
Nonlinear Dynamics and Systems Theory, 7 (1) (2007) 51–67

A Simple Nonlinear Adaptive-Fuzzy Passivity-Based

Control of Power Systems

H.E. Psillakis and A.T. Alexandridis ∗

Department of Electrical & Computer Engineering, University of Patras,

Rion 26500, Patras, Greece

Received: November 30, 2005; Revised: March 12, 2006

Abstract: A new intelligent nonlinear control for power system stabilizers that
improves the transient stability is proposed. To guarantee high performance
with low complexity cost, new concepts on the passivity design under unknown
disturbance inputs, as well as on the adaptive fuzzy logic rule extraction are
introduced. This permits the most possible simple design implementation of
an adaptive-fuzzy logic passivity-based controller which is developed on an
equivalent model of the system obtained by a suitable use of the backstepping
technique. The overall scheme is decentralized providing local output feedback
controllers, supported by a very simple adaptive-fuzzy scheme of only three
rules. A detailed analysis proves that the proposed control scheme ensures
uniform ultimate boundedness of all the error variables in an arbitrarily small
region around the origin. Extensive simulations on a two machine infinite bus
power system on which a permanent serious fault occurs, confirm the theoretical
results and verify an excellent system performance.
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1 Introduction

Advanced intelligent control designs are increasingly used in high technology applications
to solve practical problems in nonlinear systems. Among others, a characteristic example
of a highly nonlinear system is the power system where these techniques are recently
applied. Particularly, power systems are nonlinear, large scale, distributed systems that
include a number of synchronous machines as producers. One of the main goals of the
excitation control of each machine is the enhancement of power system stability especially
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after faults such as short-circuits or significant power disturbances. To this end, power
system stabilizers (PSS) are widely used as supplementary excitation control devices.

Last decade nonlinear control theory has been extensively used to account for the
nonlinearities of the controlled power systems. Early designs are based on the feedback
linearization technique [1]. Alternatively, the sliding-mode control technique has been
applied on power systems providing rather simple control schemes [2, 3]. Nonlinear
control techniques have been crucially enhanced by using robust control designs such as
H∞ control and L2 disturbance attenuation [4, 5, 6, 7]. In recent years new approaches
have been proposed for power stability designs based on advanced nonlinear schemes
such as adaptive control [8, 9, 10], neuro-control [11] and fuzzy logic [12].

Fuzzy logic designs have been employed as promising controllers, since they provide
a convenient method in nonlinear design via the use of qualitative rules characterizing
the power system performance. However, due to different operating conditions a large
rule base is needed to ensure an acceptable performance. In order to obtain a better
performance, as compared to the standard design, an adaptive fuzzy logic stabilizer has
been proposed [13, 14]. Although this on-line adaptation mechanism overcomes many
of the drawbacks, the whole control scheme of each machine cannot be considered as a
simple one; at least 9 rules for the two-input single-output fuzzy system are required
while a 9-order adaptive system is needed [14].

In this paper, a new approach to the design of decentralized adaptive fuzzy excitation
control is proposed that acts in coordination with the automatic voltage regulator. The
design is based on the nonlinear third-order model of each machine [5]. On this model a
suitable backstepping technique is applied that modifies the original n-machine system
into n separate systems that are interconnected through highly nonlinear links. Each
of these systems is a single-input single-output (SISO) minimum phase system with
relative degree one. However, due to the highly nonlinear interconnections, it is shown
that the system can be passive by output feedback anywhere in Rn except for a compact
region Ω containing the origin. To describe this property the concept of Ω− -passivity is
introduced. As a result a simple standard passivity-based output feedback control design
with negative gain [15, 16] can be applied that provides uniform ultimate boundedness
(UUB). The size of Ω depends on the unknown nonlinear interconnections. In order to
avoid high gains and large regions Ω, a very simple SISO adaptive fuzzy logic scheme
is included to approximate these nonlinearities. As shown in the paper, the qualitative
principle that holds for the fuzzy logic rule extraction has a SISO linguistic form with
input, a fixed linear combination of the power angle deviation, the nominal frequency
deviation and the accelerating power. Including additionally an adaptation mechanism
that provides on-line the fuzzy logic output parameters, i.e. the centers of gravity of the
membership functions, a very simple rule base of only three IF-THEN SISO statements
accompanied by a 3-order adaptation scheme is proposed.

