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1 Introduction

In recent years there has been intensive research on systems governed by impulsive dif-
ferential equations and impulsive functional equations in Banach spaces (see [1], [2], [3],
[6], and the references therein). This is probably due to the fact that though a vast
majority of physical systems are described by differential or difference equations, a more
realistic model of a physical system can be constructed using differential equations with
time delay and impulsive effects in describing the evolution and discrete events occur-
ring in the system. In fact, many evolution processes in nature are characterized by the
fact that there are inherently time delays and at certain moments of time experience an
abrupt change of state. Most papers in the literature dealt with ordinary differential
systems and semilinear differential equations. Their emphasis and advantage lie in the
fact that solutions of these systems are being represented by means of integration for-
mula via appropriate semigroup of operators. It seems that only a few papers discuss
the strongly nonlinear impulsive functional differential system, which cover quasilinear
partial differential equations with time delay.
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Let D = {t1 < t2 < · · · < tm} be fixed impulsive points in (0, T ). In this paper we
study a class of strongly nonlinear impulsive differential equations with time delay in the
form 




ẋ(t) +A(t, x) = f(t, xt), t ∈ [0, T ] \D,
x(t) = φ(t), t ∈ [−r, 0],
△x(ti) = Gi(x(ti)), i = 1, 2, · · · ,m.

(1.1)

Here A is a nonlinear monotone operator and f is a nonlinear nonmonotone perturbation,
and Gi denotes the jump operator defined as

Gi(x(ti)) = x(ti+) − x(ti−) = x(ti+) − x(ti),

φ ∈ PF and xt(θ) = x(t+ θ), θ ∈ [−r, 0]. The space PF will be introduced in Section 2.
We present here sufficient conditions for the existence of solution to this particular

class of nonlinear impulsive functional equations in an appropriate infinite dimensional
Banach space. The results are obtained by using the theory of nonlinear functional
analysis and a fixed point theorem due to Leray-Schauder.

The rest of the paper is organized as follows. In Section 2, we introduce some basic
notations. In Section 3, we prove the existence of solutions for a class of nonimpulsive
delay differential equations in Banach spaces. In Section 4, we establish the new existence
result for a class of nonlinear impulsive functional differential equation in Banach spaces.
Finally, we conclude with an example to illustrate our results in Section 5.

2 Preliminaries

Let H be a separable Hilbert space and V be a dense subspace of H having the structure
of a reflexive Banach space with continuous embedding, so that V →֒ H →֒ V ∗ forms a
Gelfand triple. We assume the injection V →֒ H is continuous and compact. The system
model considered here is based on this Gelfand triple (see [1] or Chapter 23 of [9]).

Let I ≡ [0, T ], r > 0, and m > 0 be given. The norm in any Banach space X will be
denoted by ‖ · ‖X . Let PF (X) = {ψ : [−r, 0] → X ; ψ is continuous everywhere except
for a finite number of points t̃ at which ψ(t̃−) and ψ(t̃+) exist and ψ(t̃−) = ψ(t̃)} be
endowed with the norm

‖ψ‖PF (X) = sup{‖ψ(θ)‖H , θ ∈ [−r, 0]}.

For any continuous function x defined on [−r, T ] \D and t ∈ [0, T ], we denote by xt the
element of PF ≡ PF (H) defined by

xt(θ) = x(t+ θ), θ ∈ [−r, 0].

