

Nonlinear Dynamics of a Two-Degrees of Freedom Hamiltonian System: Bifurcations and Integration*

G.M. Scarpello and D. Ritelli *

Dipartimento di Matematica per le Scienze Economiche e Sociali viale Filopanti, 540126 Bologna

Received: April 26, 2006; Revised: December 4, 2007

Abstract: In this paper we treat the motion induced by a starting pulse on a system of two-degrees of freedom s, θ . Decoupling the motion equations, we obtain the *s*-nonlinear ordinary differential equation

$$\ddot{s} = c^2 \frac{s}{\left(d^2 + s^2\right)^2} - \lambda^2 s,$$

where $(c, d, \lambda) > 0$, and the dots mean time derivatives. A bifurcation analysis has revealed the onset of periodic motions for $\lambda \neq 0$ (presence of elastic forces inside the system), whilst for $\lambda = 0$ nonperiodic motions will appear. Almost all the cases (five for $\lambda \neq 0$, three for $\lambda = 0$) have been integrated by obtaining t = t(s) by means of the Jacobi elliptic functions.

The other (angle) coordinate θ has been in any case brought to the quadratures by knowing s.

Keywords: Nonlinear differential equations; Hamiltonian systems; bifurcations; elliptic functions.

Mathematics Subject Classification (2000): 34A05, 34C25.