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Abstract: Mathematical programs with equilibrium constraints, shortly
MPEC, are optimization problems with parametric variational inequality con-
straints.MPEC include bilevel convex programming problems, mathematical
programs with complementarity constraints, Nash-Cournot oligopolistic mar-
ket models, as well as optimization over the efficient set of an affine fractional
multicriteria program as special cases. MPEC are difficult global optimization
ones, since their feasible domains, in general, are not convex even not connected.
In this paper we consider linear programs with affine equilibrium constraints.
We use the Lagrangian duality to compute lower bounds for a decomposition
branch-and-bound procedure that allows approximating a global optimal solu-
tion of problems in this class of MPEC. Application to optimization over the
efficient set of a multicriteria affine fractional program is discussed.
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1 Introduction

Mathematical programs with equilibrium (or variational inequality) constraints, shortly
MPEC, are optimization problems whose constraints include parametric variational in-
equalities. For these problems we refer the readers to the comprehensive monograph [16]
and the interesting bibliography paper [8]. MPEC play an important role, for example,
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in the design of transportation networks, in economic models (see e.g. [13, 16]). These
problems also include, as special cases, mathematical program with complementarity con-
straints, the bilevel convex programming problem, where some variables are restricted to
be in the solution set of a parametric convex optimization problem, and the optimiza-
tion over the efficient set of an affine fractional multicriteria program. Mathematically,
for finite dimensional case, a mathematical program with equilibrium constraints can be
written as















minimize f(x, y)
subject to x ∈ X, y ∈ Y, (x, y) ∈ Z

and y solves the parametric variational inequality,
find y ∈ C(x) such that 〈F (x, y), v − y〉 ≥ 0 ∀v ∈ C(x),

where X ⊆ Rn, Y ⊆ Rm, Z ⊆ Rn×Rm, are nonempty closed convex sets; f : X×Y → R,
F : X × Y → Rm and C : Rn → 2Rm

is a multivalued mapping. The MPEC which are
known to be very difficult ones, being nonsmooth and nonconvex also under very favorable
assumptions. Further, the computation of the (generalized) gradients of the constraints
can be difficult, except special cases.

Several heuristic and deterministic methods were developed for finding local opti-
mal solution to the MPEC. In [13] heuristic algorithms were suggested for solving some
classes of MPEC. In [24] Outrata and Zowe converted a mathematical program with
equilibrium constraints into an unconstrained nonsmooth Lipschitz optimization prob-
lem. Then one may use well developed nonsmooth optimization numerical methods for
locally solving the converted problem. In [9] Facchinei et al applied known methods of
nonlinear optimization to a regularized reformulation of the MPEC. Based on the study
of subanalytic optimization problems and with the help of the theory of error bounds,
some exact penalty results for the MPEC were proved by Lin and Fukushima in [15].
Recently, in [19] Mordukhovich discussed optimality conditions for the MPEC and EPEC
(equilibrium problems with equilibrium constraints) by using tools of variational analysis.

Due to its nested structure, the feasible domain of a mathematical program with
equilibrium constraints, even in the linear case, in general, is disconnected and may be
neither open nor closed. Thus the MPEC are difficult global optimization ones and
therefore it is less hope to develop an algorithm for finding global optimal solutions
to general MPEC. In [21] a branch and bound algorithm based on a binary search is
proposed for globally solving a class of mathematical programs with affine equilibrium
constraints. The binary search method proposed in that paper works well for the case
when the number of constraints defining the variational inequality-constraint is somewhat
small, but it quickly becomes expensive when this number gets larger.

In this paper, we continue our work in [21] by using the Lagrangian duality bound to
develop another branch-and-bound algorithm for globally solving a class of mathematical
programs with affine equilibrium constraints. By contrast to the method in [21] the global
optimization operation in this algorithm takes place in the y- space rather than the space
of the Lagrangian variables. Thus it is expected that the proposed method works well
when the number of the y-variables is somewhat small while the number of the constraints
as well as the number of the x-variables may be much larger.

