
Nonlinear Dynamics and Systems Theory, 7 (1) (2007) 97–112

An Online Learning Algorithm with Adaptive

Forgetting Factors for Feedforward Neural Networks in

Financial Time Series Forecasting

Lean Yu ac, Shouyang Wang ab and Kin Keung Lai bc∗

a Institute of Systems Science, Academy of Mathematics and Systems Sciences,

Chinese Academy of Sciences, Beijing 100080, China
b College of Business Administration, Hunan University, Changsha 410082, China

c Department of Management Sciences, City University of Hong Kong,

Tat Chee Avenue, Kowloon, Hong Kong

Received: July 15, 2005; Revised: September 11, 2006

Abstract: In this study, an online learning algorithm for feedforward neural
networks (FNN) based on the optimized learning rate and adaptive forgetting
factor is proposed for online financial time series prediction. The new learning
algorithm is developed for online predictions in terms of the gradient descent
technique, and can speed up the FNN learning process substantially relative
to the standard FNN algorithm, with simultaneous preservation of stability of
the learning process. In order to verify the effectiveness and efficiency of the
proposed online learning algorithm, two typical financial time series are chosen
as testing targets for illustration purposes.

Keywords: Online learning algorithm; adaptive forgetting factor; optimal learning

rate; feedforward neural network; financial time series forecasting.

Mathematics Subject Classification (2000): 93C55, 92B20, 91B99.

1 Introduction

The financial market is a complex, evolutionary, and nonlinear dynamical system [1].
Financial time series are inherently noisy, non-stationary, and deterministically chaotic
[2]. This means that the distribution of financial time series changes over time. Not
only a single data series is non-stationary in the sense of the mean and variance of the
series, but the relationship of the data series to other related data series may also be
continuously changing. Modeling such dynamical and non-stationary time series is a

∗ Corresponding author: mskklai@cityu.edu.hk

c© 2007 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 97

98 LEAN YU, SHOUYANG WANG AND KIN KEUNG LAI

challenging task. Over the past few years, neural networks have been successfully used
to model financial time series ranging from options prices [3], corporate bond ratings
[4] and stock index trading [5] to currency exchange [6]. Neural networks are univer-
sal function approximators that can map any nonlinear function without any a priori
assumption about the data [7]. Unlike traditional statistical models, neural networks
are data-driven, non-parametric weak models, and they let “the data speak for them-
selves”. So neural networks are less susceptible to the model mis-specification problem
than most parametric models are, and they are more powerful in describing the dynamics
of financial time series than traditional statistical models are [6, 8].

Among these neural network models, the multilayer feedforward neural network
(FNN) is widely used for financial time series prediction due to its approximations to
nonlinear functions and its self-learning capability [7]. However, the FNN has several
limitations. For example, the convergence speed of the FNN algorithm is often slow be-
cause the learning rate is fixed [12], thus increasing the network learning time. Therefore,
some faster training FNN algorithms, such as adaptive learning algorithms [9-10], real-
time learning algorithms [11-12] and other fast learning algorithms [13-15], have been
developed in an attempt to reduce these shortcomings. But two main limitations still
remain so far.

Firstly, most FNN models do not use the optimized instantaneous learning rates
except the work of [11]. In studies in which these are introduced, the learning rate is
set to a fixed value. It is, however, critical to determine a proper fixed learning rate for
the FNN applications. If the learning rate is large, learning may occur quickly, but it
may also become unstable and may even not learn at all [11]. To ensure stable learning,
the learning rate must be sufficiently small, but a small learning rate may lead to a
long learning time and a slow convergence speed. Also, it is unclear just how small the
learning rate should be. In addition, the best fixed learning rate is problem-independent,
and it varies with different neural network structure for different applications.

Secondly, in the existing literature, almost all fast algorithms are batch learning al-
gorithms. Although neural network batch learning is highly effective, the computation
involved in each learning step is very big, especially when large sample data sets are
presented. Furthermore, the neural networks must re-learn from the beginning as new
data become available. Therefore, this may overly affect the overall computational effi-
ciency of batch learning. In this sense, batch learning is unsuitable for real-time or online
prediction when neural networks are used as a predictor.

For the first problem, an optimized instantaneous learning rate is derived from the
gradient descent rule based on optimization techniques. For the second problem, an
online learning algorithm should be created to overcome the drawbacks of batch learning
algorithm. Actually, there is a difference between online learning algorithm and batch
learning algorithm in the neural networks models. In the online learning algorithm, the
weight vectors are updated recursively after the presentation of each input vector. While
in the batch learning algorithm, the weight vectors of neural networks are updated only
at the end of each epoch, which will be further illustrated later. Usually, in the neural
networks, a single pass over the input data set is called as an epoch. Furthermore,
the weight sequence should be chosen to given a higher weight to more recent data in
the time series prediction. So an adaptive forgetting factor is also introduced into the
proposed online learning algorithm. In order to verify the effectiveness and efficiency of
the proposed online learning algorithm, two typical financial time series, S&P 500 and
the exchange rate of euros against US dollars (EUR/USD), are chosen for testing.

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 97–112 99

The rest of this work is organized as follows. In Section 2, the proposed online learning
algorithm with adaptive forgetting factor is first presented in terms of the gradient descent
algorithm and optimization techniques. For further illustration, an empirical analysis is
then given in Section 3. Finally, some concluding remarks are drawn in Section 4.