Hence, by the proposed scheme, a completely decentralized excitation control is
achieved. Furthermore, exploiting some inherent structure properties of power systems,
a passivity-based control scheme is developed that in turn is combined with advanced
control techniques in a manner that results in an extremely simple form. Extensive sta-
bility analysis proves that the system becomes UUB while the estimated parameter errors
remain bounded. The region around the origin inside which the variables converge can be
arbitrarily small by suitably tuning the passivity control gain and the design parameters.
Finally, the effectiveness of the proposed controller is successfully verified by simulation
tests on a two machine infinite bus power system.
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2 Preliminaries and system formulation

Before proceeding with our approach we give some definitions assuming that the concepts
of relative degree and normal form of a dynamical system are familiar to the reader (see
[15] and the references therein for details).

Definition 2.1 The zero dynamics of a dynamical system with output y, represent
those internal dynamics which are consistent with the constraint that the output is identi-
cally equal to zero. If the zero dynamics of a dynamical system are asymptotically stable,
then this system is called a minimum-phase system.

Definition 2.2 A dynamical system with state vector x ∈ Rn, input u ∈ Rm and
output y ∈ Rm is said to be passive if there exists a positive definite radially unbounded
storage function V (x) and a positive definite function S(x) such that for all u ∈ U where
U is the set of all admissible inputs holds true that

V (x(t)) − V (x(0)) =

∫ t

0

yT (s)u(s)ds −

∫ t

0

S(x(s))ds for all t ≥ 0 and x ∈ Rn.

Obviously from Definition 2.2, the following proposition can be made.

Proposition 2.1 A dynamical system with state vector x ∈ Rn, input u ∈ Rm

and output y ∈ Rm has the passivity property if there exists a positive definite radially
unbounded function V (x) and a positive scalar c > 0 such that

V̇ < −cV + yT u ∀x ∈ Rn.

2.1 Ω−-passivity

At this point, the following definition is introduced.

Definition 2.3 A dynamical system with state vector x ∈ Rn, input u ∈ Rm and
output y ∈ Rm is said to be Ω−-passive (read: Omega minus passive) if there exists a
positive definite radially unbounded storage function V (x) and a positive definite function
S(x) such that for all u ∈ U where U is the set of all admissible inputs, it holds true that

V (x(t)) − V (x(0)) =

∫ t

0

yT (s)u(s)ds −

∫ t

0

S(x(s))ds

whenever x(τ) ∈ Rn\Ω, ∀ τ ∈ [0, t],

where Ω is a compact set, Ω ⊂ Rn, containing the origin.

Obviously from Definition 2.3, the following proposition (analogous to Proposition
2.1) is given.

Proposition 2.2 A dynamical system with state vector x ∈ Rn, input u ∈ Rm and
output y ∈ Rm has the Ω−-passivity property if there exists a positive definite radially
unbounded function V (x) and a positive scalar c > 0 such that

V̇ < −cV + yT u ∀x ∈ Rn\Ω,

where Ω is a compact set, Ω ⊂ Rn, containing the origin.
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Figure 2.1: The regions Ω and Ω′ for a Lyapunov function V (x1, x2) = x2

1 + x2

2.

From Definition 2.2 it is deduced that any passive unforced system (u ≡ 0) is asymp-
totically stable. On the other hand, one can easily see from Definition 2.3 that any
unforced system that is Ω−-passive, ensures finite-time convergence of the state vector
inside the region Ω. Particularly, in accordance to Definition 2.3, since S is positive defi-
nite, ∂S

∂x
6= 0 ∀x 6= 0 and therefore a local minimum of S does not exist in Rn\Ω; hence

the minimum of S in the closure of Rn\Ω is on ∂Ω where ∂Ω is the boundary surface
of Ω. If we define Sℓ := minx∈∂Ω S(x) 6= 0 then the system trajectories starting from
the region Rn\Ω will insert inside the region Ω in a finite-time less than T = V0/Sℓ ,

since 0 − V0 = −
∫ t

0
S(x(s))ds ≤ −Sℓ · T with V0 = V (x(0)). Define now the point

x∗ := argmaxx∈∂Ω V (x) and the compact set Ω′ := {x ∈ Rn|V (x) ≤ V (x∗)}. It is
straightforward that the state trajectories remain in Ω′ for all t ≥ T (obviously it is
Ω ⊂ Ω′, see Figure 2.1).

The stability analysis based on the concept of Ω−-passivity generalizes the results of
[17, 18] on quasi-dissipative systems and constitutes an effective tool in this field.

