Eigenvalues for Iterative Systems of Nonlinear Boundary Value Problems on Time Scales

M. Benchohra ${ }^{1}$, F. Berhoun ${ }^{1}$, S. Hamani ${ }^{1}$, J. Henderson ${ }^{2 *}$, S.K. Ntouyas ${ }^{3}$, A. Ouahab ${ }^{1}$ and I.K. Purnaras ${ }^{3}$
${ }^{1}$ Laboratoire de Mathématiques, Université de Sidi Bel Abbès, BP 89, 22000, Sidi Bel Abbès, Algérie
${ }^{2}$ Department of Mathematics, Baylor University, Waco, Texas 76798-7328 USA
${ }^{3}$ Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece

Received: February 6, 2008; Revised: December 19, 2008

Abstract

Values of $\lambda_{1}, \ldots, \lambda_{n}$ are determined for which there exist positive solutions of the iterative system of dynamic equations, $u_{i}^{\Delta \Delta}(t)+$ $\lambda_{i} a_{i}(t) f_{i}\left(u_{i+1}(\sigma(t))\right)=0,1 \leq i \leq n, u_{n+1}(t)=u_{1}(t)$, for $t \in[0,1]_{\mathbb{T}}$, and satisfying the boundary conditions, $u_{i}(0)=0=u_{i}\left(\sigma^{2}(1)\right), 1 \leq i \leq n$, where \mathbb{T} is a time scale. A Guo-Krasnosel'skii fixed point theorem is applied.

Keywords: time scales; boundary value problem; iterative system of dynamic equations; nonlinear; eigenvalue.
Mathematics Subject Classification (2000): 39A10, 34B18.

1 Introduction

Let \mathbb{T} be a time scale with $0, \sigma^{2}(1) \in \mathbb{T}$. Given an interval J of \mathbb{R}, we will use the interval notation,

$$
J_{\mathbb{T}}:=J \cap \mathbb{T}
$$

We are concerned with determining values of $\lambda_{i}, 1 \leq i \leq n$, for which there exist positive solutions for the iterative system of dynamic equations,

$$
\begin{gather*}
u_{i}^{\Delta \Delta}(t)+\lambda_{i} a_{i}(t) f_{i}\left(u_{i+1}(\sigma(t))\right)=0,1 \leq i \leq n, t \in[0,1]_{\mathbb{T}} \\
u_{n+1}(t)=u_{1}(t), t \in[0,1]_{\mathbb{T}} \tag{1}
\end{gather*}
$$

satisfying the boundary conditions,

$$
\begin{equation*}
u_{i}(0)=0=u_{i}\left(\sigma^{2}(1)\right), 1 \leq i \leq n \tag{2}
\end{equation*}
$$

where

[^0](A) $f_{i} \in C([0, \infty),[0, \infty)), 1 \leq i \leq n$;
(B) $a_{i} \in C\left([0, \sigma(1)]_{\mathbb{T}},[0, \infty)\right), 1 \leq i \leq n$, and a_{i} does not vanish identically on any closed subinterval of $[0, \sigma(1)]_{\mathbb{T}}$;
(C) Each of $f_{i 0}:=\lim _{x \rightarrow 0^{+}} \frac{f_{i}(x)}{x}$ and $f_{i \infty}:=\lim _{x \rightarrow \infty} \frac{f_{i}(x)}{x}, 1 \leq i \leq n$, exists as a positive real number.

There is a great deal of research activity devoted to positive solutions of dynamic equations on time scales; see, for example $[1,3,4,5,8,10,14]$. This work entails an extension of the paper by Chyan and Henderson [9] to eigenvalue problems for systems of nonlinear boundary value problems on time scales, and also, in a very real sense, an extension of the recent paper by Benchohra, Henderson and Ntouyas [7]. Also, in that light, this paper is closely related to the works by Li and Sun [27, 29].

On a larger scale, there has been a great deal of study focused on positive solutions of boundary value problems for ordinary differential equations. Interest in such solutions is high from both a theoretical sense $[11,13,21,24,31]$ and as applications for which only positive solutions are meaningful $[2,12,25,26]$. These considerations are formulated primarily for scalar problems, but good attention also has been given to boundary value problems for systems of differential equations $[6,15,16,17,18,19,20,22,23,28,30,32]$.

The main tool in this paper is an application of the Guo-Krasnosel'skii fixed point theorem for operators leaving a Banach space cone invariant [13]. A Green's function plays a fundamental role in defining an appropriate operator on a suitable cone.