2 The Proposed Online Learning Algorithm

In this study, we use a matrix-vector notation of the neural network description in order
to be able to express the later by simple formula. Consider a three-layer FNN, which has
p nodes in the input layer, q nodes in the hidden layer and k nodes in the output layer.
Mathematically, the basic structure of the FNN model is described by

Y (t + 1) =

y1(t + 1)
y2(t + 1)
· · ·
yk(t + 1)

=

f2[
∑q

i=1 f1(
∑p

j=1 wij(t)xj(t) + wi0(t))v1i(t) + v10(t)]

f2[
∑q

i=1 f1(
∑p

j=1 wij(t)xj(t) + wi0(t))v2i(t) + v20(t)]

· · ·
f2[
∑q

i=1 f1(
∑p

j=1 wij(t)xj(t) + wi0(t))vki(t) + vk0(t)]

=

f2[
∑q

i=0 f1(
∑p

j=0 wij(t)xj(t))v1i(t)]

f2[
∑q

i=0 f1(
∑p

j=0 wij(t)xj(t))v2i(t)]

· · ·
f2[
∑q

i=0 f1(
∑p

j=0 wij(t)xj(t))vki(t)]

=

f2[V
T
1 F1(W (t)X(t))]

f2[V
T
2 F1(W (t)X(t))]

· · ·
f2[V

T
k F1(W (t)X(t))]

= F2[V
T (t)F1(W (t)X(t))],

(1)
where xj(t), j = 1, 2, . . . , p, are the inputs of the FNN; yj(t+1), j = 1, 2, . . . , k, are the
output of the FNN; wij(t), i = 1, 2, . . . , q, j = 1, 2, . . . , p, are the weights from the input
layer to the hidden layer; wi0(t), i = 1, 2, . . . , q, are the biases of the hidden nodes; vij(t),
i= 1, . . . , q, j = 1, . . . , k, are the weights from the hidden layer to the output layer;
vi0(t), i = 1, . . . , k, are the bias of the output node; t is a time factor; f1 is the activation
function of the nodes for the hidden layer and f2 is the activation function of the nodes
for the output layer. Generally, the activation function for nonlinear nodes is assumed
to be a symmetric hyperbolic tangent function, i.e. f1(x) = tanh(u−1

0 x), and its first-
and second-order derivatives are f ′

1(x) = u−1
0 [1− f2

1 (x)], f ′′

1 (x) = −2u−1
0 f1(x)[1− f2

1 (x)],
respectively, where u0 is the shape factor of the activation function. Specially, some
notations in Equation (1) are defined as follows:

X = (x0, x1, · · · , xp)
T ∈ R(p+1)×1, Y = (y1, y2, · · · , yk)T ∈ Rk×1,

W =

w10 w11 · · · w1p

w20 w21 · · · w2p

· · · · · · · · · · · ·
wq0 wq1 · · · wqp

= (W0, W1, · · · , Wp) ∈ Rq×(p+1),

V =

v10 v20 · · · vk0

v11 v21 · · · vk1

· · · · · · · · · · · ·
v1q v2q · · · vkq

= (V1, V2, · · · , Vk) ∈ R(q+1)×k,

100 LEAN YU, SHOUYANG WANG AND KIN KEUNG LAI

F1(W (t)X(t))

=
(

F1(
∑p

j=1 w0j(t)xj(t)) F1(
∑p

j=1 w1j(t)xj(t)) · · · F1(
∑p

j=1 wqj(t)xj(t))
)T

.

F1(W (t)X(t)) ∈ R(q+1)×1.

For simplification, let neti(t) =
∑p

j=0 wij(t)xj(t), i = 0, 1, . . . , q, then

F1(W (t)X(t)) =
(

F1(net0(t)) F1(net1(t)) · · · F1(netq(t))
)T

∈ R(q+1)×1.

Usually, through estimating the model parameter vectors (W , V) via FNN learning,
we can realize the corresponding tasks such as function approximation, system identifi-
cation or prediction. In fact, the model parameter vectors (W , V) can be obtained by
iteratively minimizing a cost function E(X : W , V). In general, E(X :W , V) is a sum of
the error squares cost function with k output nodes and N training pairs, i.e.,

E(X : W, V) =
1

2

∑N

j=1

∑p

i=1
e2

i (j) =
1

2

∑N

j=1
eT (j)e(j)

=
1

2

∑N

j=1
[yj − ŷj(X : W, V)]T [yj − ŷj(X : W, V)], (2)

where e(j) = [e1(j), e2(j), · · · , ek(j)]T ∈ Rk×1, yj is the jth actual value and ŷj(X :
W, V) is the jth estimated value, j = 1, . . . , N .

However, the learning algorithm based on Equation (2) is batch learning of neural
networks. As earlier mentioned, the computation of the batch learning algorithm is very
large if big sample data sets are given. Also, the neural networks must re-learn when new
data are available. To overcome the shortcomings, the neural network learning should
be iterative or recursive, allowing the network parameters to be updated at each sample
interval as new data become available. This idea will be activated to create a new online
learning algorithm. In addition, a weighting sequence should be chosen to give a higher
weight for more recent data in order to perform online prediction. To arrive at this goal,
an adaptive forgetting factor is introduced to this problem. In this study, an exponential
forgetting mechanism in the cost function, like a recursive algorithm with the forgetting
factor, is used, and then Equation (2) can be rewritten as

E(t) =
1

2

∑t

j=1
λt−j

∑k

i=1
e2

i (j) =
1

2

∑t

j=1
λt−jeT (j)e(j)

=
1

2

∑t

j=1
λt−j [y(j) − ŷi(j)]

T [y(j) − ŷi(j)], (3)

where λ is the forgetting factor, 0 < λ 6 1, e(j) = [e1(j), e2(j), · · · , ek(j)]T ∈ Rk×1, j =
1, . . . , t; t is a time factor, representing the number of training pairs here.