Let 1 < q ≤ p < +∞ satisfying 1
p + 1

q = 1. The space Wpq(I) ≡ Wpq is defined as
follows:

Wpq(I) = {x|x ∈ Lp(I, V ), ẋ ∈ Lq(I, V
∗)}

with the norm
‖x‖2

Wpq
= ‖x‖2

Lp(I,V ) + ‖ẋ‖2
Lq(I,V ∗),

where ẋ denotes the derivative of x in the generalized sense. {Wpq, ‖ · ‖Wpq
} is a Banach

space and the embedding Wpq →֒ C(I,H) is continuous. If the embedding V →֒ H is
compact, the embedding Wpq →֒ Lp(I,H) is also compact (see [9] and [1]). Similarly, we
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can define Wpq([s, u]) for 0 ≤ s < t < u ≤ T . Furnished with the norm ‖ · ‖Wpq([s,u]),
the space (Wpq([s, u]), ‖ · ‖Wpq([s,u])) becomes a Banach space which is clearly reflexive
and separable. Moreover, the embedding Wpq([s, u]) →֒ C([s, u], H) is continuous and
the embedding Wpq([s, u]) →֒ Lp((s, u), H) is also compact.

Set PC(I,H) = {x : x is a map from I into H such that x(t) is continuous at t ∈ I\D
and x(t) is left continuous at t ∈ D and the right limit x(ti+) exists for i = 1, 2, · · ·m},
and

PWpq(I) = {x : x |[ti,ti+1]∈Wpq([ti, ti+1]) for i = 0, 1, · · · ,m},

where t0 = 0 and tm+1 = T . For x ∈ PWpq(I) ∩ PC(I,H)
∆
= PWC, define

‖x‖PWC =

m∑

i=0

‖x‖Wpq [ti,ti+1] +

m∑

i=1

‖x(ti+) − x(ti−)‖H .

It is easy to show that PWC is a Banach space.
Let us consider the following nonlinear impulsive differential equation with time delay






ẋ(t) +A(t, x) = f(t, xt), t ∈ [0, T ] \D,
x(t) = φ(t), t ∈ [−r, 0],
△lx(ti) = Gi(x(ti)) i = 1, 2, · · · ,m,

(2.1)

where A is a nonlinear monotone operator, f is a nonlinear nonmonotone perturbation,
Gi(i = 1, 2 · · ·m) are nonlinear maps. Here φ ∈ PF , and △lx(ti) = x(ti+) − x(ti−) =
x(ti+) − x(ti), which represents the jump in the state x at time ti with Gi determining
the size of the jump at time ti.

We will impose the following hypotheses on problem (2.1).

(A1) A : I × V → V ∗ is an operator such that

(i) t→ A(t, x) is measurable.

(ii) x→ A(t, x) is monotone and hemicontinuous; i.e., ∀t ∈ I,

〈A(t, x1) −A(t, x2), x1 − x2〉 ≥ 0 ∀x1, x2 ∈ V, t ∈ I;

A(t, x + sy)
W
−→ A(t, x) in V ∗ as s→ 0 ∀x, y ∈ V.

(iii) There exist positive constants c1, c2, c3 and a nonnegative function c4(·) ∈
Lq(I) such that ∀t ∈ I,

〈A(t, x), x〉 ≥ c1 ‖ x ‖p
V −c2, for all x ∈ V,

‖A(t, x)‖V ∗ ≤ c4(t) + c3‖x‖
p−1
V for all x ∈ V.

(A2) f : I × PF → H is an operator such that

(i) t→ f(t, ξ) is measurable, and

ξ → f(t, ξ) is continuous.

(ii) There exist a constant α ≥ 0 and a nonnegative function h(·) ∈ L2(I) such
that

‖f(t, ξ)‖H ≤ h(t) + α‖ξ‖
2
q

PF , ∀t ∈ I, ξ ∈ PF.

(A3) For i = 1, 2, · · · ,m, Gi : H → H is a bounded map (i.e., Gi maps a bounded set
to a bounded set).
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To arrive at the main results of the paper, we need the following fixed point theorem
due to Leray and Schauder [5].

Theorem 2.1 Let B be a convex subset of a normed linear space E and 0 ∈ B. Let
P : B → B be a completely continuous operator and let

ξ(P ) = {x ∈ B : x = σP (x) for some 0 < σ < 1}.

Then either the set ξ(P ) is unbounded, or P has a fixed point.

