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Abstract: A new interpretation is proposed to solve the inverse heat conduc-
tion problem using hybrid genetic algorithm. In order to identify parameters of
non-linear heat transfer efficiently and in a robust manner, the hybrid genetic
algorithm, which combines genetic algorithm with simulated annealing and the
elitist strategy, is presented for the identification of the material thermal pa-
rameters. The procedure is based on the minimization of an objective function
which accounts for experimental data and the calculated response of the math-
ematical model. The performances of the proposed optimization algorithm
were investigated with simulating data, and the effectiveness was consequently
confirmed.
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1 Introduction

The accurate knowledge of the heat transfer coefficients is of importance in many engi-
neering applications, including the cooling of continuously cast slabs and of electronic
chips. In order to determine the heat transfer coefficients of materials, some identi-
fication methods have been developed for solving the problem [1]. For example, the
sensitivity coefficient method was developed to solve multidimensional inverse heat con-
duction problems. The sensitivity coefficients are used directly to estimate the responses
of the system considered under unit loading conditions. The finite-element discretization
procedure is applied to evaluate the total response under all loading conditions. The
conjugate gradient method is a powerful minimization technique, which can be applied
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to parameter and function estimations, as well as to linear and nonlinear inverse prob-
lems [2]. The conjugate gradient method with a suitable stopping criterion belongs to
the class of iterative regularization techniques, where the number of iterations of the
estimation procedure is determined so that stable solutions are obtained for the inverse
problem [3]. The method consists in choosing a suitable direction of descent and a search
step size along this direction at each of iteration for the minimization of the objective
function.

The direct heat problem is concerned with the determination of the temperature field
when the heat transfer coefficient, as well as the physical properties, initial condition and
other quantities appearing in the boundary condition are known. Direct heat transfer
problems can be mathematically classified as well-posed. The solution of a well-posed
problem is required to satisfy the conditions of existence, uniqueness, and stability with
respect to the input data. The inverse heat transfer problem is usually ill-posed. An
ill-posed problem is characterized by the non-uniqueness and instability of solution. The
regularization technique has been employed to overcome the ill-posedness of inverse heat
transfer problems. Several such techniques have been introduced in the literature [4].
Most of the literature, however, uses a gradient-based optimization method and the
solution often vibrates or diverges, depending upon the initial search point, since the
model and the measurement errors can make the objective function complex [5]. There
are numerous nonlinear optimization algorithms that could be employed in this prob-
lem. However, many nonlinear optimization techniques suffer from at least one of the
tow shortcomings: either they are overly computationally intensive, or they tend to get
trapped in local optima. One of the approaches used to overcome this problem is to use a
robust optimization method and computational intelligences have been most successfully
used to find the parameter set in a stable manner [6]. Genetic algorithm is effective non-
linear optimization techniques. It is based on the general approach apparent in nature
by which species of organisms adapt, change, and improve. It is different from tradi-
tional optimization techniques in several ways. The genetic algorithm has been widely
used in the identification, short-term load forecasting, the design optimization, dynamic
channel assignment, the parameter identification of inelastic constitutive models [7, 8, 9,
10].The main purpose of the paper is to present a procedure for determining the thermal
parameters in a robust manner.

2 Direct Problems for Heat Transfer

The partial differential equation governing the steady-state temperature distribution in
a two-dimensional region described by the Cartesian coordinates, x andy, takes the form
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where T is the temperature, and kx and ky are the thermal conductivities in the x and
y directions, respectively. The physical parameters, kx and ky, can be treated to be
temperature dependent. The following three kinds of boundary conditions occur in the
direct heat transfer problems, prescribed temperature (Dirichlet type), prescribed heat
flux (Neumann type), and prescribed heat transfer coefficient (mixed or Robin type).

T (x, y) = T0, (x, y) ∈ Ω1,
kx(∂T/∂x)nx + ky(∂T/∂y)ny = q0, (x, y) ∈ Ω2,
kx(∂T/∂x)nx + ky(∂T/∂y)ny = h(Ta − T ), (x, y) ∈ Ω3,

(2)
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where T0 represents the value on the surface or boundary Ω1, q0 is a heat flux vector
on subsurfaceΩ2, h is the convective heat transfer coefficient on subsurface Ω3, nx and
ny are the direction cosines of the outward drawn normal to the boundary, Ta is the
surrounding temperature.

