
NONLINEAR DYNAMICS AND SYSTEMS THEORY

Volume Number 200

CONTENTS

6 3 6

An International Journal of Research and Surveys

© 200 , Informath Publishing Group ISSN 1562-8353 Printed in Ukraine
To receive contents by e-mail, visit our Website at:

6
and abstracts http://www.e-ndst.kiev.ua

Nonlinear Dynamics

and

Systems Theory

An International Journal of Research and Surveys

Academic Periodical Press

Volume , Number , 200 ISSN 1562-83536 3 6

N
O

N
LIN

E
A

R
D

Y
N

A
M

IC
S

&
S
Y
S
TE

M
S

TH
E
O

R
Y

V
o

lu
m

e
,

N
o

.
,

2
0

0
6

3
6

Preface .............................................................................................................. v

Mixed Semidefinite and Second-Order Cone Optimization

Approach for the Hankel Matrix Approximation Problem ........................... 211

Mohammed M. Alshahrani and Suliman S. Al-Homidan

Lagrangian Duality Algorithms for Finding a Global Optimal Solution to

Mathematical Programs with Affine Equilibrium Constraints ..................... 225

Pham Ngoc Anh and Le Dung Muu

Thermal Stresses in a Hexagonal Region with an Elliptical Hole ................ 245

Sukhwinder Kaur Bhullar

Duality in Distributed-Parameter Control of Nonconvex and

Nonconservative Dynamical Systems with Applications ............................. 257

David Yang Gao

On a Class of Strongly Nonlinear Impulsive Differential Equation ............. 281

with Time Delay

W. Wei, S.H. Hou and K.L. Teo

The Matrix-Geometric Solution of the M/Ek/1 Queue with Balking and

State-Dependent Service ............................................................................... 295

Dequan Yue, Chunyan Li and Wuyi Yue

EDITOR-IN-CHIEF A.A.MARTYNYUK

REGIONAL EDITORS

P.BORNE, Lille, France

C.CORDUNEANU, Arlington, TX, USA
, , Brazil

PENG SHI, Pontypridd, United Kingdom

K.L.TEO,

JIANHONG WU, Toronto, Canada

S.P.Timoshenko Institute of Mechanics
National Academy of Sciences of Ukraine, Kiev, Ukraine

Europe

USA, Central and South America

Australia New Zealand

Canada

China and South East Asia

and

North America and

Perth, Australia

A.D.C.JESUS Feira de Santana



Nonlinear Dynamics and Systems Theory
An International Journal of Research and Surveys

EDITOR .

HONORARY EDITORS

MANAGING EDITOR

REGIONAL EDITORS

EDITORIAL BOARD

-IN-CHIEF A A.MARTYNYUK

V LAKSHMIKANTHAM, Melbourne, FL,USA
YU A.MITROPOLSKY, Kiev, Ukraine

I.P.STAVROULAKIS

P.BORNE (France), e-mail: Pierre.Borne@ec-lille.fr
C.CORDUNEANU (USA), e-mail: co @uta.edu
A.D.C. De JESUS (Brazil), e-mail: acj@libra.uefs.br
P.SHI (United Kingdom), e-mail: pshi@glam.ac.uk

K.L.TEO ( ), e-mail: eo@
J.WU (Canada), e-mail: Wujh@mathstat.yorku.ca

The S.P.Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine,
Nesterov Str. 3, 03680 MSP, Kiev-57, UKRAINE / e-mail: anmart@stability.kiev.ua

.

.

/
Department of Mathematics, University of Ioannina

451 10 Ioannina, HELLAS (GREECE) e-mail: ipstav@cc.uoi.gr

ncord

Australia K.L.T curtin.edu.au

Artstein, Z. (Israel)
Azbelev, N.V. (Russia)
Boukas, E.K. (Canada)
Chellaboina, V.S. (USA)
Chen Han-Fu (China)
Chen Y -H (USA)
Chouikha, R. (France)
Cruz-Hern ndez, C. (M xico)
D’Anna, A. (Italy)
Dauphin-Tanguy, G. (France)
Dshalalow, J.H. (USA)
Eke, F.O. (USA)
Fabrizio, M. (Italy)
Freedman, H.I. (Canada)
Gao, H. (China)
Georgiou, G. (Cyprus)
Hatvani, L. (Hungary)

Izobov, N.A. (Belarussia)
Khusainov, D.Ya. (Ukraine)

e wa

Ikeda, M. (Japan)

� �

Kloeden, P. (Germany)
Larin, V.B. (Ukraine)
Leela, S. (USA)
Limarchenko, O.S. (Ukraine)

Mazko, A.G. (Ukraine)
Michel, A.N. (USA)
Nguang Sing Kiong (New Zealand)
Noldus, E. (Belgium)
Pilipchuk, V.N. (USA)

Shi Yan (Japan)
Siafarikas, P.D. (Greece)

iljak, D.D. (USA)
Sivasundaram, S. (USA)
Sree Hari Rao, V. (India)
Stavrakakis, N.M. (Greece)
Sun Zhen qi (China)
Tonkov, E.L. (Russia)
Vatsala, A. (USA)

Mawhin, J. (Belgium)

Prado, A.F.B.A. (Brazil)

S

© 200 , Informath Publishing Group SSN 1562-8353 Printed in Ukraine
No part of this Journal may be reproduced or transmitted in any form or by any means without
permission from Informath Publishing Group.

6 , I print, ISSN 1813-7385 online,

ADVISORY COMPUTER SCIENCE EDITOR

ADVISORY TECHNICAL EDITORS

A.N.CHERNIENKO, Kiev, Ukraine

L.N.CHERNETSKAYA and S.N.RASSHIVALOVA, Kiev, Ukraine

NONLINEAR DYNAMICS AND SYSTEMS THEORY
An International Journal of Research and Surveys

INSTRUCTIONS FOR CONTRIBUTORS

(1) General.

(2) Manuscript and Correspondence.

(3) Tables, Graphs and Illustrations.

(4) References.

Vol.1

(5) Proofs and Reprints.

(6) Editorial Policy.

(7) Copyright Assignment.

The Journal will publish original carefully refereed papers, brief notes and
reviews on a wide range of nonlinear dynamics and systems theory problems. Contributions
will be considered for publication in ND&ST if they have not been published previously.
Before preparing your submission, it is essential that you consult our style guide; please visit

our website:

Contributions are welcome from all countries and
should be written in English. Two copies of the manuscript, double spaced one column format,
and the electronic version by AMSTEX, TEX or LATEX program (on diskette) should be sent
directly to

Professor A.A. Martynyuk
Institute of Mechanics,

Nesterov str.3, 03057, MSP 680
Kiev-57, Ukraine

(e-mail: anmart@stability.kiev.ua).
or to one of the Editors or to a member of the Editorial Board.

The title of the article must include: author(s) name, name of institution, department, address,
FAX, and e-mail; an Abstract of 50-100 words should not include any formulas and citations;
key words, and AMS subject classifications number(s). The size for regular paper
10-14 pages, survey (up to 24 pages), short papers, letter to the editor and book reviews (2-3
pages).

All figures must be suitable for reproduction without
being retouched or redrawn and must include a title. Line drawings should include all relevant
details and should be drawn in black ink on plain white drawing paper. In addition to a hard
copy of the artwork, it is necessary to attach a PC diskette with files of the artwork (preferably
in PCX format).

Each entry must be cited in the text by author(s) and number or by number
alone. All references should be listed in their alphabetic order. Use please the following style:

Journal: [1] Poincar , H. Title of the article. (No.1) (year)
pages. [Language].

Book: [2] Liapunov, A.M. Name of the Publishers, Town, year.
Proceeding: [3] Bellman, R. Title of the article. In: (Eds.).

Name of the Publishers, Town, year, pages. [Language].

Proofs sent to authors should be returned to the Editor with
corrections within three days after receipt. Acceptance of the paper entitles the author to 10
free reprints.

Every paper is reviewed by the regional editor, and/or a referee, and
it may be returned for revision or rejected if considered unsuitable for publication.

When a paper is accepted for publication, author(s) will be
requested to sign a form assigning copyright to Informath Publishing Group. Failure to do it
promptly may delay the publication.

http://www.e-ndst.kiev.ua

should be

� Title of the Journal

Title of the book.
Title of the book.



NONLINEAR DYNAMICS AND SYSTEMS THEORY 
An International Journal of Research and Surveys 

Published since 2001 
 
 

Volume 6 Number 3 2006 
 
 
 

CONTENTS 
 
 
Preface .............................................................................................................  v 
 
Mixed Semidefinite and Second-Order Cone Optimization  
Approach for the Hankel Matrix Approximation Problem ..........................  211 
 Mohammed M. Alshahrani and Suliman S. Al-Homidan  
 
Lagrangian Duality Algorithms for Finding a Global Optimal Solution to 
Mathematical Programs with Affine Equilibrium Constraints .....................  225 
 Pham Ngoc Anh and Le Dung Muu  
 
Thermal Stresses in a Hexagonal Region with an Elliptical Hole ................  245 
 Sukhwinder Kaur Bhullar  
 
Duality in Distributed-Parameter Control of Nonconvex and 
Nonconservative Dynamical Systems with Applications .............................  257 
 David Yang Gao 
 
On a Class of Strongly Nonlinear Impulsive Differential Equation .............  281 
with Time Delay  
 W. Wei, S.H. Hou and K.L. Teo  
 
The Matrix-Geometric Solution of the M/Ek/1 Queue with Balking and 
State-Dependent Service ..............................................................................  295 
 Dequan Yue, Chunyan Li and Wuyi Yue  
 
Founded by A.A.Martynyuk in 2001. 
Registered in Ukraine Number:  KB №5267 / 04.07.2001. 



NONLINEAR DYNAMICS AND SYSTEMS THEORY 
An International Journal of Research and Surveys 

 
 
Nonlinear Dynamics and Systems Theory (ISSN 1562-8353 (Print), ISSN 1813-7385 
(Online)) is an international journal published under the auspices of the S.P.Timoshenko 
Institute of Mechanics of National Academy of Sciences of Ukraine and the Laboratory for 
Industrial and Applied Mathematics (LIAM) at York University (Toronto, Canada). It is aimed 
at publishing high quality original scientific papers and surveys in area of nonlinear dynamics 
and systems theory and technical reports on solving practical problems. The scope of the 
journal is very broad covering: 
 
 

SCOPE OF THE JOURNAL 
 
Analysis of uncertain systems • Bifurcations and instability in dynamical behaviors • Celestial 
mechanics, variable mass processes, rockets • Control of chaotic systems • Controllability, 
observability, and structural properties • Deterministic and random vibrations • Differential 
games • Dynamical systems on manifolds • Dynamics of systems of particles • Hamilton and 
Lagrange equations • Hysteresis • Identification and adaptive control of stochastic systems • 
Modeling of real phenomena by ODE, FDE and PDE • Nonlinear boundary problems • 
Nonlinear control systems, guided systems • Nonlinear dynamics in biological systems • 
Nonlinear fluid dynamics • Nonlinear oscillations and waves • Nonlinear stability in continuum 
mechanics • Non-smooth dynamical systems with impacts or discontinuities • Numerical 
methods and simulation • Optimal control and applications • Qualitative analysis of systems 
with aftereffect • Robustness, sensitivity and disturbance rejection • Soft computing: artificial 
intelligence, neural networks, fuzzy logic, genetic algorithms, etc. • Stability of discrete 
systems • Stability of impulsive systems • Stability of large-scale power systems • Stability of 
linear and nonlinear control systems • Stochastic approximation and optimization • Symmetries 
and conservation laws 
 
 

PUBLICATION AND SUBSCRIPTION INFORMATION 
 
The Nonlinear Dynamics and Systems Theory is published four times per year in 2006. 
Base list subscription price per volume: US$149.00. This price is available only to individuals 
whose library subscribes to the journal OR who warrant that the Journal is for their own use 
and provide a home address for mailing. Separate rates apply to academic and 
corporate/government institutions. Our charge includes postage, packing, handling and airmail 
delivery of all issues. Mail order and inquires to: Department of Processes Stability, 
S.P.Timoshenko Institute of Mechanics NAS of Ukraine, Nesterov str.,3, 03057,                
Kiev-57, MSP 680, Ukraine, Tel: ++38-044-456-6140, Fax: ++38-044-456-0319,                   
E-mail: anchern@stability.kiev.ua,  http://www.sciencearea.com.ua;  http://www.e-ndst.kiev.ua 
 
 

ABSTRACTING AND INDEXING SERVICES 
 
EBSCO Databases, Swets Information Services, Mathematical Reviews/MathSciNet,  
Zentralblatt MATH/Mathematics Abstracts. 

 



Preface

Many theoretical results and methodologies developed for systems sciences and optimiza-

tion are now found very useful in dealing with nonlinear dynamics and system theory as

well as their high technology applications. These areas of research are interdisciplinary in

nature with great potentials for high technology applications. In view of this the Guest

Editors had made a call for high quality papers to be submitted to this special issue,

where system science and optimization approaches are to be used in dealing with topics

in nonlinear dynamics and system theory as well as their high technology applications.

This is therefore the theme of this Special Issue:

System Science and Optimization Approaches to Nonlinear Dynamics and
System Theory with High Technology Applications (1)

With this aim in mind, the goal of the special issue is to provide an international

forum for scientists, researchers, and practitioners from both academia and industry

to present their latest research findings and state-of-the-art solution methods in areas

related to the theme of the Special Issue.

Scientists from many countries and regions — Australia, China, Greece, Hong Kong,

Japan, India, Saudi Arabia, USA and Vietnam — accepted the invitation of the Guest

Editors to submit papers for the Special Issue of the Journal. They all went through

a rigorous refereeing process with at least two independent referees for each submitted

paper. The number of the submitted papers exceed substantially the size of one issue, and

we decided to publish two special issues. Topics included in these papers are modelling,

design analysis, simulation, optimization, performance evaluation, intelligent information

and technology, nonlinear stochastic systems, and optimal control. Applications involved

include communication networks, engineering and management systems, computer and

information technology, and knowledge management.

The completion of this volume would not have been possible without the assistance

of many of our colleagues. We wish to express our sincere appreciation to all those

who helped. We are deeply grateful to our referees who provided prompt and extensive

reviews for all submissions. Their constructive comments contributed to the quality

of the volume. In particular, we wish to thank Editor-in-Chief, Professor Anatolii A.

Martynyuk for his kind cooperation and support. Our special thank also go to Mrs. Lisa

Holling for her help during the editing process of this Special Issue. Last but not least,

we wish to thank those authors who responded to our call for papers by submitting their

papers to be considered for possible publication in this Special Issue.

Wuyi Yue1 and Kok Lay Teo2 – Guest Editors

1Department of Information Science and Systems Engineering, Konan University, 8-9-1 Okamoto,
Higashinada-ku, Kobe 658-8501, Japan. E-mail: yue@konan-u.ac.jp

2Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U1987, Perth,
Western Australia 6845, Australia. E-mail: K.L.Teo@curtin.edu.au

c© 2006 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua v
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Mixed Semidefinite and Second-Order Cone

Optimization Approach for the Hankel Matrix

Approximation Problem

Mohammed M. Alshahrani 1∗ and Suliman S. Al-Homidan 2

1 Department of Mathematics, Dammam Teachers’ College,

P.O. Box 14262, Dammam 31424, Saudi Arabia.
2 Department of Mathematical Sciences, King Fahad University of Petroleum and Minerals,

KFUPM Box 119, Dhahran 31261, Saudi Arabia.

Received: April 1, 2005; Revised: July 15, 2006

Abstract: Approximating the nearest positive semidefinite Hankel matrix in

the Frobenius norm to an arbitrary data covariance matrix is useful in many

areas of engineering, including signal processing and control theory. In this

paper, interior point primal-dual path-following method will be used to solve

our problem after reformulating it into different forms, first as a semidefinite

programming problem, then into the form of a mixed semidefintie and second-

order cone optimization problem. Numerical results, comparing the perfor-

mance of these methods with the modified alternating projection method will

be reported.

Keywords: Hankel matrix; primal-dual interior-point method; projection method;

semidefinite programming.

Mathematics Subject Classification (2000): 49J35, 49M99.

1 Introduction

In some application areas, such as digital signal processing and control theory, it is

required to compute the closest, in some sense, positive semidefinite Hankel matrix,

with no restriction on its rank, to a given data covariance matrix, computed from a

data sequence. This problem was studied by Macinnes [19]. Similar problems involving

structured covariance estimation were discussed in [16, 13, 24]. Related problems occur

in many engineering and statistics applications [10].

∗ Corresponding author: mmogib@awalnet.net.sa

c© 2006 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 211



212 MOHAMMED M. ALSHAHRANI AND SULIMAN S. AL-HOMIDAN

The problem was formulated as a nonlinear minimization problem with positive

semidefinite Hankel matrix as constraints in [2] and then was solved by l2 Sequential

Quadratic Programming (l2 SQP) method. Another approach to deal with this problem

was to solve it as a smooth unconstrained minimization problem [1, 3]. Other methods

to solve this problem or similar problems can be found in [19, 13, 16].

Our work is mainly casting the problem: first as a semidefinite programming prob-

lem and second as a mixed semidefinite and second-order cone optimization problem.

A semidefinite programming (SDP) problem is to minimize a linear objective function

subject to constraints over the cone of positive semidefinite matrices. It is a relatively

new field of mathematical programming, and most of the papers on SDP were written in

1990s, although its roots can be traced back to a few decades earlier (see Bellman and

Fan [8]). SDP problems are of great interest due to many reasons, e.g., SDP contains im-

portant classes of problems as special cases, such as linear and quadratic programming.

Applications of SDP exist in combinatorial optimization, approximation theory, system

and control theory, and mechanical and electrical engineering. SDP problems can be

solved very efficiently in polynomial time by interior point algorithms [29, 32, 11, 6, 21].

The constraints in a mixed semidefinite and second-order cone optimization problem

are constraints over the positive semidefinite and the second-order cones. Although the

second-order cone constraints can be seen as positive semidefinite constraints, recent

research has shown that it is more effecient to deal with mixed problems rather than the

semidefinite programming problem. Nesterov et al. [21] can be considered as the first

paper to deal with mixed semidefinite and second-order cone optimization problems.

However, the area was really brought to life by Alizadeh et al. [5] with the introduction

of SDPPack, a software package for solving optimization problems from this class. The

practical importance of second-order programming was demonstrated by Lobo et al. [18]

and many subsequent papers. In [22] Sturm presented implementational issues of interior

point methods for mixed SDP and SOCP problems in a unified framework. One class of

these interior point methods is the primal-dual path-following methods. These methods

are considered the most successful interior point algorithms for linear programming.

Their extension from linear to semidefinite and then mixed problems has followed the

same trends. One of the successful implementation of primal-dual path-following methods

is in the software SDPT3 by Toh et al. [28, 25].

Similar problems, such as the problem of minimizing the spectral norm of a matrix

was first formulated as a semidefinite programming problem in [29, 26]. Then, these

problems and some others were formulated as a mixed semidefinite and second-order

cone optimization problems [18, 4, 23]. None of these formulations exploits the special

structure of our problem. For the purpose of exploiting the Hankel structure of the

variable in this problem we will introduce an isometry operator, hvec, taking n × n
Hankel matrices into 2n− 1 vectors. We will see later that using this operator gives our

formulations an advantage over the others.

Before we go any further, we should introduce some notations. Throughout this

paper, we will denote the set of all n× n real symmetric matrices by Sn, the cone of the

n × n real symmetric positive semidefinite matrices by S+

n and the second-order cone of

dimension k by Qk, and is defined as

Qk = {x ∈ Rk : ‖x2:k‖2 ≤ x1},

(also called Lorentz cone, ice cream cone or quadratic cone), where ‖.‖2 stands for

the Euclidean distance norm defined as ‖x‖2 =
√

∑n
i=1

x2

i , ∀x ∈ Rn and x2:k =
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[x2, x2, . . . , xk]T . The set of all n × n real Hankel matrices will be denoted by Hn.

An n × n real Hankel matrix H(h) has the following structure:

H(h) =











h1 h2 · · · hn

h2 h3 · · · hn+1

...
...

. . .
...

hn hn+1 · · · h2n−1











, h ∈ R2n−1.

It is clear that Hn ⊂ Sn. The Frobenius norm is defined on Sn as follows:

‖U‖F =
√

U • U = ‖vecT (U)vec(U)‖2, ∀ U ∈ Sn. (1.1)

Here U •U = trace(U ·U) =
∑n

i,j U2

i,j , vec(U) stands for the vectorization operator found

by stacking the columns of U together and vecT is the transpose of vec. The symbols

� and ≥Q will be used to denote the partial orders induced by S+

n and Qk on Sn and

Rk, respectively. That is,

U � V ⇔ U − V ∈ S+

n , ∀ U, V ∈ Sn

and

u ≥Q v ⇔ u − v ∈ Qk, ∀ u, v ∈ Rk.

The statement x ≥ 0 for a vector x ∈ Rn means that each component of x is nonnegative.

We use I and 0 for the identity and zero matrices.

Our problem in mathematical notation can, now, be formulated as follows: Given a

data matrix F ∈ Rn×n, find the nearest positive semidefinite Hankel matrix H(h) to F
such that ‖F − H(h)‖F is minimal. Thus, we have the following optimization problem:

minimize ‖F − H(h)‖F

subject to H(h) ∈ Hn, H(h) � 0. (1.2)

We describe briefly the alternating projection method. Although the rate of conver-

gence is slow, the method converges to the optimal solution globally, and provides us with

accurate solutions against which we can compare the results obtained by this method

with those of the interior point methods. Henc, we devote Section 2 to the projection

method. A brief description of semidefinite and second-order cone optimization prob-

lems along with reformulations of problem (1.2) in the form of the respective class will

be given in Sections 3 and 4, respectively. Numerical results, showing the performance

of the projection method against the primal-dual path-following method acting on our

formulations, will be reported in Section 5. Section 6 contains the paper’s conclusions.

2 The Projection Method

The method of successive cyclic projections onto closed subspaces Ci’s was first proposed

by von Neumann [30] and independently by Wiener [31]. As a special case of their

algorithm, we show that if C1 and C2 are subspaces and D is a given point, then the

nearest point to D in C1 ∩ C2 can be obtained by the following algorithm:
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Alternating Projection Algorithm.
Let X1 = D.

For k = 1, 2, 3, . . .
Xk+1 = P1(P2(Xk)).
Xk converges to the nearest point to D in C1∩C2, where P1 and P2 are the orthogonal

projections on C1 and C2, respectively. Dykstra [12] and Boyle and Dykstra [9] modified

von Neumann’s algorithm to handle the situation when C1 and C2 are replaced by convex

sets. Other proofs and connections to duality along with applications were given in Han

[17]. These modifications were applied in [15] to find the nearest Euclidean distance

matrix to a given data matrix. The modified Neumann’s algorithm when applied to (1.2)

yields the following algorithm, called the Modified Alternating Projection Algorithm:

Given a data matrix F , we have:

Let F1 = F .

For j = 1, 2, 3, . . .
Fj+1 = Fj + [PS(PH(Fj)) − PH(Fj)].
Then {PH(Fj)} and PS(PH(Fj)) converge in Frobenius norm to the solution. Here,

PH(F ) is the orthogonal projection onto the subspace of Hankel matrices Hn. It is

simply setting each antidiagonal to be the average of the corresponding antidiagonal of

F . PS(F ) is the projection of F onto the convex cone of positive semidefinite symmetric

matrices. One finds PS(F ) by finding a spectral decomposition of F and setting the

negative eigenvalues to zero.

3 Semidefinite Programming Approach

The semidefinite programming (SDP) problem in primal standard form is:

(P ) minimizeX C • X

subject to Ai • X = bi, i = 1, 2, · · · , m, X � 0, (3.1)

where all Ai, C ∈ Sn, b ∈ Rm are given, and X ∈ Sn is the variable. This optimization

problem (3.1) is a convex optimization problem since its objective and constraint are

convex. The dual problem of (3.1) is

(D) maximizey bT y

subject to

m
∑

i=1

yiAi � C, (3.2)

where y ∈ Rm is the variable. Problems (3.1) and (3.2) include many problems as

special cases and have many applications, in particular, (1.2). The following theorem is

useful in writing (1.2) in the form of (3.1).

Theorem 3.1 (Schur Complement) If

M =

[

A B
BT C

]

,

where A ∈ S+

n nonsingular matrix and C ∈ Sn, then the matrix M is positive
(semi)definite if and only if the matrix C − BT A−1B is positive (semi)definite.
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This matrix C − BT A−1B is called the Schur complement of A in M . Letting ‖F −
H(h)‖2

F ≤ t, t is a nonnegative real scalar and noting that:

‖F − H(h)‖2

F = vecT (F − H(h))vec(F − H(h)),

we have:

vecT (F − H(h))vec(F − H(h)) ≤ t

⇔ t − vecT (F − H(h))Ivec(F − H(h)) ≥ 0

⇔
[

I vec(F − H(h))

vecT (F − H(h)) t

]

� 0.

The last equivalence is a direct application of Theorem 3.1. Thus, problem (1.2) can be

rewritten as

(SDV ) minimize t,

subject to





t 0 0

0 H(h) 0

0 0 V



 � 0, (3.3)

where

V =

[

I vec(F − H(h))

vecT (F − H(h)) t

]

,

which is an SDP problem in the dual form (3.2) with dimensions 2n (number of variables)

and n2+n+2 (size of the matrices), SDP problem (3.3) is very large even for a small data

matrix F . For example, a 50 × 50 matrix F will give rise to a problem with dimensions

100 and 2552, hence solving (1.2) using formulation (3.3) is not efficeint. Furthermore,

we do not exploit the structure of H(h) being Hankel. Another way of formulation that

produces an SDP problem with reasonable dimensions and exploits the Hankel structure

of H(h) can be done by means of the following isometry operator.

Definition 3.1 Let hvec : Hn −→ R2n−1 be defined as

hvec(U) = [u1,1

√
2u1,2 · · ·

√
n − 1u1,n−1

√
nu1,n

√
n − 1u2,n · · ·

√
2un−1,n un,n]T

for any U ∈ Hn.

It is clear that hvec is a linear operator from the set of all n×n real Hankel matrices

to R2n−1. The following theorem gives us some characterizations of hvec.