2 Some preliminaries

In this section, we state the well-known Guo-Krasnosel'skii fixed point theorem which we will apply to a completely continuous operator whose kernel, $G(t, s)$, is the Green's function for

$$
\begin{gathered}
-y^{\Delta \Delta}=0 \\
y(0)=0=y\left(\sigma^{2}(1)\right)
\end{gathered}
$$

Erbe and Peterson [10] have found,

$$
G(t, s)=\frac{1}{\sigma^{2}(1)} \begin{cases}t\left(\sigma^{2}(1)-\sigma(s)\right), & \text { if } t \leq s \\ \sigma(s)\left(\sigma^{2}(1)-t\right), & \text { if } \sigma(s) \leq t\end{cases}
$$

from which

$$
\begin{gather*}
G(t, s)>0,(t, s) \in\left(0, \sigma^{2}(1)\right)_{\mathbb{T}} \times(0, \sigma(1))_{\mathbb{T}} \tag{3}\\
G(t, s) \leq G(\sigma(s), s)=\frac{\sigma(s)\left(\sigma^{2}(1)-\sigma(s)\right)}{\sigma^{2}(1)}, t \in\left[0, \sigma^{2}(1)\right]_{\mathbb{T}}, s \in[0, \sigma(1)]_{\mathbb{T}} \tag{4}
\end{gather*}
$$

and it is also shown in [10] that

$$
\begin{equation*}
G(t, s) \geq k G(\sigma(s), s)=k \frac{\sigma(s)\left(\sigma^{2}(1)-\sigma(s)\right)}{\sigma^{2}(1)}, t \in\left[\frac{\sigma^{2}(1)}{4}, \frac{3 \sigma^{2}(1)}{4}\right]_{\mathbb{T}}, s \in[0, \sigma(1)]_{\mathbb{T}} \tag{5}
\end{equation*}
$$

where

$$
k=\min \left\{\frac{1}{4}, \frac{\sigma^{2}(1)}{4\left(\sigma^{2}(1)-\sigma(0)\right)}\right\}
$$

We note that an n-tuple $\left(u_{1}(t), \ldots, u_{n}(t)\right)$ is a solution of the eigenvalue problem (1), (2) if, and only if

$$
u_{i}(t)=\lambda_{i} \int_{0}^{\sigma(1)} G(t, s) a_{i}(s) f_{i}\left(u_{i+1}(\sigma(s))\right) \Delta s, 0 \leq t \leq \sigma^{2}(1), 1 \leq i \leq n
$$

and

$$
u_{n+1}(t)=u_{1}(t), 0 \leq t \leq \sigma^{2}(1)
$$

so that, in particular,

$$
\begin{aligned}
u_{1}(t)= & \lambda_{1} \int_{0}^{\sigma(1)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \\
& \times f_{2}\left(\lambda_{3} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{2}\right), s_{3}\right) a_{3}\left(s_{3}\right) \cdots \times\right. \\
& \left.\left.\times f_{n-1}\left(\lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u_{1}\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \cdots \Delta s_{3}\right) \Delta s_{2}\right) \Delta s_{1}
\end{aligned}
$$

Values of $\lambda_{1}, \ldots, \lambda_{n}$, for which there are positive solutions (positive with respect to a cone) of (1), (2), will be determined via applications of the following fixed point theorem [13].

Theorem 2.1 Let \mathcal{B} be a Banach space, and let $\mathcal{P} \subset \mathcal{B}$ be a cone in \mathcal{B}. Assume Ω_{1} and Ω_{2} are open subsets of \mathcal{B} with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow \mathcal{P}
$$

be a completely continuous operator such that, either
(i) $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \geq\|u\|$, $u \in \mathcal{P} \cap \partial \Omega_{2}$, or
(ii) $\|T u\| \geq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$.