3 Existence of solutions of functional differential equation

In this section we consider the following functional differential equation without impulsive
effects: {

ẋ(t) +A(t, x) = f(t, xt), t ∈ [0, T ],
x(t) = φ(t), t ∈ [−r, 0],

(3.1)

Definition 3.1 A function x is called a weak solution of (3.1) if x|[0,T ] ∈Wpq satis-
fies the equation in a weak sense and x(t) = φ(t) ∀t ∈ [−r, 0].

Theorem 3.1 Under assumptions (A1) and (A2), problem (3.1) has a solution in
Wpq.

Proof

Step 1: The proof will be given first for the case where φ(0) = 0.
(1) Set

B = {y|y ∈ C([0, T ], H), y(0) = 0}.

Obviously, B is a Banach space with the supremum norm. For any x ∈ B, we define
F : B → L2(I,H) by F (x)(t) = f(t, x̂t) with

x̂t(s) =

{
φ(t+ s) for t+ s ∈ [−r, 0),
x(t+ s) for t+ s ∈ [0, T ].

The operator P is defined on B by letting y = Px be the corresponding solution of the
following Cauchy problem

{
ẏ(t) +A(t, y(t)) = F (x)(t), t ∈ I,
y(0) = 0.

Indeed, by assumption (A2) and 1 < q ≤ p < +∞, F (x)(t) = f(t, x̂t) is measurable
and

F (x)(·) ∈ L2(I,H) ⊂ Lq(I, V
∗).

Thus, the above Cauchy problem has a unique solution y ∈Wpq →֒ C(I,H) (see Theorem
30.A of [9]). Hence P maps B into itself.

(2) P : B → B is continuous.
Suppose xn −→ x in B as n −→ ∞. This means

sup
0≤t≤T

‖xn(t) − x(t)‖H −→ 0,
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as n→ +∞. Hence, there exists a constant M > 0 such that

‖x̂n‖PC([−r,T ],H) ≤M and ‖x̂‖PC([−r,T ],H) ≤M.

By virtue of assumption (A2), we have for t ∈ I,

F (xn)(t) −→ F (x)(t) in H

as n→ ∞ and there exists a constant M1 > 0 such that

‖F (xn)(t)‖H ≤ h(t) +M1 and ‖F (x)(t)‖H ≤ h(t) +M1.

It follows from the majorized convergence principle that

F (xn) −→ F (x) in L2(I,H)

as n→ ∞.
Let yn = Fxn and y = Fx satisfy the following equations respectively. For t ∈ I,

ẏn(t) +A(t, yn(t)) = F (xn)(t), yn(0) = 0,

ẏ(t) +A(t, y(t)) = F (x)(t), y(0) = 0.

Then

1

2
‖yn(t) − y(t)‖2

H ≤ ‖F (xn) − F (x)‖L2(0,t;H)‖yn − y‖L2(0,t;H)

≤
1

2
‖F (xn) − F (x)‖2

L2(I,H) +
1

2

∫ t

0

‖yn(τ) − y(τ)‖2
Hdτ.

Thanks to Gronwall’s lemma, it is easy to show that

yn −→ y in B as n→ ∞.

(3) P is a compact operator on B.
Let {xn} be a bounded sequence in B. That is, there is a constant M2 > 0 such that

‖xn‖C(I,H) ≤M2.

Again, by assumption (A2), there exist constants M3,M4 > 0 such that

‖F (xn)(t)‖H ≤ h(t) +M3 and ‖F (xn)‖L2(I,H) ≤M4.

Let yn = Pxn be a solution of the following equation
{
ẏn(t) +A(t, yn(t)) = F (xn)(t).
yn(0) = 0.

(3.2)

Integrating by parts in (3.2) and using assumption (A1), one can obtain

1

2
‖yn(t)‖2

H + C1‖yn‖
p
Lp(0,t;V ) ≤ ‖F (xn)‖L2(0,t;H)‖yn‖L2(0,t;H) + C2.