Theorem 3.2 For the operator hvec, defined in Definition 3.1, the following condi-
tions hold: For any U, V ∈ Hn

1. U • U = hvecT (U)hvec(U).
2. ‖U − V ‖2

F = hvecT (U − V )hvec(U − V ).

Proof Part 1 is clear from the definition of the hvec operator. Part 2 is a consequence

of part 1. �

Part 1 implies that hvec is an isometry. We cannot take any advantage of this

theorem unless F is Hankel. Projecting F onto Hn using the orthogonal projection in

Section 2 gets a Hankel matrix, say F̂ . The following proposition shows that the nearest

Hankel positive semidefinite matrix to F̂ is also the nearest to F .
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Proposition 3.1 Let F̂ be the orthogonal projection of F onto Hn and let H(h) be
the nearest Hankel positive semidefinite matrix to F̂ , then H(h) is so for F .

Proof If F̂ is positive semidefinite, then we are done. If not, then for any T ∈ Hn,

we have (F − F̂ )T • (F̂ − T ) = 0 since F̂ is the orthogonal projection of F . Thus,

‖F − T ‖2

F = ‖F − F̂‖2

F + ‖F̂ − T ‖2

F . �

As a consequence of this proposition, the following problem is equivalent to (1.2):

minimize ‖F̂ − H(h)‖F

subject to H(h) ∈ Hn, H(h) � 0. (3.4)

3.1 Formulation I (SDH)

From Theorem 3.1, the following are equivalences (for t ≥ 0 ∈ R):

‖F̂ − H(h)‖2

F ≤ t

⇔ hvecT (F̂ − H(h))hvec(F̂ − H(h)) ≤ t by Theorem 3.2

⇔ t − hvecT (F̂ − H(h))Ihvec(F̂ − H(h)) ≤ 0

⇔
[

I hvec(F̂ − H(h))

hvecT (F̂ − H(h)) t

]

� 0 by Theorem 3.1

Hence, we have the following SDP problem:

(SDH) minimize t,

subject to





t 0 0

0 H(h) 0

0 0 V̂



 � 0, (3.5)

where

V̂ =

[

I hvec(F̂ − H(h))

hvecT (F̂ − H(h)) t

]

.

This SDP problem has dimensions 2n and 3n + 1 which is far better than (3.3).

3.2 Formulation II (SDQ)

Another way for formulating (1.2) is through the definition of the Frobenius norm:

‖F − H(h)‖2

F = yT Py + 2qT y + r,

where

y = [h1 h2 · · · h2n−1]
T , P = diag([1 2 · · · n · · · 2 1]),

qk = −∑n
i,j=1

i+j=k+1

F (i, j), k = 1, 2, · · · 2n − 1 and r = ‖F‖2

F .
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Now, we have for a nonnegative real scalar t

‖F − H‖2

F ≤ t

⇔ yT Py + 2qT y + r ≤ t

⇔ (P 1/2y)T (P 1/2y) + 2qT y + r ≤ t

⇔ t − 2qT y − r − (P 1/2y)T I(P 1/2y) ≥ 0

⇔
[

I (P 1/2y)

(P 1/2y)T t − 2qT y − r

]

� 0.

Hence, we have the following SDP problem:

(SDQ) minimize t,

subject to





t 0 0

0 H(h) 0

0 0 Q



 � 0, (3.6)

where

Q =

[

I (P 1/2y)

(P 1/2y)T t − 2qT y − r

]

.

This SDP problem is of dimenstions 2n and 3n+1. Although problem (3.6) has the same

dimentions as problem (3.5), it is less efficient to solve it over the positive semidefinite

cone S+

n , especially when F is large in size. In practice, as we will see in Section 5, it

has been found that the performance of this formulation is poor. The reason for that

is the matrix P being of full rank and hence the system is badly conditioned. A more

efficient interior point method for this formulation can be developed by using Nesterov

and Nemirovsky technique [20] to reformulate it over the second-order cone as described

in Section 4.

The last formulation seems to be straight forward, but it was found that using this

formulation to solve similar problems was not a good idea. The reasons for that will be

discussed in the following section when we talk about second-order cone programming.

This fact about SDQ formulation will be clear in Section 5 when we use it to solve

numerical examples with n > 50. The SDV formulation does not compete favorably with

the other two SDH and SDQ formulations due to the amount of work per one iteration

of interior-point methods that solve SDV fomulation is O(n6), where n in the dimension

of F and O(.) is the order of convergence. The SDV formulation is even slower than the

projection method. Hence, using the SDV formulation to solve (1.2) is time consuming.

This leaves us with SDH formulation from which we expect good performance, since it

does not have the illness of SDQ nor the huge size of SDV.

4 Mixed Semidefinite and Second-Order Cone Approach

The primal mixed semidefinite, second-order and linear problem SQLP is of the form:

(P ′) minimize CS • XS + CT
QXQ + CT

L XL

subject to (AS)i • XS + (AQ)T
i XQ + (AL)T

i XL = bi, i = 1, 2, · · · , m

XS � 0, XQ ≥Q 0, XL ≥ 0, (4.1)
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where XS ∈ Sn, XQ ∈ Rk and XL ∈ RnL are the variables. CS , (AS)i ∈ Sn, ∀i
CQ, (AQ)i ∈ Rk ∀i and CL, (AL)i ∈ RnL ∀i are given data. Each of the three inequalities

has a different meaning: XS � 0 means XS ∈ S+

n , XQ ≥Q 0 means that XQ ∈ Qk and

XL ≥ 0 means that each component of XL is nonnegative. It is possible that one or

more of the three parts of (4.1) is not present. If the second-order part is not present,

then (4.1) reduces to the ordinary SDP (3.1) and if the semidefinite part is not present,

then (4.1) reduces to the so-called convex quadratically constrained linear programming

problem.

The standard dual of (4.1) is:

(D′) maximize bT y

subject to

m
∑

i=1

yi(AS)i � CS

m
∑

i=1

yi(AQ)i ≤Q CQ

m
∑

i=1

yi(AL)i ≤ CL. (4.2)

Here, y ∈ Rm is the variable.

In our setting, we may drop the third part of the constraints in (4.1) and its dual

(4.2), since we do not have explicit linear constraints. One natural claim can be made

here: in (1.2) the objective function can be recast as a dual SQLP in three different

ways.

4.1 Formulation III (SQV)

One way to define ‖F − H(h)‖F is

‖F − H(h)‖F = ‖vec(F − H(h))‖2.

So, if we put ‖F − H(h)‖F ≤ t for t ∈ R+, then by the definition of the second-order

cone, we have
[

t
vec(F − H(h))

]

∈ Q1+n2 .

Hence, we have the following reformulation of (1.2):

(SQV ) minimize t,

subject to

[

t 0

0 H(h)

]

� 0

[

t
vec(F − H(h))

]

≥Q 0. (4.3)

4.2 Formulation IV (SQQ)

The second definition is as introduced in Subsection 3.2, i.e.,

‖F − H(h)‖2

F = yT Py + 2qT y + r.
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Hence, we have the following equivalent problem to (1.2)

minimize yT Py + 2qT y + r

subject to H(h) ∈ Hn, H(h) � 0. (4.4)

But

yT Py + 2qT y + r = ‖P 1/2y + P−1/2q‖2

2
+ r − qT P−1q.

Now, we minimize ‖F − H(h)‖2

F by minimizing ‖P 1/2y + P−1/2q‖2. Thus we have

the following problem:

(SQQ) minimize t,

subject to

[

t 0

0 H(h)

]

� 0

[

t

P 1/2y + P−1/2q

]

≥Q 0, (4.5)

where t ∈ R+. Again, this problem is in the form of problem (4.2). Here, the difference

between this form and SQV is in the second-order cone constraint since the SDP part is

the same as SQV. The dimension of the second-order cone in SQV is 1 + n2 and in SQQ

is just 2n, which makes us expect less efficiency in practice when we work with SQV. The

optimal value of SQV is the same as that of problem (1.2), whereas the optimal values

of SQQ (4.5) and (4.4) are equal up to a constant. The optimal value of (4.4) is equal

to (ρ∗)2 + r − qT P−1q, where ρ∗ is the optimal value of (4.5). It may be noticed that

we did not talk about the constraint of H(h) being Hankel. This is because the Hankel

structure of H(h) is embedded in the other constraints.

4.3 Formulation V (SQH)

The last formulation will take advantage of the Hankel structure of H(h) explicitly. The

vectorization operator hvec on Hankel matrices, introduced in Section 3 will be used.

From Theorem 3.2, we have the following:

‖F̂ − H(h)‖F = ‖hvec(F̂ − H(h))‖2,

where F̂ = PH(F ) which leads to:

(SQH) minimize t,

subject to

[

t 0

0 H(h)

]

� 0

[

t

hvec(F̂ − H(h))

]

≥Q 0. (4.6)

The dimension of the second-order cone in this form is 2n, the same as that of SQQ.

The optimal solutions of (4.6) and (1.2) are also identical.

Table 4.1 shows the dimensions of the semidefinite part (SD part) and the second-

order cone part (SOC part) for each formulation. For the formulations SDH and SDQ,

the second-order cone part is not applicable, so the cell in the table corresponding to

that is left blank.
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Formulation SD part SOC part

SDV 2n × (n2 + n + 2)

SDH 2n × (3n + 1)

SDQ 2n × (3n + 1)

SQV 2n × (n + 1) n2 + 1

SQQ 2n × (n + 1) 2n
SQH 2n × (n + 1) 2n

Table 4.1: Problem dimensions

In practise, we expect that the mixed formulations are more effecient than the SDP-

only formulations, especially the SQQ and SQH which have second-order cone constraint

of least dimension. The interior point methods for SOCP have better worst-case com-

plexity than an SDP method. However, SDH has a less SDP dimension with no illness

such as that SDQ has, which makes SDH a better choice among other SDP. This is due to

the economical vectorization operator hvec. Practical experiments show a competitive

behaviour of SDH to SQQ and SQH (see Section 5).

5 Numerical Results

We will now present some numerical results comparing the performance of the methods

described in Sections 2, 3 and 4. The first is the projection method and the second is

the interior-point primal-dual path-following method employing the NT-direction. The

latter was used to solve five different formulations of the problem.

A Matlab code was written to implement the modified alternating projection method.

The iteration is stopped when ‖PS(PH(Fj)) − PH(Fj)‖F ≤ 10−8.

Size
Time (sec.)

Pro. SDH SDQ SQH SQQ SQV

10
2 2 1 1 1 1

9 1 1 1 1 1

30
11 5 4 3 4 2

14 5 4 2 2 2

50
117 10 12 5 7 5

30 11 11 4 3 5

100
61 53 64 28 20 28

1003 48 42 22 25 21

200
16239 389 284 324 322 284

4883 355 420 255 268 230

400 36556 4970 3913 3775 4098 2505

Table 5.1: Performance comparison (time) among the projection method and the path-
following method with the formulations SDH, SDQ, SQH, SQQ and SQV.

For the other methods, the software SDPT3 ver. 3.0 [27, 25] was used because of

its numerical stability [14] and its ability to exploit sparsity very efficiently. The default
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Size
Iterations

Pro. SDH SDQ SQH SQQ SQV

10
1253 16 18 14 14 11

6629 18 17 14 14 11

30
1215 34 32 35 47 24

1443 33 33 29 29 20

50
4849 32 41 25 36 24

1295 32 42 22 18 26

100
504 34 45 27 19 26

8310 33 28 23 26 20

200
22672 31 22 33 31 25

6592 28 32 23 27 22

400 7870 28 25 26 26 18

Table 5.2: Performance comparison (number of iterations) among the projection method and
the path-following method with the formulations SDH, SDQ, SQH, SQQ and SQV.

starting iterates in SDPT3 were used throughout with the NT-direction. The choice of

the NT-direction came after some preliminary numerical results. The other direction is

HKM-direction which we found less accurate, although, faster than the NT-direction.

However, the difference between the two in speed is not of significant importance.

The problem was converted into the five formulations described in Sections 3 and 4.

A Matlab code was written for each formulation. This code formulates the problem and

passes it through to SDPT3 for a first time. A second run is done with the optimal iterate

from the first run being the initial point. This process is repeated until no progress is

detected. This is done when the relative gap:

|P − D|
max{1, (|P | + |D|)/2}

of the current run is the same as the preceding one. (Here, P and D denote the optimal

and the dual objective values, respectively).

Our numerical experiments were carried out on eleven randomly generated square

matrices with different sizes, namely: 10, 30, 50, 100 and 200, two for each size and one

of size 400. Each matrix is dense and its entries vary between −100 and 100 exclusively.

All numerical experiments in this section were executed in Matlab 6.1 on a 1.7GHz

Pentium IV PC with 256 MB memory running MS-Windows 2000 Professional.

Table 5.1 compares the CPU time. We notice that the consumed time gets larger

more rapidly in the projection method with the size of the data matrix F . An obvious

remark is that the projection method is the slowest; it is at least seven times slower than

the slowest of the five formulations of the path-following method. However, the difference

in time between the five formulations is not big enough to have a significant importance.

Another clear advantage is in terms of number of iterations as shown in Table 5.2.

Although the amount of work in each iteration is different for each method, it is still fair

to consider it to be a comparison factor.

Table 5.3 shows how close, in Frobenius norm, the optimal solution of each method,

H(h)∗, to the data matrix F . The projection and the path-following methods with the
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Size
Norm

Pro. SDH SDQ SQH SQQ SQV

10
96.6226 96.6226 96.6226 96.6226 96.6226 96.6226

94.8320 94.8320 94.8320 94.8320 94.8320 94.8320

30
307.9339 307.9339 307.9406 307.9339 307.9339 307.9339

327.6784 327.6784 327.6784 327.6784 327.6784 327.6784

50
494.3805 494.3805 494.5038 494.3805 494.3805 494.3805

497.4383 497.4383 497.6330 497.4383 497.4383 497.4383

100
991.8832 991.8832 994.8612 991.8832 991.8832 991.8833

997.4993 997.4993 998.8048 997.4993 997.4993 997.4994

200
1986.9397 1986.9398 1990.0924 1986.9402 1986.9402 1986.9414

1994.8409 1994.8410 1998.6048 1994.8410 1994.8410 1994.8418

400 3998.4967 3998.5047 4001.9242 3998.5007 3998.5007 3998.6166

Table 5.3: Performance comparison (norm ‖H(h)∗ −F‖F ) among the projection method and
the path-following method with the formulations SDH, SDQ, SQH, SQQ and SQV.

Size
Error

SDH SDQ SQH SQQ SQV

10
6.3 × 10−9 3.4 × 10−9 6.1 × 10−9 6.1 × 10−9 1.3 × 10−5

6.4 × 10−9 3.2 × 10−8 3.6 × 10−8 3.6 × 10−8 1.2 × 10−5

30
7.5 × 10−10 6.7 × 10−3 2.6 × 10−8 3.0 × 10−8 9.7 × 10−8

1.6 ×10−9 9.0 × 10−9 2.0 × 10−9 2.0 × 10−9 1.2 × 10−8

50
1.9 × 10−9 1.2 × 10−1 8.9 × 10−9 9.0 × 10−9 2.1 × 10−5

3.7 × 10−9 0.2 7.8 × 10−9 8.0 × 10−9 2.1 × 10−5

100
5.1 × 10−10 3.0 1.8 × 10−8 1.8 × 10−8 1.0 × 10−4

9.2 × 10−10 1.3 5.8 × 10−8 5.8 × 10−8 1.5 × 10−4

200
6.6 × 10−5 3.2 4.4 × 10−4 4.2 × 10−4 1.6 × 10−3

1.1 × 10−4 3.8 9.1 × 10−5 9.1 × 10−5 9.3 × 10−4

400 8.0 × 10−3 3.4 4.0 × 10−3 4.0 × 10−3 1.2 × 10−1

Table 5.4: Performance comparison (error).

formulation SDH, SQH and SQQ gave the same result to some extent. The formulation

SDQ couldn’t cope with the others as the problem size gets larger. The poor performance

of this formulation is due to the matrix P being of full rank. The formulation SQV is

less accurate than SDH, SQH and SQQ which is reasonable especially if we notice that

the dimension of the second-order cone in this formualtion is 1 + n2 (see Table 4.1).

Table 5.4 gives a measure of how close the optimal solutions of SDH, SDQ, SQH,

SQQ and SQV are from that of the projection method which is the most accurate. The

error is computed simply by evaluating the difference between the norm ‖H(h)∗−F‖F of

the projection and the norm obtained by the different formulations of the path-following

method.
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6 Conclusions

The projection method, despite its accuracy, is very slow. On the other hands, the path-

following method with SDH and SQQ formulations is very fast, sometimes more than

40 times faster than the projection method (see Table 5.1 when n = 200), and gives

results of acceptable accuracy. The SQH, SQQ and SQV formulations did not gain any

considerable advantage out of solving our problem as a mixed semidefinite and second-

order cone problem. This can be seen clearly by noticing the good performance of the

formulation SDH, which solves the problem as a semidefinite program. However, it is well

known that positive definite Hankel matrices are extremely ill-conditioned; the optimal

condition number for these matrices grows exponentially with the size of the matrix

[7]. Therefore, computing the spectral decomposition (projection method) or solving the

underlying linear systems (SDP/SOCP methods) might be numerically impractical.
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efficient set of a multicriteria affine fractional program is discussed.

Keywords: Equilibrium constraints; bilevel convex program; optimization over the

Pareto set; Nash-Cournot model; branch-and-bound; global optimum.

Mathematics Subject Classification (2000): 90C29.

1 Introduction

Mathematical programs with equilibrium (or variational inequality) constraints, shortly

MPEC, are optimization problems whose constraints include parametric variational in-

equalities. For these problems we refer the readers to the comprehensive monograph [16]

and the interesting bibliography paper [8]. MPEC play an important role, for example,
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in the design of transportation networks, in economic models (see e.g. [13, 16]). These

problems also include, as special cases, mathematical program with complementarity con-

straints, the bilevel convex programming problem, where some variables are restricted to

be in the solution set of a parametric convex optimization problem, and the optimiza-

tion over the efficient set of an affine fractional multicriteria program. Mathematically,

for finite dimensional case, a mathematical program with equilibrium constraints can be

written as















minimize f(x, y)

subject to x ∈ X, y ∈ Y, (x, y) ∈ Z
and y solves the parametric variational inequality,

find y ∈ C(x) such that 〈F (x, y), v − y〉 ≥ 0 ∀v ∈ C(x),

where X ⊆ Rn, Y ⊆ Rm, Z ⊆ Rn×Rm, are nonempty closed convex sets; f : X×Y → R,

F : X × Y → Rm and C : Rn → 2Rm

is a multivalued mapping. The MPEC which are

known to be very difficult ones, being nonsmooth and nonconvex also under very favorable

assumptions. Further, the computation of the (generalized) gradients of the constraints

can be difficult, except special cases.

Several heuristic and deterministic methods were developed for finding local opti-

mal solution to the MPEC. In [13] heuristic algorithms were suggested for solving some

classes of MPEC. In [24] Outrata and Zowe converted a mathematical program with

equilibrium constraints into an unconstrained nonsmooth Lipschitz optimization prob-

lem. Then one may use well developed nonsmooth optimization numerical methods for

locally solving the converted problem. In [9] Facchinei et al applied known methods of

nonlinear optimization to a regularized reformulation of the MPEC. Based on the study

of subanalytic optimization problems and with the help of the theory of error bounds,

some exact penalty results for the MPEC were proved by Lin and Fukushima in [15].

Recently, in [19] Mordukhovich discussed optimality conditions for the MPEC and EPEC

(equilibrium problems with equilibrium constraints) by using tools of variational analysis.

Due to its nested structure, the feasible domain of a mathematical program with

equilibrium constraints, even in the linear case, in general, is disconnected and may be

neither open nor closed. Thus the MPEC are difficult global optimization ones and

therefore it is less hope to develop an algorithm for finding global optimal solutions

to general MPEC. In [21] a branch and bound algorithm based on a binary search is

proposed for globally solving a class of mathematical programs with affine equilibrium

constraints. The binary search method proposed in that paper works well for the case

when the number of constraints defining the variational inequality-constraint is somewhat

small, but it quickly becomes expensive when this number gets larger.

In this paper, we continue our work in [21] by using the Lagrangian duality bound to

develop another branch-and-bound algorithm for globally solving a class of mathematical

programs with affine equilibrium constraints. By contrast to the method in [21] the global

optimization operation in this algorithm takes place in the y- space rather than the space

of the Lagrangian variables. Thus it is expected that the proposed method works well

when the number of the y-variables is somewhat small while the number of the constraints

as well as the number of the x-variables may be much larger.

The rest of this paper will be organized as follows. In the next section we state the

problem to be solved and list some of its special cases such as bilevel convex programming,

optimization over the efficient set and Cournot-Nash oligopolistic market models. In

the third section, first we show how to use the Lagrangian duality to compute lower
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bounds. Then we describe in detail a branch-and-bound algorithm when the vertices of

the constrained set Y are known in advance. The last section is devoted to description of a

relaxation algorithm that does not require prior knowledge of these vertices. Applications

of the proposed algorithms to the optimization problem over the Pareto-efficient set of a

multicriteria affine fractional program are also discussed in this section.

2 The Problem Statement and Examples

In what follows we restricted our attention to a special class of MPEC; namely, we

consider the following affine MPEC that we call shortly AMPEC:

(P)















minimize {f(x, y) := aT x + bT y}
subject to x ∈ X, y ∈ Y, (x, y) ∈ Z := {(x, y) : Mx + Ny + p ≤ 0, }
and y solves the parametric variational inequality

find y ∈ Y such that 〈P (y)x + Qy + q, v − y〉 ≥ 0 ∀v ∈ Y VIP(x)

where X ⊆ Rn, Y ⊆ Rm are nonempty closed convex sets, p ∈ Rl, a ∈ Rn, q, b ∈ Rm

and for each y ∈ Y , P (y), Q, M and N are given appropriate matrices.

Let S(x) denote the solution-set of VIP(x). As usual we call a couple (x, y) such that

(x, y) ∈ Z, x ∈ X, y ∈ Y , y ∈ S(x) a feasible solution to Problem (P).

First we mention some important special cases of this problem.

Example 2.1 (Convex quadratic bilevel program). We consider the parametric vari-

ational inequality VIP(x), where P (y) ≡ P , and Q is a symmetric positive semidefinite

matrix. In this case, since Y is convex, it is well-known that VIP(x) is equivalent to the

convex programming problem

min

{

1

2
yT Qy + (Px)T y + qT y : y ∈ Y

}

.

Thus AMPEC problem (P) can be equivalently rewritten as a convex bilevel problem of

the form

min
{

f(x, y) := aT x + bT y
}

subject to

(x, y) ∈ Z1 := {(x, y) : Mx + Ny + p ≤ 0, x ∈ X, y ∈ Y },

where y solves the convex quadratic program

min

{

1

2
yT Qy + (Px)T y + qT y : y ∈ Y

}

. (Cx)

Example 2.2 (Optimization over the weakly efficient set). Other examples for the

AMPEC are optimization problems over the efficient (Pareto) and weakly efficient sets

of a multicriteria (vector) affine fractional program. These problems have been recently

considered by some authors (see e.g. [17, 20, 22, 29]). The problems can be formulated in

forms of AMPEC. To this end, consider the affine fractional vector optimization problem

vmin{F (v) :=
(AT

1
v + s1

BT
1

v + t1
, ...,

AT
ρ v + sρ

BT
ρ v + tρ

)

: v ∈ V }, (V P )
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where V ⊂ Rm is a bounded polyhedral convex set, Ai, Bi are m-dimensional vectors,

si, ti (i = 1, ..., ρ) are real numbers. As usual we assume that BT
i v + ti > 0 for all

v ∈ V and all i = 1, ..., ρ. Thus F is continuous on V . We recall that a point v ∈ V
is said to be an (Pareto) efficient (resp. weakly efficient) solution of (VP) if there does

not exist w ∈ Y such that F (w) ≤ F (v), F (w) 6= F (v) (resp. F (w) < F (v)), By

E(F, V ) (resp. WE(F, V )) we will denote the set of all efficient (resp. weakly efficient)

solutions of (V P ). It is well-known (see e.g. [27]) that if V is compact, then the efficient

set is nonempty. Hence so is the weakly efficient set, since E(F, V ) ⊆ WE(F, V ). An

optimization problem over the efficient set (resp. weakly efficient set) is the problem of

optimizing (minimizing or maximizing) a real-valued function f over the efficient (resp.

weakly efficient) set of (V P ). These minimization problems can be written respectively

as

min{f(v) : v ∈ E(F, V )}, (2.1)

min{f(v) : v ∈ WE(F, V )}. (2.2)

Note that, in general, both the efficient and weakly efficient sets are not convex. The

weakly efficient set is closed but the efficient set may be neither closed nor open [7].

Thus these problems are difficult global optimization ones.In order to formulate these

problems in the form of AMPEC we use the following theorem due to Malivert [17].

Theorem 2.1 ([17]) A vector v ∈ V is efficient (resp. weakly efficient) if and only
if there exist real numbers ui > 0 (resp. ui ≥ 0 not all zero) for all i = 1, ..., ρ such that

ρ
∑

i=1

〈

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], v − w
〉

≤ 0 ∀w ∈ V.

In virtue of this theorem the problems (2.1) and (2.2) can be written as

{

min f(v) subjectto v ∈ V, ui > 0 notallzero ∀i = 1, ..., ρ,
∑ρ

i=1

〈

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], v − w
〉

≤ 0 ∀w ∈ V,

and

{

min f(v) subject to v ∈ V, ui ≥ 0 not all zero ∀i = 1, ..., ρ,
∑ρ

i=1

〈

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], v − w
〉

≤ 0 ∀w ∈ V

respectively.

Define the (m × ρ)-matrix P (v) by setting

P (v) :=
{

(BT
1

v + t1)A1 − (AT
1
v + s1)B1, ..., (B

T
ρ v + tρ)Aρ − (AT

ρ v + sρ)Bρ

}

.