2.2 System Model

Now, we are ready to proceed with the system model. In the model used, the multima-
chine power system is reduced into a network with generator nodes only. For the design
of the excitation controller the classical third-order single-axis dynamic generator model
is used whereas differential equations that represent dynamics with very short time con-
stants have been neglected. In general, for a n-generator power system, the dynamic
model of the i-th generator is

δ̇i(t) = ωi(t) − ω0, (1)

ω̇i(t) = −
Di

Mi

(ωi(t) − ω0) +
ω0

Mi

(Pmi − Pei(t)), (2)
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Ė′
qi(t) =

1

T ′
d0i

(Efi(t) − Eqi(t)), (3)

where
Eqi(t) = E′

qi(t) + (xdi − x′
di)Idi(t), (4)

Efi(t) = kciufi(t), (5)

Iqi(t) =

n
∑

j =1

E′
qj

(

Bij sin δij(t) + Gij cos δij(t)
)

, (6)

Idi(t) =
n
∑

j =1

E′
qj

(

Gij sin δij(t) − Bij cos δij(t)
)

, (7)

Pei(t) = E′
qi(t)Iqi(t), (8)

Qei(t) = E′
qi(t)Idi(t), (9)

Eqi(t) = xadiIfi(t), (10)

Vtqi(t) = E′
qi(t) − x′

diIdi(t), (11)

Vtdi(t) = x′
diIqi(t), (12)

Vti(t) =
√

V 2
tqi(t) + V 2

tdi(t). (13)

Applying the backstepping technique used in [9, 10], the following state transformation
for the i-th machine is obtained





zi1

zi2

zi3



 =





1 0 0
ci1 1 0

−Mi

ω0

(1 + ci1ci2) −Mi

ω0

(ci1 + ci2 −
Di

Mi
) 1









∆δi

∆ωi

∆Pei



 , (14)

where ci1 > 0 and ci2 > 0.
Defining for each machine the excitation control law Efi = kciufi with kci = 1 and

ufi(t) =
T ′

d0i

Iqi

(ki1∆ωi + ki2∆Pmi + vi) (15)

with gains given by

ki1 =
Mi

ω0
[ci1ci2 + 1 −

Di

Mi

(ci1 + ci2 −
Di

Mi

)],

ki2 = ci1 + ci2 −
Di

Mi

, (16)

the dynamics of each machine with respect to the new z variables are given by





żi1

żi2

żi3



 =





−ci1 1 0
−1 −ci2 − ω0

Mi

0 0 0









zi1

zi2

zi3



+





0
0
1



 vi −





0
0
fi



 , (17)

where

fi(t) :=
1

T ′
d0i

[

E′
qi(t) + (xdi − x′

di)Idi(t)
]

Iqi(t) − E′
qi(t)İqi(t). (18)
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Thus, applying (14), the original system is transformed into (17), i.e. a system
consisting of a linear part of the form żi = Aizi + Bivi and a nonlinear term fi that
affects the state equations wherein the input vi appears. As shown by (18), the nonlinear
term cannot be reconstructed from the local i-th machines variables and therefore it can
be considered as an unknown input function. Additionally, the unknown input fi(t) is
considered to be bounded (this is always the case since the machine voltages and currents
and their rates cannot take infinite values) , i.e.

|fi(t)| ≤ Fi < ∞. (19)

If one considers the variable zi3 as the output of the i-th subsystem, i.e.

yi = Czi =
[

0 0 1
]





zi1

zi2

zi3



 = zi3,

then it is obvious that the system is minimum phase i.e. it holds true that zi1, zi2 → 0 as
t → ∞ for zi3 ≡ 0. Moreover the system has relative degree one since the input appears
directly in the first derivative of the output.

In the case where fi ≡ 0, system (17) becomes a purely linear system and in ac-
cordance to [15] it can be feedback equivalent to a passive system, since it is minimum
phase with relative degree one. However, since in this case relative degree one is equiva-
lent to the nonsingularity of the system high frequency gain CB and furthermore since
CB is positive definite then as it has been shown in [15] and [16] an output feedback
vi = −kiyi + vfi can be determined with large enough gain ki > 0 that ensures passivity
of the closed-loop system with new input vfi in accordance to Definition 2.2. In the case
where fi 6= 0 and since (19) holds true, we will prove in Section 4 that also for this case
an output feedback

vi = −kiyi + vfi (20)

can be determined with large enough gain ki > 0 that ensures Ω−-passivity of the closed-
loop system in accordance to Definition 2.3, where vfi in (20) is an external input.

