ − r(x∆)γ(xγ)∆

xγxγσ

=
δ∆

δσ
wσ +

δxγ(−pxτγ)

xγ(xσ)γ
− δr(x∆)γ(xγ)∆

xγ(xσ)γ

=
δ∆

δσ
wσ − pδ

(

xτ

xσ

)γ

− δ
r(x∆)γ(xγ)∆

xγ(xσ)γ
.
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Using the fact that x(t)
t

and r(t)(x∆(t))γ are strictly decreasing (from Lemma 2.1) we
get

xτ (t)

xσ(t)
≥ τ(t)

σ(t)
and r(t)(x∆(t))γ ≥ rσ(t)(x∆(t))γσ.

From these last two inequalites we obtain

w∆ ≤ δ∆

δσ
wσ − δp

( τ

σ

)γ

− δ
rσ(x∆σ)γ(xγ)∆

xγ(xσ)γ
.

Using (2.15) and the definition of w we have that

w∆ ≤ δ∆

δσ
wσ − δp

( τ

σ

)γ

− γ
δ

δσ

x∆

x
wσ

=
δ∆

δσ
wσ − δp

( τ

σ

)γ

− γ
δ

δσ

r
1
γ x∆

r
1
γ x

wσ .

Since
r(t)(x∆(t))γ ≥ rσ(t)(x∆(t))γσ, and xσ(t) ≥ x(t),

we get that

w∆ ≤ δ∆

δσ
wσ − δp

( τ

σ

)γ

− γ
δ

δσ

(r
1
γ x∆)σ

r
1
γ xσ

wσ.

Using the definition of w we finally obtain

w∆ ≤ δ∆

δσ
wσ − δp

( τ

σ

)γ

− γ
δ

(δσ)λr
1
γ

(wσ)λ, (2.32)

where λ := γ+1
γ

. It follows from (2.32) that

w∆ ≤ (δ∆)+
δσ

wσ − δp
( τ

σ

)γ

− γ
δ

(δσ)λr
1
γ

(wσ)λ. (2.33)

Define A ≥ 0 and B ≥ 0 by

Aλ :=
γδ

(δσ)λr
1
γ

(wσ)λ, Bλ−1 :=
r

1
γ+1

λ(γδ)
1
λ

(δ∆)+.

Then, using the inequality (λ ≥ 1)

λABλ−1 − Aλ ≤ (λ − 1)Bλ,

we get that

(δ∆)+
δσ

wσ − γ
δ

(δσ)λr
1
γ

(wσ)λ = λABλ−1 − Aλ

≤ (λ − 1)Bλ

≤
r
(

δ∆
)γ+1

+

(γ + 1)γ+1δγ
.
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From this last inequality and (2.33) we get

w∆ ≤ r((δ∆)+)γ+1

(γ + 1)γ+1δγ
− δp

( τ

σ

)γ

.

Integrating both sides from t1 to t we get

−w(t1) ≤ w(t) − w(t1) ≤
∫ t

t1

[

r((δ∆)+)γ+1

(γ + 1)γ+1δγ
− δp

( τ

σ

)γ
]

∆s,

which leads to a contradiction, since the right hand side tends to −∞ by (2.31).

By Theorem 2.5, by choosing δ(t) = 1, t ≥ t0 we have the following oscillation result
which as a special case gives the oscillation theorem established by Agarwal et al [2,
Theorem 2.8].

Corollary 2.6 Assume that (2.2) and

lim sup
t→∞

∫ t

t0

(

τ(s)

σ(s)

)γ

p(s)∆s = ∞, (2.34)

hold. Then every solution of (1.1) is oscillatory on [t0,∞)T.

Similarly letting δ(t) = t in Theorem 2.5 we get the following result.

Corollary 2.7 Assume that (2.2) and

lim sup
t→∞

∫ t

t0

[

sp(s)

(

τ(s)

σ(s)

)γ

− r(s)

(γ + 1)γ+1sγ

]

∆s = ∞, (2.35)

hold. Then every solution of (1.1) is oscillatory on [t0,∞)T.