Then we can rewrite these problems in the forms

min{f(v) : v ∈ V, u > 0, 〈P (v)u, w − v〉 ≥ 0 ∀w ∈ V } (2.1a)

and

min{f(v) : v ∈ V, u ≥ 0, 〈P (v)u, w − v〉 ≥ 0 ∀w ∈ V } (2.2a)

respectively.
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Clearly, the latter problem is of the form of AMPEC where v and u play the roles of

y and x respectively, and M ≡ 0, N ≡ 0, Q ≡ 0, p ≡ 0, q ≡ 0. If in problem (2.1a) we

replace the constraint u > 0 by u ≥ δ with δ > 0 sufficiently small as desired, we obtain

an approximation problem to (2.1a) that is of the form of AMPEC.

In an important special case where Bi = 0 and si = 1 for all i, Problem (VP) becomes

a linear vector program. In this case, it is well known [17, 27], both the efficient and

weakly efficient sets are closed, but, in general, not convex. Thus Problems (2.1) and

(2.2) remain global optimization ones, since there are local optimal solutions that are not

global optimal ones. In this linear case due to a theorem of Philip [25] Problem (2.1a)

can take the form of AMPEC as

min{f(v) : v ∈ V, u ≥ δ, 〈P (v)u, w − v〉 ≥ 0 ∀w ∈ V },

where δ > 0 is sufficiently small. Note that in this linear case

P (v) ≡ P :=
(

t1A1, t2A2, . . .tρAρ

)

is independent of v.

Example 2.3 (Nash-Cournot market model). The third section of AMPEC is a

Nash-Cournot oligopolistic market model (see e.g. [10, 12]). The model can be described

as follows.

Suppose that there are m-firms (sectors) that supply a homogeneous product whose

price pj at sector j (j = 1, ..., m) depends on total producing quantity and is given by

pj(

m
∑

i=1

yi) = αj − βj

m
∑

i=1

yi,

where αj ≥ 0, βj > 0 are given constants whereas yi is the quantity of goods supplied

by firm i that we have to determine. Suppose further that to produce the goods the

firms need n-different materials represented by a nonnegative vector x ∈ Rn. Let xi

(i = 1, ..., n) be the quantity of material i needed to produce a unique of goods. Let

cij > 0 denote the price of a unit material i for firm j (i = 1, ..., n, j = 1, ..., m). Assume

that the cost of firm j is given by

hj(x, yj) := yj

n
∑

i=1

cijxi + δj , j = 1, ..., m,

where δj ≥ 0 is fixed charge cost at firm j. Then the utility function of firm j can be

given by

uj(x, y) := pj(

m
∑

i=1

yi)yj − hj(x, yj).

Let

Xi := {t : 0 ≤ t ≤ ξi} (i = 1, ..., n),

Yj := {τ : 0 ≤ τ ≤ ηj} (j = 1, ..., m),

where ξi is the upper bound for material i, and ηj is the upper bound for the quantity

of goods can be produced by firm j.
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Let

X := X1 × X2... × Xn, Y = Y1 × ... × Ym

be the feasible (strategy)-sets of the model.

Given x ∈ X each firm j seeks to find its producing quantity yj such that its benefit

uj(x, y) is maximal. However, a maximal policy for all firms altogether, in general, does

not exist. So they agree with an equilibrium point in the sense of Nash.

By definition, a vector (y∗

1
, ..., y∗

m) ∈ Y1×Y2...×Ym is said to be a (Nash) equilibrium

point with respect to x∗ ∈ X if

{

uj(x
∗, y∗

1
, ..., y∗

j−1
, yj , y

∗

j+1
, ..., y∗

m)

≤ uj(x
∗, y∗

1
, ..., y∗

j−1
, y∗

j , y∗

j+1
, ..., y∗

n) ∀yj ∈ Yj , ∀j.
(2.3)

We will refer to a pair (x∗, y∗) satisfying (2.3) as an equilibrium pair of the model.

Besides the utility function of each firm, there is another cost function (leader’s ob-

jective function) f(x, y) depending on x and the quantity y of the goods. The problem

to be solved is of finding an equilibrium pair that minimizes leader’s objective function

over the set of all equilibrium pairs. This problem can be formulated as a mathematical

program with affine equilibrium. To this end let

{

Hj(x, y) := ∇yj
hj(x, yj) (j = 1, ..., m),

e := (1, ..., 1)T , σy :=
∑m

j=1
yj.

(2.4)

Applying Proposition 3.2.6 in [12] we see that a point (y1, ..., ym) is equilibrium with

respect to x if and only if it is a solution to the variational inequality problem

Find y ∈ Y : 〈F (x, y), z − y〉 ≥ 0 ∀z ∈ Y,

where F (x, y) is m-dimensional vector whose jth component is

Fj(x, y) := Hj(x, y) − pj(σy)e −∇pj(σy)y. (2.5)

Using (2.4) and (2.5) we have

F (x, y) =





∑n
i=1

ci1xi − α1 + β1

∑m
j=1

yj + β1y1

......
∑n

i=1
cimxi − αm + βm

∑m
j=1

yj + βmym





= P (y)x + Qy + q,

where

Q =







2β1 β1 ... β1

β2 2β2 ... β2

... ... ... ...
βm βm ... 2βm






(2.6)

and P (y) is the n × m matrix independent of y whose Pij entry is

Pij = cij , j = 1, ..., m, i = 1, ..., n, (2.7)

and

q = (δ1 − α1, ..., δm − αm)T . (2.8)
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Thus problem to be solved can take the form















min f(x, y) subject to

x ∈ X = X1 × ... × Xn, y ∈ Y = Y1 × ... × Yn,
where y solves the parametric variational inequality

〈Px + Qy + q, z − y〉 ≥ 0 ∀z ∈ Y,

with Q, P and q being given by (2.6), (2.7) and (2.8) respectively. Clearly, this problem

is of form (P ) with M = 0, N = 0, p = 0.

3 A Lagrangian Bounding Algorithm

The algorithm to be described in this section relies on the branch-and-bound strategy.

Two main operations in a branch-and-bound algorithm are bounding and branching

ones. The Lagrangian bound is widely used in global optimization as well as in discrete

programming [6, 11, 14, 26]. To the algorithm we are going to describe for AMPEC

problem (P) we also use the Lagrangian bounding operation.

3.1 The Lagrangian Bound

First, we consider the case when Y is a polytope and all of its vertices are known in

advance. This case occurs frequently, for instant, in economics equilibrium models where

Y is a simplex or a box. Let y1, y2, ..., ys be the vertices of polytope Y . It is easy to

verify that

〈P (y)x + Qy + q, z − y〉 ≥ 0 ∀z ∈ Y

if and only if

〈P (y)x + Qy + q, yk − y〉 ≥ 0 ∀k = 1, ..., s.

Thus, AMPEC problem (P) can be rewritten equivalently as

(P )















minimize {f(x, y) := aT x + bT y}
subject to x ∈ X, y ∈ Y, (x, y) ∈ Z := {(x, y) : Mx + Ny + p ≤ 0},
and y ∈ Y satisfying inequalitis

〈P (y)x + Qy + q, yk − y〉 ≥ 0 ∀k = 1, ..., s.

Let

Ŷ := {y ∈ Y : ∃x ∈ X such that Mx + Ny + p ≤ 0,

〈P (y)x + Qy + q, yk − y ≥ 0 ∀y = 1, ..., s}.
Note that if 〈P (y)x, y〉 is convex with respect to y, in particular when X ⊂ Rn

+
and

P (y) = P (see examples 2.1, 2.2 for linear case and 2.3 ), or when P (y) = Diag(y), then

Ŷ is convex.

Define the function ϕ : Ŷ → IR by setting, for each y ∈ Ŷ ,







ϕ(y) := minx{f(x, y) := aT x + bT y}
s. t. x ∈ X, (x, y) ∈ Z := {(x, y) : Mx + Ny + p ≤ 0},
〈P (y)x + Qy + q, yk − y〉 ≥ 0 ∀k = 1, ..., s.

(Py)

Then the master problem

min{ϕ(y) : y ∈ Ŷ } (MP )
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is equivalent to Problem (P) in the sense of the following proposition whose proof is

obvious directly from the definitions.

Proposition 3.1 A point (x∗, y∗) is optimal to Problem (P) if and only if y∗ is
optimizer to (MP) and f(x∗, y∗) = ϕ(y∗).

Note that, unlike global optimization problems having nonconvex feasible domains,

feasible points of a MPEC problem can be computed by available methods of variational

inequalities (see e. g. [1, 2, 10, 12] and the references therein). However for Problem

(P), a feasible point can be obtained by solving a suitable linear program. In fact, if

y ∈ Ŷ is fixed and xy is an optimal solution of the linear problem (Py) then (xy , y) is

feasible for (P). So upper bounds for the optimal value w∗ of (P) can be computed by

solving a linear program. As the algorithm executes more feasible points can be found,

and thereby upper bounds for w∗ can be iteratively improved.

We now compute a tight lower bound for w∗ by using Lagrangian duality. To be

specific suppose that X is given explicitly as

X := {x ∈ Rn : x ≥ 0, Ax + d ≤ 0},

where d ∈ Rl and A is l × n-matrix. Let S be a fully dimensional simplex or a rectangle

in y-space such that S ∩ Ŷ 6= ∅. Consider Problem (P) restricted on S ∩ Ŷ , i.e.,

w∗(S) = min
x,y

f(x, y) := aT x + bT y

subject to






Mx + Ny + p ≤ 0

Ax + d ≤ 0, x ≥ 0, y ∈ S ∩ Ŷ
〈P (y)x + Qy + q, y − yk〉 ≤ 0 ∀k = 1, ..., s.

(PS)

Let L(x, y, λ, µ, ξ) be the Lagrangian function of this problem associated with all con-

straints except the constraints x ≥ 0, y ∈ S ∩ Ŷ . That is

L(x, y, λ, µ, ξ) := aT x+bT y+

s
∑

k=1

λk〈P (y)x+Qy+q, y−yk〉+µT (Mx+Ny+p)+ξT (Ax+d).

Define the function m(y, λ, µ, ξ) as

m(y, λ, µ, ξ) := inf
x≥0

L(x, y, λ, µ, ξ).

From the Lagrangian duality theorem we have

m(y, λ, µ, ξ) ≤ ϕ(y) ∀λ ≥ 0, µ ≥ 0, ξ ≥ 0, y ∈ S ∩ Ŷ . (3.1)

Since for each fixed y the functions Mx+Ny+p, Ax+d, and 〈P (y)x+Qy+q, y−yk〉 ∀k =

1, ..., s are affine with respect to x, by the Lagrangian duality theorem, we have

sup
λ,µ,ξ≥0,

m(y, λ, µ, ξ) = ϕ(y) ∀y ∈ S ∩ Ŷ .

Let

γS(λ, µ, ξ) = min
y∈S∩Ŷ

m(y, λ, µ, ξ).
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Then from (3.1) it follows that

γS(λ, µ, ξ) ≤ min
y∈S∩Ŷ

ϕ(y) = w∗(S) ∀λ ≥ 0, µ ≥ 0, ξ ≥ 0.

Thus

sup
λ,µ,ξ≥0

γS(λ, µ, ξ) ≤ w∗(S).

Hence

β(S) := sup
λ,µ,ξ≥0

γS(λ, µ, ξ) (3.2)

is a lower bound β(S) for w∗(S). The following lemma states that this lower bound can

be computed by minimizing a certain convex function on S ∩ Ŷ .

Lemma 3.1 Suppose that Q is positive semidefinite matrix. Then

β(S) = min
y∈S∩Ŷ

gS(y),

where

gS(y) := sup
(λ,µ,ξ)∈Ω(S)

{bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}

is convex on S and

Ω(S) := {(λ, µ, ξ) : λ ≥ 0, µ ≥ 0, ξ ≥ 0, Gv(λ, µ, ξ) ≥ 0 ∀v ∈ S ∩ Ŷ }
with

Gv(λ, µ, ξ) := a + µM + ξA +

s
∑

k=1

λk(P (v))T (v − yk).

Proof From (3.1) and the definition of νS(λ, µ, ξ), it follows that

β(S) = sup
λ,µ,ξ≥0

γS(λ, µ, ξ) = sup
λ,µ,ξ≥0

min
y∈S∩Ŷ

m(y, λ, µ, ξ).

Hence















































β(S) = supλ,µ,ξ≥0
miny∈S∩Ŷ minx≥0 L(x, y, λ, µ, ξ) =

supλ,µ,ξ≥0
miny∈S∩Ŷ

[

minx≥0{aT x + bT y +
∑s

k=1
λk〈P (y)x + Qy + q, y − yk〉

+µT (Mx + Ny + p) + ξT (Ax + d)}
]

=

supλ,µ,ξ≥0
miny∈S∩Ŷ

[

{bT y +
∑s

k=1
λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}

+ minx≥0{aT x + µT Mx + ξT Ax +
∑s

k=1
λk〈P (y)x, y − yk〉}

]

.

(3.3)

We now consider the last term of (3.3), that is

min
x≥0

{aT x + µT Mx + ξT Ax +

s
∑

k=1

λk〈P (y)x, y − yk〉} =
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min
x≥0

{aT x + µT Mx + ξT Ax +

s
∑

k=1

λk〈x, PT (y)(y − yk)〉} =

min
x≥0

{aT x + µT Mx + ξT Ax + 〈x,
s

∑

k=1

λkPT (y)(y − yk)〉} =

min
x≥0

〈x, a + MT µ + AT ξ +

s
∑

k=1

λkPT (y)(y − yk)〉,

here and afterward, PT (y) denotes the transportation of the matrix P (y).

If there exists v ∈ S ∩ Ŷ such that

a + MT µ + AT ξ +

s
∑

k=1

λkPT (v)(v − yk) 6≥ 0 ∀λ ≥ 0, µ ≥ 0, ξ ≥ 0,

then

min
x≥0

〈x, a + µM + ξA +

s
∑

k=1

λkPT (v)(v − yk)〉 = −∞.

So, the supremum in (3.3) can be taken over, all λ ≥ 0, µ ≥ 0 and ξ ≥ 0 satisfying

a + MT µ + AT ξ +

s
∑

k=1

λkPT (v)(v − yk) ≥ 0 ∀v ∈ S ∩ Ŷ .

Clearly, under the condition

a + µM + ξA +

s
∑

k=1

λkPT (y)(y − yk) ≥ 0 ∀y ∈ S ∩ Ŷ ,

one has

min
x≥0

〈x, a + MT µ + AT ξ +

s
∑

k=1

λkPT (y)(y − yk)〉 = 0.

Thus we deduce from (3.3) that















β(S) = supλ,µ,ξ≥0
miny∈S∩Ŷ

[

bT y +
∑r

k=1
λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d

]

subject to

a + MT µ + AT ξ +
∑s

k=1
λkPT (v)(v − yk) ≥ 0 ∀v ∈ S ∩ Ŷ .

(3.4)

Let

Ω(S) := {(λ, µ, ξ) : λ ≥ 0, µ ≥ 0, ξ ≥ 0, Gv(λ, µ, ξ) ≥ 0 ∀v ∈ S ∩ Ŷ }.

Then Ω(S) is a closed convex set and

{

β(S) = sup
(λ,µ,ξ)∈Ω(S)

miny∈S∩Ŷ {bT y +
∑r

k=1
λk〈Qy + q, y − yk〉+

µT (Ny + p) + ξT d}.
(3.5)
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Since, by the assumption, Q is positive semidefinite, the function

bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d

is convex-linear on (S ∩ Ŷ ) × Ω(S). Then, by the well known minimax theorem, we can

interchange the supremum and infimum in (3.5) to obtain

β(S) = min
y∈S∩Ŷ

sup
(λ,µ,ξ)∈Ω(S)

{bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}.

Note that, since

bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d

is convex with respect to y, the function

gS(y) := sup
(λ,µ,ξ)∈Ω(S)

{bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}

is convex on S ∩ Ŷ . Hence

β(S) = min
y∈S∩Ŷ

gS(y)

is a convex program. 2

Remark 3.1 (a) If PT (y)y − PT (y)yk is concave on Y (in the sense that its every

component is concave), then Ω(S) is a polyhedral convex set, since it can be represented

by a finite affine inequalities. Indeed, since PT (y)y − PT (y)sk is concave, it is easy to

verify that

a + MT µ + AT ξ +

s
∑

k=1

λkPT (y)(y − yk) ≥ 0 ∀y ∈ Y ∩ S

if and only if

a + MT µ + AT ξ +

s
∑

k=1

λkPT (y)(y − yk) ≥ 0 ∀y ∈ V (Y ∩ S),

where V (Y ∩ S) denotes the vertex-set of Y ∩ S.

In the case S ⊆ Y the last inequalities can be written as

a + MT µ + AT ξ +

s
∑

k=1

λkPT (vj)(vj − yk) ≥ 0 ∀j = 1, 2, ..., r,

where v1, ..., vr are the vertices of S.

(b) From the presentation of Section 2 we can see that

• For bilevel quadratic convex problem, P (y) ≡ P (constant matrix).

• For optimization problem over the efficient set of an affine vector optimization

program PT (y)yk is affine and PT (y)y ≡ 0.
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3.2 Simplicial and Rectangular Bisections

At each iteration k of algorithm to be described below, a partition simplex (or rectangle)

will be bisected into subsimplices (or subrectangles) such a way so that as the algorithm

executes the obtained lower and upper bounds tend to the same limit. This can be

achieved by using the following exhaustive simplicial (or rectangular) bisection that is

commonly known in global optimization (see e. g. [14]).

Simplicial Bisection. We will use the following simplicial bisection [14].

Let Sk be a subsimplex of full dimension that we want to bisect at iteration k. Let

vk, wk be two vertices of Sk such that the edge joining these vertices is longest. Let

uk = tkvk + (1 − tk)wk with 0 < tk < 1. Let Sk1
, Sk2

be the subsimplices obtained

from Sk by replacing vk and wk respectively by uk. It is well known from [14] that

Sk = Sk1
∪ Sk2

, and that if {Sk} is an infinite sequence of nested simplices generated by

this simplicial bisection process such that 0 < δ0 < tk < δ1 < 1 for every k, then the

sequence {Sk} shrinks to a singleton.

Rectangular Bisection. Suppose that the partition set is a rectangle given by

Sk := {y = (y1, ..., ym) ∈ Rm : ai ≤ yi ≤ bi i = 1, ..., m}.

Let [aik
, bik

] be a longest edge of Sk and uik
= tik

aik
+ (1− ikbik

with 0 < tik
< 1. Then

we bisect Sk into two rectangles Sk1
and Sk2

where

Sk1
= {y ∈ Rm : ai ≤ yi ≤ bi ∀i 6= ik, aik

≤ yik
≤ uik

},

and

Sk2
= {y ∈ Rm : ai ≤ yi ≤ bi ∀i 6= ik, uik

≤ yik
≤ bik

}.
As before, we have Sk = Sk1

∪ Sk2
, and that if {Sk} is an infinite sequence of nested

rectangles generated by this bisection process such that 0 < δ0 < tk < δ1 < 1 for every

k, then the sequence {Sk} shrinks to a singleton.

Now we are in a position to describe the algorithm for solving AMPEC problem (P),

where Y is a polytope. We suppose that 〈P (y)x, y〉 is convex in Y with respect to y. In

the sequel, as usual, we call (x, y) an ǫ-global optimal solution to (P) if it is feasible and

f(x, y)−w∗ ≤ ǫ(|f(x, y)|+1) where w∗ stands for its optimal value. Having the vertices

y1, ..., ys of Y we can describe the algorithm as follows.

Algorithm 1.
Initialization. Choose a tolerance ǫ > 0 and a simplex or a rectangle S0 containing

Y . Compute the lower bound β(S0) by solving the convex program

β(S0) := min
y∈Ŷ

{

g0(y) := sup
(λ,µ,ξ)∈Ω(S0)

{bT y +

s
∑

k=1

λk〈Qy + q, y− yk〉+µT (Ny + p)+ ξT d}
}

.

Let y0 ∈ S0 be the obtained solution.

Solve the linear program

min
x

{f(x, y0) := aT x + bT y0}

subject to






Mx + Ny0 + p ≤ 0

Ax + d ≤ 0, x ≥ 0

〈P (y0)x + Qy0 + q, y0 − yk〉 ≤ 0 ∀k = 1, ..., s
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to obtain x0 (hence (x0, y0) is feasible). Let α0 := f(x0, y0) (an upper bound for the

optimal value w∗) and β0 := β(S0) (a lower bound for w∗). Take

Γ0 :=

{

{S0} if α0 − β0 > ǫ(|α0| + 1),
∅ otherwise

and go to iteration k with k := 0.

Iteration (k = 0, 1...). At the beginning of each iteration k we have family Γk of

partition sets to each element S ∈ Γk a real number β(S) has been computed that serves

as a lower bound for Problem (P) restricted in S. Moreover we have a lower bound βk

for w∗, a currently best feasible point (xk, yk) and an upper bound αk = f(xk, yk) for

w∗.

Step 1 (selection):

(i) If Γk = ∅ then terminate, (xk, yk) is an ǫ-global optimal solution and αk is the ǫ-
optimal value to Problem (P).

(ii) If Γk 6= ∅, then select Sk ∈ Γk such that

βk = β(Sk) = min{β(S) : S ∈ Γk}.

Step 2 (bisection): Use the simplicial bisection (if Sk is simplicial) or use the

rectangular bisection (if Sk is rectangular) to bisect Sk into two sets Sk1
and Sk2

.

Step 3 (bounding): For each newly generated sets Skj
(j = 1, 2) satisfying Skj

∩Ŷ 6= ∅,
compute

β(Skj
) := min

y∈Skj
∩Ŷ

gSkj
(y),

where

gSkj
(y) := sup

(λ,µ,ξ)∈Ω(Skj
)

{bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}.

Let ykj be the obtained solution.

Step 4 (updating upper bound): Solve the linear programs, one for each ykj , j = 1, 2

min
x

{f(x, ykj ) := aT x + bT ykj}

subject to






Mx + Nykj + p ≤ 0

Ax + d ≤ 0, x ≥ 0

〈P (ykj )x + Qykj + q, ykj − yk〉 ≤ 0 ∀k = 1, ..., s

to obtain new feasible points. Use these feasible points to update the upper bound. Let

(xk+1, yk+1) be the currently best feasible point among (xk, yk) and the newly generated

feasible points. Set αk+1 := f(xk+1, yk+1) and

Γk+1 :=
{

S ∈ (Γk\{Sk}) ∪ {Sk1
, Sk2

} : αk+1 − β(S) > ǫ(|αk+1| + 1)
}

.

Increase k by 1 and go to Step 1 of iteration k.
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Theorem 3.1 a) If Algorithm terminates at iteration k, then (xk, yk) is an ǫ-global
optimal solution to Problem (P).
b) If the algorithm does not terminate, then βk ր w∗, αk ց w∗ as k → +∞, and any
cluster point of the sequence {(xk, yk)} is a global optimal solution to (P).

Proof a) If the algorithm terminates at iteration k then Γk = ∅. This implies

that αk − βk ≤ ǫ(|αk| + 1). Since βk ≤ w∗ and αk = f(xk, yk) ≥ w∗, it follows that

f(xk, yk) − w∗ ≤ ǫ(|f(xk, yk)| + 1). Hence (xk, yk) is an ǫ-global optimal solution.

b) Suppose that the algorithm does not terminate. First, note that since Sk =

Sk1
∪ Sk2

, by the rule for computing lower bound β(Sk) we have

βk = β(Sk) ≤ β(Sk+1) = βk+1 ∀k.

Also, by definition of αk, we have αk+1 ≤ αk ∀k. Thus, both β∗ = lim βk and α∗ = limαk

exist and satisfying

β∗ ≤ w∗ ≤ α∗. (3.6)

Since the algorithm does not terminate, it generates an infinite sequence of nested parti-

tion sets that, for simplicity of notation, we also denote by {Sk}. Since the subdivision

is exhaustive, this sequence strinks to a singleton, say y∗ ∈ Ŷ . By the rule for computing

lower bound βk we have

βk = sup
τ≥0

min
y∈Sk∩Ŷ

m(y, τ) ≥ min
y∈Sk

m(y, τ) ∀τ ≡ (λ, µ, ξ) ≥ 0.

Since the sequence {Sk} shrinks to y∗ as k → +∞, we obtain

β∗ = lim βk ≥ m(y∗, τ) ∀τ ≥ 0.

By definition, since ϕ(yk) is an upper bound determined at iteration k and αk+1 is the

currently smallest upper bound obtained at this iteration, we can write

αk+1 ≤ ϕ(yk) ∀k.

From yk → y∗, it follows, by the continuity of ϕ (see e. g. [3, 5]), that

α∗ = limαk = limαk+1 ≤ lim ϕ(yk) = ϕ(y∗).

On the other hand, by Lagrangian duality theorem for the convex program determining

ϕ(y∗), we have

sup
τ≥0

m(y∗, τ) = ϕ(y∗).

Hence

α∗ ≤ ϕ(y∗) ≤ β∗

which together with (3.6) implies

β∗ = w∗ = α∗ = ϕ(y∗).

Let (x∗, y∗) be any cluster point of the sequence {(xk, yk)}. By the definition we have

αk = f(xk, yk). Since αk ց w∗, it follows from continuity of f that w∗ = f(x∗, y∗).

Hence (x∗, y∗) is a globally optimal solution to Problem (P). 2
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Remark 3.2 Note that when Q is positive semidefinite, the function

gS(y) := max
(λ,µ,ξ)∈Ω(S)

{bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}

is convex and subdifferentiable, since it is the maximum of a family of convex functions.

The subgradient of gS at a point y can be obtained by taking the convex envelope of the

gradients of those quadratic functions in the family at which gS(y) is attained [4].

3.3 Optimization over the Weakly Efficient Set

Now we return to the optimization over the weakly efficient set mentioned in the previous

section. By using again the necessary and sufficient condition due to Malivert (see

Theorem 2.1) the minimization problem over the weakly efficient set of a multicriteria

affine fractional program can be written as

min f(v)

subject to

v ∈ V, u ∈ U,

ρ
∑

i=1

〈

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], w − v
〉

≥ 0 ∀w ∈ V,

where

U := {u ∈ Rρ : u ≥ 0,

p
∑

i=1

ui = 1}

is a simplex in the criteria space.