3 Inverse Problem for Heat Transfer and solution Approach with Hybrid

Genetic Algorithm

3.1 Definition of inverse problem for parameter identification

For the inverse problem, the heat transfer coefficient is regarded as unknown. The
parameter identification problem can be formulated to find the model parameters by
adjusting identified parameter vector m until the measured data match the corresponding
data computed from the parameter set in a least-squares fashion. The objective function
is defined as follows [3]

J(m) = [hm − hc(m)]T w[hm − hc(m)], (3)

where hm is the measured temperature vector; hc is the computing temperature vector,
which is related to the identified parameter vector m , w is weighting matrix in order to
take into account the different observed equipments for the temperature measurements.
This objective function clearly depends on the measured data and the parameters of
model. The objective function can become complex, such as non-convex, or even multi-
modal if errors contained in the model equation or /and errors in the measurement data
are large.

Figure 3.1: Objective functions of the different measurement errors.

When taking account of measurement errors, the objective function will have many
local minima for the inverse heat conduction problem, as shown in Figure 3.1. When
random measurement error is 2˚C, the objective function has 35 local minima. When
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random measurement error is 5˚C, the objective function has 38 local minima. In such a
case, the solution may vibrate or diverge when conventional gradient-based optimization
methods are used, which gives rise to the necessary for a robust optimization method
such that a stable convergence is always achieved. The solution of the inverse problem
consists in obtaining a minimum of an objective function which is defined taking into
account the mathematical structure of the material model and asset of experimental data.
This generally results in a non-linear programming constrained problem of the form [2]:

min{J(m, hm) , m ∈ R
P
, hm ∈ RM ; gj < 0}, (4)

where m belongs to the space of admissible parameters RP , hm belongs to the space
RM , gj are inequality constraints, which define the feasible domain

D = {m ∈ RP , gj < 0}. (5)

The constraints can represent physical links between the primary physical variables and
the model parameters, information concerning the values of parameters and conditions to
guarantee that all mathematical functions involved can be defined and calculated. In the
optimization process, the difference between the experimental result and the theoretical
prediction is measured by a norm value J here referred to as the Euclidean norm. The
Euclidean norms of the tests form an objective function J(m) which then gives a scalar
measure of the error between the experimental observations and the model predictions.
From mathematical point of view, the optimization problem involves the minimization
of the objective function [4]:

J(m) → min . (6)

The bound constraints:
ml < m < mu, (7)

where ml and mu are, respectively, the lower and upper bounds of m. Traditional
mathematical optimization methods that have been used include dynamic programming,
conjugate-gradient, random search, and simplex optimization.

3.2 Continuous Evolutionary Algorithm and Its Improvements

Genetic algorithm (GA) is a search method based on Darwin’s theory of evolution and
survival of the fittest [11]. Based on the concept of genetics, GA simulates the evolu-
tionary process numerically. Genetic algorithms strongly differ in conception from other
search methods, including traditional optimization methods and other stochastic search
methods. The basic difference is that while other methods always process single points
in the search space, genetic algorithms maintain a population of potential solutions. Ge-
netic algorithms constitute a class of search methods especially suited for solving complex
optimization problems. Search algorithms in general consist of systematically walking
through the search space of possible solutions until an acceptable solution is found. Ge-
netic algorithms transpose the notions of natural evolution to the world of computers,
and imitate natural evolution. They were initially introduced by John Holland for ex-
plaining the adaptive processes of natural systems and for creating new artificial systems
that work on similar bases [12]. In Nature new organisms adapted to their environment
develop through evolution. Genetic algorithms evolve solutions to the given problem in
a similar way. The main contents of genetic algorithm include the evaluation of fitting
function, selection operation, crossover operation, mutation and elitist strategy.
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The probability of survival of any individual is determined by its fitness: through
evolution the fitter individuals overtake the less fit ones. In order to evolve good solutions,
the fitness assigned to a solution must directly reflect its ‘goodness’, i.e. the fitness
function must indicate how well a solution fulfills the requirements of the given problem.
The evaluation of the fitness can be conducted with a linear scaling, where the fitness of
each individual is calculated as the worst individual of the population subtracted from
its objective function value. Fitness assignment can be performed in several different
ways: We define a fitness function and incorporate it in the genetic algorithm. When
evaluating any individual, this fitness function is computed for the individual.