It follows from the Cauchy inequality that there exist constants γ > 0 and K > 0 such
that

1

2
‖yn(t)‖2

H + γ‖yn‖
p
Lp(0,t;V ) ≤ K‖F (xn)‖q

L2(I,H) + C2.
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Hence {yn} is bounded in C(I,H) ∩ Lp(I, V ). It follows from Eq.(3.2) that {ẏn} is
bounded in Lq(I, V

∗) and therefore {yn} is bounded in Wpq .
Since Wpq →֒ Lp(I,H) is compact, there exists a subsequence, relabelled {yn}, such

that
yn −→ y in Lp(I,H) as n→ ∞.

So {yn} is a Cauchy sequence in Lp(I,H). Hence there exists a constant M5 > 0 such
that

1

2
‖yn(t) − ym(t)‖2

H ≤ ‖F (xn) − F (xm)‖Lq(I,H)‖yn − ym‖Lp(I,H)

≤ M5‖yn − ym‖Lp(I,H).

This inequality implies that {yn} is a Cauchy sequence in B. Since B is closed, the
sequence {yn} has a limit in B. This proves that P is compact.

(4) Boundedness of the set ξ(P ).
We will show that the set ξ(P ) is bounded. To this end, suppose x ∈ B and x = σPx

where σ ∈ (0, 1). This implies that x satisfies the following Cauchy problem:

{
1
σ ẋ(t) +A(t, 1

σx(t)) = g(t, x̂t), t ∈ I,
x(0) = 0.

(3.3)

We will show that there exists a Q > 0 such that

‖x‖C(I,H) ≤ Q.

Using the same arguments and assumptions (A1) and (A2), we have

1

2σ
‖x(t)‖2

H +
C1

σp−1
‖x‖p

Lp(0,t;V ) ≤

∫ t

0

〈f(τ, x̂τ ), x(τ)〉dτ + C2

≤ (

∫ t

0

‖f(τ, x̂τ )‖q
Hdτ)

1/q(

∫ t

0

‖x(τ)‖p
Hdτ)

1/p + C2

≤
1

qεq

∫ t

0

‖f(τ, x̂τ )‖q
Hdτ +

εp

p
‖x‖p

Lp(0,t;H) + C2,

for any constant ε > 0 and some constants C1 ≥ 0 and C2 ≥ 0. Hence

σp−2

2
‖x(t)‖2

H +C1‖x‖
p
Lp(0,t;V ) ≤ C2σ

p−1 + b1ε
pσp−1‖x‖p

Lp(0,t;V ) +
d1σ

p−1

qεq

∫ t

0

‖x̂τ‖
2
PFdτ

where b1 and d1 are positive constants. So, we can choose ε > 0 small enough such that

σp−2

2
‖x(t)‖2

H ≤ a1σ
p−1 + b2σ

p−1

∫ t

0

‖x̂τ‖
2
PFdτ

where a1 and b2 are positive constants. It follows from 0 < σ < 1 that

‖x(t)‖2
H ≤ a2 + d1

∫ t

0

‖x̂τ‖
2
PFdτ.

We denote

k(t) = a2 + d1

∫ t

0

‖x̂τ‖
2
PFdτ.
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It is obvious that k(t) is an increasing function. So,

sup
0≤θ≤t

‖x(θ)‖2
H ≤ a2 + d1r‖φ‖

2
PF +

∫ t

0

sup
0≤θ≤τ

‖x(θ)‖2
Hdτ for all t ∈ [0, T ]

Let ω(t) = sup0≤θ≤t ‖x(θ)‖
2
H . Then ω(t) is continuous and increasing since x(t) is

continuous. An application of the Gronwall lemma implies that

‖x‖C([0,T ],H) ≤ Q, (3.4)

and so ξ(P ) is bounded.
By the Leray-Schauder fixed point theorem (Theorem 2.1), P has a fixed point x∗ in