Since
〈

ρ
∑

i=1

uiB
T
i v + ti)Ai − (AT

i v + si)Bi], w − v
〉

is affine with respect to w, we can easily check that

〈

ρ
∑

i=1

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], w − v
〉

≥ 0 ∀w ∈ V

if and only if

〈

ρ
∑

i=1

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], v
j − v

〉

≥ 0 ∀j = 1, ..., r,

where vj (j = 1, ..., r) are vertices of V . Thus we can write this problem as

{

min f(v) : s. t. v ∈ V, u ∈ U,
〈

∑ρ
i=1

ui[(B
T
i v + ti)Ai − (AT

i + si)Bi], v
j − v

〉

≥ 0 ∀j = 1, ..., r.
(3.7)

It is worth pointing out that, in contrast to the linear case, this problem does not

necessarily attain its optimal solution among the vertices of V .
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In this formulation we require that all vertices of V are known. This case appeared

already in some applications in economics (see e. g. [18, 27, 28]) where each component

vj of the decision variable v represents the ratio of ith quantity to be determined. In

such practical models, V is a simplex given by

V :=
{

vT = (v1, ..., vm) :

m
∑

i=1

vi = 1, vj ≥ 0 ∀j = 1, ..., m
}

,

whose vertices are easy to compute. Generally, let us assume that V is a polytope given

explicitly as

V := {v ∈ Rm : v ≥ 0, Gv − g ≤ 0}.
For simplicity of notation, for each vertex vj , we take

Mj(u, v) :=
〈

ρ
∑

k=1

uk[(BT
k v + tk)Ak − (AT

k v + sk)Bk], v − vj
〉

,

Gj(u) :=

ρ
∑

k=1

uk[(BT
k vj + tk)AT

k − (AT
k vj + sk)BT

k ],

gj(u) :=

ρ
∑

k=1

uk[tkAT
k − skBT

k ]vj .

Let G(u) denote the (r×m)-matrix whose ith row is Gj(u) (j = 1, ..., r), and g(u) denote

the r-dimensional vector whose jth entry is gj(u). Now let

H(u) :=

(

G
G(u)

)

, h(u) :=

(

g
g(u)

)

.

Under these notations we can write the problem (3.7) in the form

min{f(v) : H(u)v − h(u) ≤ 0, v ≥ 0, u ∈ U}. (3.8)

To apply the Lagrangian duality we take the Lagrangian function for this problem with

respect to the constraint H(u)v − h(u) ≤ 0, that is

L(λ, u, v) := f(v) + λT
(

H(u)v − h(u)
)

.

Using the fact that both H(u) and h(u) are affine, by a similar argument as in the proof

of Lemma 2.1, we can compute lower bounds by solving linear programs as stated by

the following lemma.

Lemma 3.2 Suppose f(v) = bT v. Let S be the subsimplex of the simplex U , and sj

(j = 1, ..., ρ) be the vertices of S. Then β(S) = min{β(sj) : j = 1, ..., ρ} where, for each
fixed sj, β(sj) is the optimal value of the linear program

β(sj) := max{−hT (sj)u : HT (sj)u + b ≥ 0}.

Having this lower bounding operation we can use Algorithm 1 with the exhaustive

simplicial bisection taking over subsimplices of the simplex U to solve problem (3.8).

Note that in this case, if (uS , vS) is a solution obtained by computing lower bound

β(S) according to Lemma 3.2, then vS is weakly efficient. Hence (uS , vS) can serve for

updating upper bound in the algorithm.
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4 A Relaxation Algorithm

In the algorithm presented in the preceding section we required that all vertices of the

polytope Y are known in advance. In the case computing all of these vertices is expensive,

we recommend to use another algorithm that allows that these vertices can be computed

iteratively. It is expected that the algorithm finds an approximate solution without

computing all of these vertices. In order to present the algorithm, suppose that we

know already some vertices v1, ..., vr of Y . Having these vertices we form the relaxation

problem














r∗ = min f(x, y) := aT x + bT y
s.t. Mx + Ny + p ≤ 0

Ax + d ≤ 0, x ≥ 0, y ∈ Y
〈P (y)x + Qy + q, vk − y〉 ≥ 0 ∀k = 1, ..., r.

(RP )

Clearly, the feasible domain of this problem contains that of Problem (P) presented in

Section 2 with X = {x ≥ 0 : Ax + d ≤ 0}. Applying Algorithm 1 to this problem

we obtain an ǫ-global optimal solution of (RP). If this solution satisfies the variational

inequality constraint, then it is also an ǫ-global solution to the original problem (P).

Otherwise, it violates at least one constraint. Then we add one or more violated con-

straints to obtain new relaxation problem and repeat the process. The algorithm can be

described in detail as follows.

Algorithm 2.
Step 1. Choose distinct vertices v1, ..., vr of Y and a tolerance ǫ > 0.

Step 2. Use Algorithm 1 to solve (RP) to obtain an ǫ-global optimal solution (xr, yr)

to (RP).

Step 3. Solve the linear program

min{〈P (yr)xr + Qyr + q, y〉 : y ∈ Y } (Lr)

to obtain an basis (vertex) solution yr+1.

(a) If

〈P (yr)xr + Qyr + q, yr〉 ≤ 〈P (yr)xr + Qyr + q, yr+1〉
(hence yr also solves (Lx)), then terminate: (xr , yr) is an ǫ-global optimal solution to

the original problem.

(b) Otherwise, take vr+1 := yr+1. Add vr+1 to the list of known vertices of Y to

form the new relaxation problem (RP) and go back to Step 2.

The following theorem shows validity and finiteness of this algorithm.

Theorem 4.1 (i) If the algorithm terminates at case (a) of Step 3, then (xr , yr) is
an ǫ-global optimal solution.

(ii) The algorithm terminates after a finite number of Step 2 yielding an ǫ-global
optimal solution to the original problem (P).

Proof (i) Note that Problem (P) can be written as

w∗ := min{f(x, y) := aT x + bT y}

subject to






Mx + Ny + p ≤ 0

Ax + d ≤ 0, x ≥ 0, y ∈ Y
〈P (y)x + Qy + q, v − y〉 ≥ 0 ∀v ∈ V (Y )
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while the relaxation problem is

r∗ := min{f(x, y) := aT x + bT y}

subject to






Mx + Ny + p ≤ 0

Ax + d ≤ 0, x ≥ 0, y ∈ Y
〈P (y)x + Qy + q, vk − y〉 ≥ 0 ∀k = 1, ..., r

with vk (k = 1, ..., r) being some vertices of Y .

In the case (a) we have

〈P (yr)xr + Qyr + q, yr〉 ≤ 〈P (yr)xr + Qyr + q, yr+1〉.

Since yr+1 is an optimal solution of (Lr), we have

〈P (yr)xr + Qyr + q, yr+1〉 ≤ 〈P (yr)xr + Qyr + q, y〉 ∀y ∈ Y.

Thus

〈P (yr)xr + Qyr + q, y − yr〉 ≥ 0 ∀y ∈ Y.

Hence (xr , yr) is feasible for (P). But, since (xr , yr) is an ǫ-global optimal solution to the

relaxed problem (RP), it must be an ǫ-global solution to (P).

(ii) Note that if yr+1 = vj for some j ≤ r, then we have the case (a), and therefore,

the algorithm terminates. Thus, if situation (a) is not the case, we have vr+1 6= vj for

all r and all j ≤ r, since the number of the vertices of Y is finite, the algorithm must

terminate with case (a). 2

5 Conclusion

We have considered a class of mathematical programs with affine variational inequality

constraints and presented some of its important special cases such as bilevel convex

programming, optimization over the efficient set and Cournot-Nash oligopolistic market

model. We have developed two decomposition branch-and-bound algorithms for globally

solving this class of mathematical programs with affine equilibrium constraints. The

proposed algorithms use the Lagrangian bound and exhaustive simplicial and rectangular

subdivisions widely used in global optimization. The main subproblems needed to be

solved in the algorithms are convex programs that can be solved by well developed

methods of nonsmooth convex programming.
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Abstract: Considering importance of stress concentration around holes and

notches of arbitrary shape in a given elastic medium for modern engineering, a

two dimensional model for a thermoelastic problem in an hexagon region with

an elliptic hole is established. The expressions for the temperature distribu-

tion and thermal stresses which have their importance in nuclear engineering

are obtained for the model. The five elementary function’s method in plane

thermoelasticity of multiply connected regions is used to obtain the solutions

for temperature distribution and thermal stresses. Numerical calculations are

computed assuming a central elliptic hole in the hexagonal region having ther-

mally insulated outer boundary under uniform heat generation. The obtained

results are depicted graphically.
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1 Introduction

The investigation of stress concentration around holes and notches of arbitrary shape

in a given elastic medium is very important for modern engineering. The high stress

concentration found at the edge of a hole is of great importance. The heat generating

cylinder with a hole are used in the construction of the reactor. The circular cylinder

with a square hole is an applicable problem in the construction of support of the bridge.

Polygon region with an elliptic hole have been used in nuclear reactor. As an example

holes in ships deck may be mentioned. When the hull of a ship is bent, tension or

compression is produced in the decks and there is a high stress concentration at the

holes. Under the cycles of stress produced by waves, fatigue of the metal at the over
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stressed portions may result finally in fatigue cracks. It is often necessary to reduce the

stress concentration at holes such as access holes in airplane wings and fuselages. The

contribution of several authors in this field is in [1]− [5]. Takeouti et al. studied problem

of a thick cylinder having a polygon hole, thermal stress distribution in a triangular,

square, hexagonal and octagonal region with a circular hole and theoretical thermal

stress distribution in square region with an elliptic hole in [6] − [11]. Deresiewicz [12]

calculated thermal stresses in a plate due to disturbance of uniform heat flow by a hole of

general shape. Florence et al. [13] studied the problem of an infinite plate under a steady-

state temperature distribution with uniform heat due to presence of an insulated ovaloid

hole. Chowdhury [14] obtained thermal stresses due to uniform temperature distributed

over a band of the cylindrical hole in an infinite body. Verba [15] et al. discussed static

problem of thermoelasticity for an infinite plate weakened by a rectangular hole. Pan [16]

found stresses in an infinite elastic plate containing two unequal circular holes. Chao et

al. [17] considered problems for an anisotropic thermoelastic body containing an elliptic

hole boundary.

With above background in this paper, a basic analysis is presented for thermal stress

analysis in multiply connected region and the solutions for the temperature and thermal

stress in a hexagon regions with an elliptic hole are obtained in the form of the infinite

series expressed by the elliptic co-ordinates. The unknown constants are determined

so as to satisfy boundary conditions and as they become enormous, therefore, we use

point matching technique, as an extension of five elementary function’s method in plane

thermoelasticity of multiply-connected regions [18], [19].

2 Formulation of problem

Consider a hexagon region as shown in Figure 2.1, with an elliptic hole at the centre.

Figure 2.1: Geometry of the Problem.

Assume that the region is thermally insulated at the outer boundary with an internal

convective boundary and is free from external forces. The region is made from an isotropic

linear elastic material then following Takeuti [18], its behaviour under the influence of in-

plane nonuniform temperature distribution which produces infinitesimal displacements

is governed by the equation

∇∇χτ = −k∇τ, (1)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(3) (2006) 245–256 247

where τ is temperature change from reference state, k =ε E for plane stress problem, ε is

coefficient of linear thermal expansion, E is Young’s modulus, χ is Airy’s stress function,

∇ = ∂2

∂x2
1

+ ∂2

∂x2
2

. The mean stresses in two dimensions are expressed in terms of stress

function χ by the equation

σij = (∇δij − ∂i∂j)χ, (2)

where δij is Kronecker delta, ∂i is partial differential with respect to i (i, j = 1, 2).

Steady-state heat conduction with internal heat source is governed by the equation

−λ∇τ = q, (3)

where q is heat generation per unit volume per unit time, λ is thermal conductivity.

As the region is multiply connected, the stress function χ can be expressed in terms of

five elementary functions χτ , χ0, χ1l, χ2l and χ3l so that

χ = χτ + χ0 +

3
∑

h=1

n
∑

l=1

Chlχhl, (4)

where Chl are constants, h = 1, 2, 3, l = 1, 2, . . . , n and h, l are not summed. Now,

functions given in equation (4) should have to satisfy the following equations

∇∇χτ = −k∇τ, (5)

∇∇(χ0, χhl) = 0. (6)

Boundary conditions: Boundary conditions on the m-th boundary,

(χτ )pm
= (χτ,ν)pm

= 0, (7)

(χ0)pm
= −

∫ pm

dx1

∫ pm

χ2νds +

∫ pm

dx2

∫ pm

χ1νds, (8)

(χ0,ν)pm
= −(ν1)pm

∫ pm

χ2νds + (ν2)pm

∫

χ1νds, (9)

(χhl)pm
= [(xh)pm

(δ1h + δ2h) + δ3h]δlm, (10)

(χhl,ν)pm
= [(νh)pm(δ1h + δ2h)]δlm, (11)

where ν is outward normal, ν1 = cos(x1, ν), ν2 = cos(x2, ν), pm is an arbitrary point

on m-th boundary, m = 1 corresponds to the elliptic boundary, m=0 corresponds to

the hexagon boundary. In the multiply-connected bodies general equations expressed

in stress components, are not sufficient for determining stresses and to get a complete

solution an additional investigation of displacement is necessary. The first investigation
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of this kind was made by J.H. Michell [20] which are known as Michell’s condition and

given by

∫

cl

[∇(χτ + χ0 +

3
∑

h=1

n
∑

l=1

Chlχhl) + kτ ]ds = 0, (12)

∫

cl

[(x2∂ν − x1∂s)(χτ + χ0 +

3
∑

h=1

n
∑

l=1

Chlχhl) + kτ ]ds = 0, (13)

∫

cl

[(x1∂ν + x2∂s)(χτ + χ0 +

3
∑

h=1

n
∑

l=1

Chlχhl) + kτ ]ds = 0. (14)

The function given in equation (4) should have to satisfy the equations (7)-(14). We

consider the resultant force and moment vanish on each boundary. Consequently, for

pure thermal problem of zero traction on the boundary gives χ0 = 0, and we are taking

l = 1. Thus (4) will take form as

χ = χτ +

3
∑

h=1

Chlχhl = 0. (15)

Boundary conditions for the temperature

τ = 0, on the elliptic region, (16)

τ,ν = 0, on the hexagon region. (17)

To discuss thermal stresses and temperature distribution around the elliptic hole,

use of elliptic co-ordinates is advantageous,therefore we are introducing the elliptic

coordinates as (α, β) are defined for 0 ≤ α ≤ ∞, 0 ≤ β ≤ 2π, x1 = c sinhα coshβ, x2 =

c coshα sinh β,

α = sinh−1

√

x2

1
+ x2

2
− c2 +

√

(x2

1
+ x2

2
− c2)2 + 4x2

1
c2

2c2
,

β = cosh−1

√

−x2

1
+ x2

2
− c2 −

√

(x2

1
+ x2

2
− c2)2 + 4x2

1
c2

2c2
.

The coordinate α is constant, and α = α1 on an ellipse of semi axes, c sinh α1 and taking

the semi axes as a and b. Hence c and α1 are calculated as c2 = b2−a2 and α1=tanh−1 a
b ,

and

x1 + ıx2 = c sinh(α + ıβ). (18)

Now any complex quantity can be written in the form, J cos θ + ıJ sin θ, where J and θ
are real. This together with equation (18) gives

J2 = c2(cosh 2α + cos 2β), tan θ = tanhα tan β.
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The expressions for thermal stress components given by equation (2), in the elliptic

co-ordinates are

σαα = J2
∂2χ

∂β2
− J

∂J∂χ

∂α∂α
+ J

∂J∂χ

∂β∂β
, (19)

σββ = J2
∂2χ

∂α2
− J

∂J∂χ

∂α∂α
− J

∂J∂χ

∂β∂β
, (20)

σαβ = −J2
∂2χ

∂α∂β
− J

∂J∂χ

∂α∂β
+ J

∂J∂χ

∂α∂β
. (21)

The expression for steady heat conduction with a constant heat generation given by (3)

in elliptic coordinate will become

J2∇⋆τ = − q

λ
. (22)

The displacement equations given by (5)-(6) in elliptic co-ordinates will be written as

J2∇⋆J2∇⋆χτ = kJ2∇⋆τ. (23)

J2∇⋆J2∇⋆χhl = 0. (24)

Boundary equations given by (7)-(11) in elliptic co-ordinates on the boundary (m=1,0)

are

(χτ )pm
= (

∂

∂n
χτ )pm

=
∂

∂α
χτ (∇α · n) = 0, (25)

(χ11, χ21, χ31)pm
= (c sinh α cosβ, c coshα sinβ, 1) δ1m, (26)

(
∂

∂n
χ11,

∂

∂n
χ21,

∂

∂n
χ31)pm

= (c coshα cosβ, c sinh α sin β, 1) δ1m. (27)

Michell’s conditions given by (12)-(14) in elliptic co-ordinates will become

∫

α=α1

∂

∂α
[J2∇⋆(χτ +

3
∑

h=1

Chlχhl) + kτ ]dβ = 0, (28)

∫

α=α1

(cosh α sin β
∂

∂α
− sinh α cosβ

∂

∂β
)[J2∇⋆(χτ +

3
∑

h=1

Chlχhl) + kτ ]dβ = 0, (29)

∫

α=α1

(cosh α sin β
∂

∂β
+ sinh α cosβ

∂

∂α
)[J2∇⋆(χτ +

3
∑

h=1

Chlχhl) + kτ ]dβ = 0, (30)

and boundary conditions given by (16)-(17) will become

τ = 0, on the elliptic (inner) region, (31)

∂τ

∂n
=

∂τ

∂α
(∇α · n̂) = 0, on the hexagon (outer) region, (32)

∇ = J2∇⋆, ∇⋆ =
∂2

∂α2
+

∂2

∂β2
.
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3 Solution of the problem

Introducing a new variable τr and τs such that

τ = τr + τs

together with equation (22) gives

∇⋆τs = 0, (33)

J2∇⋆τr = − q

λ
. (34)

The general plane harmonic temperature distribution in elliptic co-ordinates is expressed

in the following series

φ = Ā0 + B̄0α +

∞
∑

n=1

(Ā2n cosh 2nα + B̄2n sinh 2nα) cosnβ+

∞
∑

n=1

(C̄2n cosh 2nα + D̄2n sinh 2nα) sinnβ. (35)

Assuming symmetry of the region about x1 and x2-axis, the solution for τs is given as

follows

τs = Ā0 + B̄0α +

∞
∑

n=1

(Ā2n cosh 2nα + B̄2n sinh 2nα) cosnβ, (36)

where Ā0, B̄0, Ā2n and B̄2n are unknown constants. From equation (22) particular solu-

tion is

τr = − q2

8λ
(cosh 2α − cos 2β), (37)

Therefore

τ = − q2

8λ
(cosh 2α − cos 2β) + Ā0 + B̄0α +

∞
∑

n=1

(Ā2n cosh 2nα + B̄2n sinh 2nα) cos 2nβ. (38)

From the consideration for Michell’s conditions, the coefficients Ā0, Ā2n and B̄2n vanish

in the integration of the equation as to continuity of the displacement on the boundary

of the hole. These coefficients do not appear in the expressions of stress components. In

our problem coefficients appearing in expression of temperature distribution are of less

importance, except B̄0.

As the outer hexagon boundary is thermally insulated under the steady state condi-

tions, the amount of heat generation must carry away by inner elliptic boundary. The

condition of thermal insulation on outer boundary is

λ

∫

∂τ

∂n
ds = q

∫

(p tan
π

p
− πab), (39)
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where p represents the sides of polygon. Equation (39) together with (38) solved to

obtain the value of B̄0 as follows

B̄0 =

√
3

λπ
q. (40)

Now to calculate stress function we are introducing a new stress function

χτ = χτr + χτs. (41)

The equation (1) together with equation (41) will become

J2∇⋆J2∇⋆(χτr + χτs) =
kq

λ
. (42)

By solving the equation (42), we get particular solution as

χτr =
kqc4

512λ
(cosh 4α + cos 4β) (43)

and

∇∇χτs = 0. (44)

We consider the symmetry of the region about x1 and x2- axis. The general solution

for χτs is given by

χτs = A00 + B00α + C00(cosh 2α − cos 2β) + D00(α cosh 2α − α cos 2β − sinh 2α)+

∞
∑

n=1

[A2n0 cosh 2nα cos 2nβ + B2n0 sinh 2nα cos 2nβ + C2n0(cosh(2n + 2)α cos 2nβ+

B2n0 cosh(2n + 2)α cos 2nβ) + D2n0(sinh(2n + 2)α cos 2nβ +

B2n0 sinh(2n + 2)α cos 2nβ)]. (45)

Equations (43) and (45) together give the expression for the stress function χτ as

χτ = A00 + B00α + C00(cosh 2α − cos 2β) + D00(α cosh 2α − α cos 2β − sinh 2α)+

∞
∑

n=1

[A2n0 cosh 2nα cos 2nβ + B2n0 sinh 2nα cos 2nβ + C2n0(cosh(2n + 2)α cos 2nβ+

B2n0 cosh(2n + 2)α cos 2nβ) + D2n0(sinh(2n + 2)α cos 2nβ+

B2n0 sinh(2n + 2)α cos 2nβ)] +
kqc4

512λ
(cosh 4α + cos 4β). (46)

The remaining three constants Chl in equation (4) are to be determined so as to

satisfy the three relations of Michell’s conditions. Symmetry of the region about x1 and

x2 axis, temperature distribution of the body and Michell’s conditions give

C11 = C12 = 0, C31 = −8D00 + kB0c
2

8D03

. (47)
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Similarly, symmetry of the region about x1 and x2 axis, the general solution for χhl,

formed by the terms which satisfy the biharmonic equation in elliptic co-ordinates are

given respectively as

χ11 = A01 + B01 + C01(cosh 2α − cos 2β) + D01(α cosh 2α − α cos 2β − sinh 2α)+

A11(cosh 3α cosα + B11α sinh α cosβ) + D11(sinh 3α cosβ − α sinh α cos 3β)+

∞
∑

n=1

[An1 coshnα cosnβ + Bn1 sinh nα cosnβ + Cn1(cosh(n + 2)α cosnβ−

coshnα cos(n + 2)β) + Dn1(sinh(n + 2)α cosnβ − sinh nα cos(n + 2)β)], (48)

χ21 = E12α sinh α sin β + F12α coshα sin β+

G12(cosh 3α sin β − coshα sin 3β) + H12(sinh 3α sin β − α sinh α sin 3β)+

∞
∑

n=1

[En2 cosh nα sinnβ + Gn2(cosh(n + 2)α sin nβ − coshnα cos(n + 2)β)+

Hn2(sinh(n + 2)α sin nβ − sinh nα sin(n + 2)β)], (49)

χ31 = A03 + B03 + C03(cosh 2α − cos 2β) + D03(α cosh 2α − α cos 2β − sinh 2α)+

∞
∑

n=1

[A2n3 cosh 2nα cos 2nβ + C2n3(cosh(2n + 2)α cos 2nβ − cosh 2nα cos(2n + 2)β)+

D2n3(sinh(2n + 2)α cos 2nβ − sinh 2nα cos(2n + 2)β)]. (50)

Therefore from relation (15), we have

χ = χτ + C31χ31, (51)

which gives expression for χ as

χ = A00 + B00α + C00(cosh 2α − cos 2β) + D00(α cosh 2α − α cos 2β − sinh 2α)+

∞
∑

n=1

[A2n0 cosh 2nα cos 2nβ + B2n0 sinh 2nα cos 2nβ + C2n0(cosh(2n + 2)α cos 2nβ+

B2n0 cosh(2n + 2)α cos 2nβ) + D2n0(sinh(2n + 2)α cos 2nβ+

B2n0 sinh(2n + 2)α cos 2nβ)] +
kqc4

512λ
(cosh 4α + cos 4β) − 8D00 + kB0c

2

8D03

×

[A03 + B03 + C03(cosh 2α − cos 2β) + D03(α cosh 2α − α cos 2β − sinh 2α)+

∞
∑

n=1

[A2n3 cosh 2nα cos 2nβ + C2n3(cosh(2n + 2)α cos 2nβ − cosh 2nα cos(2n + 2)β)+
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D2n3(sinh(2n + 2)α cos 2nβ − sinh 2nα cos(2n + 2)β)]], (52)

where Aij , Bij , Cij , Dij , (i = 0, 1, 2, ....n, j = 0, 3), are constants appearing in thermal

stress function. Substituting (45) and (48) into (25)-(27), we show that χ31 and χτ

must satisfy the boundary conditions around elliptic hole (perimeter of elliptic hole) and

outer edge of hexagon. As these functions have been derived in order to satisfy the

requirements of symmetry of the region about both x1 and x2- axes it is only necessary

to consider the conditions of one quadrant of the region and as these functions are

expressed in the forms of infinite series, the conditional equations to get the unknown

constants become infinite. For this purpose the numerical calculations performed to get

the unknown constants Aij , Bij , Cij , Dij , (i = 0, 1, 2, ....n, j = 0, 3) become enormous.

Therefore, we use the point-matching technique to satisfy the boundary conditions. That

is, if we replace
∑

∞

n=1
in equation (45) and (48) by

∑n
n=1

approximately, the temprature

and stress functions contain 4(N+1) unknown constants. Hence we have to solve 4(N+1)

simultaneous equations.

We have obtained numerical values for unknown constants as follows

A00 = −4.47137×1015, B00 = −4.47137×1015, C00 = 2.6966×1014, D00 = −9.43448×1013,

A20 = 7.12448× 1013, B20 = −7.1724× 1013, C20 = −0.463993, D20 = 0.490715,

A03 = 1, B03 = C03 = D03 = A23 = B23 = C23 = D23 = 0.

The expressions for stress components σαα, σββ and σαβ are obtained substituting from

(52) into (19)-(21).

4 Numerical calculations and conclusion

To analyze the results given here, we consider a numerical example. The results depict

isothermals for the distributions of temperature and thermal stresses. For this purpose,

we take steel as thermoelastic material. The values for the different physical parameters

arising in the analysis in SI units are:

Thermal Conductivity, λ = 19.5W/moC,

Specific heat at constant volume, q = 0.560 × 103J/kgoC,
Linear thermal expansion, ε = 17.7 × 10−6 oC,
Y oung′s modulus, E = 195 × 109Pa.