Note that again when T = N, Theorem 2.5 and Corollaries 2.6 and 2.7 improve the
oscillation results that have been established by Thandapani et al [16]. In the following,
we assume that

∫ ∞

t0

∆t

r
1
γ (t)

< ∞, (2.36)

holds and establish some sufficient conditions which ensure that every solution x(t) of
(1.1) oscillates or converges to zero. The proof is similar to the proof of Theorem 3.3 in
[15] and hence is omitted.

Theorem 2.8 Assume that (2.36) and

∫ ∞

t0

[

1

r(t)

∫ t

t0

p(s)∆s

]

1
γ

∆t = ∞, (2.37)

hold. If one of the conditions (2.31), (2.34), and (2.35) holds, then every solution of

(1.1) oscillates or converges to zero.
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3 Examples

In this section we give some examples to illustrate our main results.

Example 3.1 Consider the half-linear delay dynamic equation

(

(

x∆(t)
)γ

)∆

+ p(t)xγ(τ(t)) = 0, (3.1)

where p(t) := β
tγ+1

(

σ(t)
τ(t)

)γ

, where β is a positive constant and γ ≥ 1 is the quotient of

odd positive integers. It is clear that
∫ ∞

t0

τγ(t)p(t)∆t = β

∫ ∞

t0

(

σ(t)

t

)γ
1

t
∆t ≥ β

∫ ∞

t0

∆t

t
= ∞,

(i.e., (2.1) holds). For equation (3.1), we have

p∗ = lim inf
t→∞

tγ
∫ ∞

σ(t)

p(s)

(

τ(s)

σ(s)

)γ

∆s

= β lim inf
t→∞

tγ
∫ ∞

σ(t)

∆s

sγ+1
.

But, by the Pötzsche chain rule

(

− 1

tγ

)∆

= γ

∫ 1

0

dh

(t + hµ(t))γ+1
≤ γ

∫ 1

0

dh

tγ+1
=

γ

tγ+1
,

so we get that

p∗ ≥ β

γ
lim inf
t→∞

(

t

σ(t)

)γ

=
β

γ
lγ .

So if

β >
γγ+1

lγ(γ+1)(γ + 1)γ+1
,

then (2.25) holds and we have by Theorem 2.2 that (3.1) is oscillatory.

Note that in the case T = R, τ(t) = t, γ = 1, we get that l = 1 and we see that β > 1
4

which is the sharp condition for the Euler–Cauchy differential equation to be oscillatory
(see [1] for related results for the delay case). Also, note that the results by Agarwal
et al [2] and Thandapani et al [16] can not be applied to equation (3.1) in the cases of
differential and difference equations.

Example 3.2 Consider the half-linear delay dynamic equation

(

tγ−1
(

x∆(t)
)γ

)∆

+
α

t2

(

σ(t)

τ(t)

)γ

xγ(τ(t)) = 0, (3.2)

for t ∈ [t0,∞)T, where α is a positive constant and γ ≥ 1 is the quotient of odd positive

integers. Here p(t) = α
t2

(

σ(t)
τ(t)

)γ

and r(t) = tγ−1. It is clear that condition (2.1) holds

and condition (2.2) is satisfied, since
∫ ∞

t0

∆t

t
γ−1

γ

= ∞, for γ ≥ 1,
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by Example 5.60 in [4]. To apply Corollary 2.7, it remains to prove that condition (2.35)
holds. To see this note that

lim sup
t→∞

∫ t

t0

[

sp(s)

(

τ(s)

σ(s)

)γ

− r(s)

(γ + 1)γ+1sγ

]

∆s

=

(

α − 1

(γ + 1)γ+1

)

lim sup
t→∞

∫ t

t0

∆s

s
= ∞,

if α > 1
(γ+1)γ+1 . We conclude, by Corollary 2.7, that if

α >
1

(γ + 1)γ+1
,

then every solution of (3.2) is oscillatory.

