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Abstract: In this paper, we present an analysis for an M/Ek/1 queuing
system with balking and state-dependent service. Customers are served with
two different rates depending on the number of customers in the system. If a
customer on arrival finds other customers in the system, it either decides to
enter the queue or balks with a constant probability. We first formulate the
queuing model as a quasi-birth and death (QBD) process. Then, we obtain the
equilibrium condition of the system. By using the matrix geometric solution
method, we obtain the explicit expressions for steady-state probability vector
via the rate matrix R. The computation of the rate matrix R is also discussed.
Then, we derive explicitly some performance measures of the system. Based on
these performance analysis, we develop a cost model to determine numerically
the optimal cost and optimal critical value. Finally, we perform sensitivity
analysis through numerical experiments.
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1 Introduction

We consider an M/Ek/1 queuing system with balking and state-dependent service. Cus-
tomers are served with two different service rates depending on the number of customers
in the system. If a customer on arrival finds other customers in the system, it either
decides to enter the queue or balk (does not enter) with a constant probability. Balk-
ing is not only a common phenomenon in queues arising in daily activities, but also in
communication systems, production line systems and in various machine interferences or
repair models (see [1]-[4] and references therein).

The queuing systems with balking, or reneging, or both have been studied by many
researchers. Haight [5] is the first person who considered an M/M/1 queue with balking.
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An M/M/1 queue with customer reneging was also proposed by Haight [6]. The combined
effects of balking and reneging in an M/M/1 queue with limited waiting room and with
unlimited waiting room have been investigated by Ancker and Gafarian [7], [8]. They
obtained the steady-state probabilities and some performance measures of the system
such as the mean number in the queue, the mean number in the system and the mean
rate of customer loss.

Abou-EI-Ata [9] extended the model in [7] to study the state-dependent M/M/1/N
queue with reneging and a general balk function, where the server has two service rates
depending on the number of customers in the system. Some of its variations have been
studied by several authors including, for example, Abou-EI-Ata and Kotb [10], Abou-
EI-Ata et al. [11] and Abou-EI-Ata and Shawky [12].

Recently, Drekic and Woolford [13] studied a preemptive priority Markovian queue
with state-dependent service and lower priority balking customers. They formulated the
queueing model as a quasi-birth and death (QBD) process. By using the method of
generalized eigenvalues, they established an explicit representation for the so-called rate
matrix. They also obtained the steady-state joint distribution of the number of high and
low priority customers in the system.

The state-dependent M/M/1 queue with balking was studied by Al-seedy and Kotb
[14]. They obtained the transient solution of the state probabilities. Al-seedy [15] ex-
tended the model proposed by Abou-EI-Ata [9] to the state-dependent M/Ek/1/N queue
with balking. By solving the steady-state probability-difference equations, Al-seedy [15]
obtained some iterative expressions of the steady-state probabilities. However, these
iterative expressions are too complex to obtain explicit expressions of the steady-state
probabilities in general cases, and they could not derive explicitly some performance mea-
sures such as the distribution of the queue length and the expected number of customers
in the system and in the queue. Even for a special case when the waiting room is un-
limited (i.e., N → ∞), it is difficult to obtain the explicit expressions of the steady-state
probabilities from the iterative expressions.

In this paper, we study a state-dependent M/Ek/1 queue with balking and an un-
limited waiting room. The rest of the paper is organized as follows. In Section 2, we
formulate the queuing model as a QBD process and obtain the equilibrium condition of
the system. In Section 3, by using a matrix-geometric solution method, we derive the
explicit expression for steady-state probability vector. Also, we derive explicitly some
performance measures of the system such as the expected number of the customers in
the system and in the queue and the mean balking rate of the system. Based on these
analyses, we develop a cost model to determine numerically the optimal cost and op-
timal critical value. In Section 4, we perform sensitivity analysis through numerical
experiments. Conclusions are given in Section 5.

2 System Model and Equilibrium Condition

In this section, we first describe the system model. Then, we derive an infinitesimal
generator of a QBD process of the system. Finally, we provide an equilibrium condition
of the system.

2.1 Model assumptions

In this paper, we consider an M/Ek/1 queuing system with balking and state-dependent
service rate. The assumptions of the system model are as follows:
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(a) There is only one server in the system, and the server can only serve one customer
at the same time. The capacity of the system is infinite. It is assumed that the
service is independent of the arrival of the customers.