Then T has a fixed point in $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

3 Positive solutions in a cone

In this section, we apply Theorem 2.1 to obtain solutions in a cone (that is, positive solutions) of (1), (2). Assume throughout that $\left[0, \sigma^{2}(1)\right]_{\mathbb{T}}$ is such that

$$
\xi=\min \left\{t \in \mathbb{T} \left\lvert\, t \geq \frac{\sigma^{2}(1)}{4}\right.\right\}
$$

and

$$
\omega=\max \left\{t \in \mathbb{T} \left\lvert\, t \leq \frac{3 \sigma^{2}(1)}{4}\right.\right\}
$$

both exist and satisfy

$$
\frac{\sigma^{2}(1)}{4} \leq \xi<\omega \leq \frac{3 \sigma^{2}(1)}{4}
$$

Next, let $\tau_{i} \in[\xi, \omega]_{\mathbb{T}}$ be defined by

$$
\int_{\xi}^{\omega} G\left(\tau_{i}, s\right) a(s) \Delta s=\min _{t \in[\xi, \omega]_{\mathbb{T}}} \int_{\xi}^{\omega} G(t, s) a_{i}(s) \Delta s
$$

Finally, we define

$$
l=\min _{s \in\left[0, \sigma^{2}(1)\right]_{\mathbb{T}}} \frac{G(\sigma(\omega), s)}{G(\sigma(s), s)}
$$

and let

$$
\begin{equation*}
m=\min \{k, l\} \tag{6}
\end{equation*}
$$

For our construction, let $\mathcal{B}=\left\{x \mid x:\left[0, \sigma^{2}(1)\right]_{\mathbb{T}} \rightarrow \mathbb{R}\right\}$ with supremum norm, $\|x\|=$ $\sup \left\{|x(t)|: t \in\left[0, \sigma^{2}(1)\right]_{\mathbb{T}}\right\}$, and define a cone $\mathcal{P} \subset \mathcal{B}$ by

$$
\mathcal{P}=\left\{x \in \mathcal{B} \mid x(t) \geq 0 \text { on }\left[0, \sigma^{2}(1)\right]_{\mathbb{T}} \text { and } \min _{t \in[\xi, \sigma(\omega)]_{\mathbb{T}}} x(t) \geq m\|x\|\right\}
$$

We next define an integral operator $T: \mathcal{P} \rightarrow \mathcal{B}$, for $u \in \mathcal{P}$, by

$$
\begin{align*}
T u(t)= & \lambda_{1} \int_{0}^{\sigma(1)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \\
& \times f_{2}\left(\lambda_{3} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{2}\right), s_{3}\right) a_{3}\left(s_{3}\right) \cdots \times\right. \tag{7}\\
& \left.\left.\times f_{n-1}\left(\lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \cdots \Delta s_{3}\right) \Delta s_{2}\right) \Delta s_{1}
\end{align*}
$$

Notice from (A), (B) and (3) that, for $u \in \mathcal{P}, T u(t) \geq 0$ on $\left[0, \sigma^{2}(1)\right]_{\mathbb{T}}$. Also, for $u \in \mathcal{P}$, we have from (4) that

$$
\begin{aligned}
T u(t) \leq & \lambda_{1} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{1}\right), s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \\
& \times f_{2}\left(\lambda_{3} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{2}\right), s_{3}\right) a_{3}\left(s_{3}\right) \cdots \times\right. \\
& \left.\left.\times f_{n-1}\left(\lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \cdots \Delta s_{3}\right) \Delta s_{2}\right) \Delta s_{1}
\end{aligned}
$$

so that

$$
\begin{align*}
\|T u\| \leq & \lambda_{1} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{1}\right), s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \\
& \times f_{2}\left(\lambda_{3} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{2}\right), s_{3}\right) a_{3}\left(s_{3}\right) \cdots \times\right. \tag{8}\\
& \left.\left.\times f_{n-1}\left(\lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \cdots \Delta s_{3}\right) \Delta s_{2}\right) \Delta s_{1}
\end{align*}
$$

Next, if $u \in \mathcal{P}$, we have from (5), (6) and (8),

$$
\begin{aligned}
& \min _{t \in[\xi, \sigma(\omega)]_{\mathbb{T}}} T u(t) \\
= & \min _{t \in[\xi, \sigma(\omega)]_{\mathbb{T}}} \lambda_{1} \int_{0}^{\sigma(1)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \\
& \left.\times f_{2}\left(\cdots f_{n-1}\left(\lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \cdots\right) \Delta s_{2}\right) \Delta s_{1} \\
\geq & \lambda_{1} m \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{1}\right), s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) \times\right. \\
& \left.\times f_{2}\left(\cdots f_{n-1}\left(\lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \cdots\right) \Delta s_{2}\right) \Delta s_{1} \\
\geq & m\|T u\| .
\end{aligned}
$$

Consequently, $T: \mathcal{P} \rightarrow \mathcal{P}$. In addition, the standard arguments can be used to verify that T is completely continuous.