Figure 4.2 exhibits the isothermals for the temperature distributions. The region

OABC in Figure 4.2, represents a quadrant of hexagon region with an elliptic hole. The

distribution of temperature is shown around an elliptic hole of semi-axes a = 0.495 and

b = 0.505. We see that contours are moving with the increase in distance.

Figure 4.3 depicts the variation of tangential stress σαβ around elliptic hole with

same semi-axes i.e. a = 0.495 and b = 0.505 and variation in thermal stresses in this

case also occur with distance. It is observed contour lines are moving with the variation

in distance.

Figure 4.4 depicts variation of principal stress σαα with distance along x1-axis while

Figure 4.5 depicts the variation of principal stress σββ with respect to distance along

x2-axis from elliptic hole. It can be seen from Figure 4.4 and Figure 4.5 that principal

stresses increase with distance but in opposite fashion.
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Figure 4.2: Isothermals for the elliptic hole. Figure 4.3: Variation of tangential stress σαβ.

Figure 4.4: Variation of principal stress σαα. Figure 4.5: Variation of principal stress σββ.
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We conclude that the isothermals of the temperature distribution around an elliptic

hole within a hexagon region under constant heat generation shows that the variation

in temperature occurs with distance and the pattern of variation is the same in the

temperature and tangential stress σαβ around elliptic hole. The variation in principal

stress σαα on x1-axis follows the same behaviour as σββ on x2-axis but in opposite

direction.
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ology, this paper presents a potentially useful duality theory and method for

solving fully nonlinear distributed-parameter control problems. The extended

Lagrange duality and the interesting triality theory proposed recently in finite

deformation theory are generalized into nonconvex dissipative Hamiltonian sys-

tems. It is shown that in canonical dual phase space, the solutions of chaotic

systems form an invariant set. Thus, an important bifurcation criterion is

proposed, which leads to an effective dual feedback control against chaotic vi-
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structure with both shear/damping actuators, and a dissipative Duffing sys-

tem.

Keywords: Duality; control theory; chaos; nonconvex analysis; Hamiltonian system.

Mathematics Subject Classification (2000): 37K05, 37K45.

1 Problems and Motivations

We shall study a duality approach for solving the following very general abstract dis-

tributed parameter problem ((P) for short),

(P) : ρ(u,tt + νu,t) + A(u, µ) = 0 ∀u ∈ Uk, (1)

where the feasible space Uk is a convex, non-empty subset of a reflexive Banach space U
over an open space-time domain Ωt = Ω × (0, tc) ⊂ Rn × R+, in which certain essential

boundary-initial conditions are prescribed. We assume that for a given distributed pa-

rameter control field µ(x, t) over Ωt, the mapping A(u, µ) is a potential operator from
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Uk into its dual space U∗, i.e., there exists a Gâteaux differentiable potential functional

Pµ(u) = P (u; µ), such that the directional derivative of Pµ at ū ∈ Uk in the direction δu
can be written as

δPµ(ū; δu) = 〈DPµ(ū), δu〉 ∀δu ∈ Uk,

where the operator DPµ(ū) = A(ū, µ) is the Gâteaux derivative of Pµ at the point ū;

the bilinear form 〈·, ·〉 : U × U∗ → R places U and U∗ in duality. By nonlinear operator

theory we know that the mapping A : Uk → U∗ is monotone if P is convex on Uk.
The problem (P) is said to be exactly controllable if for certain given initial data

(u0(x), v0(x)) in Uk and the final state (ūc(x), v̄c(x)) there exists suitable control function

µ(x, t) such that the solution u(x, t) of the problem (P) satisfies

u(x, tc) = ūc(x), u,t(x, tc) = v̄c(x) ∀x ∈ Ω. (2)

Dually, the problem (P) is said to be observable if, for certain given input control

µ(x, t), there exists an output function h(u) such that the initial state (u0(x), v0(x)) can

be uniquely determined from the output h(u(x, t)) over any interval 0 < t < tc. These

dual concepts play a crucial role in many control system design methodologies that have

evolved since the early 1960’s, such as pole placement, LQG (H2), H∞ and minimum

time optimization, realization theory, adaptive control, and system identification.
The abstract form of problem (P) covers a great variety of situations. Very often,

the total potential Pµ(u) can be written as

Pµ(u) = Φµ(u, Λ(u)) = Wµ(Λ(u)) − Fµ(u),

where Λ is a Gâteaux differentiable operator from U into another Banach space E ; the

functional Wµ(ξ) is the so-called stored (or internal) potential; while the functional Fµ(u)

represents the external potential of the system.
In convex Hamiltonian systems, the total potential Pµ(u) is convex and its Gâteaux

derivative A(u, µ) = DPµ(u) is usually an elliptic operator in conservative problems. In

linear field theory of mathematical physics, Λ is usually a gradient-like operator, say

Λ = grad, and Wµ(ξ) is a quadratic functional, for example,

Pµ(u) =

∫

Ω

1

2
a(x)|∇u|2 dΩ − Fµ(u),

where a(x) > 0 ∀x ∈ Ω. In this case, the governing equation (1) reads

ρ(u,tt + νu,t) = ∇ · (a(x)∇u) + DFµ(u) ∀(x, t) ∈ Ωt. (3)

It is a linear wave equation if Fµ(u) is a linear functional, say Fµ(µ) = 〈u , u∗(µ)〉, where

u∗(µ) is a given function of the input control field µ(x, t). If Fµ(u) is nonlinear, then

the governing equation (3) is semi-linear. Due to the efforts of more than thirty years

research by many well-known mathematicians and scientists, the mathematical theory

for distributed-parameter control systems have been well-established for convex Hamil-

tonian systems governed by partial differential equations with substantial applications

in mechanics and structures (see, for examples, Lasiecka and Triggiani, 1999). In linear

systems, there exists a very elegant duality relationship between the controllability and

observability (see Dolecki and Russell, 1977).
Duality is a fundamental concept that underlies almost all natural phenomena. In

classical optimization and calculus of variation, duality methods possess beautiful theo-

retical properties, potentially powerful alternative performances and wonderful relation-

ships to many other fields. The associated theory and extremality principles have been
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well studied for convex static and Hamiltonian systems (cf. e.g., Toland, 1978, 1979;

Auchmuty, 1983-2000; Strang, 1986; Rockafellar and Wets, 1997). There is a rapidly

growing interest in studying and applications of convex duality theory in optimal control

(cf., e.g., Mossino (1975), Chan and Ho (1979), Chan (1985), Chan and Yung (1987), Bar-

ron (1990), Tanimoto (1992), Lee and Yung (1997), Bergounioux et al. (1999), Arada

and Raymond (1999) and many others). The interesting one-to-one analogy between

the optimal control and engineering structural mechanics was discussed by Zhong et al.
(1993, 1999). Recently, the so-called primal-dual interior-point (PDIP) method has been

considered as a revolution in linear constrained optimization problems (cf. e.g., Gay et
al., 1998; Wright, 1998). It was shown by Helton et al. (1998) that the fundamental H∞

optimization problem of control can be naturally treated with the PDIP methods.

However, the beautiful duality relationship in convex Hamiltonian systems is broken

in nonconvex problems. In many applications of engineering and sciences, the total

potential of system is usually nonconvex and even nonsmooth. The exact controllability

and stability for nonconvex/nonsmooth systems are fundamentally difficult. For example,

in the shear-damping control of large deformed beam structures, the actuators could

be certain piezoelectric materials attached to the upper and lower beam surfaces, or

distributed “smart” dampers (see Figure 1.1). The external signals effect changes of the

properties of these actuators in such way that they produce shear forces µ±(x, t) and

damping force νw,t. Thus, µ±(x, t) and ν are, in effect, the applied distributed-control,

and the composite beam/actuator system is then an instance of an active, or “smart”

structure.
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Figure 1.1. Large deformed beam with shear actuators and dampers.

Since the repeated operation of these actuator devices results large shear deforma-

tions, the traditional Timoshenko beam model can not be used to the study of these

phenomena because it assumes that the shear deformation is a function of x and t alone

and does not vary in the lateral beam direction. In order to study control problems

of smart structures, several extended beams models have been proposed recently (see

Gao et al., 1997-2000), where the state variable space U = C1(Ωt; R
2) is a displace-

ment space over the space time domain Ωt = (0, ℓ) × (−h, h) × (0, tc). The element
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u = {χ(x, y, t), w(x, t)} ∈ U is a continuous, differentiable vector in R2 with domain Ωt,

where χ(x, y, t) measures the shear deformation of the beam at the point (x, y), while

w(x, t) is the deflection of the beam. In the case that the elastic beam subjected to the

transverse load f(x, t) undergone moderately large deformation, the total potential is a

nonconvex functional (Gao, 2000a)

Pµ(χ, w) =
1

2

∫

Ω

[(χ2

,x +
1

2
αw2

,x − λ)2 + β(χ,y + w,x)2] dΩ

−
∫ ℓ

0

(µ+(x, t)χ(x, h, t) + µ−(x, t)χ(x,−h, t) + f(x, t)w) dx.

If the beam is clamped at x = 0, simply supported at x = ℓ, and is subjected to a

compressive load at x = ℓ, the kinematical admissible space Uk ⊂ U can be defined as

Uk =

{(

χ
w

)

∈ U
∣

∣

∣

∣

w(0, t) = w(ℓ, t) = 0, χ(0, y, t) = χ,x(ℓ, y, t) = 0;

(χ, w) = (χ0, w0), (χ,t, w,t) = (χ̇0, ẇ0) at t = 0

}

,

where (χ0, w0) and (χ̇0, ẇ0) are initial conditions. In this case, the abstract governing

equation (1) is a coupled nonlinear partial differential system

ρ(w,tt + νw,t) =
(

3α2

2
w2

,x + β − λα
)

w,xx + β
2h |χ,x|±h + f ∀(x, t) ∈ (0, ℓ) × (0, tc),

χ,xx + βχ,yy = 0, ∀(x, y, t) ∈ Ωt,

χ,y(x,±h, t) + w,x(x, t) = ±µ±(x, t), ∀(x, t) ∈ (0, ℓ) × (0, tc),

(4)

where α, β > 0 are given material constants, λ ∈ R represents the axial load, and

|χ,x|±h = χ,x(x, h, t) − χ,x(x,−h, t) is the difference of the top and bottom shear dis-

placements. This coupled nonlinear partial differential system is a typical example in

finite deformation mechanics. Since the total potential of this system is nonconvex,

the system is very sensitive to initial conditions, driving forces and numerical methods

adopted. If the shear deformation can be ignored, the total potential can simply be

written as

P (w) =

∫

I

1

2

(

1

2
w2

,x − λ

)2

dx −
∫

I

fw dx. (5)

Clearly, if the beam is subjected to extension, then λ < 0 and the total potential P (w)

is strictly convex (see Figure 1.2 a). It possesses at most one global minimizer. In this

case, the system is stable. However, for compressive axial load, λ > 0, the total potential

P (w) is a so-called double-well energy (see Figure 1.2 b). In static buckling problem, this

nonconvex potential has three critical points: two local minimizers, corresponding to two

possible stable buckled states, and one local maximizer, corresponding to an unstable

buckled state. The global minimizer depends on the lateral load f .

If the compressed beam is subjected to a periodically dynamical load f(x, t), the

two local minimizers of Pµ become extremely unstable, and the beam is in dynami-

cal post-buckling state. If the deflection w(x, t) can be separated variables such that

w(x, t) = u(t)v(x), this post-buckling dynamical beam model leads to the well-known

Duffing equation

u,tt + νu,t = au(λ − 1

2
u2) + µ(t), (6)
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P(w)
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P(w) f <

f >

w

0

0

(a) λ < 0 (b) λ > 0

Figure 1.2. Convex and double-well potentials.

where a > 0 is a parameter. It is known that this equation is extremely sensitive to the

initial conditions. For certain given parameters λ, ν, and driving force µ(t), this equation

possesses the so-called chaotic solutions. Figure 5.4 shows that even for the same given

data, different numerical methods produce totally different results.

Control theory in finite deformation mechanics has emerged as the most challenging

and active research field in recent years. Mathematically speaking, the total potentials

of large deformed structures are generally nonconvex, or even nonsmooth. Very small

perturbations of the system’s initial conditions and parameters may lead the system to

different operating points with significantly different performance characteristics. This is

the one of main reasons why the traditional perturbation analysis, the direct approaches

and many standard control techniques cannot successfully be applied to nonconvex sys-

tems. Based upon these observations and in order to handle the nonlinear problem, a

school of new techniques has been developed (see, e.g., Fowler, 1989; Ott et al., 1990;

Chen and Dong, 1993; Ogorzalek, 1993; Antoniou et al., 1996; Ghezzi and Piccardi, 1997;

Koumboulis and Mertzios, 1996, 2000).

Duality theory in fully nonlinear variational problems was originally studied by Gao

and Strang (1989) for large deformation nonsmooth mechanics. In order to recover

the broken symmetry in fully nonlinear systems (see Definition 2.2), a so-called com-
plementary gap function was introduced. It was realized in post-buckling analysis of

nonlinear beam theory (Gao, 1997) that this function recovered the duality gap be-

tween the nonconvex primal problems and the Fenchel-Rockafellar dual problems. A

self-contained comprehensive presentation of the mathematical theory in general non-

convex systems was given recently by Gao (2000d), wherein, a so-called canonical dual
transformation method and associated triality theory have been proposed for solving

nonconvex/nonsmooth variational-boundary value problems. Recent results show that

certain very difficult constrained nonconvex problems in global optimization can be

solved completely by this method (see Gao, 2003, 2005). Compared with the traditional

analytic methods and direct approaches, the main advantages of this canonical dual

transformation method are the following:

(1) it converts nonconvex/nonsmooth constrained variational problems into smooth

unconstrained dual problems;

(2) it transforms certain fully nonlinear partial differential equations into algebraic



262 DAVID YANG GAO

systems;

(3) it provides powerful and efficient primal-dual alternative approaches.

The aim of the present article is to generalize the author’s previous results on non-

convex variational problems into nonconservative distributed-parameter control systems.

The rest of this paper is divided into four main sections. The next section set up notations

used in the paper. A general framework in fully nonlinear systems are discussed. Sec-

tion 3 presents an extended Lagrangian critical point theorem and the associated triality

theory in general nonconvex, nonconservative dynamical systems. The critical points in

fully nonlinear systems are classified. Section 4 is devoted mainly to the construction of

dual action in nonconvex dissipative Hamiltonian systems. The tri-duality proposed in

static boundary value problems is generalized into control problems. Section 5 discusses

application in dissipative Duffing system. A bifurcation criterion is proposed which can

be used for feedback controlling against chaotic vibrations.

2 Framework for Canonical Systems and Classification

Let U and U∗ be two real linear spaces, placed in duality by a bilinear form 〈u, u∗〉 :

U × U∗ → R. Let P : Us → R be a given functional, well-defined on a convex domain

Us ⊂ U such that for any given u ∈ Us, P (u) is Gâteaux differentiable. Thus, the Gâteaux

derivative DP of P at u ∈ Us is a mapping from Us into U∗. Let U∗

s ⊂ U∗ be the range

of the mapping DP : Us → U∗. If the relation u∗ = DP (u) is reversible on Us, then for

any given u∗ ∈ U∗

s , the classical Legendre conjugate functional P ∗ : U∗

s → R of P (u) is

defined by

P ∗(u∗) = {〈u, u∗〉 − P (u)| u∗ = DP (u)}.

The conjugate pair (u, u∗) is called the canonical duality pair on Us ×U∗

s ⊂ U ×U∗ if and

only if the equivalent relations

u∗ = DP (u) ⇔ u = DP ∗(u∗) ⇔ P (u) + P ∗(u∗) = 〈u, u∗〉. (7)

hold on Us × U∗

s .

The following notations and definitions, used in Gao (2000c,d), will be of convenience

in nonconvex control problems.

Definition 2.1 The set of functionals P : U → R which are either convex or concave

is denoted by Γ(U). In particular, let Γ̌(U) denote the subset of functionals P ∈ Γ(U)

which are convex and Γ̂(U) the subset of P ∈ Γ(U) which are concave.

The canonical functional space ΓG(Us) is a subset of functionals P ∈ Γ(Us) which are

Gâteaux differentiable on Us ⊂ U , such that the relation u∗ = DP (u) is reversible for

any given u ∈ Us. ♦

Clearly, if P ∈ ΓG(Us) and U∗

s is the range of the mapping DP : Us → U∗, then the

canonical duality relations (7) hold on Us × U∗

s .

Let (E , E∗) be an another pair of real linear spaces paired in duality by the second

bilinear form 〈· ; ·〉 : E × E∗ → R. The so-called geometrical operator Λ : U → E is a

continuous, Gâteaux differentiable operator such that for any given u ∈ Ua ⊂ U , there

exists an element ξ ∈ Ea ⊂ E satisfying the geometrical equation

ξ = Λ(u).
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The directional derivative of ξ at ū in the direction u ∈ U is then defined by

δξ(ū; u) := lim
θ→0+

ξ(ū + θu) − ξ(ū)

θ
= Λt(ū)u, (8)

where Λt(ū) = DΛ(ū) : U → E denotes the Gâteaux derivative of the operator Λ at ū.

For a given ξ∗ ∈ E∗, GΛ(u) = 〈Λ(u) ; ξ∗〉 is a real-valued functional of u on U . Its

Gâteaux derivative at ū ∈ U in the direction u ∈ U reads

δGΛ(ū; u) = 〈Λt(ū)u ; ξ∗〉 = 〈u , Λ∗

t (ū)ξ∗〉,

where Λ∗

t (ū) : E∗ → U∗ is the adjoint operator of Λt associated with the two bilinear

forms.

Let V and V∗ be velocity and momentum spaces, respectively, placed in duality by

the third bilinear form 〈∗ , ∗〉 : V × V∗ → R. For Newtonian systems, the kinetic energy

K : V → R and its Legendre conjugate K∗ : V∗ → R are quadratic forms

K(v) =

∫

Ω

1

2
ρv2 dΩ, K∗(p) =

∫

Ω

1

2
ρ−1p2 dΩ.

Thus the canonical physical relations between V and V∗ are linear:

p = DK(v) = ρv ⇔ v = DK∗(p) = ρ−1p.

Let Va ⊂ V be an admissible velocity space, in which certain essential initial/boundary

conditions are given, say

Va = {v ∈ V| v(x, 0) = v0 ∀x ∈ Ω}. (9)

Finally, we let M be an admissible control space over Ωt. For any given µ ∈ M, we

assume that there exists a Gâteaux differentiable functional Φµ : Ua × Ea ⊂ U × E → R,

such that the total potential P (u; µ) of the system can be written as

Pµ(u) = P (u; µ) = Φµ(u, Λ(u)). (10)

Thus, for a dissipative dynamical system with linear damping, the total action of the

system is a weighted nonconvex functional

Πµ(u) =

∫ tc

0

eνt [K(∂tu) − Φµ(u, Λ(u))] dt, (11)

which is well-defined on the feasible space Uk given by

Uk = {u ∈ Ua| Λ(u) ∈ Ea, ∂tu ∈ Va}. (12)

For the linear time-differential operator ∂t = ∂/∂t, its formal adjoint associated with this

weighted functional is an affine operator ∂∗

t = −∂/∂t− ν (see Gao (2000d)).

The following classification for distributed parameter control systems was originally

introduced in nonlinear variational/boundary value problems by Gao (1998, 2000d,2000).

Definition 2.2 Suppose that for the problem (P) given in (1), the associated total

potential Pµ(u) is well-defined on its domain Us ⊂ U . If the geometrical operator Λ :
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U → E can be chosen such that Pµ(u) = Φµ(u, Λ(u)), Φµ ∈ ΓG(Ua) × ΓG(Ea) and

Us = {u ∈ Ua| Λ(u) ∈ Ea}, then

(1) the transformation {P ;Us} → {Φµ;Ua×Ea} is called the canonical transformation,

and Φµ : Ua × Ea → R is called the canonical functional associated with Λ;

(2) the problem (P) is called geometrically nonlinear (or linear) if Λ : U → E is

nonlinear (or linear); it is called physically nonlinear (resp. linear) if the duality mapping

DΦµ : Ua × Ea → U∗

a × E∗

a is nonlinear (resp. linear); it is called fully nonlinear if it is

both geometrically and physically nonlinear. ♦

The canonical transformation plays a fundamental role in duality theory of noncon-

vex systems. Clearly, if Φµ ∈ ΓG(Ua) × ΓG(Ea) is a canonical functional, the Gâteaux

derivative DΦµ : Ua × Ea → U∗

a × E∗

a ⊂ U∗ × E∗ is a monotone mapping, i.e., the duality

relations

u∗ = DuΦµ(u, ξ), ξ∗ = DξΦµ(u, ξ) (13)

are reversible between the paired spaces (Ua,U∗

a ) and (Ea, E∗

a ), where DuΦµ and DξΦµ

denote partial Gâteaux derivatives of Φµ with respect to u and ξ, respectively. Thus, on

Uk the directional derivative of Pµ at ū in the direction u ∈ Uk can be written as

δPµ(ū; u) = 〈u , DuΦµ(ū, Λ(ū))〉 + 〈Λt(ū)u ; DξΦµ(ū, Λ(ū))〉
= 〈u , ū∗〉 + 〈u ; Λ∗

t (ū)ξ̄∗〉 ∀u ∈ Uk.

In terms of canonical variables, the governing equation (1) for fully nonlinear problems

can be written in the tri-canonical forms, namely,

(1) geometrical equations: v = ∂tu, ξ = Λ(u),
(2) physical relations: p = ρv, (u∗, ξ∗) = DΦµ(u, ξ),
(3) balance equation: ∂∗

t p − u∗ − Λ∗

t (u)ξ∗ = 0.
(14)

The framework for fully nonlinear systems is shown in Figure 2.1. Extensive illustrations

of the canonical transformation and the tri-canonical forms in mathematical physics and

variational analysis were given in the monograph by Gao (2000).

� 〈u , u∗〉 -

� -〈ξ ; ξ∗〉

Λt + Λc = Λ

?

Λ∗

t = (Λ − Λc)
∗

6

Eξ ∈

Uu ∈

E∗ ∋ ξ∗

U∗ ∋ u∗

Vv ∈ V∗ ∋ p� -〈v , p〉

∂
∂t = ∂t

6
∂∗

t = − ∂
∂t − ν

?

Figure 2.1. Framework in fully nonlinear Newtonian systems with linear damping.

In geometrically linear systems, where Λ : U → E is linear, we have Λ = Λt. For

dynamical problems, if the total potential Pµ is convex, the total action associated with
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the problem (P) is a d.c. functional, i.e., the difference of convex functionals:

Πµ(u) =

∫ tc

0

eνt[K(∂tu) − Pµ(u)] dt.

It was shown by Gao (2000d) that the critical point of Πµ either minimizes or maximizes

Πµ over the kinetically admissible space. The classical Hamiltonian associated with this

d.c. functional Πµ is a convex functional on the phase space U × V∗, i.e.

H(u, p) = K∗(p) + Pµ(u), (15)

The classical canonical forms for convex Hamilton systems are well-known

∂tu = DpH(u, p), ∂∗

t p = DuH(u, p).

Furthermore, if the canonical functional Φµ can be written in the form Φµ(u, ξ) =
1

2
〈ξ ; Cξ〉−Fµ(u), where C : E → E∗ is a linear symmetrical operator, then the governing

equations for linear system can be written as

ρ(u,tt + νu,t) + Λ∗CΛu = DFµ(u).

In mathematical physics, the geometrical mapping Λ is usually a gradient-like operator.

Then A = Λ∗CΛ is an elliptic operator if C is positive-definite.

In geometrically nonlinear systems, Λ 6= Λt, and the total potential Pµ(u) is usually

a nonconvex functional. In this case, we have the following operator decomposition

Λ(u) = Λt(u)u + Λc(u), (16)

where Λc : U → E is called the complementary operator of the Gâteaux derivative

operator Λt. By this decomposition, we have

〈Λ(u) ; ξ∗〉 = 〈u , Λ∗

t (u)ξ∗〉 − G(u, ξ∗), (17)

where G : U × E∗ → R is so-called complementary gap functional, defined by

G(u, ξ∗) = 〈−Λc(u) ; ξ∗〉 : U × E∗ → R. (18)

This functional was first introduced by Gao and Strang (1989) in finite deformation the-

ory to recover a broken symmetry in geometrical nonlinear systems. It is now understood

that this gap functional plays a key role in extremality analysis of nonconvex variational

problems.

As a typical example in nonconvex dynamical systems, let us consider the following

nonconvex variational problem over the domain Ωt = (0, ℓ) × (0, tc):

Πµ(u) =

∫

Ωt

eνt

[

1

2
ρu2

,t −
1

2
a(

1

2
u2

,x − µ)2 + uf

]

dxdt → sta ∀u ∈ Uk, (19)

where a, µ are given positive constants. This nonconvex problem also appears very often

in phase transitions and hysteresis.

First, we let Λ = ∂/∂x be a linear operator, and Pµ(u) = Wµ(Λu) − Fµ(u) with

Wµ(ǫ) =

∫ ℓ

0

1

2
a(

1

2
ǫ2 − µ)2 dx, Fµ(u) =

∫ ℓ

0

uf dx.
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Thus, Wµ(ǫ) is the so-called van der Waals’ double-well function of the linear “strain”

ǫ = u,x. Since Wµ(ǫ) is not a canonical functional, the constitutive equation ǫ∗ = DWµ(ǫ)
is not one-to-one. Thus, the Legendre conjugate of Wµ(ǫ) does not have a simple algebraic

expression. The Fenchel conjugate W ∗

µ(ǫ∗) of the double-well energy Wµ(ǫ), defined by

W ∗

µ (ǫ∗) = sup
ǫ
{〈ǫ ; ǫ∗〉 − Wµ(ǫ)},

is always a convex, lower semi-continuous functional. However, the well-known Fenchel-

Young inequality

Wµ(u,x) ≥ 〈u,x ; ǫ∗〉 − W ∗

µ(ǫ∗)

leads to a so-called duality gap between the primal problem and the Fenchel-Rockafellar

dual problem (see Gao, 2000d). This nonzero duality gap indicates that the well-

established Fenchel-Rockafellar duality theory can be used only for solving convex vari-

ational problems.