fj = max{Jj/j = 1, 2, , , S} − Jj , (8)

where fj is the fitting function of j-th individual; S is the population size; Jj is the
objective function of j-th individual. Selection, also called reproduction, is simply the
copying of quality solution in proportion to their effectiveness. Here, since the goal is to
minimize the objective function, several copies of candidate solutions with small objective
functions are made; solutions with large objective functions tend not to be replicated.
The intrinsic principle of the genetic algorithm is Darwin’s natural selection principle.
Selection is the impetus of the genetic algorithm, by which, the superior individual are
selected into the next generation while the inferior ones are washout. A part of the new
population can be created by simply copying without change selected individuals from
the present population.

One of the most commonly used is the roulette wheel selection, where individuals are
extracted in probability following a Monte Carlo procedure. The extraction probability
of each individual is proportional to its fitness as a ratio to the average fitness of all the
individuals. In the selection process, the reproduction probabilities of individuals are
given by their relative fitness:

proj = fj/
s

∑

j=1

fj , (9)

where proj is the reproduction probability of the j-th individual.
Recombination, also called crossover, is a process by which information contained in

two candidate solutions is combined. In the recombination, each individual is first paired
with an individual at random. New individuals are generally created as offspring of two
parents (as such, crossover being a binary operator). One or more so-called crossover
points are selected (usually at random) within the chromosome of each parent, at the
same place in each. The parts delimited by the crossover points are then interchanged
between the parents. The individuals resulting in this way are the offspring. Beyond one
point and multiple point crossover there exist more sophisticated crossover types. Let a
pair of present individuals be given by [mt

α,mt
β ]. a new pair [mt+1

α ,mt+1

β ] is then created
in terms of a phenomenological recombination formula[8]:

mt+1
α = (1 − µ) mt

α + µ · mt
β , (10)

mt+1

β = (1 − µ) mt
β + µ · mt

α, (11)

where µ is a random number changing from 0 to 1.
A new individual is created by making modifications to one selected individual. The

modifications can consist of changing one or more values in the representation or in
adding/deleting parts of the representation. In genetic algorithms mutation is a source
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of variability, and is applied in addition to crossover and reproduction. Mutation is a
process by which vectors resulting from selection and recombination are perturbed. The
mutation is conducted with only a small probability by definition. An individual, after
this mutation mt+1

i , is described as

mt+1

i = rand {ml, mu} , (12)

where rand{.} represents the random selection from the reasonable solution domains. At
different stages of evolution, one may use different mutation operators. At the beginning
mutation operators resulting in bigger jumps in the search space might be preferred.
Later on, when the solution is close by, a mutation operator leading to slighter shifts in
the search space could be favored. However, the above mutation operation is a random
one with no clear aim.

Simulated annealing is another important algorithm which is powerful in optimization
and high-order problems [13]. It uses random processes to help guide the form of its search
for minimal energy states. In an annealing process a melt, initially at high temperature
and disordered, is slowly cooled so that the system at any time is approximately in
thermodynamic equilibrium. As cooling proceeds, the system becomes more ordered and
approaches a ”frozen” ground state at T=0. The paper provides a mutation method
based on the simulating annealing algorithm, which makes the average fitness of the
population tend to be optimized. Firstly, we define a neighborhood structure, then
select a new solution in the neighborhood structure of the intermediate solution, that is
to say, getting a new solution by cause a disturb on the old one [14]

mnew = mold + ∆m, (13)

where mnew and mold represents a new solution and an old solution, respectively; ∆mis
a random disturb. Then, reject or accept the new solution according the Metropolis rule,
the probability of accepting the new generated solution is expressed as the follows [15]:

pnew =

{

1 Jold ≥ Jnew

exp[−∆J/Tk] Jold < Jnew

}

, (14)

where Jnew and Jold are the objective functions of the new solution and the old solution;
pnew is the probability of accepting the new generated solution; ∆J is the increasement
of the objective function, ∆J = Jnew − Jold, Tk is the annealing temperature, which
tends to be drooped during the evolutional process. The probability of rejecting the new
solution is:

Pold = 1 − pnew, (15)

where pold is the probability of rejecting the new solution. One feature that is currently
missing in this selection procedure is that it does not guarantee the best individual al-
ways survives into the next generation, particularly when many individuals have fitness
close to that of the best individual. The elitist strategy, where the best individual is al-
ways survived into the next generation on behalf of the worst individual, can compensate
for some disadvantages of missing the best individual in selection operation or mutation
operation. With the elitist strategy, the best individual always moves in a descent direc-
tion, thereby a stable convergence is obtained. The gradient search algorithm adopted in
genetic algorithm is the most popular quasi-Newton method with the BFGS algorithm.
The individual after the recombination is formulated as follows [8]

mnew =

{

−A−1∇f (mold) if f (mnew) > f (mold)
mold otherwise

}

, (16)
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where A is a well-known positive-define matrix used on behalf Hessian matrix. The main
steps for parameter identification using genetic algorithm are shown in follows:

Step 1: Choose the size of population, the crossover probability, mutation probability,
and stopping criterion.

Step 2: Determine the identified parameter domains according to prior information
Step 3: Randomly generate an initial population of candidate solutions.
Step 4: Define a fitness function to measure the performance of an individual in the

problem domain.
Step 5: Compute model responses with given model parameters by using Newton

iteration method.
Step 6: Calculate the fitness of each individual based on observed dada and model

responses computed by Newton iteration method.
Step 7: Execute recombination operation by using continuous floating codes.
Step 8: Create new individuals by mutation operation based on simulated annealing.
Step 9: Execute select operation according to the roulette wheel selection.
Step 10: Perform elitist strategy in order to keep current best individual from missing

and accelerate convergence speed of inverse problem.
Step 11: Replace the initial(parent) population with the new (offspring) population.
Step 12: Execute stopping criterion. If stopping criterion can not be reached, then,

go to Step 5; otherwise, the inversion computation stops and best solution is recorded as
the solution of the inverse problem.

4 Numerical Examples for Identification of Model Parameters in Heat

Transfer

In order to demonstrate the accuracy of the proposed algorithm with nonlinear problem,
a heat transfer problem with nonlinear material properties is considered in this example.
An annular cylinder is subjected to a constant prescribed heat flux, q0, on the outer
surface, and a temperature T0, prescribed on the inner surface, and shown in Figure 4.1.

Figure 4.1: An annular cylinder and sensor locations.

The governing equation of heat transfer can be expressed as

1

r

d

dr

[

k (T ) r
dT

dr

]

= 0, (17)
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Figure 4.2: Change of thermal conductivity versus temperatures.

where k(T ) is a quadratic function of temperature; r is radial coordinate. And k can be
expressed as follows

k (T ) = k0 + k1T + k2T
2, (18)

where k0, k1, and k2 are unknown material thermal parameters. The thermal conduc-
tivity is depended on the temperatures as shown in Figure 4.2. The change of thermal
conductivity versus temperatures is shown in Figure 4.2.

The analytical solution of Equation (17) can be expressed as follows:

k0 (T − T0) + k1 (T − T0) + k2 (T − T0)
2

= q0R0 ln (r/Ri) , (19)

where Ri is the inner radius, Ri =1.0 m; Ro is the outer radius of the annular cylinder,
Ro =2.0 m; q0 is a constant prescribed heat flux, qo=10 W/m2. The above algebraic
equation can be solved numerically by using Newton iteration algorithm. Suppose the
material thermal parameters are known, the simulated measured temperature values are
shown in Figure 4.3.