By the remarks in Section 2, we seek suitable fixed points of T belonging to the cone \mathcal{P}.
For our first result, define positive numbers L_{1} and L_{2} by

$$
L_{1}:=\max _{1 \leq i \leq n}\left\{\left[m \int_{\xi}^{\omega} G\left(\tau_{i}, s\right) a_{i}(s) \Delta s f_{i \infty}\right]^{-1}\right\}
$$

and

$$
L_{2}:=\min _{1 \leq i \leq n}\left\{\left[\int_{0}^{\sigma(1)} G(\sigma(s), s) a_{i}(s) \Delta s f_{i 0}\right]^{-1}\right\}
$$

where we recall that $G(\sigma(s), s)=\frac{\sigma(s)\left(\sigma^{2}(1)-\sigma(s)\right)}{\sigma^{2}(1)}$.
Theorem 3.1 Assume conditions (A), (B) and (C) are satisfied. Then, for $\lambda_{1}, \ldots, \lambda_{n}$ satisfying

$$
\begin{equation*}
L_{1}<\lambda_{i}<L_{2}, 1 \leq i \leq n \tag{9}
\end{equation*}
$$

there exists an n-tuple $\left(u_{1}, \ldots, u_{n}\right)$ satisfying (1), (2) such that $u_{i}(t)>0$ on $\left(0, \sigma^{2}(1)\right)_{\mathbb{T}}$, $1 \leq i \leq n$.

Proof. Let $\lambda_{j}, 1 \leq j \leq n$, be as in (9). And let $\epsilon>0$ be chosen such that

$$
\max _{1 \leq i \leq n}\left\{\left[m \int_{\xi}^{\omega} G\left(\tau_{i}, s\right) a_{i}(s) \Delta s\left(f_{i \infty}-\epsilon\right)\right]^{-1}\right\} \leq \min _{1 \leq j \leq n} \lambda_{j}
$$

and

$$
\max _{1 \leq j \leq n} \lambda_{j} \leq \min _{1 \leq i \leq n}\left\{\left[\int_{0}^{\sigma(1)} G(\sigma(s), s) a_{i}(s) \Delta s\left(f_{i 0}+\epsilon\right)\right]^{-1}\right\}
$$

We seek fixed points of the completely continuous operator $T: \mathcal{P} \rightarrow \mathcal{P}$ defined by (7).

Now, from the definitions of $f_{i 0}, 1 \leq i \leq n$, there exists an $H_{1}>0$ such that, for each $1 \leq i \leq n$,

$$
f_{i}(x) \leq\left(f_{i 0}+\epsilon\right) x, 0<x \leq H_{1}
$$

Let $u \in \mathcal{P}$ with $\|u\|=H_{1}$. We first have from (4) and the choice of ϵ, for $0 \leq s_{n-1} \leq$ $\sigma(1)$,

$$
\begin{aligned}
& \lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
\leq & \lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
\leq & \lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n}\right), s_{n}\right) a_{n}\left(s_{n}\right)\left(f_{n 0}+\epsilon\right)\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
\leq & \lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n}\right), s_{n}\right) a_{n}\left(s_{n}\right) \Delta s_{n}\left(f_{n 0}+\epsilon\right)\|u\| \\
\leq & \|u\| \\
= & H_{1}
\end{aligned}
$$

It follows in a similar manner from (4) and the choice of ϵ that, for $0 \leq s_{n-2} \leq \sigma(1)$,

$$
\begin{aligned}
& \lambda_{n-1} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-2}\right), s_{n-1}\right) a_{n-1}\left(s_{n-1}\right) \times \\
& \times f_{n-1}\left(\lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \Delta s_{n-1} \\
\leq & \lambda_{n-1} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n-1}\right) a_{n-1}\left(s_{n-1}\right) \Delta s_{n-1}\left(f_{n-1,0}+\epsilon\right)\|u\| \\
\leq & \|u\| \\
= & H_{1}
\end{aligned}
$$

Continuing with this bootstrapping argument, we reach, for $0 \leq t \leq \sigma^{2}(1)$,

$$
\lambda_{1} \int_{0}^{\sigma(1)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\cdots f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \cdots\right) \Delta s_{1} \leq H_{1}
$$

so that, for $0 \leq t \leq \sigma^{2}(1)$,

$$
T u(t) \leq H_{1}
$$

or

$$
\|T u\| \leq H_{1}=\|u\|
$$

If we set

$$
\Omega_{1}=\left\{x \in \mathcal{B} \mid\|x\|<H_{1}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{1} \tag{10}
\end{equation*}
$$