By applying the steepest descent method to the error cost function E(t) (i.e., Equation
(3)), we can obtain the gradient of E(t) with respect to parameters W and V , respectively.

∇W E(t) =
∂E(t)

∂W (t)
=
∑t

j=1
λt−j

∑k

i=1
ei(j)

∂ei(j)

∂W (j)
= −

∑t

j=1
λt−j

∑k

i=1
ei(j)

∂ŷi(j)

∂W (j)

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 97–112 101

= −
∑t

j=1
λt−jF̄ ′

1(j)V̄ (j)F ′

2(j)e(j)x
T (j) = λ∇W E(t − 1) − F̄ ′

1(t)V̄ (t)F ′

2(t)e(t)x
T (t),

(4)

∇V E(t) =
∂E(t)

∂V (t)
=
∑t

j=1
λt−j

∑k

i=1
ei(j)

∂ei(j)

∂V (j)
= −

∑t

j=1
λt−j

∑k

i=1
ei(j)

∂ŷi(j)

∂V (j)

= −
∑t

j=1
λt−jF1(j)e

T (j)F ′

2(j) = λ∇V E(t − 1) − F1(t)e
T (t)F ′

2(t). (5)

So, the updated formulae of weights are given by, respectively

∆W (t) = −η∇W E(t) = −η
(

λ∇W E(t − 1) − F̄ ′

1(t)V̄ (t)F ′

2(t)e(t)x
T (t)

)

, (6)

∆V (t) = −η∇V E(t) = −η
(

λ∇V E(t − 1) − F1(t)e
T (t)F ′

2(t)
)

, (7)

where η is the learning rate; λ is the forgetting factor; ∆ is the incremental operator; ∇
is the gradient operator; ∆W and ∆V are the weight adjustment increments;

F̄ ′

1(j) = diag[f ′

1(1) f ′

1(2) · · · f ′

1(q)] ∈ Rq×q;

F ′

2 = diag[f ′

2(1) f ′

2(2) · · · f ′

2(k)] ∈ Rk×k;

f ′

1(i) = f ′

1(neti) =
∂f1(neti)

∂neti
, i = 1, 2, · · · , q;

f ′

2(i) = f ′

2[v
T
i F1(WX)] =

∂f2[v
T
i F1(WX)]

∂[vT
i F1(WX)]

, i = 1, 2, · · ·k;

V̄ =

v11 v21 · · · vk1

v12 v22 · · · vk2

· · · · · · · · · · · ·
v1q v2q · · · vkq

= [v̄1 v̄2 · · · v̄k] ∈ Rq×p;

v̄i = [vi1 · · · viq]
T ∈ Rq×1, i = 1, 2, · · · , q.

To derive the optimal learning rate, consider the following error increment equation:

∆e(t + 1) = e(t + 1) − e(t) = y(t + 1) − ŷ(t + 1) − y(t) + ŷ(t). (8)

Let ∆y(t + 1) = y(t + 1)− y(t) be the change of the actual series and let ∆ŷ(t + 1) =
ŷ(t + 1) − ŷ(t) be the change of the neural network output. Here we assume that the
absolute value of the change of the actual series is much smaller than the absolute value of
the change of the neural network output, i.e., |∆y(t + 1)| << |∆ŷ(t + 1)|. This implies
that the value y(t) can approximate y(t+1) locally during the training process, that
is to say, the change of the actual series can be ignored comparing with the change
of neural network output during the learning process. This assumption is realistic for
many processes of actual series due to energy constraints in practical systems, while no
constraints are imposed to the output of the neural networks [11]. Also, if this condition
is not satisfied, then the neural network prediction system will not be able to adapt

102 LEAN YU, SHOUYANG WANG AND KIN KEUNG LAI

sufficiently fast to change in the actual series and the prediction of the actual series
will be impossible. With the above assumption, the increment in Equation (8) can be
approximated as

∆e(t + 1) = e(t + 1) − e(t) = ∆y(t + 1) − ∆ŷ(t + 1) ≈ −∆ŷ(t + 1). (9)

Usually, in the recursive algorithm, the change of output of neural networks with
adaptive forgetting factors can be represented as

∆ŷ(t + 1) = −ηλζ(t − 1) + ηξ(t)e(t), (10)

where ζ(t − 1) = F ′

2[∇
T
V E(t − 1)F1 + V̄ T F̄ ′

1∇W E(t − 1)X], ξ(t) = F ′

2[(F
T
1 F1)Ik2 +

V̄ T F ′

1F
′

1V̄ XT X]F ′

2 with

F ′

2 =

F ′

2(1) 0 · · · 0

0 F ′

2(2) · · · 0

· · · · · · · · · · · ·
0 0 · · · F ′

2(N)

,

FT
1 F1 =

FT
1(1)F1(1) FT

1(1)F1(2) · · · FT
1(1)F1(N)

FT
1(2)F1(1) FT

1(2)F1(2) · · · FT
1(2)F1(N)

· · · · · · · · · · · ·
FT

1(N)F1(1) FT
1(N)F1(2) · · · FT

1(N)F1(N)

,

XT X =

xT
1 x1 xT

1 x2 · · · xT
1 xN

xT
2 x1 xT

2 x2 · · · xT
2 xN

· · · · · · · · · · · ·
xT

Nx1 xT
Nx2 · · · xT

NxN

,

F ′

1F
′

1 =

F̄ ′

1(1)F̄
′

1(1) F̄ ′

1(1)F̄
′

1(2) · · · F̄ ′

1(1)F̄
′

1(N)

F̄ ′

1(2)F̄
′

1(1) F̄ ′

1(2)F̄
′

1(2) · · · F̄ ′

1(2)F̄
′

1(N)

· · · · · · · · · · · ·
F̄ ′

1(N)F̄
′

1(1) F̄ ′

1(N)F̄
′

1(2) · · · F̄ ′

1(N)F̄
′

1(N)

.