From the theory of continuum mechanics we know that in finite deformation prob-

lems, ǫ = u,x is not a strain measure (it does not satisfy the axiom of material frame-
indifference (cf. e.g., Gao, 2000d)). In order to recover this duality gap, we need

to choose a suitable geometrical operator Λ, say, Λ(u) = 1

2
u2

,x − µ, so that the non-

convex problem (19) can be put in our framework. In continuum mechanics, this

quadratic measure ξ = Λ(u) is a Cauchy-Green type strain. Thus, in terms of u and

ξ, Φµ(u, ξ) = Wµ(ξ) − Fµ(u) = 1

2
〈ξ ; aξ〉 − 〈u , f〉 is a canonical functional. The

Legendre conjugate of the quadratic functional Wµ(ξ) = 1

2
〈ξ ; aξ〉 is simply defined by

W ∗(ξ∗) = 1

2
〈a−1ξ∗ ; ξ∗〉. The operator decomposition (16) for this quadratic operator

reads

Λ(u) = Λt(u)u + Λc(u), Λt(u)u = u,xu,x, Λc(u) = −1

2
u2

,x − µ.

The complementary gap functional associated with this quadratic operator is a quadratic

functional of u

G(u, ξ∗) = 〈−Λc(u) ; ξ∗〉 =

∫ ℓ

0

1

2
u2

,xξ∗ dx.

For homogeneous boundary conditions, we have

〈Λt(u)u ; ξ∗〉 =

∫ ℓ

0

u,xu,xξ∗ dx = −
∫ ℓ

0

u(u,xξ∗),x dx = 〈u , Λ∗

t (u)ξ∗〉,

which leads to the adjoint operator Λ∗

t of Λt. Thus, the tri-canonical equations for this

nonconvex problem can be listed as the following.

v = ∂tu, ξ =
1

2
au2

,x − µ,

p = ρv, ξ∗ = DWµ(ξ) = aξ, u∗ = DFµ(u) = f,

p,t + νp = −Λ∗

t (u)ξ∗ + u∗ = (u,xξ∗),x + f.

Since the geometrical operator Λ is nonlinear, and the canonical constitutive equations

are linear, the nonconvex problem (19) is a geometrically nonlinear system.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(3) (2006) 257–279 267

3 Extended Lagrangian and Triality Theory

The triality theory in nonconvex problems was originally proposed by the author (Gao,

1997, 1999, 2000) in static finite deformation theory and global optimization. In this

section, we will generalize this interesting result into fully nonlinear dynamical systems.

We assume that for a given fully nonlinear system, there exists a Gâteaux differentiable

operator Λ : Ua → Ea such that the total potential of the system can be written as

Pµ(u) = Wµ(Λ(u)) − Fµ(u), (20)

where Wµ ∈ Γ̌G(Ea) is a convex canonical functional, while Fµ : Ua → R is a linear

functional. Thus, the primal problem (P) can be reformulated as the following.

Problem 3.1 (Primal Distributed-Parameter Control Problem) For a given

primal feasible space Uk = {u ∈ Ua| ∂tu ∈ Va, Λ(u) ∈ Ea} and the final state

(ūc(x), v̄c(x)), find the control field µ(x, t) ∈ M such that the solution ū(x, t) of the

variational problem

(P) : Πµ(u) =

∫ tc

0

eνt[K(∂tu) − Wµ(Λ(u)) + Fµ(u)] dt → sta ∀u ∈ Uk (21)

satisfying the controllability condition

(ū(x, tc), ū,t(x, tc)) = (ūc(x), v̄c(x)) ∀x ∈ Ω.

It is easy to check that the criticality condition DΠµ(ū) = 0 leads to the the canonical

governing equation

ρ(ū,tt + νū,t) = DFµ(ū) − Λ∗

t (ū)DWµ(Λ(ū)). (22)

By the Legendre-Fenchel transformation, the conjugate of Wµ(ξ) is defined by

W ∗

µ(ξ∗) = sup
ξ∈E

{〈ξ ; ξ∗〉 − Wµ(ξ)}.

Since Wµ : Ea → R is a convex canonical functional, W ∗

µ(ξ∗) is well-defined on the range

E∗

a of the duality mapping DW ∗

µ : Ea → E∗, the canonical duality relation

ξ∗ = DWµ(ξ) ⇔ ξ = DW ∗

µ (ξ∗) ⇔ Wµ(ξ) + W ∗

µ(ξ) = 〈ξ ; ξ∗〉

holds on Ea×E∗

a . Moreover, we have W ∗∗

µ (ξ) = Wµ(ξ) for all ξ ∈ Ea. Let Z = U×V∗×E∗

be the so-called extended canonical phase space.

Definition 3.1 Suppose that for a given problem (P), there exists a Gâteaux differ-

entiable operator Λ : U → E and canonical functionals Wµ ∈ Γ(E), Fµ ∈ Γ(U) such that

Pµ(u) = Wµ(Λ(u)) − Fµ(u). Then

(1) the functional Hµ : Z → R defined by

Hµ(u, p, ξ∗) = K∗(p) − W ∗

µ(ξ∗) + Fµ(u) ∈ Γ(U) × Γ(V∗) × Γ(E∗) (23)

is called extended canonical Hamiltonian density associated with Πµ;

(2) the functional Lµ : Z → R defined by

Lµ(u, p, ξ∗) = 〈∂tu , p〉 − 〈Λ(u) ; ξ∗〉 − Hµ(u, p, ξ∗) (24)
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is called extended Lagrangian density of (P) associated with Λ;

(3) the functional Ξµ : Z → R defined by

Ξµ(u, p, ξ∗) =

∫ tc

0

eνtLµ(u, p, ξ∗) dt (25)

is called extended Lagrangian form of (P). It is called canonical Lagrangian form if

Ξµ ∈ Γ(U) × Γ(V∗) × Γ(E∗). ♦

A point (ū, p̄, ξ̄∗) ∈ Z is said to be a critical point of Ξµ if Ξµ is Gâteaux-differentiable

at (ū, p̄, ξ̄∗) and DΞµ(ū, p̄, ξ̄∗) = 0. It is easy to find out that the criticality condition

DΞµ(ū, p̄, ξ̄∗) = 0 leads to canonical Lagrange equations

DΞµ(ū, p̄, ξ̄∗) = 0 ⇒
{

Λ(ū) = Dξ∗W ∗

µ (ξ̄∗), ∂tū = DK∗(p̄),

∂∗

t p̄ = Λ∗

t (ū)ξ̄∗ − DFµ(ū).
(26)

By the fact that Wµ and Fµ are canonical functionals, we know that, by the Legendre

duality theory, any critical point of Ξµ solves the variational problem (P).

Since Fµ(u) : Ua → R is a linear functional, by the Riesz representation theory we

know that there exists an element ū∗(µ) ∈ U∗ such that Fµ(u) = 〈u , ū∗(µ)〉. Thus, the

extended Lagrangian associated with (P) can be written as

Ξµ(u, p, ξ∗) =

∫ tc

0

eνt [〈∂tu , p〉 − 〈Λ(u) ; ξ∗〉 − K∗(p) + W ∗(ξ∗) + 〈u , ū∗(µ)〉] dt.

(27)

Note that Ξµ : V∗

a × E∗

a → R is a saddle functional for any given u ∈ Ua, we have always

the equality

inf
ξ∗∈E∗

a

sup
p∈V

∗
a

Ξµ(u, p, ξ∗) = sup
p∈V

∗
a

inf
ξ∗∈E∗

a

Ξµ(u, p, ξ∗) ∀u ∈ Ua. (28)

However, for any given (p, ξ∗) ∈ V∗

a × E∗

a , the convexity of Ξµ(·, p, ξ∗) → R depends on

the operator Λ. Let Lc ⊂ Za = Ua × V∗

a × E∗

a be a critical point set of Ξµ, i.e.

Lc = {(ū, p̄, ξ̄∗) ∈ Za| δΞµ(ū, p̄, ξ̄∗; u, p, ξ∗) = 0 ∀(u, p, ξ∗) ∈ Za}.

For any given critical point (ū, p̄, ξ̄∗) ∈ Lc, we let Zr = Ur × V∗

r × E∗

r ⊂ Za be its

neighborhood such that (ū, p̄, ξ̄∗) is the only critical point on Zr. The following triality

theorem should play an important role in the stability analysis of nonlinear dynamical

systems.

Theorem 3.1 (Triality Theorem) Suppose that for a given control field µ(x, t)
such that (ū, p̄, ξ̄∗) ∈ Lc is a critical point of Ξµ, and Zr is a neighborhood of (ū, p̄, ξ̄∗).

If 〈Λ(u) ; ξ̄∗〉 is concave on Ur, then on Zr,

Ξµ(ū, p̄, ξ̄∗) = min
u

max
p

min
ξ∗

Ξµ(u, p, ξ∗) = max
p

min
u

min
ξ∗

Ξµ(u, p, ξ∗). (29)

However, if 〈Λ(u) ; ξ̄∗〉 is convex on Ur, then on Zr we have either

Ξµ(ū, p̄, ξ̄∗) = min
u

max
p

min
ξ∗

Ξµ(u, p, ξ∗) = min
p

max
u

min
ξ∗

Ξµ(u, p, ξ∗)

= min
ξ∗,u

max
p

Ξµ(u, p, ξ∗) = min
p,ξ∗

max
u

Ξµ(u, p, ξ∗). (30)
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or

Ξµ(ū, p̄, ξ̄∗) = max
u

min
ξ∗

max
p

Ξµ(u, p, ξ∗) = max
p

min
ξ∗

max
u

Ξµ(u, p, ξ∗)

= min
ξ∗

max
u,p

Ξµ(u, p, ξ∗) = max
u,p

min
ξ∗

Ξµ(u, p, ξ∗). (31)

Proof Since W ∗

µ ∈ Γ̌(E∗

a ), K∗ ∈ Γ̌(V∗

a), if 〈Λ(u) ; ξ̄∗〉 is concave on Ur, then for a

given ξ̄∗, Ξµ ∈ Γ̌(Ur)× Γ̂(V∗

a) is a saddle functional. Thus the equality (29) follows from

the saddle-Lagrangian duality theorem (cf. e.g., Gao, 2000d). However, if 〈Λ(u) ; ξ̄∗〉 is

convex on Ur, then for any given ξ∗ ∈ E∗

r , the extended Lagrangian Ξµ ∈ Γ̂(Ur) × Γ̂(V∗

a)

is a super-critical functional (see Gao, 2000d). By the super-Lagrangian duality theorem
proved in Gao (2000d), we have either (30) or (31). 2

4 Dual Action and Tri-Duality in Dissipative Systems

The goal of this section is to develop a dual approach for solving the distributed parameter

control problem (P). For any given u ∈ Uk, the extended Lagrangian density Ξµ(u, p, ξ∗)
is a saddle functional on V∗ × E∗, and we have

Πµ(u) = sup
p∈V∗

inf
ξ∗

∈E
∗
Ξµ(u, p, ξ∗) ∀u ∈ Uk. (32)

On the other hand, the dual action Πd
µ : V∗

a × E∗

a → R can be defined by

Πd
µ(p, ξ∗) = sta{Ξµ(u, p, ξ∗)| ∀u ∈ Ua}

= FΛ

µ (p, ξ∗) −
∫ tc

0

[K∗(p) − W ∗

µ(ξ∗)] dt, ∀(p, ξ∗) ∈ V∗

a × E∗

a , (33)

where FΛ

µ (p, ξ∗) is the so-called Λ-dual functional of Fµ(u) defined by

FΛ

µ (p, ξ∗) = sta
u∈Ua

∫ tc

0

eνt[〈∂tu , p〉 − 〈Λ(u) ; ξ∗〉 + Fµ(u)] dt. (34)

Since Fµ(u) = 〈u , ū∗(µ)〉 is a linear functional, for any given (p, ξ∗) ∈ V∗

a × E∗

a and

the applied control µ ∈ M, the solution ū of this stationary problem (34) satisfies the

balance equation

∂∗

t p − Λ∗

t (ū)ξ∗ + ū∗(µ) = 0 in Ωt. (35)

For geometrically linear conservative systems, where Λ is a linear operator, we have

FΛ

µ (p, ξ∗) = up|t=tc

t=0
, s.t. Λ∗ξ∗ + p,t = ū∗(µ). (36)

In this case,

Πd
µ(p, ξ∗) = up|t=tc

t=0
+

∫ tc

0

eνt[W ∗

µ(ξ∗) − K∗(p)] dt (37)

is the classical complementary action in linear engineering dynamical systems (see Tabar-

rok and Rimrott, 1994) defined on the dual feasible space

Ts = {(p, ξ∗) ∈ Va × E∗

a | p,t + Λ∗ξ∗ = ū∗(µ)}.
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In fully nonlinear systems, we let Ts ⊂ V∗

a ×E∗

a be a subspace such that for any given

(p, ξ∗) ∈ Ts, the critical point ū can be determined by (35) as ū = ū(p, ξ∗) and the dual

action Πd
µ is well defined by (33). Thus, by the operator decomposition Λ = Λt + Λc, we

have

FΛ

µ (p, ξ∗) = eνtup|t=tc

t=0
+

∫ tc

0

eνtGd(p, ξ∗) dt, s.t. ∂∗

t p = Λ∗

t (ū)ξ∗ − u∗(µ), (38)

where Gd(p, ξ∗) = 〈−Λc(ū) ; ξ∗〉 is the so-called pure complementary gap functional.

Then, the problem dual to the primal control problem (P) can be proposed as the

following.

Problem 4.1 (Dual Distributed-Parameter Control Problem) For a given

dual feasible space Ts and the final state (uc(x), vc(x)), find the control field µ(x, t) ∈ M
such that the dual solution (p̄(x, t), ξ̄∗(x, t)) of the dual variational problem

(Pd) : Πd
µ(p, ξ∗) → sta ∀(p, ξ∗) ∈ Ts (39)

and the associated state ū(x, t) satisfying the controllability condition

(ū(x, tc), ρ
−1p̄(x, tc)) = (uc(x), vc(x)) ∀x ∈ Ω. (40)

Lemma 4.1 Let Ξµ(u, p, ξ∗) be a given extended Lagrangian associated with (P) and
Πd

µ(p, ξ∗) the dual action defined by (33). Suppose that Zr = Ur×V∗

r ×E∗

r is an open subset

of Za and (ū, p̄, ξ̄∗) ∈ Zr is a critical point of Ξµ on Zr, Πµ is Gâteaux differentiable at
ū, and Πd

µ is Gâteaux differentiable at (p̄, ξ̄∗). Then DΠµ(ū) = 0, DΠd
µ(p̄, ξ̄∗) = 0, and

Πµ(ū) = Ξµ(ū, p̄, ξ̄∗) = Πd
µ(p̄, ξ̄∗). (41)

The proof of this lemma was given by the author in parametrical variational analysis

(Gao, 1998).

Lemma 4.1 shows that the critical points of the extended Lagrangian are also the

critical points for both the primal and dual variational problems.

Theorem 4.1 (Tri-Duality Theorem) Suppose that for a given control field
µ(x, t) such that (ū, p̄, ξ̄∗) ∈ Lc is a critical point of Ξµ and Zr = Ur × V∗

r × E∗

r is a
neighborhood of (ū, p̄, ξ̄∗) such that V∗

r × E∗

r ⊂ Ts. If 〈Λ(u) ; ξ̄∗〉 is concave on Ur, then

Πµ(ū) = min
u∈Ur

Πµ(u) iff Πd
µ(p̄, ξ̄∗) = max

p∈V∗
r

min
ξ∗

∈E
∗
r

Πd
µ(p, ξ∗). (42)

However, if 〈Λ(u) ; ξ̄∗〉 is convex on Ur, then

Πµ(ū) = min
u∈Ur

Πµ(u) iff Πd
µ(p̄, ξ̄∗) = min

(p,ξ∗)∈Ts

Πd
µ(p, ξ∗); (43)

Πµ(ū) = max
u∈Ur

Πµ(u) iff Πd
µ(p̄, ξ̄∗) = max

p∈V
∗
r

min
ξ∗

∈E
∗
r

Πd
µ(p, ξ∗). (44)

Proof This theorem can be proved by combining Lemma 4.1 and the triality theorem.

2
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5 Feedback Control Against Chaos in Dissipative Duffing System

As we have shown in the first section of this paper that the governing equations for

shear/damping control of large deformed nonlinear beam structure are eventually equiv-

alent to the well-known Duffing system. As a typical example, let us consider the very

simple nonconvex dynamical problem over the time domain I = (0, tc)

Πµ(u) =

∫

I

eνt[ρu′2 − 1

2
a(

1

2
u2 − λ)2 + µu] dt → sta ∀u ∈ Uk. (45)

For initial-value problem of this one-dimensional dynamical system, the kinematically

admissible space Uk can simply be given as

Uk = {u ∈ L4(0, tc)| u′ ∈ L2(0, tc), u(0) = u0, u′(0) = v0}.

The criticality condition of Πµ leads to the dissipative Duffing equation

ρ(u′′ + νu′) = au(λ − 1

2
u2) + µ(t), ∀t ∈ I, u ∈ Uk. (46)

In terms of the nonlinear canonical measure ξ = Λ(u) = 1

2
u2, the energy density Wµ(ξ)

and its conjugate W ∗

µ(ς) are convex functions:

Wµ(ξ) =
1

2
a(ξ − λ)2, W ∗

µ(ς) =
1

2a
ς2 + λς.

The extended Lagrangian for this nonconvex system is

Ξµ(u, p, ς) =

∫

I

eνt

(

pu′ − ς(
1

2
u2 − λ) − 1

2ρ
p2 +

1

2a
ς2 + µu

)

dt. (47)

The criticality condition DuΞµ(ū, p, ς) = 0 leads to the equilibrium equation

p′ + νp + ūς = µ ∀t ∈ I.

Clearly, the critical point ū = (µ − p′ − νp)/ς is well-defined for any nonzero ς. Thus,

the dual feasible space can be defined as

Ts =

{

(p, ς) ∈ C1(I)

∣

∣

∣

∣

p(0) = ρv0, −λa ≤ ς(t) < +∞,
ς(t) 6= 0 ∀t ∈ I, ς(0) = a(1

2
u2

0
− λ)

}

.

Substituting ū = (µ − p′ − νp)/ς into Ξd
µ, the dual action is obtained as

Πd
µ(p, ς) = sta

u∈Ua

Ξµ(u, p, ς)

= eνtcp(tc)u(tc) − ρv0u0 +

∫

I

eνt[
1

2a
ς2 + λς +

(p′ + νp − µ)2

2ς
− 1

2ρ
p2] dt, (48)

which is well defined on Ts. The criticality condition for Πd
µ leads to the dual Duffing

system in the time domain I ⊂ R

(

1

ς
(p′ + νp − µ)

)

′

+
1

ρ
p = 0, (49)
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ς2

(

1

a
ς + λ

)

=
1

2
(µ − p′ − νp)2. (50)

This system consists of the so-called differential-algebraic equations (DAE’s), which arise

naturally in many applications (cf. Brenan et al, 1996). Although the numerical solution

of these types of systems has been the subject of intense research activity in the past

few years, the solvability of each problem depends mainly on the so-called index of the

system. Clearly, the algebraic equation (50) has zero solution ς = 0 if and only if

g = (µ − p′ − νp) = 0. Otherwise, for any nonzero g(t) = µ(t) − p′(t) − νp(t), the

algebraic equation (50) has at most three real roots ςi(t) (i = 1, 2, 3), each of them leads

to the state solution ui(t) = (µ(t) − p′i(t) − νpi(t))/ςi(t).

Theorem 5.1 (Stability and Bifurcation Criteria) For a given parameter λ >
0, initial data (u0, v0) and the input control µ(t), if at a certain time period Is ⊂ I =

(0, tc),

λp(t) =
3

2

(

µ(t) − p′(t) − νp(t)

a

)2/3

> λ, t ∈ Is (51)

then the Duffing system possesses only one solution set (ū(t), p̄(t), ς̄(t)) satisfying ς̄(t) >
0 ∀t ∈ Is, and over the period Is,

Πµ(ū) = min Πµ(u) iff Πd
µ(p̄, ς̄) = min Πd

µ(p, ς), (52)

Πµ(ū) = maxΠµ(u) iff Πd
µ(p̄, ς̄) = max

p
min

ς
Πd

µ(p, ς). (53)

However, if at a certain time period Ib ⊂ I = (0, tc) we have λp(t) < λ, then, the
system possesses three sets of different solutions (ūi, p̄i(t), ς̄i(t)), i = 1, 2, 3. In the case
that the three solutions ςi(t) are in the following ordering

−aλ ≤ ς̄3(t) ≤ ς̄2(t) ≤ 0 ≤ ς̄1(t) ∀t ∈ Ib, (54)

then over the period Ib, the solution set (ū1(t), p̄1(t), ς̄1(t)) satisfies either (52) or (53);
while the solution sets (ūi(t), p̄i(t), ς̄i(t)) (i = 2, 3) satisfy

Πµ(ūi) = min
u

Πµ(u) = max
p

min
ς

Πd
µ(p, ς) = Πd

µ(p̄i, ς̄i), i = 2, 3. (55)

This theorem can be proved by combining the theorem given by Gao (2000d, Theorem

3.4.4) and the triality theorem.

Remark 5.1 By Theorem 3.4.4 proved by the author (Gao, 2000d), for any given

continuous function g(t), if ς̄i(t) (i = 1, 2, 3) are the three solutions of the dual Euler-

Lagrange equation (50) in the order of (54), then the associated ū1(t) is a global minimizer

of the total potential

Pµ(u) =

∫

I

eνt

[

1

2
a(

1

2
u2 − λ)2 − g(t)u

]

dt,

while ū2(t) is a local minimizer of Pµ and ū3(t) is a local maximizer of Pµ.

In algebraic geometry, the dual Euler-Lagrange equation (50) is the so-called singular
algebraic curve in (ς, g)-space, i.e. ς = 0 is on the curve (see Silverman & Tate, 1992,
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p. 99). With a change of variables, the singular cubic curve (50) can be given by the

well-known Weierstrass equation

y2 = x3 + αx2 + βx + γ,

where α, β, γ ∈ R are constants. If we let Cns be a set consisting of non-singular points

on the curve, then Cns is an Abelian group. This fact in algebraic geometry is very

important in understanding the stability of the nonconvex dynamical systems. Actually,

from Figure 5.1 we can see clearly that for a given input control, if λp(t) < λ, the cubic

algebraic equation (50) possesses three different real solutions for ς(t). The two negative

solutions ς̄(t) are the sources that lead to the chaotic motion of the system. Thus, the

inequality (51) provides a bifurcation (or chaotic) criterion for the Duffing system. Figure

5.1 also shows that if the continuous function g(t) = µ(t)− p′(t)− νp(t) is one-signed on

certain time interval Ib ⊂ I = (0, tc), each root ς̄(t) of (50) is also one-signed on Ii.

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

ς

λp > λ

λp = λ

λp < λ

g

Figure 5.1. Invariant set of dual solutions and bifurcation criterion for Duffing equation (50).

Theoretically speaking, for the given same data, the Duffing equation (46) and its

dual system (49-50) should have the same solution set. Numerically, the primal and dual

Duffing problems give quite different results (see Figure 5.2 (a)). For the given data

a = 1, λ = 1.5, u0 = 2, v0 = 1.4 and ν = 0, Figures 5.2 and 5.3 show the numerical primal

(solid line) and dual (dashed line) solutions. From the dual trajectories in the dual phase

space ς-p-p,t (Figure 5.3 (c-d)) we can see that at the point ς3(t) = −aλ, if the function

g(t) = µ(t) − p,t(t) − νp(t) changes its sign, the state u(t) crosses the t-axis and falls

down to the another potential well in the phase space Z = U × V∗. The bifurcation is

then occurred.

For the forced vibration with linear damping, the numerical results are extremely

sensitive to the parameters. Figure 5.4 shows that the trajectories are chaotic in phase

spaces q-p (Figure 5.4 (b)) and ς-p-g ( Figure 5.4 (d)). However, trajectory in the dual

phase space ς-g is an invariant (see Figure 5.4 (c)), which depends only on the parameters

λ, a and the amplitude of the force g(t).

As it is known that the nonconvex dynamical systems are very sensitive to both the

parameters and numerical methods used. For the given periodic driving force µ(t) =

1.5 cos(2.75t) and ν = 0.1, Figure 5.4 shows that different numerical solvers in MATLAB

produce very different “chaotic results”. However, solutions in dual phase space ς-g form

an invariant set (Figure 5.4 (c)). This important fact shows that the triality theorem

will play an important role in stability and bifurcation analysis of chaotic systems.
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Figure 5.4. Chaos and invariant set: numerical results by two differential numerical methods in MATLAB.
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Based on the canonical dual transformation method and theorems developed in this

paper, the dual feedback control against the chaotic vibration of the Duffing system can

be suggested as the following.

1. Periodic vibration on the whole phase plane.
Choosing the control parameters µ and ν such that the function g(t) = µ−p′(t)−νp(t)

changes its sign at the point ς̄3(t) = −aλ.
2. Unilateral vibrations on half phase planes (either u(t) > 0 or u(t) < 0).

There are two methods: (1) choosing the control parameters µ and ν such that the

function g(t) = µ − p′(t) − νp(t) does not change its sign at the point ς̄3(t) = −aλ; (2)

choosing µ and ν such that

λp(t) =
3

2

(

µ(t) − p′(t) − νp(t)

a

)2/3

> λ ∀t ∈ I. (56)

By the bifurcation criterion (Theorem 5.1) we know that if λp > λ, the total potential

of this dissipative Duffing equation is convex and the system is stable.