B. Then x∗ is a corresponding solution of (3.1).
Step 2: For the proof of the theorem, in general case where φ(0) 6= 0, at first we

assume that φ(0) ∈ V , we use the transformation

y = x− φ(0)

to reduce the problem (3.1) into the following problem:

{
ẏ(t) +A(t, y + φ(0)) = f(t, yt + φ(0)), t ∈ I,
y(t) = φ(t) − φ(0), t ∈ [−r, 0],

(3.5)

We set Â(t, y) = A(t, y + φ(0)) and f̂(t, yt) = f(t, yt + φ(0)). Then it is easy to see
that Â satisfies assumptions (A1)(i) and (ii). It follows from assumption (A1) (iii) that

‖Â(t, y)‖V ∗ = ‖A(t, y + φ(0))‖V ∗ ≤ c4(t) + c3‖y + φ(0)‖p−1
V

≤ c4(t) + c32
p−1‖y‖p−1

V + c32
p−1‖φ(0)‖p−1

V . (3.6)

Let m4 = c4(t) + c32
p−1‖φ(0)‖p−1

V and m3 = c32
p−1. Then

‖Â(t, y)‖V ∗ ≤ m4(t) +m3‖y‖
p−1
V

for all y ∈ V and t ∈ I.
By assumption (A1)(iii), one can get

〈Â(t, y), y〉 = 〈A(t, y + φ(0)), y + φ(0)〉 − 〈A(t, y + φ(0)), φ(0)〉

≥ c1‖y + φ(0)‖p
V − c2 − ‖A(t, y + φ(0))‖V ∗ · ‖φ(0)‖V (3.7)

≥ c1‖y + φ(0)‖p
V − c2 −

1

pǫp
‖φ(0)‖p

V −
ǫq

q
‖A(t, y + φ(0))‖q

V ∗

for any constant ǫ > 0. Then, by (3.6), one can reduce (3.7) into

〈Â(t, y), y〉 ≥

(
c1 −

c32
q−1

q
ǫq

)
‖y + φ(0)‖p

V − c2 −
1

pǫp
‖φ(0)‖p

V −
2q−1cq4(t)

q
ǫq.

We can choose ǫ small enough such that m1 ≡ c1 − c32
q−1

q ǫq > 0 and note that the
following inequality

‖y + φ(0)‖p
V + ‖φ(0)‖p

V ≥ |‖y‖V − ‖φ(0)‖V |
p

+ ‖φ(0)‖V

≥ C (‖y‖V − ‖φ(0)‖V + ‖φ(0)‖V )
p

= C‖y‖p
V
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holds for some constant C > 0.
One can obtain

〈Â(t, y), y〉 ≥ m1C‖y‖
p
V −m2

where m2 = c2 − 1
pǫp ‖φ(0)‖V p − c1‖φ(0)‖p

V −
2q−1cq

4
(t)

q ǫq. That is, Â(t, y) satisfies as-

sumption (A1).

For f̂(t, y) = f(t, y + φ(0)), one can easily verify that f̂(t, y) satisfying assumption
(A2). Then the problem (3.5) has a solution from Step 1.

If φ(0) ∈ H , there exists a sequence {ξn} ⊂ V , such that ξn → φ(0) in H . Set

φn(t) =

{
φ(t) for t ∈ [−r, 0),
ξn for t = 0.

Then there exists xn ∈ Wpq such that

{
ẋn(t) +A(t, xn(t)) = f(t, (xn)t), t ∈ I,
xn(t) = φn(t), t ∈ [−r, 0].

(3.8)

We define Â(x)(t) = A(t, x(t)) for x ∈ Lp(I, V ) and t ∈ I. Then Â : Lp(I, V ) →
Lq(I, V

∗) is bounded, monotone, hemicontinuous, and coercive (see Theorem 30.A of
[9]). It follows from (3.4) and assumption (A1) that

‖xn‖Wpq
≤M and ‖A(xn)‖Lq(I,V ∗) ≤M

for some constant M > 0. Then there exists a subsequence of {xn}, denoted {xn} again,
such that

xn
W
−→ x in Lp(I, V ),

ẋn
W
−→ ẋ in Lq(I, V

∗),

Â(xn)
W
−→ w in Lq(I, V

∗),

as n→ +∞. Since Wpq →֒ Lp(I,H) is compact, we know that

xn
W
−→ x in Wpq ,

xn
S

−→ x in Lp(I,H),

xn(t)
S

−→ x(t) a.e. on I in H.