In order to prove Equation (10), a lemma must be introduced firstly.

Lemma 2.1 The total time derivative of the FNN single output V T F1(WX)is given
by

d[V T F1(WX)]

dt
= F1(WX)

dV

dt
+ V̄ T F̄ ′

1(WX)
dW

dt
X

=
dV T

dt
F1(WX) + V̄ T F̄ ′

1(WX)
dW

dt
X,

where V T F1(WX) is the single output of FNN; dW
dt

and dV
dt

are the derivatives with

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 97–112 103

respect to timet; W , V are the weight vectors; X is the input vector; and

F1(WX) = [f1(net0), f1(net1), · · · , f1(netq)]
T ; X = [x0, x1, · · · , xp]

T ;

F̄ ′
1(WX) =

f ′(net1) · · · 0
· · · · · · · · ·
0 · · · f ′(netq)

 ;
dW

dt
=

dw00

dt

dw01

dt
· · ·

dw0p

dt
dw10

dt

dw11

dt
· · ·

dw1p

dt
· · · · · · · · · · · ·
dwq0

dt

dwq1

dt
· · ·

dwqp

dt

;

V̄ = [v1, v2, · · · , vq]
T ;

dV

dt
=

[

dv0

dt

dv1

dt
· · ·

dvq

dt

]T

.

Proof Derivation of d[V T F1(WX)]
dt

is as follows:

d[V T F1(WX)]
dt

=
d[
∑q

i=0
vif1(

∑p

j=0
wijxj)]

dt

=
q
∑

i=0

∂[
∑ q

i=0
vif1(

∑p

j=0
wijxj)]

∂vi

dvi

dt
+

q
∑

i=0

p
∑

j=0

∂[
∑ q

i=0
vif1(

∑p

j=0
wijxj)]

∂wij

dwij

dt

=
q
∑

i=0

f1

(

p
∑

j=0

wijxj

)

dvi

dt
+

q
∑

i=0

p
∑

j=0

vif
′

1

(

p
∑

j=0

wijxj

)

xj
dwij

dt

= f1(net0)
dv0

dt
+ f1(net1)

dv1

dt
+ · · · + f1(netq)

dvq

dt

+ v0f
′

1(net0)[x0
dw00

dt
+ x1

dw01

dt
+ · · · + xp

dw0p

dt
]

+ v1f
′

1(net1)[x0
dw10

dt
+ x1

dw11

dt
+ · · · + xp

dw1p

dt
] + · · ·

+ vqf
′

1(netq)[x0
dwq0

dt
+ x1

dwq1

dt
+ · · · + xp

dwqp

dt
]

= [f1(net0) f1(net1) · · · f1(netq)]
[

dv0

dt
dv1

dt
· · ·

dvq

dt

]T

+[v1 v2 · · · vq]

f ′ (net1) · · · 0
· · · · · · · · ·
0 · · · f ′ (netq)

(

due to f(net0) ≡ 1,
f ′(net0) = 0

)

×

dw00

dt
dw01

dt
· · ·

dw0p

dt
dw10

dt
dw11

dt
· · ·

dw1p

dt

· · · · · · · · · · · ·
dwq0

dt

dwq1

dt
· · ·

dwqp

dt

x0

x1

· · ·
xp

= FT
1 (WX)dV

dt
+ V̄ T F̄ ′

1(WX)dW
dt

X = dV T

dt
F1(WX)+ V̄ T F̄ ′

1(WX)dW
dt

X.

�

In the following, we start to prove Equation (10). The above Lemma together with
Equations (6) and (7) gives

104 LEAN YU, SHOUYANG WANG AND KIN KEUNG LAI

∆ŷ(t+1) ≈
(

dŷ(t+1)
dt

)

∆t=

dŷ1(t+1)
dt

dŷ2(t+1)
dt

· · ·
dŷk(t+1)

dt

∆t=

f ′

2(1) ·
(

FT
1

dv1

dt
+ vT

1 F̄ ′

1
dW
dt

X
)

f ′

2(2) ·
(

FT
1

dv2

dt
+ vT

2 F̄ ′

1
dW
dt

X
)

· · ·

f ′

2(k) ·
(

FT
1

dvk

dt
+ vT

k F̄ ′

1
dW
dt

X
)

∆t

≈

f ′

2(1) ·
(

FT
1

∆v1

∆t
+ vT

1 F̄ ′

1
∆W
∆t

X
)

f ′

2(2) ·
(

FT
1

∆v2

∆t
+ vT

2 F̄ ′

1
∆W
∆t

X
)

· · ·

f ′

2(k) ·
(

FT
1

∆vk

∆t
+ vT

k F̄ ′

1
∆W
∆t

X
)