(b) Customers arrive at the system one by one according to a Poisson process with rate
λ (λ > 0).

(c) A customer on arrival decides to join the queue or balk. If a customer on arrival finds
some customers in the system, then it joins the queue with probability β and balks
with probability 1−β. If a customer on arrival finds no customer in the system, then
he joins the system and will be serviced immediately.

(d) The customers are served on a first-come, first served (FCFS) discipline. Once
service commences it always proceeds to completion. The service times are assumed
to be distributed according to an Erlang distribution with mean k/µn and stage
parameter k. The Erlang type k distribution is made up of k independent and
identical exponential stages, each with mean 1/µn, given by

µn =

{

kµ1, n = 1, 2, ..., r,
kµ2, n = r + 1, r + 2, ... .

This means that the server has two rates say called “slow and fast” depending on the
number of customers n in the system. When the number of customers n in the system is
less than or equal to the critical value r, the server has slow service rate µ1; otherwise,
the server has fast service rate µ2 (0 < µ1 < µ2).

2.2 Infinitesimal generator of a QBD process

Let N(t) denote the number of the customers in the system at time t, and J(t) denote
the service stage that the customer being served at time t (t ≥ 0). A customer goes into
the first stage of the service (say stage k), then progresses through the remaining stages
and must complete the last stage (say stage 1). The state space of the two dimensional
process {(N(t), J(t)); t ≥ 0} is given by

S = {(i, j); i = 0, 1, ..., j = 1, 2, ..., k}.

All states of this two dimensional process are labelled in the lexicographic order as follows:

(0, 0); (1, 1), (1, 2), ..., (1, k); (2, 1), (2, 2), ..., (2, k); ... .

By the probability analysis, we have the following infinitesimal generator of the process
{(N(t), J(t)); t ≥ 0}.

Q =





















B0 C0

A1 B1 C1

A2 B1 C1

· · · · · · · · ·
A2 B1 C1

A3 B2 C1

· · · · · · · · ·





















· · · 0
· · · 1
· · · 2

...
· · · r
· · · r + 1

...
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where

A1 =











kµ1

0
...
0











, A2 =











0 · · · 0 kµ1

0 · · · 0 0
...

...
...

0 · · · 0 0











, A3 =











0 · · · 0 kµ2

0 · · · 0 0
...

...
...

0 · · · 0 0











,

B0 =−λ, B1 =









−βλ − kµ1

kµ1 −βλ − kµ1

· · · · · ·
kµ1 −βλ − kµ1









,

B2 =









−βλ − kµ2

kµ2 −βλ − kµ2

· · · · · ·
kµ2 −βλ − kµ2









,

C0 =
(

0 · · · 0 λ
)

, C1 =









βλ
βλ

· · ·
βλ









,

where C0 is a matrix of order 1 × k, A1 is a matrix of order k × 1, and other matrixes
are square matrixes of order k.

From the book written by Neuts [16], we know that process {N(t), J(t); t ≥ 0} is a
QBD process.

2.3 Equilibrium condition of the system

In the following, we provide a necessary and sufficient condition to ensure the existence
for the stationary probability distribution of the process {N(t), J(t); t ≥ 0}.

Let H = A3 + B2 + C1, then H is given by

H =











−kµ2 0 · · · 0 kµ2

kµ2 −kµ2 · · · 0 0
...

...
...

...
0 0 · · · kµ2 −kµ2











.

It is readily known that H is an irreducible generator. Let π = (π1, π2, ..., πk) be the
steady-state probability vector of H . Then, π satisfies the linear equations πH = 0 and
πe = 1, where e is a column vector whose elements are all equal to 1. Solving the above
linear equations, we get that

πi =
1

k
, i = 1, 2, ..., k. (1)

By Theorem 3.1.1 in Chapter 3 of Neuts [16], the equilibrium condition of the system is
given by

πA3e > πC1e.
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Making substitution for π by Eq. (1), then we have the equilibrium condition of the
system given by

βλ

µ2

< 1. (2)

Remark 2.1 We observe from the above condition that the equilibrium condition
of the system is dependent with the fast service rate µ2 and independent with the slow
service rate µ1. This is in agreement with the equilibrium condition obtained by Rao
[17], where Rao considered an M/G/1 queueing system in which customers balk with a
constant probability 1 − β and renege according to a negative exponential distribution.
It has been shown that as long as reneging is permitted, the steady states always exist,
but when no reneging is permitted, the steady states exist only when λβη < 1, where λ
is the arrival rate of customers, and η is the mean service time of a customer.