By assumption (A2) and using the similar method as in the proof of Lemma 1 of [8], it
follows that

F (xn)
S

−→ F (x) in Lq(I,H).

Hence {
ẋ+ w = F (x), t ∈ I,
x(t) = φ(t), t ∈ [−r, 0].

(3.9)

Combining (3.8) and (3.9), we obtain

〈ẋn − ẋ, xn − x〉 + 〈Âxn − w, xn − x〉 = 〈F (xn) − F (x), xn − x〉.
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Hence

〈Â(xn) − w, xn〉 =
1

2
‖xn(0) − x(0)‖2

H −
1

2
‖xn(T ) − x(T ))‖2

H

+ 〈Â(xn) − w, x〉 + 〈F (xn) − F (x), xn − x〉.

So,
lim sup
n→+∞

〈Axn, xn〉 ≤ 〈w, x〉.

Note that Â : Lp(I, V ) → Lq(I, V
∗) is monotone, hemicontinuous, and so Â satisfies

the condition (M) (see p. 538 of [9] ). We deduce that

w = Â(x).

Thus, {
ẋ+ Â(x) = F (x), t ∈ I,
x(t) = φ(t), t ∈ [−r, 0],

(3.10)

That is, x is a solution of (4.1).
The theorem is proved.

Remark 3.1 It follows from the proof of Theorem 3.2 that if x is a solution of (3.1)
then x is bounded in Wpq.

Theorem 3.2 guarantees the existence of solutions for (3.1), but not the uniqueness
of solutions. In order to obtain uniqueness, we have to impose a somewhat stronger
assumption on f . Assume that

(A4) f is locally Lipschitz continuous with respect to ξ, i.e., for any ρ > 0, there exists
a constant L(ρ), such that

‖f(t, ξ1) − f(t, ξ2)‖H ≤ L(ρ)(‖ξ1 − ξ2‖PF ), ∀t ∈ I

and for all ξ1, ξ2 ∈ PF (H) satisfying ‖ξ1‖PF ≤ ρ, ‖ξ2‖PF ≤ ρ.

Theorem 3.2 (Uniqueness of solution) If assumption (A4) holds, then the problem
(3.1) has at most one solution.

Proof Let x1 and x2 be two solutions of problem (3.1). Then

1

2
‖x1(t) − x2(t)‖

2
H ≤ ‖F (x1) − F (x2)‖L2(0,t;H)‖x1 − x2‖L2(0,t;H)

≤
1

2
‖F (x1) − F (x2)‖

2
L2(0,t;H) +

1

2
‖x1 − x2‖

2
L2(0,t;H).

By assumption (A4), there exist constants C∗
1 > 0 and C∗

2 > 0 such that

‖x1(t) − x2(t)‖
2
H ≤ C∗

1

∫ t

0

‖x1(τ) − x2(τ)‖
2
Hdτ + C∗

2

∫ t

0

‖(x1)τ − (x2)τ‖
2
PFdτ.

Because x1(t) = x2(t) = φ(t), t ∈ [−r, 0] and the solution of (3.1) is continuous in
[0, T ], one can modify x1 and x2 by setting x1(t) = x2(t) ≡ ξ, ∀t ∈ [−r, 0]. Then
x1, x2 ∈ C([−r, T ];H) such that

‖x1(t) − x2(t)‖
2
H ≤ C∗

1

∫ t

0

‖x1(τ) − x2(τ)‖
2
Hdτ + C∗

2

∫ t

0

‖(x1)τ − (x2)τ‖
2
Cdτ ∀t ∈ [0, T ]
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where C = C([−r, 0], H) denotes all continuous maps from [−r, 0] into H with the usual
supremum norm. Thanks to Gronwall’s lemma, it implies

x1(t) = x2(t) for all t ∈ [0, T ].