∆t =

f ′

2(1) · (F
T
1 ∆v1 + vT

1 F̄ ′
1∆WX)

f ′

2(2) · (F
T
1 ∆v2 + vT

2 F̄ ′
1∆WX)

· · ·
f ′

2(k) · (F
T
1 ∆vk + vT

k F̄ ′
1∆WX)

=

f ′

2(1) · (F
T
1 [−η∇V1

E(t)] + v̄T
1 F̄ ′

1[−η∇W E(t)]X)

f ′

2(2) · (F
T
1 [−η∇V2

E(t)] + v̄T
2 F̄ ′

1[−η∇W E(t)]X)

· · ·
f ′

2(k) · (F
T
1 [−η∇Vk

E(t)] + v̄T
k F̄ ′

1[−η∇W E(t)]X)

= −η

f ′

2(1) · (F
T
1 ∇V1

E(t) + v̄T
1 F̄ ′

1∇W E(t)X)

f ′

2(2) · (F
T
1 ∇V2

E(t) + v̄T
2 F̄ ′

1∇W E(t)X)

· · ·
f ′

2(k) · (F
T
1 ∇Vk

E(t) + v̄T
k F̄ ′

1∇W E(t)X)

= −η

f ′

2(1) 0 · · · 0

0 f ′

2(2) · · · 0

· · · · · · · · · · · ·
0 0 · · · f ′

2(k)

×

FT
1 [λ∇EV1

(t − 1) − e1f
′

2(1)F1] + v̄T
1 F̄ ′

1∇W E(t)X

FT
1 [λ∇EV2

(t − 1) − e2f
′

2(2)F1] + v̄T
2 F̄ ′

1∇W E(t)X

· · ·
FT

1 [λ∇EVk
(t − 1) − ekf ′

2(k)F1] + v̄T
k F̄ ′

1∇W E(t)X

= −ηF ′

2

[

λ∇T
V E(t − 1)F1 − F ′

2eF
′

1F1 + V̄ T F̄ ′(λ∇EW (t − 1) − F ′

1V F ′

2eX
T)X

]

= −ηλF ′

2

[

∇T
V E(t − 1)F1 + V̄ T F̄ ′∇EW (t − 1)X

]

+ ηF ′

2(F
′

2eF
′

1F1

−V̄ T F̄ ′F ′

1V F ′

2eX
T X)

= −ηλF ′

2

[

∇T
V E(t − 1)F1 + V̄ T F̄ ′∇EW (t − 1)X

]

+ ηF ′

2(F
′

1F1Ik2

−V̄ T F̄ ′F ′

1V XT X)F ′

2e

= −ηλζ(t − 1) + ηξ(t)e(t).

�

Substituting (10) into (9), we obtain

e(t + 1) ≈ e(t) + ηλζ(t − 1) − ηξ(t)e(t). (11)

The objective here is to derive an optimal learning rate η. That is, at iteration t, an
optimal value of the learning rate, η∗(t), which minimizes E(t+1), is obtained. Define

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 97–112 105

the cost function:
E(t + 1) = 0.5eT (t + 1)e(t + 1). (12)

Using Equation (11), Equation (12) may be written as

E(t + 1) = 0.5 [e(t) + ηλζ(t − 1) − ηξ(t)e(t)]
T

[e(t) + ηλζ(t − 1) − ηξ(t)e(t)] . (13)

In Equation (13), the first and second order conditions are as

dE(t+1)
dη

∣

∣

∣

η=η∗(t)
= −0.5 [ξ(t)e(t) − λζ(t − 1)]T [e(t) − η∗(t)ξ(t)e(t) + η∗(t)λζ(t − 1)]

− 0.5[e(t) − η∗(t)ξ(t)e(t) + η∗(t)λζ(t − 1)]T [ξ(t)e(t) − λζ(t − 1)] = 0,

d2E(t + 1)

dη2

∣

∣

∣

∣

η=η∗(t)

= [ξ(t)e(t) − λζ(t − 1)]T [ξ(t)e(t) − λζ(t − 1)] > 0.

Since ξ(t) and ζ(t−1) is positively defined, the second condition is met, the optimum
learning rate can be obtained from the first order condition, as illustrated in Equation
(14). Interestedly, the optimized learning rate that we obtained is distinctly different
from the result produced by the work [11]

η∗(t) =
[ξ(t)e(t) − λζ(t − 1)]T e(t)

[ξ(t)e(t) − λζ(t − 1)]T [ξ(t)e(t) − λζ(t − 1)]
. (14)

Finally, the increments of the neural network parameters, found using the optimal
learning rate, are obtained by replacing the η∗ given by Equation (14) to Equations (6)
and (7), which yield

∆W (t) = −

(

[ξ(t)e(t) − λζ(t − 1)]T e(t)

[ξ(t)e(t) − λζ(t − 1)]T [ξ(t)e(t) − λζ(t − 1)]

)

×
(

λ∇W E(t − 1) − F̄ ′

1(t)V̄ (t)F ′

2(t)e(t)x
T (t)

)

, (15)

∆V (t) = −

(

[ξ(t)e(t) − λζ(t − 1)]T e(t)

[ξ(t)e(t) − λζ(t − 1)]T [ξ(t)e(t) − λζ(t − 1)]

)

×
(

λ∇V E(t − 1) − F1(t)e
T (t)F ′

2(t)
)

. (16)

It is worth noting that the forgetting factor λ is adaptive. During the neural network
learning process, if the prediction error e(t) grows, this may mean that the neural network
parameters have changed. This implies that the network model is incorrect and needs
adjustment. So we should reduce the forgetting factor and allow the neural network
model to adapt. An adaptive forgetting factor which allows this is

λ(t) = s(t − 1)/s(t), (17)

where s(t) is a weighted average of the past values of eT e and is calculated by

s(t) = [(τ − 1)/τ]s(t − 1) + (eT e
/

τ), (18)

τ is the time constant of the forgetting factor determining how fast λ(t) changes.
Using the updated weight formula with optimal learning rates and adaptive forgetting

factors, a new online recursive learning algorithm is generated. For convenience, the
proposed online learning algorithm is summarized as follows, as shown in Figure 2.1.