3 The proposed control scheme

Incorporating the passivity-based controller (20) into the control scheme given by (15),
the excitation input takes a rather simple mathematical form

Efi(t) =
T ′

d0i

Iqi

(Ki1∆δi + Ki2∆ωi + Ki3∆Pmi + vfi), (21)

where the constant gains are now given by

Ki1 =
Mi

ω0
ki(1 + ci1ci2),

Ki2 =
Mi

ω0

[

(

ki −
Di

Mi

)(

ci1 + ci2 −
Di

Mi

)

+ ci1ci2 + 1

]

, (22)

Ki3 = ci1 + ci2 + ki −
Di

Mi

,

and the vfi is an external input.
This control scheme requires only local measurements of Pei, ωi, δi and of the current

Iqi that can be calculated from the measurements.
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4 Ω−-passivity property of power systems

For the multimachine power system with the model of each machine described by the
modified system (17), we consider the nonnegative candidate Lyapunov function

V0 =

n
∑

i =1

Vi with Vi =
1

2

3
∑

j =1

z2
ij , i = 1, 2, . . . , n. (23)

The time derivative of Vi has the following form

V̇i = −ci1z
2
i1 − ci2z

2
i2 + zi3

[

vi(t) − fi(t) −
ω0

Mi

zi2

]

. (24)

Then for the control law (21) we have

V̇i = −ci1z
2
i1 − ci2z

2
i2 − kiz

2
i3 −

ω0

Mi

zi2zi3 + zi3(vfi − fi).

Using the inequality

Fi|zi3| ≤ ρfikiz
2
i3 +

F 2
i

4ρfiki

,

we arrive at

V̇i ≤ −ci1z
2
i1 −

[

zi2 zi3

]

[

ci2
ω0

2Mi
ω0

2Mi
(1 − ρfi)ki

] [

zi2

zi3

]

+ zi3vfi +
F 2

i

4ρfiki

for arbitrary ρfi : 0 < ρfi < 1.
If the positive constants ci2, ki are selected so that

Pi :=

[

ci2
ω0

2Mi
ω0

2Mi
(1 − ρfi)ki

]

> 0,

i.e. if

ci1 > 0 , ci2ki >
1

1 − ρfi

(

ω0

2Mi

)2

, (25)

we result in

V̇i ≤ −ci1z
2
i1 − λmin(Pi)z

2
i2 − λmin(Pi)z

2
i3 + zi3vfi +

F 2
i

4ρfiki

.

Defining mfi := min{ci1, λmin(Pi)}, i = 1, · · · , n and mf := min1≤i≤nmfi , it is obvious
that

V̇i ≤ −mfi(z
2
i1 + z2

i2 + z2
i3) + zi3vfi +

F 2
i

4ρfiki

or

V̇i ≤ −2mfiVi + zi3vfi +
F 2

i

4ρfiki

.

Let mf := min1≤i≤nmfi, then for V0 we have that

V̇0 ≤ −2mfV0 +

n
∑

i =1

(

zi3vfi +
F 2

i

4ρfiki

)

. (26)
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For every arbitrary parameter ǫ : 0 < ǫ < 2 and for (z11, z12, z13)× · · · × (zn1, zn2, zn3) ∈
R3n which do not belong to the compact set

Ωf :=

{

(z11, z12, z13) × · · · × (zn1, zn2, zn3) :

n
∑

i =1

3
∑

j =1

z2
ij ≤

n
∑

i =1

F 2
i

2(2 − ǫ)mfρfiki

}

(27)

it is immediately deduced that

n
∑

i =1

F 2
i

4ρfiki

= (2−ǫ)

n
∑

i =1

mf

2

F 2
i

2(2 − ǫ)mfρfiki

≤ (2−ǫ)mf

(

1

2

n
∑

i =1

3
∑

j =1

z2
ij

)

= (2−ǫ)mfV0.

Hence, (26) becomes

V̇0 ≤ −ǫ mfV0 +

n
∑

i =1

zi3vfi.

Thus, in accordance to Proposition 2.2 we have proven that the closed-loop system is

Ω−
f -passive with constant c = ǫ mf , input and output vectors

[

vf1 vf2 · · · vfn

]T

and
[

z13 z23 · · · zn3

]T
, respectively. Hence, for the unforced system (vfi ≡ 0 , i =

1, 2, · · · , n), the region Ωf that defines the Ω−
f -passivity property is identical to the UUB

region, i.e. Ω−
f -passivity guarantees UUB in the region Ωf . As can be easily seen from

(27), as ǫ → 0 the region Ωf decreases to its inferior limit. Also, as the feedback gain ki

takes larger values for a given Fi the region Ωf becomes smaller. However, the unknown
input fi may have large values; this consequently may imply a large region Ωf around the
origin in which the states of the system converge making the output feedback controller
performance inefficient. To reduce Ωf , a high-gain controller is needed.