Contrasting with the direct analysis, the inverse heat transfer analysis is ill-
conditioned; the latter predicts the surface temperature or heat flux across the surface
using temperature measured at certain discrete points inside the domain considered.
Figure 4.4 is the objective function value versus number of iterations for the optimal
individual. Figure 4.4 shows that the hybrid genetic algorithm can make searching more
accurate and faster near global minima on the error surface.

Table 4.1 shows the comparison of the identified thermal conductivity by using differ-
ent inverse methods without measurement errors. Identified values (A) and (B) shown
in Table 4.1 represent for the identified thermal conductivity by using hybrid genetic
algorithm and classical genetic algorithm, respectively. The hybrid genetic algorithm
has higher identification precision than classical genetic algorithm.
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Figure 4.3: Simulated measurement temperatures in sensor.

Figure 4.4: Objective function value versus number of iterations for the optimal individual.

Parameters k0/W·(m˚C)−1 k1/10−3

∗Wm·(m ˚C)−2

k2/10−6

∗Wm2·(m˚C)−3

Theoretical values
Identified values(A)
Identified values(B)

0.100
0.101
0.112

0.198
0.199
0.203

0.303
0.302
0.305

Table 4.1: Comparison of the identified thermal conductivity by using different inverse methods
without measurement errors.
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Often a small measurement error can dramatically change the boundary values pre-
dicted. The temperature measurement errors can come from many sources and can be
caused by calibration errors, presence of the sensor, conduction and convection losses
of the sensor, or signal analysis. Also, these can be further determined by errors from
measurements of time, sensor location, or dimension of the domain considered. Sev-
eral studies simulated measurement noise numerically by superimposing a random noise
with zero mean and a specified variance on measured data. The proportional error, in
which the uncertainty for each measured data is proportional to its own value, is used to
study the influence of measurement noise on the identified thermal conductivity. These
measurements were generated from the solution of the direct problem. The measure-
ments containing random errors were obtained by adding an error term to the errorless
measurements resulting from the solution of the direct problem; that is:

Tm = Texa + ξσ, (20)

where Texa are the errorless measurements; ξ is a random variable with normal distri-
bution, zero mean, and unitary standard deviation; σ is the standard deviation of the
measurement errors, which is supposed constant; and Tm are the measurements con-
taining random errors. Three different levels of measurement errors are considered here.
Table 4.2 shows the influences of measurement noises on the identified thermal conduc-
tivity.

Parameters k0/W·(m˚C)−1 k1/10−3

∗Wm·(m ˚C)−2

k2/10−6

∗Wm2·(m˚C)−3

Theoretical values
Identified values(C)
Identified values(D)
Identified values(E)

0.100
0.103
0.107
0.984

0.198
0.202
0.195
0.210

0.303
0.310
0.322
0.298

Table 4.2: Influences of measurement noises on the identified thermal conductivity.

Identified values (C), (D) and (E) shown in Table 4.2 represent for the identified
thermal conductivity when the measurement error of temperature is 1.0˚C, 2.0˚C and
5.0˚C, respectively. The proposed scheme accurately identifies the thermal conductivity
of nonlinear heat conduction problem for a large random error. As the random error
becomes larger, detailed information on the thermal parameters is lost slightly, and the
identification precision decreases.

5 Conclusion

The proposed identification scheme is based on the minimization of the least-squared
errors between measured and calculated temperatures at observation points. The evo-
lutionary algorithm is employed to overcome numerical difficulties caused by the ill-
posedness of inverse problems. The validity and effectiveness of the proposed method
are demonstrated by the examples. In order to demonstrate the stability of proposed
method to measurement errors, the Monte-Carlo simulation is performed of various am-
plitudes of random errors in the example. And numerical computational results show
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the insensitivity of the proposed algorithm to measurement errors. Simulated temper-
ature measurements of several sensors located inside the material were utilized for the
estimation of the spatial variations of the heat transfer coefficient. Different cases are
examined here, involving different numbers of sensors, levels of measurement error. It
is shown that the proposed method converges very fast in a robust manner, and is not
only simple and flexible, but also versatile and accurate. With considering measurement
errors for 5%, the inversion method can identify the thermal conductivity within 1%, as
compared with theoretical values.
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