3 Performance Measures and Cost Model

In this section, we first derive the explicit expression for the steady-state probability
vector. Then, we give some useful performance measures of the system. Based on these
performance measures, we develop a cost model to determine the optimal critical value
r to minimize the total expected cost per unit time.

3.1 Steady-state probability vector

Let X = (X0, X1, ..., Xr, Xr+1, ...), where X0 is a number, Xi (i = 1, 2, ...) is a vec-
tor of order k. By applying the matrix geometric solution method [16], the stationary
probability vector is given by

Xi = XrR
i−r , i = r, r + 1, ... (3)

where R is the minimal nonnegative solution to the equation R2A3 + RB2 + C1 = 0,
and X0, X1, ..., Xr are given by solving the following equations:

X0B0 + X1A1 = 0,

X0C0 + X1B1 + X2A2 = 0,

XiC1 + Xi+1B1 + Xi+2A2 = 0, i = 1, 2, ..., r − 2,

Xr−1C1 + Xr(B1 + RA3) = 0,

X0 +
r−1
∑

i=1

Xie + Xr(I − R)−1e = 1, (4)

where e is a column vector of order k, and all its elements equal to 1.
In general, it is difficult to give an exact expression of R except for a few special

cases. However, the matrix R can be approximately calculated by the following iterative
procedure:

(a) R(0) = 0,
(b) R(n + 1) = −(C1 + R2(n)A3)B

−1
2 , n ≥ 0.

This iterative algorithm is convergent, i.e. R = lim
n→∞

R(n) (Section 1.9 of Chapter 1

of [16]).
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Remark 3.1 The inverse of the matrix B−1
2 in the above algorithm exists, and can

be explicitly given by

B−1

2 =
1

ak















ak−1 0 0 · · · 0
ak−2(−b) ak−1 0 · · · 0
ak−3(−b)2 ak−2(−b) ak−1 · · · 0

...
...

...
...

(−b)k−1 a(−b)k−2 a2(−b)k−3 · · · ak−1















,

where a = (−βλ − kµ2), b = kµ2.
For a special case of k = 2 and r = 2, we can readily obtain an explicit expression for

matrix R given in the following theorem.

Theorem 3.1 If k = 2 and r = 2, then the matrix R is explicitly given by

R =
βλ

4µ2
2

(

2µ2 βλ
2µ2 βλ + 2µ2

)

. (5)

Proof Let

R =

(

R00 R01

R10 R11

)

,

then the equation R2A3 + RB2 + C1 = 0 can be written as follows:

2µ2(R
2
00 + R01R10) + (−βλ − 2µ2)R01 = 0,

2µ2(R00R10 + R11R10) + (−βλ − 2µ2)R11 + βλ = 0,

(−βλ − 2µ2)R00 + 2µ2R01 + βλ = 0,

(−βλ − 2µ2)R10 + 2µ2R11 = 0. (6)

Noting that RA3e = C1e, (Eq. (3.1.6) in [16]), we obtain that

R00 =
βλ

2µ2

, R10 =
βλ

2µ2

. (7)

Substituting Eq. (7) into Eq. (6), the other two elements R01 and R11 are readily
obtained. Then, we obtained the matrix R. �

In this special case, the vector X is given by

Xi = X2R
i−2, i = 2, 3, ..., (8)

and the number X0, the vectors X1 and X2 satisfy the following equations:

X0B0 + X1A1 = 0,

X0C0 + X1B1 + X2A2 = 0,

X1C1 + X2(B1 + RA3) = 0,

X0 + X1e + X2(I − R)−1e = 1, (9)

where

(I − R)−1 =
1

4µ2βλ − 4µ2
2

(

β2λ2 + 2µ2βλ − 4µ2
2 β2λ2

(−2µ2)βλ (−2µ2)(2µ2 − βλ)

)

. (10)

Thus, X0, X1 and X2 are readily obtained by solving Eq. (9). However, it is not simple
to present it explicitly since the expressions are tediously long. Thus, their expressions
are omitted.
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3.2 Performance measures

Using the steady-state probability vector presented above, we can obtain some perfor-
mance measures of the system. Let

Xi = (xi1, xi2, ..., xik), i = 1, 2, ...,

then we have the following theorem.