To avoid high-gain controls one can observe the following. The nonlinear term fi

appears in the 3rd equation of (17) that provides the zi3-dynamics, i.e.

żi3 = −kizi3 + (vfi − fi). (28)

From (28) and (27) one can see that the region Ωf around the origin can be closer to the
origin if vfi can effectively compensate fi. In order to accommodate this requirement
with a simple controller structure, we propose an adaptive fuzzy-logic controller for vfi

as it is explained in the following.

5 Adaptive fuzzy-logic controller

A general fuzzy system includes four basic parts. A fuzzifier and a defuzzifier are the
interface between the fuzzy system and the crisp system. The rule base is a database of
IF THEN statements extracted from qualitative rules characterizing the operation of the
system. For each rule, the inference engine maps the input fuzzy set to an output fuzzy
set according to the relation defined by the rule. All four parts of a fuzzy logic system
(FLS) can be mathematically formulated [19].

By choosing product inference and employing the centre of gravity method for de-
fuzzification, the output of the fuzzy system is written as

y =

∑M

ℓ=1 θℓ

∏n

i=1 µF ℓ
i
(xi)

∑M

ℓ=1

∏n

i=1 µF ℓ
i
(xi)

, (29)
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where M is the number of rules in the FLS, n is the number of inputs to the FLS, θℓ is
the center of gravity of the membership function corresponding to the ℓ-th rule and µF ℓ

i

is the membership function. Defining the fuzzy basis functions (FBF) φℓ(x) as

φℓ(x) =

∏n

i=1 µF ℓ
i
(xi)

∑M
ℓ=1

∏n
i=1 µF ℓ

i
(xi)

, (30)

then equation (29) can be expressed as y =
∑M

ℓ=1 θℓφℓ(x) = θT Φ(x) where

Φ(x) =
[

φ1(x) · · · φℓ(x) · · · φM (x)
]T

is the vector of FBFs and θ =
[

θ1 · · · θℓ · · · θM

]T
is the center of gravity vector.

The choice of control law (21) results in the zi3-dynamics given by (28) where vfi is the
output of a fuzzy logic controller.

Rule base extraction: From (28) one can immediately see that starting from vfi =
fi = 0 then zi3 approaches the origin where it remains. Now, in the case where fi takes
a nonzero positive (negative) value and vfi = 0, then zi3 also takes a nonzero negative
(positive) value, i.e. the value of zi3 follows the value of −fi. Therefore, in order to
compensate the act of the unknown input fi, so that zi3 to approach the origin, a suitable
vfi that follows −zi3 can effectively compensate the action of fi. This constitutes the
basic qualitative principle for the rule base extraction of the fuzzy logic controller. Hence,
a symmetrical fuzzy rule set can be implemented by a SISO fuzzy controller that needs
only zi3 as an input and vfi as an output, i.e. the linguistic rules can be of the simple
form

IF zi3 is F ℓ
i , THEN vfi is Gℓ

i ,

where F ℓ
i and Gℓ

i are suitable fuzzy sets selected in such a way that each of the input
and output fuzzy variables assign linguistic values varying simultaneously from negative
big to positive big values. Each linguistic value is associated with a normalized and
symmetrical membership function.

The controller vfi can then be written in accordance to the FBF expansion as

vfi =

∑M

ℓ=1 θi
ℓµF ℓ(zi3)

∑M
ℓ=1 µF ℓ(zi3)

= θT
i Φi(zi3), (31)

where Φi(zi3) =
[

φi
1(zi3) · · · φi

ℓ(zi3) · · · φi
M (zi3)

]T
is the vector of FBFs and

θi =
[

θi
1 · · · θi

ℓ · · · θi
M

]T
the center of gravity vector. The membership functions

are generally defined to be Gaussian of the form

µF (xi) = exp

[

−

(

xi − a

σ

)2
]

,

where xi represents zi3 or vfi and a is the center and s is the width of the fuzzy set ”F”.
We note that the first and last membership functions are of the sigmoid form:

µF (xi) = exp

[

1 + exp

[

±
(xi − a

σ

)

]

]−1

.

In accordance to the previous discussion, vfi is designed to compensate fi. However,
depending on the conditions under which excitation control acts (after faults or large
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or small power disturbances), fi and consequently vfi may take values on a widely
varying unknown range. Hence, in order to improve the performance of the fuzzy logic
controller in such a way that the best possible approximation of fi to be achieved,
an increased number of rules is needed. At this point, we note that a fuzzy system
implementation with the smallest rule base is the concern of any efficient design. To this
end, we effectively reduce the rule base by updating on-line the parameters of the FLS
output. As a consequence, the minimum possible rule base involving only the following
three rules is used:

IF zi3 is N, THEN vfi is P,

IF zi3 is ZE, THEN vfi is ZE,

IF zi3 is P, THEN vfi is N.