To verify the effectiveness of the proposed online learning algorithm, two typical
financial time series: S&P 500, a famous stock index, and one foreign exchange rate, euros
against US dollars (EUR/USD), are used as testing targets. The simulation experiments
are presented in the following section.

106 LEAN YU, SHOUYANG WANG AND KIN KEUNG LAI

Figure 2.1: Outline of the proposed online learning algorithm.

3 Experimental Analysis

In this section, there are two main motivations: (1) to evaluate the performance of the
proposed online learning algorithm, and (2) to compare the efficiency of the proposed
online learning algorithm with other similar algorithms. To perform the two motivations,
two real-world data experiments are carried out. In this section, we first describe the
research data and experiment design and then report the experimental results.

3.1 Research data and experiment design

In the experiments, one stock index, S&P 500, and one foreign exchange rate, euros
against US dollars (EUR/USD), are used for testing purpose. The historical data are
daily and are obtained from Wharton Research Data Service (WRDS), provided by
Wharton School of the University of Pennsylvania. The entire data set covers the period
from January 1, 2000 to December 31, 2004 with a total of 1256 observations. The data
sets are divided into two periods: the first period covers January 1, 2000 to December
31, 2003 with 1004 observations, while the second period is from January 1, 2004 to
December 31, 2004 with 252 observations. The first period, which is assigned to in-
sample estimation, is used for network learning, i.e., training set. The second period,
which is reserved for out-of-sample evaluation, is used for validation, i.e., testing set. For
space limitation, the original data are not listed in this paper, and detailed data can be
obtained from the WRDS.

For comparison, four related algorithms, standard FNN algorithm [7, 16], batch learn-
ing algorithm, Levenberg-Marquart (LM) based learning algorithm [15-16], and extended
Kalman filter (EKF) based learning algorithm [12, 17], are employed in this study. For
standard FNN learning algorithm, the learning rate is fixed at 0.3, more details about
standard FNN learning algorithm can be referred to [7]. In the batch learning algorithm,
the weights are updated only at the end of each epoch. Similar to the online learning
algorithm, the batch learning algorithm can also be summarized as follows, as illustrated
in Figure 3.1.

The Levenberg-Marquart (LM) based algorithm [15-16] is a kind of quick convergence

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 97–112 107

algorithm which has the little computation time for per iteration. Basically, the link
weights of the neural network are updated based on the Jacobian matrix, J , collecting
the partial derivatives of the neural network error e with respect to the weights. In other
words, the update increment ∆W collecting the corrections of the weights in matrix W

is computed by
∆W = −[JT J + µI]−1JT e, (19)

J =

∂e

∂w11

∂e

∂w12
· · ·

∂e

∂w1n
∂e

∂w21

∂e

∂w22
· · ·

∂e

∂w2n

· · · · · · · · · · · ·
∂e

∂wm1

∂e

∂wm2
· · ·

∂e

∂wmn

. (20)

Figure 3.1: Outline of the batch learning algorithm.

It is worth noting that the LM-based algorithm is rather flexible. If µ is sufficiently
large, the above weight update algorithm is similar to the gradient descent algorithm.
If µ is equal to zero, the above algorithm will be a Gaussian-Newton algorithm. In
this sense, the LM-based algorithm has the characteristics of both the gradient descent
algorithm and the Gaussian-Newton algorithm.

The extended Kalman filter (EKF) based algorithm [12, 17] is a novel weight ad-
justment algorithm for FNN. In this algorithm, the Kalman filter is used to update the
weight vector of FNN. The generic principle of EKF-based algorithm is that the EKF can
modify the weight parameters to maximize the posterior probability of current instance
with respect to its predicted probability distribution of weight parameters. Recent work
proposed by Ruck [17] has revealed that the FNN algorithm is actually a degenerated
form of the EKF. Due to its excellent convergence properties, a lot of successful appli-
cations have been reported. Basically, the EKF-based weight adjustment formulae are
illustrated as follows.

W (t) = W (t − 1) + K(t)[y(t) − ŷ(t)], (21)

K(t) = P (t − 1)HT (t)[H(t)P (t − 1)HT (t) + R(t)]−1, (22)

108 LEAN YU, SHOUYANG WANG AND KIN KEUNG LAI

P (t) = P (t − 1) − K(t)H(t)P (t − 1), (23)

where W (t) is the connect weight of FNN, K(t) is called the Kalman gain, y(t) is the
actual value, ŷ(t) is the predicted value produced by neural networks, P (t) is the error
covariance matrix, defined by P (t) = E{[y(t) − ŷ(t)]T [y(t) − ŷ(t)]} and H(t) is the

gradient, defined by H(t) = ∂ŷ(t)
∂W

. Usually, the system actual outputy(t) = ŷ(t) + ε(t),
ε(t) is assumed to be white noise vector with covariance R(t) regarded as a modeling
error. For more details, please refer to [12, 17].