Next, from the definition of $f_{i \infty}, 1 \leq i \leq n$, there exists $\bar{H}_{2}>0$ such that, for each $1 \leq i \leq n$,

$$
f_{i}(x) \geq\left(f_{i \infty}-\epsilon\right) x, x \geq \bar{H}_{2} .
$$

Let

$$
H_{2}:=\max \left\{2 H_{1}, \frac{\bar{H}_{2}}{m}\right\}
$$

Let $u \in \mathcal{P}$ and $\|u\|=H_{2}$. Then

$$
\min _{t \in[\xi, \sigma(\omega)]_{\mathbb{T}}} u(t) \geq m\|u\| \geq \bar{H}_{2}
$$

Consequently, from (5) and the choice of ϵ, for $0 \leq s_{n-1} \leq \sigma(1)$,

$$
\begin{aligned}
& \lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
\geq & \lambda_{n} \int_{\xi}^{\omega} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
\geq & \lambda_{n} \int_{\xi}^{\omega} G\left(\tau_{n}, s_{n}\right) a_{n}\left(s_{n}\right)\left(f_{n \infty}-\epsilon\right)\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
\geq & m \lambda_{n} \int_{\xi}^{\omega} G\left(\tau_{n}, s_{n}\right) a_{n}\left(s_{n}\right) \Delta s_{n}\left(f_{n \infty}-\epsilon\right)\|u\| \\
\geq & \|u\| \\
= & H_{2} .
\end{aligned}
$$

It follows similarly from (5) and the choice of ϵ that, for $0 \leq s_{n-2} \leq \sigma(1)$,

$$
\begin{aligned}
& \lambda_{n-1} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-2}\right), s_{n-1}\right) a_{n-1}\left(s_{n-1}\right) \times \\
& \times f_{n-1}\left(\lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n}\right) \Delta s_{n-1} \\
\geq & m \lambda_{n-1} \int_{\xi}^{\omega} G\left(\tau_{n-1}, s_{n-1}\right) a_{n-1}\left(s_{n-1}\right) \Delta s_{n-1}\left(f_{n-1, \infty}-\epsilon\right)\|u\| \\
\geq & \|u\| \\
= & H_{2}
\end{aligned}
$$

Again, using a bootstrapping argument, we reach

$$
T u\left(\tau_{1}\right)=\lambda_{1} \int_{0}^{\sigma(1)} G\left(\tau_{1}, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\cdots f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \cdots\right) \Delta s_{1} \geq\|u\|=H_{2}
$$

so that $\|T u\| \geq\|u\|$. So, if we set

$$
\Omega_{2}=\left\{x \in \mathcal{B}\|x\|<H_{2}\right\}
$$

then

$$
\begin{equation*}
\|T u\| \geq\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} \tag{11}
\end{equation*}
$$

Applying Theorem 2.1 to (10) and (11), we obtain that T has a fixed point $u \in$ $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. As such, setting $u_{1}=u_{n+1}=u$, we obtain a positive solution $\left(u_{1}, \ldots, u_{n}\right)$ of $(1),(2)$ given iteratively by

$$
u_{j}(t)=\lambda_{j} \int_{0}^{\sigma(1)} G(t, s) a_{j}(s) f_{j}\left(u_{j+1}(\sigma(s))\right) \Delta s, \quad j=n, n-1, \ldots, 1
$$

The proof is complete.
Prior to our next result, let $\xi_{i}, 1 \leq i \leq n$, be defined by

$$
\int_{0}^{\sigma(1)} G\left(\xi_{i}, s\right) a_{i}(s) \Delta s=\max _{t \in\left[1, \sigma^{2}(1)\right]_{\mathbb{T}}} \int_{0}^{\sigma(1)} G(t, s) a_{i}(s) \Delta s
$$

Then, we define positive numbers L_{3} and L_{4} by

$$
L_{3}:=\max _{1 \leq i \leq n}\left\{\left[m \int_{\xi}^{\omega} G\left(\tau_{i}, s\right) a_{i}(s) \Delta s f_{i 0}\right]^{-1}\right\}
$$

and

$$
L_{4}:=\min _{1 \leq i \leq n}\left\{\left[\int_{0}^{\sigma(1)} G\left(\xi_{i}, s\right) a_{i}(s) \Delta s f_{i \infty}\right]^{-1}\right\}
$$