That is,

x1 = x2.

4 Existence of solutions for impulsive delay differential equations

In this section, we deal with the nonlinear impulsive differential equation (2.1) with time
delay in Banach Space.

Definition 4.1 A function x ∈ PWC is called a PWC solution of (2.1) if it satisfies
the equation in a weak sense on every interval [ti, ti+1] (i = 0, 1, · · · ,m), x(t) = φ(t), t ∈
[−r, 0], and the state jump at ti (i = 1, 2, · · · ,m).

Theorem 4.1 Suppose assumptions (A1), (A2), and (A3) hold. Then, for each
φ ∈ PF (H), the problem (2.1) has a solution x ∈ PWC. Moreover, there is a constant
M > 0 such that

‖x‖PWC ≤M and ‖x‖PC ≤M.

Proof Define Ii ≡ (ti, ti+1], i = 0, 1, · · · ,m with t0 = 0, tm+1 = T . It follows from
assumptions (A1), (A2), Theorem 3.2, and Theorem 3.4 that for each φ ∈ PF and φ(0) ∈
V , the equation (2.1) has a unique solution x(1) where x(1) |I0∈Wpq(I0)

⋂
C(I0, H) and

x(1) |[−r,0]= φ. By assumption (A3), x(t1 + 0) is well defined and it is given by

x(t1 + 0) = G1(x
(1)(t1)) + x(1)(t1) ≡ ξ1.

Consider the following problem






ẋ(t) +A(t, x) = f(t, xt), t ∈ I1,

x(t) = x(1)(t), t ∈ [t1 − r, t1],
x(t1) = ξ1.

(4.1)

Using the same argument as in the proof of Theorem 3.2 and the fact x(1) ∈ PF ([t1 −
r, t1], H), one obtains that there is a unique solution x(2) in I1.

We continue this process taking into account that x(m+1) := x |Im
is a solution to the

problem 



ẋ(t) +A(t, x) = f(t, xt), t ∈ (tm, T ],
x(t) = φ(t), t ∈ [tm − r, tm],

x(tm + 0) = x(m)(tm) +Gm(x(m)(tm)).
(4.2)

The solution x of the problem (2.1) is defined by

x(t) =





x(1)(t), if t ∈ [−r, t1],

x(2)(t), if t ∈ (t1, t2],
...
x(m+1)(t), if t ∈ (tm, T ].
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And it follows from Remark 3.3 that for k = 0, 1, · · · ,m

‖x(k+1)‖Wpq(Ik) ≤M

for some constant M > 0. Hence x is a PWC solution of (2.1) and

‖x‖PWC ≤M1 and ‖x‖PC ≤M1.

for some constant M1 > 0.

5 Examples

In this section we present an example of delay evolution equations with impulse to which
our general theory applies.

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω, 0 < t1 < · · · < tk < T
are given fixed points and D ≡ {t1, t2, · · · , tk}, QT = (0, T ) \D × Ω, 0 < T < ∞. Let
α = (α1, α2, · · · , αn) be a multi-index with nonnegative integers {αi}, i = 1, . . . , n, and
‖α‖ =

∑n
i=1 αi. Let p ≥ 2 and q = p/(p − 1)and let m > 0 be an integer. Wm,p(Ω)

denotes the standard Sobolev space with the usual norm:

‖ϕ‖W m,p = (
∑

|α|≤m

‖Dαϕ‖p
Lp(Ω))

1/p.

Let Wm,p
0 (Ω) = {ϕ ∈Wm,p|Dβϕ|∂Ω = 0, |β| ≤ m−1}. It is well known that C∞

0 (Ω) →֒
Wm,p

0 (Ω) →֒ L2(Ω) →֒ W−m,p(Ω) and the embedding Wm,p
0 (Ω) →֒ L2(Ω) is compact.