Theorem 3.2 (a) The expected number of customers in the system is given by

E(N) =

r−1
∑

n=1

nXne + Xr

[

r(I − R)−1 + R(I − R)−2
]

e. (11)

(b) The expected number of customers in the queue is given by

E(Nq) =

r−2
∑

n=1

nXn+1e + Xr

[

(r − 1)(I − R)−1 + R(I − R)−2
]

e. (12)

(c) The mean balking rate of the system is given by

BR = (1 − β)λ(1 − X0). (13)

Proof The expected number of customers in the system is given by

E(N) =

k
∑

i=1

∞
∑

n=1

nxn,i =

∞
∑

n=1

nXne.

From Eq. (3), we have

E(N) =

r−1
∑

n=1

nXne +

∞
∑

n=r

nXrR
n−re. (14)

Hence, we obtain Eq. (11) by summation. Similarly, the expected number of customers
in the queue is given by

E(Nq) =

k
∑

i=1

∞
∑

n=1

nxn+1,i =

r−2
∑

n=1

nXn+1e +

∞
∑

n=r−1

nXrR
n−r+1e. (15)

Hence, we obtain Eq. (12) by summation. Using the concept of Ancker and Gafarian
[7], the mean balking rate of the system is given by

BR =
∞
∑

n=1

bnλXne = (1 − β)λ(1 − X0). (16)

Obviously, the probability that the server is busy is given by

PB = 1 − X0 (17)

and the probability that the server is idle is given by

P0 = X0. (18)

�
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3.3 Cost model

In this subsection, we develop a steady-state expected cost function where the critical
value r is a decision variable. Our objective is to determine the critical value r to minimize
the total expected cost per unit time. Let

C1=cost per unit time when customers are waiting for service,
C2=cost per unit time when the server is busy,
C3=loss cost per unit time when customers balk,
C4=cost per unit time when the server is idle.
According to the definition of each cost of the parameters listed above, the total

expected cost function per unit time is given by

F (r) = C1E(Nq) + C2PB + C3BR + C4P0, (19)

where E(Nq), BR, PB , P0 are given in Eqs. (12) and (13) and Eqs. (17) and (18). The
first item of Eq. (19) is the cost incurred by the customer’s waiting. The second and the
last items of Eq. (19) are the costs incurred by the server. The third item of Eq. (19) is
the cost incurred by the customer loss.

4 Sensitivity Analysis

In this section, we perform a sensitivity analysis on the optimal value r∗ and its expected
cost F (r∗) based on changes in the values of the system parameters such as the arrival
rate λ, the probability β, the slow service rate µ1, the fast service rate µ2 and cost
parameters.

Let the service time follow a 2-stage Erlang distribution, and employ the cost param-
eters C1 = 100, C2 = 150, C3 = 300 and C4 = 450. The numerical results of the optimal
critical value r∗ and its expected minimum cost F (r∗) are illustrated in Figures 4.1–4.4.
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Figure 4.1: Optimal cost F (r∗) and optimal critical value r∗ versus arrive rate λ with µ1 = 0.2,
µ2 = 0.8 and β = 0.5.
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Figure 4.2: Optimal cost F (r∗) and optimal critical value r∗ versus slow service rate µ1 with
λ = 0.1, µ2 = 0.8 and β = 0.5.
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Figure 4.3: Optimal cost F (r∗) and optimal critical value r∗ versus fast service rate µ2 with
λ = 0.1, µ1 = 0.2 and β = 0.5.
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Figure 4.4: Optimal cost F (r∗) and optimal critical value r∗ versus probability β with λ = 0.1,
µ1 = 0.2 and µ2 = 0.8.
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Figure 4.5: Optimal cost F (r∗) and optimal critical value r∗ versus cost parameter C1 with
C2 = 150, C3 = 300 and C4 = 450.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(3) (2006) 295–308 305

50 100 150 200 250
150

200

250

300

350

400

450

500

550

Cost Parameter C
2

O
pt

im
al

 C
os

t F
(r

* ) 
an

d 
O

pt
im

al
 C

rit
ic

al
 V

al
ue

 r*

Optimal Cost F(r*)
Optimal Critical Value 100r*

Figure 4.6: Optimal cost F (r∗) and optimal critical value r∗ versus cost parameter C2 with
C1 = 100, C3 = 300 and C4 = 450.
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Figure 4.7: Optimal cost F (r∗) and optimal critical value r∗ versus cost parameter C3 with
C1 = 100, C2 = 150 and C4 = 450.
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Figure 4.8: Optimal cost F (r∗) and optimal critical value r∗ versus cost parameter C4 with
C1 = 100, C2 = 150 and C3 = 300.