In all the neural network predictors, five input nodes are determined by auto-
regression testing. The appropriate number of hidden nodes is set to 12 in terms of
trial and error. The training epochs are set to 3000 due to trial and error and the
problem complexity.

To examine the forecasting performance, the root mean square error (RMSE) and
directional change statistics (Dstat) [16] of financial time series are employed as the
performance measurement of the testing set. In addition, training time and training mean
square error (TMSE) are used as the efficiency measurement of different algorithms.

3.2 Experiment Results

When the data are prepared, we begin to perform experiments according to the previous
experiment design. First of all, the prediction results with five algorithms are reported.
Figures 3.2 and 3.3 give graphical representations of the forecasting results for two typical
financial time series using different FNN learning algorithms. Table 3.1 shows a detailed
prediction performance of the different algorithms in terms of both the level measure-
ment (RMSE) and direction measurement (Dstat). From the figures and table, we can
generally find that the prediction results of the proposed online learning algorithm are
very promising for two typical financial time series under study either where the mea-
surement of forecasting performance is the goodness-of-fit such as RMSE or where the
forecasting performance criterion is the Dstat.

Figure 3.2: The forecasting results with different learning algorithm for S&P 500.

In detail, Figure 3.2 reveals that the comparison for the S&P 500 of the proposed

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 97–112 109

online learning algorithm versus the other four learning algorithm. Similarly, it can be
seen from Figure 3.3 that the forecasting performance for ERU/USD has significantly
improved using the proposed online learning algorithm. The graphical results indicate
that the proposed online learning algorithm performs than the other algorithms presented
here.

Subsequently, the concrete prediction performance comparison of various algorithms
for two different financial time series via RMSE and Dstat are given in Table 3.1.

For the S&P 500, the proposed online learning algorithm outperforms the other four
learning algorithms in terms of both RMSE and Dstat. Focusing on the RMSE indica-
tor, the proposed online learning algorithm performs the best, followed by batch learning,
EKF-based learning, LM-based learning and Standard FNN learning algorithm. Com-
paring with standard FNN learning algorithm, the RMSE of the proposed online learning
algorithm is much smaller. From the viewpoint of Dstat, the performance of the proposed
online learning algorithm is the best of the all. Relative to the standard FNN learning
algorithm, the performance improvement arrives at 26.82% (80.31%-53.41%) While the
performance of the proposed online learning algorithm is slightly improved relative to
batch learning algorithm, EKF-based learning algorithm and LM-based algorithm.

Figure 3.3: The forecasting results with different learning algorithm for EUR/USD.

Algorithms
S&P 500 EUR/USD
RMSE Dstat(%) RMSE Dstat(%)

Online learning 1.2859 80.31 0.0799 79.87
Batch learning 2.1467 71.42 0.0943 69.75
EKF-based learning 2.1538 70.35 0.1051 72.29
LM-based learning 4.3531 71.69 0.1544 69.34
Standard FNN 7.8553 53.49 0.3362 55.64

Table 3.1: Performance comparison of four neural network learning algorithms.

110 LEAN YU, SHOUYANG WANG AND KIN KEUNG LAI

Algorithms
S&P 500 EUR/USD
Time (seconds) TMSE Time

(seconds)
TMSE

Online learning 197 3.41 192 1.17×10−3

Batch learning 186 7.96 177 5.04×10−3

EKF-based learning 173 8.42 154 4.85×10−3

LM-based learning 535 8.77 573 3.56×10−3

Standard FNN 249 12.55 269 6.09×10−3

Table 3.2: The comparisons of the computational efficiency and training performance.

For the exchange rate of EUR/USD, the performance of the proposed online algo-
rithm is the best, similar to the results of the S&P 500. Likewise, the proposed online
algorithm has gained much improvement relative to the standard FNN learning algo-
rithm. Interestedly, the RMSE of the batch learning algorithm is slightly better than
that of the EKF-based learning algorithm, but the directional performance (i.e., Dstat)
of the batch learning is somewhat worse than that of the EKF-based learning algorithm.
The possible reasons are needed to be further addressed later.

In summary, we can conclude that (1) the proposed online learning algorithm with
adaptive forgetting factors performs consistently better than other comparable learning
algorithm for both the stock index and foreign exchange rate; (2) the evaluation value of
the two criteria of the proposed online learning is much better than that of the standard
FNN learning algorithm, indicating that the proposed online learning algorithm can
effectively reflect error changes and significantly improve network learning performance.
One possible reason for this is that the optimal learning rate and adaptive forgetting
factors are used in the online learning algorithm.

In addition, the computation speed of the proposed online algorithm is very fast dur-
ing the experiments when using a personal computer (PC) and the training performance
is also well in predicting time series, indicating that the proposed learning algorithm is
an efficient online algorithm. For comparison purpose, Table 3.2 reports the comparison
of the computation time and training performance between the proposed online learning
algorithm and the other four learning algorithm presented here.