However, as it can be easily seen from (31), the FLS output parameters are determined
through the centers of gravity θi of the membership functions, and therefore a suitable
adaptation law is used to update on-line these parameters.
The adaptation law is chosen as

θ̇i = Proj{zi3ΓiΦi(zi3)} = zi3ΓiΦi(zi3) − τizi3
θiθ

T
i ΓiΦi(zi3)

‖θi‖2
, (32)

where

τi =

{

0 , if ‖θi‖ < Mθ or (‖θi‖ = Mθ and zi3θ
T
i ΓiΦi(zi3) < 0)

1 , if (‖θi‖ = Mθ and zi3θ
T
i ΓiΦi(zi3) ≥ 0)

(33)

and Γi ∈ R3×3 is a symmetric positive definite adaptation gain matrix.
This adaptation mechanism is a projection law which is commonly used in Lyapunov

stability analysis.

6 Stability analysis

From the previous analysis, it is clear that without the FLS operation a particular region
Ωf is determined for a given fi and a reasonable gain ki (i = 1, 2, · · · , n ). Taking into
account the FLS operation, let θ∗i be defined so that v∗fi = θ∗T

i Φi(zi3) is the optimal

approximation of Fi [20], inside the compact subset Ωf of R3n (given by (27)) i.e.

θ∗i := argmin
θi

[

sup
(z11,z12,z13)×···×(zn1,zn2,zn3)∈ Ωf

|fi − θT
i Φi(zi3)|

]

. (34)

Then there exists a 0 ≤ µi < 1 such that

|fi − θ∗T
i Φi(zi3)| ≤ µiFi. (35)

Let θ̃i := θi − θ∗i , then from (31) it is

vfi = θ̃T
i Φi(zi3) + θ∗T

i Φi(zi3).

Choosing a Lyapunov function candidate as

V = V0 +
1

2

n
∑

i =1

θ̃T
i Γ−1

i θ̃i,
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then for the control law (21), (31) we have

V̇ = −

n
∑

i=1

ci1z
2
i1 −

n
∑

i=1

ci2z
2
i2 −

n
∑

i=1

kiz
2
i3 −

n
∑

i=1

ω0

Mi

zi2zi3

+
n
∑

i=1

zi3[fi − θ∗T
i Φi(zi3)] −

n
∑

i=1

θ̃T
i [zi3Φi(zi3) − Γ−1

i θ̇i]

and

V̇ ≤ −
n
∑

i=1

ci1z
2
i1 −

n
∑

i=1

ci2z
2
i2 −

n
∑

i=1

kiz
2
i3 −

n
∑

i=1

ω0

Mi

zi2zi3

+

n
∑

i=1

µiFi|zi3| −

n
∑

i=1

θ̃T
i [zi3Φi(zi3) − Γ−1

i θ̇i]. (36)

Now, one can see from the above inequality that (32), (33) is a reasonable choice of the
update law since it cancels the last term in the right-hand side of (36) when ‖θi‖ ≤ Mθ.
Moreover, the boundedness of the parameter vectors θi is ensured from the projection
law, in the sense that if θi(0) ∈ Ωθ where Ωθ := {θi : ‖θi‖ ≤ Mθ} then θi(t) ∈ Ωθ, ∀ t ≥ 0
[21]. This means that the parameter errors θ̃i are also bounded i.e.

‖θ̃i(t)‖ ≤ εθ , εθ = Mθ + max
1≤i≤n

‖θ∗i ‖.

The basis functions are also bounded i.e. there exists a constant φ̄M such that

‖Φi(zi3)‖ ≤ φ̄M .

Due to the boundedness of the parameter errors θ̃i we can proceed with the stability
analysis by using the non-negative function V0 instead of V . In this case its derivative is

V̇0 ≤ −

n
∑

i=1

ci1z
2
i1 −

n
∑

i=1

ci2z
2
i2 −

n
∑

i=1

kiz
2
i3 −

n
∑

i=1

ω0

Mi

zi2zi3 +

n
∑

i=1

zi3[fi − θT
i Φi(zi3)]

and since it holds true that

zi3[fi − θ T
i Φi(zi3)] ≤ −θ̃T

i Φi(zi3)zi3 + µiFi|zi3|,

we equivalently have

V̇0 ≤ −

n
∑

i=1

ci1z
2
i1 −

n
∑

i=1

ci2z
2
i2 −

n
∑

i=1

kiz
2
i3 −

n
∑

i=1

ω0

Mi

zi2zi3 +

n
∑

i=1

|zi3|
[

‖θ̃i‖|Φi(zi3)‖ + µiFi

]

.