Theorem 3.2 Assume conditions (A)-(C) are satisfied. Then, for each $\lambda_{1}, \ldots, \lambda_{n}$ satisfying

$$
\begin{equation*}
L_{3}<\lambda_{i}<L_{4}, \quad 1 \leq i \leq n \tag{12}
\end{equation*}
$$

there exists an n-tuple $\left(u_{1}, \ldots, u_{n}\right)$ satisfying (1), (2) such that $u_{i}(t)>0$ on $\left(0, \sigma^{2}(1)\right)_{\mathbb{T}}$, $1 \leq i \leq n$.

Proof Let $\lambda_{j}, 1 \leq j \leq n$, be as in (12). And let $\epsilon>0$ be chosen such that

$$
\max _{1 \leq i \leq n}\left\{\left[m \int_{\xi}^{\omega} G\left(\tau_{i}, s\right) a_{i}(s) \Delta s\left(f_{i 0}-\epsilon\right)\right]^{-1}\right\} \leq \min _{1 \leq j \leq n} \lambda_{j}
$$

and

$$
\max _{1 \leq j \leq n} \lambda_{j} \leq \min _{1 \leq i \leq n}\left\{\left[\int_{0}^{\sigma(1)} G(\sigma(s), s) a_{i}(s) \Delta s\left(f_{i \infty}+\epsilon\right)\right]^{-1}\right\} .
$$

Let T be the cone preserving, completely continuous operator that was defined by (7). From the definition of $f_{i 0}, 1 \leq i \leq n$, there exists $\overline{H_{3}}>0$ such that, for each $1 \leq i \leq n$,

$$
f_{i}(x) \geq\left(f_{i 0}-\epsilon\right) x, 0<x \leq \overline{H_{3}}
$$

Also, from the definition of $f_{i 0}$, it follows that $f_{i 0}(0)=0,1 \leq i \leq n$, and so there exist $0<K_{n}<K_{n-1}<\cdots<K_{2}<\overline{H_{3}}$ such that

$$
\lambda_{i} f_{i}(t) \leq \frac{K_{i-1}}{\int_{0}^{\sigma(1)} G\left(\xi_{i}, s\right) a_{i}(s) \Delta s}, t \in\left[0, K_{i}\right]_{\mathbb{T}}, 3 \leq i \leq n
$$

and

$$
\lambda_{2} f_{2}(t) \leq \frac{\overline{H_{3}}}{\int_{0}^{\sigma(1)} G\left(\xi_{2}, s\right) a_{2}(s) \Delta s}, t \in\left[0, K_{2}\right]_{\mathbb{T}}
$$

Choose $u \in \mathcal{P}$ with $\|u\|=K_{n}$. Then, we have

$$
\begin{aligned}
& \lambda_{n} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{n-1}\right), s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
\leq & \lambda_{n} \int_{0}^{\sigma(1)} G\left(\xi_{n}, s_{n}\right) a_{n}\left(s_{n}\right) f_{n}\left(u\left(\sigma\left(s_{n}\right)\right)\right) \Delta s_{n} \\
\leq & \frac{\int_{0}^{\sigma(1)} G\left(\xi_{n}, s_{n}\right) a_{n}\left(s_{n}\right) K_{n-1} \Delta s_{n}}{\int_{0}^{\sigma(1)} G\left(\xi_{n}, s_{n}\right) a_{n}\left(s_{n}\right) \Delta s_{n}} \\
\leq & K_{n-1}
\end{aligned}
$$

Bootstrapping yields the standard iterative pattern, and it follows that

$$
\lambda_{2} \int_{0}^{\sigma(1)} G\left(\sigma\left(s_{1}\right), s_{2}\right) a_{2}\left(s_{2}\right) f_{2}(\cdots) \Delta s_{2} \leq \overline{H_{3}}
$$

Then

$$
\begin{aligned}
T u\left(\tau_{1}\right) & =\lambda_{1} \int_{0}^{\sigma(1)} G\left(\tau_{1}, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \cdots\right) \Delta s_{1} \\
& \geq \lambda_{1} m \int_{\xi}^{\omega} G\left(\tau_{1}, s_{1}\right) a_{1}\left(s_{1}\right)\left(f_{1,0}-\epsilon\right)\|u\| \Delta s_{1} \\
& \geq\|u\|
\end{aligned}
$$

So, $\|T u\| \geq\|u\|$. If we put

$$
\Omega_{1}=\left\{x \in \mathcal{B} \mid\|x\|<K_{n}\right\}
$$

then

$$
\|T u\| \geq\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{1}
$$

Since each $f_{i \infty}$ is assumed to be a positive real number, it follows that $f_{i}, 1 \leq i \leq n$, is unbounded at ∞.