Example 3.3 Consider the half-linear delay dynamic equation

(

tγ+1
(

x∆(t)
)γ

)∆

+ β

(

σ(t)

τ(t)

)γ

xγ(τ(t)) = 0, (3.3)

for t ∈ [t0,∞)
T
, where β is a positive constant and γ ≥ 1 is the quotient of odd positive

integers. In this case p(t) = β
(

σ(t)
τ(t)

)γ

and r(t) = tγ+1. It is clear that (2.1) holds and

r(t) satisfies condition (2.36) since

∫ ∞

t0

∆t

t
γ+1

γ

< ∞, γ ≥ 1,

for those time scales [t0,∞)T, where
∫ ∞

t0

1
tp ∆t < ∞ when p > 1. This holds for many

time scales (see Theorems 5.64 and 5.65 in [4] and see Example 5.63 where this result
does not hold). To see that (2.37) holds note that

∫ ∞

t0

[

1

r(t)

∫ t

t0

p(s)∆s

]

1
γ

∆t =

∫ ∞

t0

[

1

tγ+1

∫ t

t0

β

(

σ(s)

τ(s)

)γ

∆s

]

1
γ

∆t

≥
∫ ∞

t0

[

1

tγ+1

∫ t

t0

β∆s

]

1
γ

∆t

= β
1
γ

∫ ∞

t0

(

t − t0
t

)
1
γ ∆t

t
= ∞.

To apply Theorem 2.8, it remains to prove that the condition (2.31) holds.To see this
note that if δ(t) = 1, then

lim sup
t→∞

∫ t

t0

[

δ(s)p(s)

(

τ(s)

σ(s)

)γ

− r(s)((δ∆(s))+)γ+1

(γ + 1)γ+1δγ(s)

]

∆s

= β

∫ ∞

t0

∆t = ∞.

We conclude that [t0,∞)T is a time scale where
∫ ∞

t0

1
tp ∆t < ∞ when p > 1, then, by

Theorem 2.8, every solution of (3.3) is oscillatory or converges to zero.
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Example 3.4 One can use Theorem 2.4 to show that if β > 1, then the equation

(

tγ−1
(

x∆(t)
)γ

)∆

+
βtγ−1

τγ(t)σ(t)
xγ(τ(t)) = 0,

is oscillatory for any time scale where
∫ ∞

t0

tγ−1

σ(t) ∆t = ∞. We leave the details to the

reader.
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Boston, 2003.

[5] Bohner, M. and Saker, S. H. Oscillation of second order nonlinear dynamic equations on
time scales. Rocky Mountain J. Math. 34(4) (2004) 1239–1254.

[6] Erbe, L. Oscillation criteria for second order nonlinear delay equations. Canad. Math. Bull.

16 (1973) 49–56.

[7] Erbe, L. Peterson, A. and Saker, S. H. Oscillation criteria for second-order nonlinear dy-
namic equations on time scales. J. London Math. Soc. 76 (2003) 701–714.

[8] Erbe, L. Peterson, A. and Saker, S. H. Kamenev-type oscillation criteria for second-order
linear delay dynamic equations. Dynam. Syst. Appl. 15 (2006) 65–78.

[9] Hassan, T. S. Oscillation criteria for half-linear dynamic equations on time scales. J. Math.

Anal. Appl. 345 (2008) 176–185.

[10] Hilger, S. Analysis on measure chains — a unified approach to continuous and discrete
calculus. Results Math. 18 (1990) 18–56.

[11] Hille, E. Non-oscillation theorems. Trans. Amer. Math. Soc. 64 (1948) 234–252.

[12] Kac, V. and Chueng, P. Quantum Calculus. Universitext, New York, NY: Springer. IX,
2002, 112 pp.

[13] Nehari, Z. Oscillation criteria for second-order linear differential equations. Trans. Amer.

Math. Soc. 85 (1957) 428–445.

[14] Ohriska, J. Oscillation of second order delay and ordinary differential equations. Czech.

Math. J. 34 (1984) 107–112.

[15] Saker, S. H. Oscillation criteria of second-order half-linear dynamic equations on time scales.
J. Comp. Appl. Math. 177 (2005) 375–387.

[16] Thandapani, E., Ravi, K. and Graef, J. Oscillation and comparison theorems for half-linear
second order difference equations. Comp. Math. Appl. 42 (2001) 953–960.

[17] Wong, J. S. W. Second order oscillation with retarded arguments. In: Ordinary differential
equations (Proc. Conf., Math. Res. Center, Naval Res. Lab., Washington, D.C., 1971),
581–596, Academic press, New York and London, 1972.