6 Concluding Remarks

The concept of duality is one of the most successful ideas in modern mathematics and

science. The inner beauty of duality theory owes much to the fact that many different

natural phenomena can be put in a unified trio-canonical framework (see Gao, 2000d,

2001). By the fact that the canonical physical variables appear always in pairs, the

canonical dual transformation method can be used to solve many problems in natural

systems. The associated extended Lagrange duality and triality theories have profound

computational impacts. For any given nonlinear problem, as long as there exists a ge-

ometrical operator Λ such that the trio-canonical forms can be characterized correctly,

the canonical dual transformation method and the associated triality principles can be

used to establish nice theories and to develop powerful alternative algorithms for robust

feedback control of chaotic systems. Actually, it has been shown that in global opti-

mization many difficult nonconvex minimization problems in n-dimensional space can be

converted into certain canonical dual problems (either convex minimization or concave

maximization) in ONE-dimensional space, therefore, a class of problems have been solved

completely, including the well-known quadratic minimization over a sphere (Gao, 2004),

polynomial minimization (Gao, 2005), and quadratic programming with box constraints

(Gao, 2006). In general n-dimensional distributed parameter systems, the dual algebraic

equation (50) will be a tensor equation and the stability of the nonconvex system will

depend on the eigenvalues of symmetrical canonical stress tensor field ς(x, t) (see Gao,

2001). The triality theory can be used for studying the controllability, observability and

stability of distributed parameter control problems.
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1 Introduction

In recent years there has been intensive research on systems governed by impulsive dif-

ferential equations and impulsive functional equations in Banach spaces (see [1], [2], [3],

[6], and the references therein). This is probably due to the fact that though a vast

majority of physical systems are described by differential or difference equations, a more

realistic model of a physical system can be constructed using differential equations with

time delay and impulsive effects in describing the evolution and discrete events occur-

ring in the system. In fact, many evolution processes in nature are characterized by the

fact that there are inherently time delays and at certain moments of time experience an

abrupt change of state. Most papers in the literature dealt with ordinary differential

systems and semilinear differential equations. Their emphasis and advantage lie in the

fact that solutions of these systems are being represented by means of integration for-

mula via appropriate semigroup of operators. It seems that only a few papers discuss

the strongly nonlinear impulsive functional differential system, which cover quasilinear

partial differential equations with time delay.
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Let D = {t1 < t2 < · · · < tm} be fixed impulsive points in (0, T ). In this paper we

study a class of strongly nonlinear impulsive differential equations with time delay in the

form






ẋ(t) +A(t, x) = f(t, xt), t ∈ [0, T ] \D,
x(t) = φ(t), t ∈ [−r, 0],
△x(ti) = Gi(x(ti)), i = 1, 2, · · · ,m.

(1.1)

Here A is a nonlinear monotone operator and f is a nonlinear nonmonotone perturbation,

and Gi denotes the jump operator defined as

Gi(x(ti)) = x(ti+) − x(ti−) = x(ti+) − x(ti),

φ ∈ PF and xt(θ) = x(t+ θ), θ ∈ [−r, 0]. The space PF will be introduced in Section 2.

We present here sufficient conditions for the existence of solution to this particular

class of nonlinear impulsive functional equations in an appropriate infinite dimensional

Banach space. The results are obtained by using the theory of nonlinear functional

analysis and a fixed point theorem due to Leray-Schauder.

The rest of the paper is organized as follows. In Section 2, we introduce some basic

notations. In Section 3, we prove the existence of solutions for a class of nonimpulsive

delay differential equations in Banach spaces. In Section 4, we establish the new existence

result for a class of nonlinear impulsive functional differential equation in Banach spaces.

Finally, we conclude with an example to illustrate our results in Section 5.

2 Preliminaries

Let H be a separable Hilbert space and V be a dense subspace of H having the structure

of a reflexive Banach space with continuous embedding, so that V →֒ H →֒ V ∗ forms a

Gelfand triple. We assume the injection V →֒ H is continuous and compact. The system

model considered here is based on this Gelfand triple (see [1] or Chapter 23 of [9]).

Let I ≡ [0, T ], r > 0, and m > 0 be given. The norm in any Banach space X will be

denoted by ‖ · ‖X . Let PF (X) = {ψ : [−r, 0] → X ; ψ is continuous everywhere except

for a finite number of points ˜t at which ψ(˜t−) and ψ(˜t+) exist and ψ(˜t−) = ψ(˜t)} be

endowed with the norm

‖ψ‖PF (X) = sup{‖ψ(θ)‖H , θ ∈ [−r, 0]}.

For any continuous function x defined on [−r, T ] \D and t ∈ [0, T ], we denote by xt the

element of PF ≡ PF (H) defined by

xt(θ) = x(t+ θ), θ ∈ [−r, 0].

Let 1 < q ≤ p < +∞ satisfying 1

p + 1

q = 1. The space Wpq(I) ≡ Wpq is defined as

follows:

Wpq(I) = {x|x ∈ Lp(I, V ), ẋ ∈ Lq(I, V
∗)}

with the norm

‖x‖2

Wpq
= ‖x‖2

Lp(I,V )
+ ‖ẋ‖2

Lq(I,V ∗)
,

where ẋ denotes the derivative of x in the generalized sense. {Wpq, ‖ · ‖Wpq
} is a Banach

space and the embedding Wpq →֒ C(I,H) is continuous. If the embedding V →֒ H is

compact, the embedding Wpq →֒ Lp(I,H) is also compact (see [9] and [1]). Similarly, we
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can define Wpq([s, u]) for 0 ≤ s < t < u ≤ T . Furnished with the norm ‖ · ‖Wpq([s,u]),

the space (Wpq([s, u]), ‖ · ‖Wpq([s,u])) becomes a Banach space which is clearly reflexive

and separable. Moreover, the embedding Wpq([s, u]) →֒ C([s, u], H) is continuous and

the embedding Wpq([s, u]) →֒ Lp((s, u), H) is also compact.

Set PC(I,H) = {x : x is a map from I into H such that x(t) is continuous at t ∈ I\D
and x(t) is left continuous at t ∈ D and the right limit x(ti+) exists for i = 1, 2, · · ·m},
and

PWpq(I) = {x : x |[ti,ti+1]
∈Wpq([ti, ti+1]) for i = 0, 1, · · · ,m},

where t0 = 0 and tm+1 = T . For x ∈ PWpq(I) ∩ PC(I,H)
∆
= PWC, define

‖x‖PWC =

m
∑

i=0

‖x‖Wpq [ti,ti+1]
+

m
∑

i=1

‖x(ti+) − x(ti−)‖H .

It is easy to show that PWC is a Banach space.

Let us consider the following nonlinear impulsive differential equation with time delay







ẋ(t) +A(t, x) = f(t, xt), t ∈ [0, T ] \D,
x(t) = φ(t), t ∈ [−r, 0],
△lx(ti) = Gi(x(ti)) i = 1, 2, · · · ,m,

(2.1)

where A is a nonlinear monotone operator, f is a nonlinear nonmonotone perturbation,

Gi(i = 1, 2 · · ·m) are nonlinear maps. Here φ ∈ PF , and △lx(ti) = x(ti+) − x(ti−) =

x(ti+) − x(ti), which represents the jump in the state x at time ti with Gi determining

the size of the jump at time ti.
We will impose the following hypotheses on problem (2.1).

(A1) A : I × V → V ∗ is an operator such that

(i) t→ A(t, x) is measurable.

(ii) x→ A(t, x) is monotone and hemicontinuous; i.e., ∀t ∈ I,

〈A(t, x1) −A(t, x2), x1 − x2〉 ≥ 0 ∀x1, x2 ∈ V, t ∈ I;

A(t, x + sy)
W−→ A(t, x) in V ∗ as s→ 0 ∀x, y ∈ V.

(iii) There exist positive constants c1, c2, c3 and a nonnegative function c4(·) ∈
Lq(I) such that ∀t ∈ I,

〈A(t, x), x〉 ≥ c1 ‖ x ‖p
V −c2, for all x ∈ V,

‖A(t, x)‖V ∗ ≤ c4(t) + c3‖x‖p−1

V for all x ∈ V.

(A2) f : I × PF → H is an operator such that

(i) t→ f(t, ξ) is measurable, and

ξ → f(t, ξ) is continuous.

(ii) There exist a constant α ≥ 0 and a nonnegative function h(·) ∈ L2(I) such

that ‖f(t, ξ)‖H ≤ h(t) + α‖ξ‖
2
q

PF , ∀t ∈ I, ξ ∈ PF.

(A3) For i = 1, 2, · · · ,m, Gi : H → H is a bounded map (i.e., Gi maps a bounded set

to a bounded set).
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To arrive at the main results of the paper, we need the following fixed point theorem

due to Leray and Schauder [5].

Theorem 2.1 Let B be a convex subset of a normed linear space E and 0 ∈ B. Let
P : B → B be a completely continuous operator and let

ξ(P ) = {x ∈ B : x = σP (x) for some 0 < σ < 1}.

Then either the set ξ(P ) is unbounded, or P has a fixed point.

3 Existence of solutions of functional differential equation

In this section we consider the following functional differential equation without impulsive

effects:
{

ẋ(t) +A(t, x) = f(t, xt), t ∈ [0, T ],
x(t) = φ(t), t ∈ [−r, 0],

(3.1)

Definition 3.1 A function x is called a weak solution of (3.1) if x|[0,T ] ∈Wpq satis-
fies the equation in a weak sense and x(t) = φ(t) ∀t ∈ [−r, 0].

Theorem 3.1 Under assumptions (A1) and (A2), problem (3.1) has a solution in
Wpq.

Proof

Step 1: The proof will be given first for the case where φ(0) = 0.

(1) Set

B = {y|y ∈ C([0, T ], H), y(0) = 0}.

Obviously, B is a Banach space with the supremum norm. For any x ∈ B, we define

F : B → L2(I,H) by F (x)(t) = f(t, x̂t) with

x̂t(s) =

{

φ(t+ s) for t+ s ∈ [−r, 0),
x(t+ s) for t+ s ∈ [0, T ].

The operator P is defined on B by letting y = Px be the corresponding solution of the

following Cauchy problem

{

ẏ(t) +A(t, y(t)) = F (x)(t), t ∈ I,
y(0) = 0.

Indeed, by assumption (A2) and 1 < q ≤ p < +∞, F (x)(t) = f(t, x̂t) is measurable

and

F (x)(·) ∈ L2(I,H) ⊂ Lq(I, V
∗).

Thus, the above Cauchy problem has a unique solution y ∈Wpq →֒ C(I,H) (see Theorem

30.A of [9]). Hence P maps B into itself.

(2) P : B → B is continuous.

Suppose xn −→ x in B as n −→ ∞. This means

sup
0≤t≤T

‖xn(t) − x(t)‖H −→ 0,
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as n→ +∞. Hence, there exists a constant M > 0 such that

‖x̂n‖PC([−r,T ],H) ≤M and ‖x̂‖PC([−r,T ],H) ≤M.

By virtue of assumption (A2), we have for t ∈ I,

F (xn)(t) −→ F (x)(t) in H

as n→ ∞ and there exists a constant M1 > 0 such that

‖F (xn)(t)‖H ≤ h(t) +M1 and ‖F (x)(t)‖H ≤ h(t) +M1.

It follows from the majorized convergence principle that

F (xn) −→ F (x) in L2(I,H)

as n→ ∞.

Let yn = Fxn and y = Fx satisfy the following equations respectively. For t ∈ I,

ẏn(t) +A(t, yn(t)) = F (xn)(t), yn(0) = 0,

ẏ(t) +A(t, y(t)) = F (x)(t), y(0) = 0.

Then

1

2
‖yn(t) − y(t)‖2

H ≤ ‖F (xn) − F (x)‖L2(0,t;H)‖yn − y‖L2(0,t;H)

≤ 1

2
‖F (xn) − F (x)‖2

L2(I,H)
+

1

2

∫ t

0

‖yn(τ) − y(τ)‖2

Hdτ.

Thanks to Gronwall’s lemma, it is easy to show that

yn −→ y in B as n→ ∞.

(3) P is a compact operator on B.

Let {xn} be a bounded sequence in B. That is, there is a constant M2 > 0 such that

‖xn‖C(I,H) ≤M2.

Again, by assumption (A2), there exist constants M3,M4 > 0 such that

‖F (xn)(t)‖H ≤ h(t) +M3 and ‖F (xn)‖L2(I,H) ≤M4.

Let yn = Pxn be a solution of the following equation

{

ẏn(t) +A(t, yn(t)) = F (xn)(t).
yn(0) = 0.

(3.2)

Integrating by parts in (3.2) and using assumption (A1), one can obtain

1

2
‖yn(t)‖2

H + C1‖yn‖p
Lp(0,t;V )

≤ ‖F (xn)‖L2(0,t;H)‖yn‖L2(0,t;H) + C2.

It follows from the Cauchy inequality that there exist constants γ > 0 and K > 0 such

that
1

2
‖yn(t)‖2

H + γ‖yn‖p
Lp(0,t;V )

≤ K‖F (xn)‖q
L2(I,H)

+ C2.
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Hence {yn} is bounded in C(I,H) ∩ Lp(I, V ). It follows from Eq.(3.2) that {ẏn} is

bounded in Lq(I, V
∗) and therefore {yn} is bounded in Wpq .

Since Wpq →֒ Lp(I,H) is compact, there exists a subsequence, relabelled {yn}, such

that

yn −→ y in Lp(I,H) as n→ ∞.

So {yn} is a Cauchy sequence in Lp(I,H). Hence there exists a constant M5 > 0 such

that

1

2
‖yn(t) − ym(t)‖2

H ≤ ‖F (xn) − F (xm)‖Lq(I,H)‖yn − ym‖Lp(I,H)

≤ M5‖yn − ym‖Lp(I,H).

This inequality implies that {yn} is a Cauchy sequence in B. Since B is closed, the

sequence {yn} has a limit in B. This proves that P is compact.

(4) Boundedness of the set ξ(P ).

We will show that the set ξ(P ) is bounded. To this end, suppose x ∈ B and x = σPx
where σ ∈ (0, 1). This implies that x satisfies the following Cauchy problem:

{

1

σ ẋ(t) +A(t, 1

σx(t)) = g(t, x̂t), t ∈ I,
x(0) = 0.

(3.3)

We will show that there exists a Q > 0 such that

‖x‖C(I,H) ≤ Q.

Using the same arguments and assumptions (A1) and (A2), we have

1

2σ
‖x(t)‖2

H +
C1

σp−1
‖x‖p

Lp(0,t;V )
≤

∫ t

0

〈f(τ, x̂τ ), x(τ)〉dτ + C2

≤ (

∫ t

0

‖f(τ, x̂τ )‖q
Hdτ)

1/q(

∫ t

0

‖x(τ)‖p
Hdτ)

1/p + C2

≤ 1

qεq

∫ t

0

‖f(τ, x̂τ )‖q
Hdτ +

εp

p
‖x‖p

Lp(0,t;H)
+ C2,

for any constant ε > 0 and some constants C1 ≥ 0 and C2 ≥ 0. Hence

σp−2

2
‖x(t)‖2

H +C1‖x‖p
Lp(0,t;V )

≤ C2σ
p−1 + b1ε

pσp−1‖x‖p
Lp(0,t;V )

+
d1σ

p−1

qεq

∫ t

0

‖x̂τ‖2

PFdτ

where b1 and d1 are positive constants. So, we can choose ε > 0 small enough such that

σp−2

2
‖x(t)‖2

H ≤ a1σ
p−1 + b2σ

p−1

∫ t

0

‖x̂τ‖2

PFdτ

where a1 and b2 are positive constants. It follows from 0 < σ < 1 that

‖x(t)‖2

H ≤ a2 + d1

∫ t

0

‖x̂τ‖2

PFdτ.

We denote

k(t) = a2 + d1

∫ t

0

‖x̂τ‖2

PFdτ.
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It is obvious that k(t) is an increasing function. So,

sup
0≤θ≤t

‖x(θ)‖2

H ≤ a2 + d1r‖φ‖2

PF +

∫ t

0

sup
0≤θ≤τ

‖x(θ)‖2

Hdτ for all t ∈ [0, T ]

Let ω(t) = sup
0≤θ≤t ‖x(θ)‖2

H . Then ω(t) is continuous and increasing since x(t) is

continuous. An application of the Gronwall lemma implies that

‖x‖C([0,T ],H)
≤ Q, (3.4)

and so ξ(P ) is bounded.

By the Leray-Schauder fixed point theorem (Theorem 2.1), P has a fixed point x∗ in

B. Then x∗ is a corresponding solution of (3.1).

Step 2: For the proof of the theorem, in general case where φ(0) 6= 0, at first we

assume that φ(0) ∈ V , we use the transformation

y = x− φ(0)

to reduce the problem (3.1) into the following problem:

{

ẏ(t) +A(t, y + φ(0)) = f(t, yt + φ(0)), t ∈ I,
y(t) = φ(t) − φ(0), t ∈ [−r, 0],

(3.5)

We set Â(t, y) = A(t, y + φ(0)) and f̂(t, yt) = f(t, yt + φ(0)). Then it is easy to see

that Â satisfies assumptions (A1)(i) and (ii). It follows from assumption (A1) (iii) that

‖Â(t, y)‖V ∗ = ‖A(t, y + φ(0))‖V ∗ ≤ c4(t) + c3‖y + φ(0)‖p−1

V

≤ c4(t) + c32
p−1‖y‖p−1

V + c32
p−1‖φ(0)‖p−1

V . (3.6)

Let m4 = c4(t) + c32
p−1‖φ(0)‖p−1

V and m3 = c32
p−1. Then

‖Â(t, y)‖V ∗ ≤ m4(t) +m3‖y‖p−1

V

for all y ∈ V and t ∈ I.
By assumption (A1)(iii), one can get

〈Â(t, y), y〉 = 〈A(t, y + φ(0)), y + φ(0)〉 − 〈A(t, y + φ(0)), φ(0)〉
≥ c1‖y + φ(0)‖p

V − c2 − ‖A(t, y + φ(0))‖V ∗ · ‖φ(0)‖V (3.7)

≥ c1‖y + φ(0)‖p
V − c2 −

1

pǫp
‖φ(0)‖p

V − ǫq

q
‖A(t, y + φ(0))‖q

V ∗

for any constant ǫ > 0. Then, by (3.6), one can reduce (3.7) into

〈Â(t, y), y〉 ≥
(

c1 −
c32

q−1

q
ǫq

)

‖y + φ(0)‖p
V − c2 −

1

pǫp
‖φ(0)‖p

V − 2q−1cq
4
(t)

q
ǫq.

We can choose ǫ small enough such that m1 ≡ c1 − c32
q−1

q ǫq > 0 and note that the

following inequality

‖y + φ(0)‖p
V + ‖φ(0)‖p

V ≥ |‖y‖V − ‖φ(0)‖V |p + ‖φ(0)‖V

≥ C (‖y‖V − ‖φ(0)‖V + ‖φ(0)‖V )
p

= C‖y‖p
V
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holds for some constant C > 0.

One can obtain

〈Â(t, y), y〉 ≥ m1C‖y‖p
V −m2

where m2 = c2 − 1

pǫp ‖φ(0)‖V p − c1‖φ(0)‖p
V − 2

q−1cq

4
(t)

q ǫq. That is, Â(t, y) satisfies as-

sumption (A1).

For f̂(t, y) = f(t, y + φ(0)), one can easily verify that f̂(t, y) satisfying assumption

(A2). Then the problem (3.5) has a solution from Step 1.

If φ(0) ∈ H , there exists a sequence {ξn} ⊂ V , such that ξn → φ(0) in H . Set

φn(t) =

{

φ(t) for t ∈ [−r, 0),
ξn for t = 0.

Then there exists xn ∈ Wpq such that

{

ẋn(t) +A(t, xn(t)) = f(t, (xn)t), t ∈ I,
xn(t) = φn(t), t ∈ [−r, 0].

(3.8)

We define Â(x)(t) = A(t, x(t)) for x ∈ Lp(I, V ) and t ∈ I. Then Â : Lp(I, V ) →
Lq(I, V

∗) is bounded, monotone, hemicontinuous, and coercive (see Theorem 30.A of

[9]). It follows from (3.4) and assumption (A1) that

‖xn‖Wpq
≤M and ‖A(xn)‖Lq(I,V ∗) ≤M

for some constant M > 0. Then there exists a subsequence of {xn}, denoted {xn} again,

such that

xn
W−→ x in Lp(I, V ),

ẋn
W−→ ẋ in Lq(I, V

∗),

Â(xn)
W−→ w in Lq(I, V

∗),

as n→ +∞. Since Wpq →֒ Lp(I,H) is compact, we know that

xn
W−→ x in Wpq ,

xn
S−→ x in Lp(I,H),

xn(t)
S−→ x(t) a.e. on I in H.

By assumption (A2) and using the similar method as in the proof of Lemma 1 of [8], it

follows that

F (xn)
S−→ F (x) in Lq(I,H).

Hence
{

ẋ+ w = F (x), t ∈ I,
x(t) = φ(t), t ∈ [−r, 0].

(3.9)

Combining (3.8) and (3.9), we obtain

〈ẋn − ẋ, xn − x〉 + 〈Âxn − w, xn − x〉 = 〈F (xn) − F (x), xn − x〉.
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Hence

〈Â(xn) − w, xn〉 =
1

2
‖xn(0) − x(0)‖2

H − 1

2
‖xn(T ) − x(T ))‖2

H

+ 〈Â(xn) − w, x〉 + 〈F (xn) − F (x), xn − x〉.

So,

lim sup
n→+∞

〈Axn, xn〉 ≤ 〈w, x〉.

Note that Â : Lp(I, V ) → Lq(I, V
∗) is monotone, hemicontinuous, and so Â satisfies

the condition (M) (see p. 538 of [9] ). We deduce that

w = Â(x).

Thus,
{

ẋ+ Â(x) = F (x), t ∈ I,
x(t) = φ(t), t ∈ [−r, 0],

(3.10)

That is, x is a solution of (4.1).

The theorem is proved.

Remark 3.1 It follows from the proof of Theorem 3.2 that if x is a solution of (3.1)
then x is bounded in Wpq.

Theorem 3.2 guarantees the existence of solutions for (3.1), but not the uniqueness

of solutions. In order to obtain uniqueness, we have to impose a somewhat stronger

assumption on f . Assume that

(A4) f is locally Lipschitz continuous with respect to ξ, i.e., for any ρ > 0, there exists

a constant L(ρ), such that

‖f(t, ξ1) − f(t, ξ2)‖H ≤ L(ρ)(‖ξ1 − ξ2‖PF ), ∀t ∈ I

and for all ξ1, ξ2 ∈ PF (H) satisfying ‖ξ1‖PF ≤ ρ, ‖ξ2‖PF ≤ ρ.

Theorem 3.2 (Uniqueness of solution) If assumption (A4) holds, then the problem
(3.1) has at most one solution.

Proof Let x1 and x2 be two solutions of problem (3.1). Then

1

2
‖x1(t) − x2(t)‖2

H ≤ ‖F (x1) − F (x2)‖L2(0,t;H)‖x1 − x2‖L2(0,t;H)

≤ 1

2
‖F (x1) − F (x2)‖2

L2(0,t;H)
+

1

2
‖x1 − x2‖2

L2(0,t;H)
.

By assumption (A4), there exist constants C∗

1
> 0 and C∗

2
> 0 such that

‖x1(t) − x2(t)‖2

H ≤ C∗

1

∫ t

0

‖x1(τ) − x2(τ)‖2

Hdτ + C∗

2

∫ t

0

‖(x1)τ − (x2)τ‖2

PFdτ.

Because x1(t) = x2(t) = φ(t), t ∈ [−r, 0] and the solution of (3.1) is continuous in

[0, T ], one can modify x1 and x2 by setting x1(t) = x2(t) ≡ ξ, ∀t ∈ [−r, 0]. Then

x1, x2 ∈ C([−r, T ];H) such that

‖x1(t) − x2(t)‖2

H ≤ C∗

1

∫ t

0

‖x1(τ) − x2(τ)‖2

Hdτ + C∗

2

∫ t

0

‖(x1)τ − (x2)τ‖2

Cdτ ∀t ∈ [0, T ]



290 W. WEI, S.H. HOU AND K.L. TEO

where C = C([−r, 0], H) denotes all continuous maps from [−r, 0] into H with the usual

supremum norm. Thanks to Gronwall’s lemma, it implies

x1(t) = x2(t) for all t ∈ [0, T ].

That is,

x1 = x2.

4 Existence of solutions for impulsive delay differential equations

In this section, we deal with the nonlinear impulsive differential equation (2.1) with time

delay in Banach Space.

Definition 4.1 A function x ∈ PWC is called a PWC solution of (2.1) if it satisfies

the equation in a weak sense on every interval [ti, ti+1] (i = 0, 1, · · · ,m), x(t) = φ(t), t ∈
[−r, 0], and the state jump at ti (i = 1, 2, · · · ,m).

Theorem 4.1 Suppose assumptions (A1), (A2), and (A3) hold. Then, for each
φ ∈ PF (H), the problem (2.1) has a solution x ∈ PWC. Moreover, there is a constant
M > 0 such that

‖x‖PWC ≤M and ‖x‖PC ≤M.

Proof Define Ii ≡ (ti, ti+1], i = 0, 1, · · · ,m with t0 = 0, tm+1 = T . It follows from

assumptions (A1), (A2), Theorem 3.2, and Theorem 3.4 that for each φ ∈ PF and φ(0) ∈
V , the equation (2.1) has a unique solution x(1) where x(1) |I0∈Wpq(I0)

⋂

C(I0, H) and

x(1) |[−r,0]= φ. By assumption (A3), x(t1 + 0) is well defined and it is given by

x(t1 + 0) = G1(x
(1)(t1)) + x(1)(t1) ≡ ξ1.

Consider the following problem







ẋ(t) +A(t, x) = f(t, xt), t ∈ I1,

x(t) = x(1)(t), t ∈ [t1 − r, t1],
x(t1) = ξ1.

(4.1)

Using the same argument as in the proof of Theorem 3.2 and the fact x(1) ∈ PF ([t1 −
r, t1], H), one obtains that there is a unique solution x(2) in I1.

We continue this process taking into account that x(m+1) := x |Im
is a solution to the

problem






ẋ(t) +A(t, x) = f(t, xt), t ∈ (tm, T ],
x(t) = φ(t), t ∈ [tm − r, tm],

x(tm + 0) = x(m)(tm) +Gm(x(m)(tm)).
(4.2)

The solution x of the problem (2.1) is defined by

x(t) =



















x(1)(t), if t ∈ [−r, t1],
x(2)(t), if t ∈ (t1, t2],
...

x(m+1)(t), if t ∈ (tm, T ].
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And it follows from Remark 3.3 that for k = 0, 1, · · · ,m

‖x(k+1)‖Wpq(Ik) ≤M

for some constant M > 0. Hence x is a PWC solution of (2.1) and

‖x‖PWC ≤M1 and ‖x‖PC ≤M1.

for some constant M1 > 0.