Denote V ≡Wm,p
0 (Ω), H ≡ L2(Ω), then V ∗ ≡W−m,q(Ω).

We consider the following initial-boundary impulsive value problem of 2m-order quasi-
linear delay parabolic equation:





∂
∂ty(t, x) +

∑
|α|≤m

(−1)|α|DαAα(t, x, η(y)(t, x)) = g(t, x, y(t− r, x)) on QT ,

Dβy(t, x) = 0 on [0, T ]× ∂Ω, for all β satisfying |β| ≤ m− 1,

y(s, x) = φ(s, x) for x ∈ Ω and − r ≤ s ≤ 0,

y(ti+) = −y(ti−), i = 1, 2, · · · , k,

(5.1)

where η(y) ≡ {(Dγy), |γ| ≤ m}, φ(t, x) is a given function, φ ∈ C([−r, 0], L2(Ω)),

φ(0) ∈Wm,p
0 (Ω), and M = (n+m)!

n!m! .

For y1, y2 ∈ Wm,p
0 (Ω) and t ∈ I, we set

a(t, y1, y2) =

∫

Ω

∑

|α|≤m

Aα(t, x, η(y1)(t, x))D
αy2dx

and assume that for all α with |α| ≤ m, the function Aα : QT × RM → R satisfies the
following properties.

(H1) (1)(t, x) → Aα(t, x, η) is measurable on QT for η ∈ RM , η → Aα(t, x, η) is contin-
uous on RM for a.e. (t, x) ∈ QT ;
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(2) For η = (ηα) ∈ RM , η̃ = (η̃α) ∈ RM , there exist positive constants c, c1, c2, c3,
and c4 such that

∑
|α|≤m

(Aα(t, x, η) −Aα(t, x, η̃))(ηα − η̃α) ≥ 0,

∑
|α|≤m

Aα(t, x, η)ηα ≥ c1
∑

|γ|≤m

|ηγ |
p − c2,

|Aα(t, x, η)| ≤ c4 + c3
∑

|γ|≤m

|ηγ |
p−1.

It is not difficult to verify that under the above assumption, for each y1 ∈ V and
t ∈ [0, T ], y2 → a(t, y1, y2) is a continuous linear form on V . Hence there exists an
operator A : I × V → V ∗ such that

〈A(t, y1), y2〉V ∗,V = a(t, y1, y2).

Under the given assumption (H1), it is easy to see that A satisfies our assumption
(A1) of Section 3.

Assume the function f : QT ×R→ R satisfies the following properties.

(H2) (1) (t, x) → f(t, x, η) is measurable on QT for all η ∈ R;

(2) η → f(t, x, η) is continuous on R for almost all (t, x) ∈ QT ;

(3) there exist constants b1 > 0 and b2 > 0 such that

|f(t, x, η)| ≤ b1|η|
2/q + b2(t, x)

for almost all (t, x) ∈ QT .

For φ1 ∈ H and t ∈ I, set

b(t, φ1, ψ) =

∫

Ω

f(t, x, φ1)ψdx.

Then ψ → b(t, φ1) is a continuous linear form on H . Hence there exists an operator
F : [0, T ]×H → H such that

b(t, φ1, ψ) = (F (t, φ1), ψ).

Noting that yt(θ) = yt(r) for all −r ≤ θ ≤ 0 and using (H2), one can verify that F
satisfies assumption (A2) of Section 3.

With the operators A and F as defined above, problem (5.1) can be written as the
abstract evolution equation






ẏ(t) +A(t, y(t)) = F (t, y(t− r)), t ∈ [0, T ] \D,

y(t) = φ(t), t ∈ (−r, 0),

y(ti) = −y(ti), 0 < t1 < t2 < · · · < tk < T.

Hence our result can be applied to this model to assert the existence of its solutions.
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