Using the inequality

(εθφ̄M + µiFi)|zi3| ≤ ρfikiz
2
i3 +

(εθφ̄M + µiFi)
2

4ρfiki

,

we arrive at

V̇0 ≤ −2mfV0 +

n
∑

i =1

(εθφ̄M + µiFi)
2

4ρfiki

. (37)



62 H.E. PSILLAKIS AND A.T. ALEXANDRIDIS

Writing (37) as

V̇0 ≤ −2mf

[

V0 −

n
∑

i =1

(εθφ̄M + µiFi)
2

8mfρfiki

]

and using the comparison principle, [22], we sequentially have

V0(t) −

n
∑

i =1

(εθφ̄M + µiFi)
2

8mfρfiki

≤

[

V0(0) −

n
∑

i =1

(εθφ̄M + µiFi)
2

8mfρfiki

]

e−2mf t,

V0(t) ≤

n
∑

i =1

(εθφ̄M + µiFi)
2

8mfρfiki

+ V0(0)e−2mf t. (38)

From (38) one can see that for every 0 < ǫ < 2 there exists a T = T (ǫ) ≥ 0 such that

V0(t) ≤

n
∑

i =1

(εθφ̄M + µiFi)
2

4(2 − ǫ)mfρfiki

∀ t ≥ T,

i.e. the state trajectories enter in finite-time in the compact set

Ωfc :=

{

(z11, z12, z13)× · · · × (zn1, zn2, zn3) :
n
∑

i =1

3
∑

j =1

z2
ij ≤

n
∑

i =1

(εθφ̄M + µiFi)
2

2(2 − ǫ)mfρfiki

}

, (39)

wherein they remain thereafter. Thus, we have proven that the closed-loop system is
UUB in the region Ωfc.

As the FLS output approaches the optimal i.e. as εθ → 0 and µi ≪ 1, the region Ωfc

is significantly reduced with respect to the initial region Ωf . We have therefore proven
that as the FLS operates closer to its optimal, the error variables are UUB in a much
smaller region.

7 Case study

A two-generator infinite bus power system is used to demonstrate the efficiency of the
proposed controller. The power system is shown in Figure 7.1.
The system parameters are as follows:

xT1 = 0.129 p.u., xT2 = 0.11 p.u., x12 = 0.55 p.u.,
x13 = 0.53 p.u., x23 = 0.6 p.u., T ′

d01 = 6.9 sec,
xd1 = 1.863 p.u., x′

d1 = 0.257 p.u., D1 = 5.0 p.u.,
M1 = 8.0 sec, M2 = 10.2 sec, D2 = 3.0 p.u.,

xd2 = 2.36 p.u., x′
d2 = 0.319 p.u., T ′

d02 = 7.96 sec,
kc1 = 1.0 p.u., kc2 = 1.0 p.u..

For a more accurate evaluation of the proposed controller, we take into account in
the simulation the physical limits of the excitation voltage which are:

|kc1uf1| ≤ 5.0 p.u. |kc2uf2| ≤ 5.0 p.u.

A symmetrical three phase short circuit fault occurs on one of the two transmission lines
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Figure 7.1: The two machine infinite bus test system.

Figure 7.2: The input membership functions of FLS.

between Generator # 1 and Generator # 2 at t = 20.1 second. The fault is removed by
opening the brakers of the faulted line at t = 20.5 second and the system is restored at
t = 21.5 seconds. If we use λ to represent the fraction of the fault, simulations are made
for λ = 0.6 i.e. for a fault near the middle of the line and towards Generator # 2. The
operating point considered in the simulation is:

δ10 = 40o, Vt10 = 0.93, Pm10 = 0.95;
δ20 = 35o, Vt20 = 0.937, Pm20 = 0.8.

Most common used power system stabilizers are of fixed parameter lead-lag compen-
sation type designed using linear control techniques. However, since power systems are
extremely nonlinear and among the PSS tasks is to damp low frequency oscillations and
to improve dynamic performance in a wide range of operating conditions, linear control
schemes may be inefficient; this is clear especially in cases of large disturbances such as
transmission line faults. Therefore, in order to better evaluate the performance of the
proposed controller the case of a permanent serious fault is examined, since this can be
considered as the worst case for the power system. The parameter lambda of the fault
position is taken close to the center of the transmission line between generators #1 and
#2, in order to create a balanced impact of the abnormal conditions on both the gener-
ators. Obviously, as λ becomes smaller the impact is larger for generator #1 while the
opposite occurs as λ becomes larger.