In Figure 4.1, we fix µ1 = 0.2, µ2 = 0.8 and β = 0.5, and display the optimal critical
value r∗ and its expected minimum cost F (r∗) by varying the arrival rate λ. Figure
4.1 shows that: (i) The optimal critical value r∗ decreases as λ increases from 0.05 to
0.15, while it does not change at all when λ varies from 0.15 to 0.4. (ii) The minimum
expected cost F (r∗) first decreases and then increases as λ increases. Intuitively, the
optimal critical value r∗ is insensitive to changes with λ.

In Figure 4.2, we fix λ = 0.1, µ2 = 0.8 and β = 0.5, and display the optimal critical
value r∗ and its expected minimum cost F (r∗) by varying the slow service rate µ1. Figure
4.2 shows that the optimal critical value r∗ and its minimum expected cost F (r∗) increase
as µ1 increases.

In Figure 4.3, we fix λ = 0.1, µ1 = 0.2 and β = 0.5, and display the optimal critical
value r∗ and its expected minimum cost F (r∗) by varying the fast service rate µ2. Figure
4.3 shows that: (i) The optimal critical value r∗ decreases as µ2 increases from 0.3 to 0.5,
while it does not change at all when µ2 varies from 0.5 to 0.9. (ii) The minimum expected
cost F (r∗) rarely changes when µ2 varies from 0.3 to 0.9. Intuitively, the optimal critical
value r∗ and its minimum expected cost may be too insensitive to changes with µ2.

In Figure 4.4, we fix λ = 0.1, µ1 = 0.2 and µ2 = 0.8, and display the optimal
critical value r∗ and its expected minimum cost F (r∗) by varying the probability β.
Figure 4.4 shows that: (i) The optimal critical value r∗ does not change at all when β
varies from 0.1 to 0.7. (ii) The minimum expected cost F (r∗) decreases slightly as β
increases. Intuitively, the optimal critical value r∗ and its expected minimum cost F (r∗)
are insensitive to changes with β.

It appears from Figures 4.1–4.4 that: (i) β does not affect r∗, but slightly affects
F (r∗). (ii) λ affects F (r∗) and slightly affects r∗. (iii) µ2 rarely affects r∗ and F (r∗).
And (iv) µ1 affects r∗ and F (r∗) significantly.

Furthermore, we perform a sensitivity analysis on the optimal value r∗ and its ex-
pected cost F (r∗) based on changes in values of the cost parameters C1, C2, C3 and C4.
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Let the service time follow a 2-stage Erlang distribution, and employ the system param-
eters λ = 0.1, µ1 = 0.2, µ2 = 0.8 and β = 0.5. The numerical results of the optimal
critical value r∗ and its expected minimum cost F (r∗) are illustrated in Figures 4.5–4.8.

It can be easily seen from Figures 4.5–4.8 that: (i) The cost C1 slightly affects r∗

and F (r∗) when C1 is larger than 150. (ii) The cost C2 and C4 affect r∗ and F (r∗)
significantly. And (iii) the cost C3 rarely affects r∗ and F (r∗).

5 Conclusions

We have considered an M/Ek/1 queuing system with balking and state-dependent service
rate. By using the matrix geometric solution, we have obtained the matrix solution of
the steady-state probability distribution and the explicit expressions of some performance
measures of the system. Based on these performance measures, we have developed a cost
model to determine the optimal critical value r∗ to minimize the total expected cost per
unit time. Furthermore, we have performed sensitivity analysis for the optimal critical
value r∗ and its expected minimum cost F (r∗) with various parameters. Our numerical
investigations indicate that: (i) The slow service rate µ1, the cost parameters C2 and C4

affect the optimal critical value r∗ and its expected minimum cost F (r∗) significantly.
(ii) The other parameters such as λ, µ2, β and the cost parameters C1 and C3 rarely
affect the optimal critical value r∗ and its expected minimum cost F (r∗).
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