For each $1 \leq i \leq n$, set

$$
f_{i}^{*}(x)=\sup _{0 \leq s \leq x} f_{i}(s)
$$

Then, it is straightforward that, for each $1 \leq i \leq n, f_{i}^{*}$ is a nondecreasing real-valued function, $f_{i} \leq f_{i}^{*}$, and

$$
\lim _{x \rightarrow \infty} \frac{f_{i}^{*}(x)}{x}=f_{i \infty}
$$

Next, by definition of $f_{i \infty}, 1 \leq i \leq n$, there exists $\overline{H_{4}}$ such that, for each $1 \leq i \leq n$,

$$
f_{i}^{*}(x) \leq\left(f_{i \infty}+\epsilon\right) x, x \geq \overline{H_{4}}
$$

It follows that there exists $H_{4}>\max \left\{2 \overline{H_{3}}, \overline{H_{4}}\right\}$ such that, for each $1 \leq i \leq n$,

$$
f_{i}^{*}(x) \leq f_{i}^{*}\left(H_{4}\right), \quad 0<x \leq H_{4}
$$

Choose $u \in \mathcal{P}$ with $\|u\|=H_{4}$. Then, using the usual bootstrapping argument, we have

$$
\begin{aligned}
T u(t) & =\lambda_{1} \int_{0}^{\sigma(1)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}\left(\lambda_{2} \cdots\right) \Delta s_{1} \\
& \leq \lambda_{1} \int_{0}^{\sigma(1)} G\left(t, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}^{*}\left(\lambda_{2} \cdots\right) \Delta s_{1} \\
& \leq \lambda_{1} \int_{0}^{\sigma(1)} G\left(\xi_{1}, s_{1}\right) a_{1}\left(s_{1}\right) f_{1}^{*}\left(H_{4}\right) \Delta s_{1} \\
& \leq \lambda_{1} \int_{0}^{\sigma(1)} G\left(\xi_{1}, s_{1}\right) a_{1}\left(s_{1}\right) \Delta s_{1}\left(f_{1 \infty}+\epsilon\right) H_{4} \\
& \leq H_{4} \\
& =\|u\|,
\end{aligned}
$$

and so $\|T u\| \leq\|u\|$. So, if we let

$$
\Omega_{2}=\left\{x \in \mathcal{B} \mid\|x\|<H_{4}\right\}
$$

then

$$
\|T u\| \leq\|u\|, \text { for } u \in \mathcal{P} \cap \partial \Omega_{2}
$$

Application of part (ii) of Theorem 2.1 yields a fixed point u of T belonging to $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, which in turn, with $u_{1}=u_{n+1}=u$, yields an n-tuple $\left(u_{1}, \ldots, u_{n}\right)$ satisfying (1), (2) for the chosen values of $\lambda_{i}, 1 \leq i \leq n$. The proof is complete.