The rest of this paper will be organized as follows. In the next section we state the
problem to be solved and list some of its special cases such as bilevel convex programming,
optimization over the efficient set and Cournot-Nash oligopolistic market models. In
the third section, first we show how to use the Lagrangian duality to compute lower
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bounds. Then we describe in detail a branch-and-bound algorithm when the vertices of
the constrained set Y are known in advance. The last section is devoted to description of a
relaxation algorithm that does not require prior knowledge of these vertices. Applications
of the proposed algorithms to the optimization problem over the Pareto-efficient set of a
multicriteria affine fractional program are also discussed in this section.

2 The Problem Statement and Examples

In what follows we restricted our attention to a special class of MPEC; namely, we
consider the following affine MPEC that we call shortly AMPEC:

(P)















minimize {f(x, y) := aT x + bT y}
subject to x ∈ X, y ∈ Y, (x, y) ∈ Z := {(x, y) : Mx + Ny + p ≤ 0, }
and y solves the parametric variational inequality
find y ∈ Y such that 〈P (y)x + Qy + q, v − y〉 ≥ 0 ∀v ∈ Y VIP(x)

where X ⊆ Rn, Y ⊆ Rm are nonempty closed convex sets, p ∈ Rl, a ∈ Rn, q, b ∈ Rm

and for each y ∈ Y , P (y), Q, M and N are given appropriate matrices.
Let S(x) denote the solution-set of VIP(x). As usual we call a couple (x, y) such that

(x, y) ∈ Z, x ∈ X, y ∈ Y , y ∈ S(x) a feasible solution to Problem (P).
First we mention some important special cases of this problem.

Example 2.1 (Convex quadratic bilevel program). We consider the parametric vari-
ational inequality VIP(x), where P (y) ≡ P , and Q is a symmetric positive semidefinite
matrix. In this case, since Y is convex, it is well-known that VIP(x) is equivalent to the
convex programming problem

min

{

1

2
yT Qy + (Px)T y + qT y : y ∈ Y

}

.

Thus AMPEC problem (P) can be equivalently rewritten as a convex bilevel problem of
the form

min
{

f(x, y) := aT x + bT y
}

subject to

(x, y) ∈ Z1 := {(x, y) : Mx + Ny + p ≤ 0, x ∈ X, y ∈ Y },

where y solves the convex quadratic program

min

{

1

2
yT Qy + (Px)T y + qT y : y ∈ Y

}

. (Cx)

Example 2.2 (Optimization over the weakly efficient set). Other examples for the
AMPEC are optimization problems over the efficient (Pareto) and weakly efficient sets
of a multicriteria (vector) affine fractional program. These problems have been recently
considered by some authors (see e.g. [17, 20, 22, 29]). The problems can be formulated in
forms of AMPEC. To this end, consider the affine fractional vector optimization problem

vmin{F (v) :=
(AT

1 v + s1

BT
1 v + t1

, ...,
AT

ρ v + sρ

BT
ρ v + tρ

)

: v ∈ V }, (V P )
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where V ⊂ Rm is a bounded polyhedral convex set, Ai, Bi are m-dimensional vectors,
si, ti (i = 1, ..., ρ) are real numbers. As usual we assume that BT

i v + ti > 0 for all
v ∈ V and all i = 1, ..., ρ. Thus F is continuous on V . We recall that a point v ∈ V

is said to be an (Pareto) efficient (resp. weakly efficient) solution of (VP) if there does
not exist w ∈ Y such that F (w) ≤ F (v), F (w) 6= F (v) (resp. F (w) < F (v)), By
E(F, V ) (resp. WE(F, V )) we will denote the set of all efficient (resp. weakly efficient)
solutions of (V P ). It is well-known (see e.g. [27]) that if V is compact, then the efficient
set is nonempty. Hence so is the weakly efficient set, since E(F, V ) ⊆ WE(F, V ). An
optimization problem over the efficient set (resp. weakly efficient set) is the problem of
optimizing (minimizing or maximizing) a real-valued function f over the efficient (resp.
weakly efficient) set of (V P ). These minimization problems can be written respectively
as

min{f(v) : v ∈ E(F, V )}, (2.1)

min{f(v) : v ∈ WE(F, V )}. (2.2)

Note that, in general, both the efficient and weakly efficient sets are not convex. The
weakly efficient set is closed but the efficient set may be neither closed nor open [7].
Thus these problems are difficult global optimization ones.In order to formulate these
problems in the form of AMPEC we use the following theorem due to Malivert [17].