From Table 3.2, we can find the following conclusions. First of all, for both S&P 500
and EUR/USD series, the computational time of the EKF-based learning algorithm is
the smallest and the LM-based learning algorithm is the largest. The results reported
here are basically consistent with the work of Iiguni et al. [12]. The main reason is
that the number of iterations of LM-based learning algorithm is much larger than that
of EKF-based learning algorithm, although the computation time per iteration of the
EKF-based learning algorithm is larger than that of the LM-based learning algorithm
[12]. Secondly, the computation time of the batch learning algorithm is smaller than that
of the online learning algorithm due to the batch processing of the data. However, rela-
tive to the standard FNN learning and LM-based learning algorithms, the computation
time of the online learning algorithm is much smaller. The main reason may be that the
proposed online learning algorithm adopts optimal learning rate, resulting in the increase
of convergence speed. Thirdly, although the computation time of the proposed online
learning algorithm is not the best, the training performance (refer to TMSE presented
by Table 3.2) and the generalized performance (refer to RMSE and Dstat reported by

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 97–112 111

Table 3.1) is the best among the entire learning algorithms presented in this study. The
possible reason is that the adaptive forgetting factor helps improve the performance of
this proposed algorithm. Finally, since the difference of the computation time between
the proposed online learning algorithm and EKF-based and batch learning algorithm is
marginal, and the difference of the performance between the proposed online learning
algorithm and EKF-based and batch learning is significant, in this sense, the computa-
tional efficiency of the proposed online learning algorithm is satisfactory when forecasting
financial time series. In general, the experimental results reveal that the proposed online
learning algorithm provide a feasible solutions to financial time series online prediction.

4 Conclusions

In this study, an online learning algorithm with optimized learning rates and adaptive
forgetting factors is first proposed. This exploratory research examines the potential of
using the proposed online learning algorithm to predict two main financial time series –
S&P 500 and the exchange rate for euros against US dollars. Our empirical results suggest
that the online learning algorithm may provide much better forecasts than the other four
learning algorithms. Furthermore, the learning efficiency is also satisfactory relative to
the learning performance. This implies that the proposed online learning algorithm with
adaptive forgetting factors is very suitable for online prediction of financial time series.

Acknowledgements

The authors would like to thanks the guest editors and two anonymous referees for their
valuable comments and suggestions. Their comments helped to improve the quality
of the paper immensely. The work described in this paper was partially support by
National Natural Science Foundation of China (NSFC No. 70221001, 70601029); Key
Laboratory of Management, Decision and Information Systems of Chinese Academy of
Sciences (CAS) and Strategic Research Grant of City University of Hong Kong (SRG
No. 7001677, 7001806).

References

[1] Hall, J.W. Adaptive selection of US stocks with neural nets. In:Trading On the Edge:

Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets (Deboeck, G.J., ed.).
Wiley, New York, 1994, 45–65.

[2] Yaser, S.A.M., Atiya, A.F. Introduction to financial forecasting. Applied. Intelligence 6
(1996) 205–213.

[3] Hutchinson, J., Lo, A., Poggio, T. A non-parametric approach to pricing and hedging
derivative securities via learning networks. Journal of Finance 49 (1994) 851–889.

[4] Moody, J., Utans, J. Architecture selection strategies for neural networks: Application to
corporate bond rating prediction. In: Neural Networks in the Capital Markets (Refenes,
A.P., ed.). Wiley, New York, 1994, 277–300.

[5] Kimoto, T., Asakawa, K., Yoda, M., Takeoka, M. Stock market prediction system with mod-
ular neural networks. In: Neural Networks Finance Investing: Using Artificial Intelligence

to Improve Real-World Performance (Trippi, R.R., Turban, E., eds.). Irwin Publishers,
Chicago, 1996, 497–510.

[6] Zhang, G.Q., Michael, Y.H. Neural network forecasting of the British Pound/US Dollar
exchange rate. Omega 26 (1998) 495–506.

112 LEAN YU, SHOUYANG WANG AND KIN KEUNG LAI

[7] Haykin, S. Neural Networks: A Comprehensive Foundation. Prentice-Hall Inc., Englewood
Cliffs, New-Jersey, 1999.

[8] Kaastra, I., Boyd, M.S. Forecasting futures trading volume using neural networks. Journal

of Futures Markets 15 (1995) 953–970.

[9] Tollenaere, T. SuperSAB: Fast adaptive back propagation with good scaling properties.
Neural Networks 3 (1990) 561–573.

[10] Park, D.C., El-Sharkawi, M.A., Marks II, R.J. An adaptive training neural network. IEEE

Transactions on Neural Networks 2 (1991) 334–345.

[11] Sha, D., Bajic, V.B. An online hybrid learning algorithm for multilayer perceptron in
identification problems. Computers and Electrical Engineering 28 (2002) 587–598.

[12] Iiguni, Y., Sakai, H., Tokumaru, H. A real-time learning algorithm for a multilayered neural
network based on the extended Kalman filter. IEEE Transactions on Signal Processing 40
(1992) 959–966.

[13] Jacobs, R.A. Increase rates of convergence through learning rate adaptation. Neural Net-

works 1 (1988) 295–307.

[14] Brent, R.P. Fast training algorithms for multilayer neural nets. IEEE Transactions on

Neural Networks 2 (1991) 346–35.

[15] Hagan, M.T., Menhaj, M. Training feedforward networks with Marquart algorithm. IEEE

Transactions on Neural Networks 5 (1994) 989–993.

[16] Yu, L., Wang, S.Y., Lai, K.K. A novel nonlinear ensemble forecasting model incorporating
GLAR and ANN for foreign exchange rates. Computers & Operations Research 32 (2005)
2523–2541.

[17] Ruck, D.W., Rogers, S.K., Kabrisky, M., Maybeck, P.S., Oxley, M.E. Comparative analysis
of backpropagation and the extended Kalman filter for training multilayer perceptrons.
IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992) 686–691.