5 Examples

In this section we present an example of delay evolution equations with impulse to which

our general theory applies.

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω, 0 < t1 < · · · < tk < T
are given fixed points and D ≡ {t1, t2, · · · , tk}, QT = (0, T ) \D × Ω, 0 < T < ∞. Let

α = (α1, α2, · · · , αn) be a multi-index with nonnegative integers {αi}, i = 1, . . . , n, and

‖α‖ =
∑n

i=1
αi. Let p ≥ 2 and q = p/(p − 1)and let m > 0 be an integer. Wm,p(Ω)

denotes the standard Sobolev space with the usual norm:

‖ϕ‖W m,p = (
∑

|α|≤m

‖Dαϕ‖p
Lp(Ω)

)1/p.

Let Wm,p
0

(Ω) = {ϕ ∈Wm,p|Dβϕ|∂Ω = 0, |β| ≤ m−1}. It is well known that C∞

0
(Ω) →֒

Wm,p
0

(Ω) →֒ L2(Ω) →֒ W−m,p(Ω) and the embedding Wm,p
0

(Ω) →֒ L2(Ω) is compact.

Denote V ≡Wm,p
0

(Ω), H ≡ L2(Ω), then V ∗ ≡W−m,q(Ω).

We consider the following initial-boundary impulsive value problem of 2m-order quasi-

linear delay parabolic equation:



























∂
∂ty(t, x) +

∑

|α|≤m

(−1)|α|DαAα(t, x, η(y)(t, x)) = g(t, x, y(t− r, x)) on QT ,

Dβy(t, x) = 0 on [0, T ]× ∂Ω, for all β satisfying |β| ≤ m− 1,

y(s, x) = φ(s, x) for x ∈ Ω and − r ≤ s ≤ 0,

y(ti+) = −y(ti−), i = 1, 2, · · · , k,

(5.1)

where η(y) ≡ {(Dγy), |γ| ≤ m}, φ(t, x) is a given function, φ ∈ C([−r, 0], L2(Ω)),

φ(0) ∈Wm,p
0

(Ω), and M =
(n+m)!

n!m!
.

For y1, y2 ∈ Wm,p
0

(Ω) and t ∈ I, we set

a(t, y1, y2) =

∫

Ω

∑

|α|≤m

Aα(t, x, η(y1)(t, x))D
αy2dx

and assume that for all α with |α| ≤ m, the function Aα : QT × RM → R satisfies the

following properties.

(H1) (1)(t, x) → Aα(t, x, η) is measurable on QT for η ∈ RM , η → Aα(t, x, η) is contin-

uous on RM for a.e. (t, x) ∈ QT ;
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(2) For η = (ηα) ∈ RM , η̃ = (η̃α) ∈ RM , there exist positive constants c, c1, c2, c3,
and c4 such that

∑

|α|≤m

(Aα(t, x, η) −Aα(t, x, η̃))(ηα − η̃α) ≥ 0,

∑

|α|≤m

Aα(t, x, η)ηα ≥ c1
∑

|γ|≤m

|ηγ |p − c2,

|Aα(t, x, η)| ≤ c4 + c3
∑

|γ|≤m

|ηγ |p−1.

It is not difficult to verify that under the above assumption, for each y1 ∈ V and

t ∈ [0, T ], y2 → a(t, y1, y2) is a continuous linear form on V . Hence there exists an

operator A : I × V → V ∗ such that

〈A(t, y1), y2〉V ∗,V = a(t, y1, y2).

Under the given assumption (H1), it is easy to see that A satisfies our assumption

(A1) of Section 3.

Assume the function f : QT ×R→ R satisfies the following properties.

(H2) (1) (t, x) → f(t, x, η) is measurable on QT for all η ∈ R;

(2) η → f(t, x, η) is continuous on R for almost all (t, x) ∈ QT ;

(3) there exist constants b1 > 0 and b2 > 0 such that

|f(t, x, η)| ≤ b1|η|2/q + b2(t, x)

for almost all (t, x) ∈ QT .

For φ1 ∈ H and t ∈ I, set

b(t, φ1, ψ) =

∫

Ω

f(t, x, φ1)ψdx.

Then ψ → b(t, φ1) is a continuous linear form on H . Hence there exists an operator

F : [0, T ]×H → H such that

b(t, φ1, ψ) = (F (t, φ1), ψ).

Noting that yt(θ) = yt(r) for all −r ≤ θ ≤ 0 and using (H2), one can verify that F
satisfies assumption (A2) of Section 3.

With the operators A and F as defined above, problem (5.1) can be written as the

abstract evolution equation











ẏ(t) +A(t, y(t)) = F (t, y(t− r)), t ∈ [0, T ] \D,
y(t) = φ(t), t ∈ (−r, 0),

y(ti) = −y(ti), 0 < t1 < t2 < · · · < tk < T.

Hence our result can be applied to this model to assert the existence of its solutions.
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Abstract: In this paper, we present an analysis for an M/Ek/1 queuing

system with balking and state-dependent service. Customers are served with

two different rates depending on the number of customers in the system. If a

customer on arrival finds other customers in the system, it either decides to

enter the queue or balks with a constant probability. We first formulate the

queuing model as a quasi-birth and death (QBD) process. Then, we obtain the

equilibrium condition of the system. By using the matrix geometric solution

method, we obtain the explicit expressions for steady-state probability vector

via the rate matrix R. The computation of the rate matrix R is also discussed.

Then, we derive explicitly some performance measures of the system. Based on

these performance analysis, we develop a cost model to determine numerically

the optimal cost and optimal critical value. Finally, we perform sensitivity

analysis through numerical experiments.

Keywords: Balking; state-dependent; matrix geometric solution; steady-state prob-

ability.

Mathematics Subject Classification (2000): 60K25, 68M20.

1 Introduction

We consider an M/Ek/1 queuing system with balking and state-dependent service. Cus-

tomers are served with two different service rates depending on the number of customers

in the system. If a customer on arrival finds other customers in the system, it either

decides to enter the queue or balk (does not enter) with a constant probability. Balk-

ing is not only a common phenomenon in queues arising in daily activities, but also in

communication systems, production line systems and in various machine interferences or

repair models (see [1]-[4] and references therein).

The queuing systems with balking, or reneging, or both have been studied by many

researchers. Haight [5] is the first person who considered an M/M/1 queue with balking.

c© 2006 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 295
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An M/M/1 queue with customer reneging was also proposed by Haight [6]. The combined

effects of balking and reneging in an M/M/1 queue with limited waiting room and with

unlimited waiting room have been investigated by Ancker and Gafarian [7], [8]. They

obtained the steady-state probabilities and some performance measures of the system

such as the mean number in the queue, the mean number in the system and the mean

rate of customer loss.

Abou-EI-Ata [9] extended the model in [7] to study the state-dependent M/M/1/N

queue with reneging and a general balk function, where the server has two service rates

depending on the number of customers in the system. Some of its variations have been

studied by several authors including, for example, Abou-EI-Ata and Kotb [10], Abou-

EI-Ata et al. [11] and Abou-EI-Ata and Shawky [12].

Recently, Drekic and Woolford [13] studied a preemptive priority Markovian queue

with state-dependent service and lower priority balking customers. They formulated the

queueing model as a quasi-birth and death (QBD) process. By using the method of

generalized eigenvalues, they established an explicit representation for the so-called rate

matrix. They also obtained the steady-state joint distribution of the number of high and

low priority customers in the system.

The state-dependent M/M/1 queue with balking was studied by Al-seedy and Kotb

[14]. They obtained the transient solution of the state probabilities. Al-seedy [15] ex-

tended the model proposed by Abou-EI-Ata [9] to the state-dependent M/Ek/1/N queue

with balking. By solving the steady-state probability-difference equations, Al-seedy [15]

obtained some iterative expressions of the steady-state probabilities. However, these

iterative expressions are too complex to obtain explicit expressions of the steady-state

probabilities in general cases, and they could not derive explicitly some performance mea-

sures such as the distribution of the queue length and the expected number of customers

in the system and in the queue. Even for a special case when the waiting room is un-

limited (i.e., N → ∞), it is difficult to obtain the explicit expressions of the steady-state

probabilities from the iterative expressions.

In this paper, we study a state-dependent M/Ek/1 queue with balking and an un-

limited waiting room. The rest of the paper is organized as follows. In Section 2, we

formulate the queuing model as a QBD process and obtain the equilibrium condition of

the system. In Section 3, by using a matrix-geometric solution method, we derive the

explicit expression for steady-state probability vector. Also, we derive explicitly some

performance measures of the system such as the expected number of the customers in

the system and in the queue and the mean balking rate of the system. Based on these

analyses, we develop a cost model to determine numerically the optimal cost and op-

timal critical value. In Section 4, we perform sensitivity analysis through numerical

experiments. Conclusions are given in Section 5.

2 System Model and Equilibrium Condition

In this section, we first describe the system model. Then, we derive an infinitesimal

generator of a QBD process of the system. Finally, we provide an equilibrium condition

of the system.

2.1 Model assumptions

In this paper, we consider an M/Ek/1 queuing system with balking and state-dependent

service rate. The assumptions of the system model are as follows:
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(a) There is only one server in the system, and the server can only serve one customer

at the same time. The capacity of the system is infinite. It is assumed that the

service is independent of the arrival of the customers.

(b) Customers arrive at the system one by one according to a Poisson process with rate

λ (λ > 0).

(c) A customer on arrival decides to join the queue or balk. If a customer on arrival finds

some customers in the system, then it joins the queue with probability β and balks

with probability 1−β. If a customer on arrival finds no customer in the system, then

he joins the system and will be serviced immediately.

(d) The customers are served on a first-come, first served (FCFS) discipline. Once

service commences it always proceeds to completion. The service times are assumed

to be distributed according to an Erlang distribution with mean k/µn and stage

parameter k. The Erlang type k distribution is made up of k independent and

identical exponential stages, each with mean 1/µn, given by

µn =

{

kµ1, n = 1, 2, ..., r,
kµ2, n = r + 1, r + 2, ... .

This means that the server has two rates say called “slow and fast” depending on the

number of customers n in the system. When the number of customers n in the system is

less than or equal to the critical value r, the server has slow service rate µ1; otherwise,

the server has fast service rate µ2 (0 < µ1 < µ2).

2.2 Infinitesimal generator of a QBD process

Let N(t) denote the number of the customers in the system at time t, and J(t) denote

the service stage that the customer being served at time t (t ≥ 0). A customer goes into

the first stage of the service (say stage k), then progresses through the remaining stages

and must complete the last stage (say stage 1). The state space of the two dimensional

process {(N(t), J(t)); t ≥ 0} is given by

S = {(i, j); i = 0, 1, ..., j = 1, 2, ..., k}.

All states of this two dimensional process are labelled in the lexicographic order as follows:

(0, 0); (1, 1), (1, 2), ..., (1, k); (2, 1), (2, 2), ..., (2, k); ... .

By the probability analysis, we have the following infinitesimal generator of the process

{(N(t), J(t)); t ≥ 0}.

Q =





















B0 C0

A1 B1 C1

A2 B1 C1

· · · · · · · · ·
A2 B1 C1

A3 B2 C1

· · · · · · · · ·





















· · · 0

· · · 1

· · · 2
...

· · · r
· · · r + 1

...
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where

A1 =











kµ1

0
...

0











, A2 =











0 · · · 0 kµ1

0 · · · 0 0
...

...
...

0 · · · 0 0











, A3 =











0 · · · 0 kµ2

0 · · · 0 0
...

...
...

0 · · · 0 0











,

B0 =−λ, B1 =









−βλ − kµ1

kµ1 −βλ − kµ1

· · · · · ·
kµ1 −βλ − kµ1









,

B2 =









−βλ − kµ2

kµ2 −βλ − kµ2

· · · · · ·
kµ2 −βλ − kµ2









,

C0 =
(

0 · · · 0 λ
)

, C1 =









βλ
βλ

· · ·
βλ









,

where C0 is a matrix of order 1 × k, A1 is a matrix of order k × 1, and other matrixes

are square matrixes of order k.

From the book written by Neuts [16], we know that process {N(t), J(t); t ≥ 0} is a

QBD process.

2.3 Equilibrium condition of the system

In the following, we provide a necessary and sufficient condition to ensure the existence

for the stationary probability distribution of the process {N(t), J(t); t ≥ 0}.
Let H = A3 + B2 + C1, then H is given by

H =











−kµ2 0 · · · 0 kµ2

kµ2 −kµ2 · · · 0 0
...

...
...

...

0 0 · · · kµ2 −kµ2











.

It is readily known that H is an irreducible generator. Let π = (π1, π2, ..., πk) be the

steady-state probability vector of H . Then, π satisfies the linear equations πH = 0 and

πe = 1, where e is a column vector whose elements are all equal to 1. Solving the above

linear equations, we get that

πi =
1

k
, i = 1, 2, ..., k. (1)

By Theorem 3.1.1 in Chapter 3 of Neuts [16], the equilibrium condition of the system is

given by

πA3e > πC1e.
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Making substitution for π by Eq. (1), then we have the equilibrium condition of the

system given by

βλ

µ2

< 1. (2)

Remark 2.1 We observe from the above condition that the equilibrium condition

of the system is dependent with the fast service rate µ2 and independent with the slow

service rate µ1. This is in agreement with the equilibrium condition obtained by Rao

[17], where Rao considered an M/G/1 queueing system in which customers balk with a

constant probability 1 − β and renege according to a negative exponential distribution.

It has been shown that as long as reneging is permitted, the steady states always exist,

but when no reneging is permitted, the steady states exist only when λβη < 1, where λ
is the arrival rate of customers, and η is the mean service time of a customer.

3 Performance Measures and Cost Model

In this section, we first derive the explicit expression for the steady-state probability

vector. Then, we give some useful performance measures of the system. Based on these

performance measures, we develop a cost model to determine the optimal critical value

r to minimize the total expected cost per unit time.

3.1 Steady-state probability vector

Let X = (X0, X1, ..., Xr, Xr+1, ...), where X0 is a number, Xi (i = 1, 2, ...) is a vec-

tor of order k. By applying the matrix geometric solution method [16], the stationary

probability vector is given by

Xi = XrR
i−r , i = r, r + 1, ... (3)

where R is the minimal nonnegative solution to the equation R2A3 + RB2 + C1 = 0,

and X0, X1, ..., Xr are given by solving the following equations:

X0B0 + X1A1 = 0,

X0C0 + X1B1 + X2A2 = 0,

XiC1 + Xi+1B1 + Xi+2A2 = 0, i = 1, 2, ..., r − 2,

Xr−1C1 + Xr(B1 + RA3) = 0,

X0 +

r−1
∑

i=1

Xie + Xr(I − R)−1e = 1, (4)

where e is a column vector of order k, and all its elements equal to 1.

In general, it is difficult to give an exact expression of R except for a few special

cases. However, the matrix R can be approximately calculated by the following iterative

procedure:

(a) R(0) = 0,

(b) R(n + 1) = −(C1 + R2(n)A3)B
−1

2
, n ≥ 0.

This iterative algorithm is convergent, i.e. R = lim
n→∞

R(n) (Section 1.9 of Chapter 1

of [16]).
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Remark 3.1 The inverse of the matrix B−1

2
in the above algorithm exists, and can

be explicitly given by

B−1

2
=

1

ak















ak−1 0 0 · · · 0

ak−2(−b) ak−1 0 · · · 0

ak−3(−b)2 ak−2(−b) ak−1 · · · 0
...

...
...

...

(−b)k−1 a(−b)k−2 a2(−b)k−3 · · · ak−1















,

where a = (−βλ − kµ2), b = kµ2.

For a special case of k = 2 and r = 2, we can readily obtain an explicit expression for

matrix R given in the following theorem.

Theorem 3.1 If k = 2 and r = 2, then the matrix R is explicitly given by

R =
βλ

4µ2

2

(

2µ2 βλ
2µ2 βλ + 2µ2

)

. (5)

Proof Let

R =

(

R00 R01

R10 R11

)

,

then the equation R2A3 + RB2 + C1 = 0 can be written as follows:

2µ2(R
2

00
+ R01R10) + (−βλ − 2µ2)R01 = 0,

2µ2(R00R10 + R11R10) + (−βλ − 2µ2)R11 + βλ = 0,

(−βλ − 2µ2)R00 + 2µ2R01 + βλ = 0,

(−βλ − 2µ2)R10 + 2µ2R11 = 0. (6)

Noting that RA3e = C1e, (Eq. (3.1.6) in [16]), we obtain that

R00 =
βλ

2µ2

, R10 =
βλ

2µ2

. (7)

Substituting Eq. (7) into Eq. (6), the other two elements R01 and R11 are readily

obtained. Then, we obtained the matrix R. �

In this special case, the vector X is given by

Xi = X2R
i−2, i = 2, 3, ..., (8)

and the number X0, the vectors X1 and X2 satisfy the following equations:

X0B0 + X1A1 = 0,

X0C0 + X1B1 + X2A2 = 0,

X1C1 + X2(B1 + RA3) = 0,

X0 + X1e + X2(I − R)−1e = 1, (9)

where

(I − R)−1 =
1

4µ2βλ − 4µ2

2

(

β2λ2 + 2µ2βλ − 4µ2

2
β2λ2

(−2µ2)βλ (−2µ2)(2µ2 − βλ)

)

. (10)

Thus, X0, X1 and X2 are readily obtained by solving Eq. (9). However, it is not simple

to present it explicitly since the expressions are tediously long. Thus, their expressions

are omitted.
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3.2 Performance measures

Using the steady-state probability vector presented above, we can obtain some perfor-

mance measures of the system. Let

Xi = (xi1, xi2, ..., xik), i = 1, 2, ...,

then we have the following theorem.

Theorem 3.2 (a) The expected number of customers in the system is given by

E(N) =

r−1
∑

n=1

nXne + Xr

[

r(I − R)−1 + R(I − R)−2
]

e. (11)

(b) The expected number of customers in the queue is given by

E(Nq) =

r−2
∑

n=1

nXn+1e + Xr

[

(r − 1)(I − R)−1 + R(I − R)−2
]

e. (12)

(c) The mean balking rate of the system is given by

BR = (1 − β)λ(1 − X0). (13)

Proof The expected number of customers in the system is given by

E(N) =

k
∑

i=1

∞
∑

n=1

nxn,i =

∞
∑

n=1

nXne.

From Eq. (3), we have

E(N) =

r−1
∑

n=1

nXne +

∞
∑

n=r

nXrR
n−re. (14)

Hence, we obtain Eq. (11) by summation. Similarly, the expected number of customers

in the queue is given by

E(Nq) =

k
∑

i=1

∞
∑

n=1

nxn+1,i =

r−2
∑

n=1

nXn+1e +

∞
∑

n=r−1

nXrR
n−r+1e. (15)

Hence, we obtain Eq. (12) by summation. Using the concept of Ancker and Gafarian

[7], the mean balking rate of the system is given by

BR =

∞
∑

n=1

bnλXne = (1 − β)λ(1 − X0). (16)

Obviously, the probability that the server is busy is given by

PB = 1 − X0 (17)

and the probability that the server is idle is given by

P0 = X0. (18)

�
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3.3 Cost model

In this subsection, we develop a steady-state expected cost function where the critical

value r is a decision variable. Our objective is to determine the critical value r to minimize

the total expected cost per unit time. Let

C1=cost per unit time when customers are waiting for service,

C2=cost per unit time when the server is busy,

C3=loss cost per unit time when customers balk,

C4=cost per unit time when the server is idle.

According to the definition of each cost of the parameters listed above, the total

expected cost function per unit time is given by

F (r) = C1E(Nq) + C2PB + C3BR + C4P0, (19)

where E(Nq), BR, PB , P0 are given in Eqs. (12) and (13) and Eqs. (17) and (18). The

first item of Eq. (19) is the cost incurred by the customer’s waiting. The second and the

last items of Eq. (19) are the costs incurred by the server. The third item of Eq. (19) is

the cost incurred by the customer loss.

4 Sensitivity Analysis

In this section, we perform a sensitivity analysis on the optimal value r∗ and its expected

cost F (r∗) based on changes in the values of the system parameters such as the arrival

rate λ, the probability β, the slow service rate µ1, the fast service rate µ2 and cost

parameters.

Let the service time follow a 2-stage Erlang distribution, and employ the cost param-

eters C1 = 100, C2 = 150, C3 = 300 and C4 = 450. The numerical results of the optimal

critical value r∗ and its expected minimum cost F (r∗) are illustrated in Figures 4.1–4.4.
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Figure 4.1: Optimal cost F (r∗) and optimal critical value r
∗ versus arrive rate λ with µ1 = 0.2,

µ2 = 0.8 and β = 0.5.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(3) (2006) 295–308 303

0.10 0.15 0.20 0.25 0.30 0.35 0.40 
150

200

250

300

350

400

450

500

Slow Service Rate µ
1

O
pt

im
al

 C
os

t F
(r

* ) 
an

d 
O

pt
im

al
 C

rit
ic

al
 V

al
ue

 r*

Optimal Cost  F(r*)
Optimal Critical Value 100r*

Figure 4.2: Optimal cost F (r∗) and optimal critical value r
∗ versus slow service rate µ1 with

λ = 0.1, µ2 = 0.8 and β = 0.5.
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Figure 4.3: Optimal cost F (r∗) and optimal critical value r
∗ versus fast service rate µ2 with

λ = 0.1, µ1 = 0.2 and β = 0.5.
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Figure 4.4: Optimal cost F (r∗) and optimal critical value r
∗ versus probability β with λ = 0.1,

µ1 = 0.2 and µ2 = 0.8.
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Figure 4.5: Optimal cost F (r∗) and optimal critical value r
∗ versus cost parameter C1 with

C2 = 150, C3 = 300 and C4 = 450.
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Figure 4.6: Optimal cost F (r∗) and optimal critical value r
∗ versus cost parameter C2 with

C1 = 100, C3 = 300 and C4 = 450.
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Figure 4.7: Optimal cost F (r∗) and optimal critical value r
∗ versus cost parameter C3 with

C1 = 100, C2 = 150 and C4 = 450.
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Figure 4.8: Optimal cost F (r∗) and optimal critical value r
∗ versus cost parameter C4 with

C1 = 100, C2 = 150 and C3 = 300.

In Figure 4.1, we fix µ1 = 0.2, µ2 = 0.8 and β = 0.5, and display the optimal critical

value r∗ and its expected minimum cost F (r∗) by varying the arrival rate λ. Figure

4.1 shows that: (i) The optimal critical value r∗ decreases as λ increases from 0.05 to

0.15, while it does not change at all when λ varies from 0.15 to 0.4. (ii) The minimum

expected cost F (r∗) first decreases and then increases as λ increases. Intuitively, the

optimal critical value r∗ is insensitive to changes with λ.

In Figure 4.2, we fix λ = 0.1, µ2 = 0.8 and β = 0.5, and display the optimal critical

value r∗ and its expected minimum cost F (r∗) by varying the slow service rate µ1. Figure

4.2 shows that the optimal critical value r∗ and its minimum expected cost F (r∗) increase

as µ1 increases.

In Figure 4.3, we fix λ = 0.1, µ1 = 0.2 and β = 0.5, and display the optimal critical

value r∗ and its expected minimum cost F (r∗) by varying the fast service rate µ2. Figure

4.3 shows that: (i) The optimal critical value r∗ decreases as µ2 increases from 0.3 to 0.5,

while it does not change at all when µ2 varies from 0.5 to 0.9. (ii) The minimum expected

cost F (r∗) rarely changes when µ2 varies from 0.3 to 0.9. Intuitively, the optimal critical

value r∗ and its minimum expected cost may be too insensitive to changes with µ2.

In Figure 4.4, we fix λ = 0.1, µ1 = 0.2 and µ2 = 0.8, and display the optimal

critical value r∗ and its expected minimum cost F (r∗) by varying the probability β.

Figure 4.4 shows that: (i) The optimal critical value r∗ does not change at all when β
varies from 0.1 to 0.7. (ii) The minimum expected cost F (r∗) decreases slightly as β
increases. Intuitively, the optimal critical value r∗ and its expected minimum cost F (r∗)
are insensitive to changes with β.

It appears from Figures 4.1–4.4 that: (i) β does not affect r∗, but slightly affects

F (r∗). (ii) λ affects F (r∗) and slightly affects r∗. (iii) µ2 rarely affects r∗ and F (r∗).
And (iv) µ1 affects r∗ and F (r∗) significantly.

Furthermore, we perform a sensitivity analysis on the optimal value r∗ and its ex-

pected cost F (r∗) based on changes in values of the cost parameters C1, C2, C3 and C4.
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Let the service time follow a 2-stage Erlang distribution, and employ the system param-

eters λ = 0.1, µ1 = 0.2, µ2 = 0.8 and β = 0.5. The numerical results of the optimal

critical value r∗ and its expected minimum cost F (r∗) are illustrated in Figures 4.5–4.8.

It can be easily seen from Figures 4.5–4.8 that: (i) The cost C1 slightly affects r∗

and F (r∗) when C1 is larger than 150. (ii) The cost C2 and C4 affect r∗ and F (r∗)
significantly. And (iii) the cost C3 rarely affects r∗ and F (r∗).

5 Conclusions

We have considered an M/Ek/1 queuing system with balking and state-dependent service

rate. By using the matrix geometric solution, we have obtained the matrix solution of

the steady-state probability distribution and the explicit expressions of some performance

measures of the system. Based on these performance measures, we have developed a cost

model to determine the optimal critical value r∗ to minimize the total expected cost per

unit time. Furthermore, we have performed sensitivity analysis for the optimal critical

value r∗ and its expected minimum cost F (r∗) with various parameters. Our numerical

investigations indicate that: (i) The slow service rate µ1, the cost parameters C2 and C4

affect the optimal critical value r∗ and its expected minimum cost F (r∗) significantly.

(ii) The other parameters such as λ, µ2, β and the cost parameters C1 and C3 rarely

affect the optimal critical value r∗ and its expected minimum cost F (r∗).
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