Using the proposed method, the controllers parameters are selected as follows: As
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shown by the state transformation (14) ci1 and ci2 determine the coupling of the states
of the equivalent system. Hence, suitable positive values that determine a reasonable
coupling must be used. In this case we select c11 = c21 = 3 , c12 = c22 = 5. For
this parameter selection, the following gains k1 = k2 = 100 are selected that satisfy
stability requirement (25) and avoid high-gain performance. Also the adaptation gains
are Γ1 = Γ2 = diag{10, 40, 10}. Figure 7.2 shows the input membership functions used
in FLS.

The response of the system is shown in Figures 7.3 – 7.6. One can clearly see that the
system maintains stability after the fault. Additionally, the excitation control input of
the proposed Passivity-based Adaptive Fuzzy (PAF) controller effectively penalizes the
angle and speed deviations to relatively limited values. As clearly shown in Figures 7.3
and 7.4, a significantly improved dynamic performance of the angle and speed deviations
is achieved by the proposed method compared to the performance obtained by a conven-
tional simple linear PSS controller with form and parameters taken from [23]. Finally,
the adaptation mechanism suitably adjusts the FLS center of gravity parameters.

Figure 7.3: Power angle deviations for machines #1 and #2 (in deg).

Figure 7.4: Speed deviations for machines #1 and #2 (in rad/sec) respectively.
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Figure 7.5: The centres of gravity for the FLS #1 and #2 respectively.

Figure 7.6: Excitation input for machines #1 and #2 respectively.

Comparing the proposed method with other similar advanced nonlinear control meth-
ods applied on power systems [9, 10, 13, 14] we can make the following remarks.

In [9, 10] the proposed adaptive scheme may result in high-gain controllers in order
to obtain the bounds of the unknown nonlinearities included in fi. In the present paper,
we overcome this disadvantage by using a suitable FLS for the approximation of fi

without increasing the complexity. In [13, 14] a self-learning model reference adaptive
fuzzy algorithm is proposed to approximate the system model which is considered to be
totally unknown. Therefore, a more complex algorithm is needed with a lot of fuzzy
rules and a lot of parameters that must be estimated by adaptation techniques. In our
case a simple SISO fuzzy logic controller with only three rules and adaptation loops is
needed. This significantly reduces the on-line computational effort. A disadvantage is
the requirement of an extra state measurement which however contributes to a better
system performance.
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8 Conclusions

An intelligent-based simple nonlinear passive control suitable for power system appli-
cations is proposed. Stability analysis and simulation tests verify the effectiveness in a
variety of operating conditions resulting from large unknown disturbances such as short-
circuit faults.

9 Notation

δi(t) : power angle, in radian;
ωi(t) : rotor speed, in rad/sec;
ω0 : synchronous machine speed, in rad/sec;
Pmi : mechanical input power, in p.u;
Pei(t) : active electrical power, in p.u.;
Di : damping constant, in p.u.;
Mi : inertia coefficient, in seconds;
E′

qi(t) : transient EMF in the q-axis in p.u.;
Eqi(t) : EMF in the q-axis, in p.u.;
Efi(t) : equivalent EMF in excitation coil, in p.u.;
T ′

d0i : d-axis transient short circuit time constant, in sec;
Ifi(t) : excitation current, in p.u.;
Iqi(t) : q-axis current, in p.u.;
Idi(t) : d-axis current, in p.u.;
Qei(t) : reactive electrical power, in p.u.;
Vti(t) : generator terminal voltage, in p.u.;
kci : gain of generator excitation amplifier, in p.u.;
ufi(t) : input of the SCR amplifier, in p.u.;
x′

di : d-axis transient reactance, in p.u.;
xdi : d-axis reactance, in p.u.;
xadi : mutual reactance between the excitation coil

and the stator coil, in p.u.;
Yij = Gij + jBij : the i-th row and j-th column element of nodal

admittance matrix, in p.u.;
∆δi(t) = δi(t) − δi0 : nominal angle deviation, in deg;
∆ωi(t) = ωi(t) − ω0 : nominal speed deviation, in rad/sec;
∆Pei(t) = Pei(t) − Pmi

:= −∆Pmi : where ∆Pmi the accelerating power, in p.u.
Rn\Ω : Rnexcept a region defined by the compact set

Ω ⊂ Rn containing the origin.
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