References

[1] Agarwal, R.P. and O'Regan, D. Triple solutions to boundary value problems on time scales. Applied Math. Letters 13 (2000) 7-11.
[2] Agarwal, R.P., O'Regan, D. and Wong, P.J.Y. Positive solutions of differential, difference and integral equations. Kluwer, Dordrecht, 1999.
[3] Anderson, D.R. Eigenvalue intervals for a second-order mixed-conditions problem on time scale. Int. J. Nonlin. Differential Equations 7 (2002) 97-104.
[4] Anderson, D. R. Eigenvalue intervals for a two-point boundary value problem on a measure chain. J. Comput. Appl. Math. 141 (2002) 57-64.
[5] Bohner, M. and Peterson, A. Dynamic equations on time scales: an introduction with applications. Birkhauser, New York, 2001.
[6] Benchohra, M., Hamani, S., Henderson, J., Ntouyas, S. K. and Ouahab, A. Positive solutions for systems of nonlinear eigenvalue problems. Global J. Math. Anal. 1 (2007) 19-28.
[7] Benchohra, M., Henderson, J. and Ntouyas, S. K. Eigenvalue problems for systems of nonlinear boundary problems on time scales. Adv. Difference Equ. 2007 (2007), Article ID 31640, 10 pp .
[8] Chyan, C. J., Davis, J. M., Henderson, J. and Yin, W. K.C. Eigenvalue comparisons for differential equations on a measure chain. Electron. J. Differential Equations 1998 (1998), No. 35, 7 pp.
[9] Chyan, C. and Henderson, J. Eigenvalue problems for nonlinear differential equations on a measure chain. J. Math. Anal. Appl. 245 (2000) 547-559.
[10] Erbe, L. H. and Peterson, A. Positive solutions for a nonlinear differential equation on a measure chain. Math. Comput. Modelling 32 (2000) 571-585.
[11] Erbe, L. H. and Wang, H. On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc. 120 (1994) 743-748.
[12] Graef, J. R. and Yang, B. Boundary value problems for second order nonlinear ordinary differential equations. Comm. Appl. Anal. 6 (2002) 273-288.
[13] Guo, D. and Lakshmikantham, V. Nonlinear problems in abstract cones. Academic Press, Orlando, 1988.
[14] He, Z. Double positive solutions of boundary value problems for p-Laplacian dynamic equations on time scales. Appl. Anal. 84 (2005) 377-390.
[15] Henderson, J. and Ntouyas, S. K. Positive solutions for systems of nonlinear boundary value problems. Nonlin. Studies 15 (2008) 51-60.
[16] Henderson, J. and Ntouyas, S. K. Positive solutions for systems of three-point nonlinear boundary value problems. Australian J. Math. Anal. Appl. 5 (1), Article 11 (2008) 1-9.
[17] Henderson, J. and Ntouyas, S. K. Positive solutions for systems of nonlinear eigenvalue problems for functional differential equations. Appl. Anal. 86 (2007) 1365-1374.
[18] Henderson, J. and Ntouyas, S. K. Positive solutions for systems of nth order three-point nonlocal boundary value problems. Electron. J. Qual. Theory Differ. Equ. 18 (2007) 1-12.
[19] Henderson, J., Ntouyas, S.K. and Purnaras, I.K. Positive solutions for systems of generalized three-point nonlinear boundary value problems. Comment. Math. Univ. Carolinae 49 (2008) 79-91.
[20] Henderson, J., Ntouyas, S.K. and Purnaras, I.K. Positive solutions for systems of second order four-point nonlinear boundary boundary value problems. Commun. Appl. Anal. 12 (1) (2008) 29-40.
[21] Henderson, J. and Wang, H. Positive solutions for nonlinear eigenvalue problems. J. Math. Anal. Appl. 208 (1997) 1051-1060.
[22] Henderson, J. and Wang, H. Nonlinear eigenvalue problems for quasilinear systems. Comput. Math. Appl. 49 (2005) 1941-1949.
[23] Henderson, J. and Wang, H. An eigenvalue problem for quasilinear systems. Rocky Mtn. J. Math. 37 (2007) 215-228.
[24] Hu, L. and Wang, L.L. Multiple positive solutions of boundary value problems for systems of nonlinear second order differential equations. J. Math. Anal. Appl. 335 (2007) 1052-1060.
[25] Infante, G. Eigenvalues of some nonlocal boundary value problems. Proc. Edinburgh Math. Soc. 46 (2003) 75-86.
[26] Infante, G. and Webb, J.R.L. Loss of positivity in a nonlinear scalar heat equation. Nonlin. Differ. Equ. Appl. 13 (2006) 249-261.
[27] Li, W.T. and Sun, H.R. Multiple positive solutions for nonlinear dynamical systems on a measure chain. J. Comput. Appl. Math. 162 (2004) 421-430.
[28] Ma, R. Y. Multiple nonnegative solutions of second order systems of boundary value problems. Nonlin. Anal. 42 (2000) 1003-1010.
[29] Sun, H.R. and Li, W.T. Existence of positive solutions to second-order time scale systems. Comput. Math. Appl. 49 (2005) 131-145.
[30] Wang, H. On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl. 281 (2003) 287-306.
[31] Webb, J. R. L. Positive solutions of some three point boundary value problems via fixed point index theory. Nonlin. Anal. 47 (2001) 4319-4332.
[32] Zhou, Y. and Xu, Y. Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations. J. Math. Anal. Appl. 320 (2006) 578-590.

[^0]: * Corresponding author: Johnny_Henderson@baylor.edu