Theorem 2.1 ([17]) A vector v ∈ V is efficient (resp. weakly efficient) if and only
if there exist real numbers ui > 0 (resp. ui ≥ 0 not all zero) for all i = 1, ..., ρ such that

ρ
∑

i=1

〈

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], v − w
〉

≤ 0 ∀w ∈ V.

In virtue of this theorem the problems (2.1) and (2.2) can be written as

{

min f(v) subjectto v ∈ V, ui > 0 notallzero ∀i = 1, ..., ρ,
∑ρ

i=1

〈

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], v − w
〉

≤ 0 ∀w ∈ V,

and

{

min f(v) subject to v ∈ V, ui ≥ 0 not all zero ∀i = 1, ..., ρ,
∑ρ

i=1

〈

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], v − w
〉

≤ 0 ∀w ∈ V

respectively.
Define the (m × ρ)-matrix P (v) by setting

P (v) :=
{

(BT
1 v + t1)A1 − (AT

1 v + s1)B1, ..., (B
T
ρ v + tρ)Aρ − (AT

ρ v + sρ)Bρ

}

.

Then we can rewrite these problems in the forms

min{f(v) : v ∈ V, u > 0, 〈P (v)u, w − v〉 ≥ 0 ∀w ∈ V } (2.1a)

and

min{f(v) : v ∈ V, u ≥ 0, 〈P (v)u, w − v〉 ≥ 0 ∀w ∈ V } (2.2a)

respectively.
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Clearly, the latter problem is of the form of AMPEC where v and u play the roles of
y and x respectively, and M ≡ 0, N ≡ 0, Q ≡ 0, p ≡ 0, q ≡ 0. If in problem (2.1a) we
replace the constraint u > 0 by u ≥ δ with δ > 0 sufficiently small as desired, we obtain
an approximation problem to (2.1a) that is of the form of AMPEC.

In an important special case where Bi = 0 and si = 1 for all i, Problem (VP) becomes
a linear vector program. In this case, it is well known [17, 27], both the efficient and
weakly efficient sets are closed, but, in general, not convex. Thus Problems (2.1) and
(2.2) remain global optimization ones, since there are local optimal solutions that are not
global optimal ones. In this linear case due to a theorem of Philip [25] Problem (2.1a)
can take the form of AMPEC as

min{f(v) : v ∈ V, u ≥ δ, 〈P (v)u, w − v〉 ≥ 0 ∀w ∈ V },

where δ > 0 is sufficiently small. Note that in this linear case

P (v) ≡ P :=
(

t1A1, t2A2, . . .tρAρ

)

is independent of v.

Example 2.3 (Nash-Cournot market model). The third section of AMPEC is a
Nash-Cournot oligopolistic market model (see e.g. [10, 12]). The model can be described
as follows.

Suppose that there are m-firms (sectors) that supply a homogeneous product whose
price pj at sector j (j = 1, ..., m) depends on total producing quantity and is given by

pj(
m

∑

i=1

yi) = αj − βj

m
∑

i=1

yi,

where αj ≥ 0, βj > 0 are given constants whereas yi is the quantity of goods supplied
by firm i that we have to determine. Suppose further that to produce the goods the
firms need n-different materials represented by a nonnegative vector x ∈ Rn. Let xi

(i = 1, ..., n) be the quantity of material i needed to produce a unique of goods. Let
cij > 0 denote the price of a unit material i for firm j (i = 1, ..., n, j = 1, ..., m). Assume
that the cost of firm j is given by

hj(x, yj) := yj

n
∑

i=1

cijxi + δj , j = 1, ..., m,

where δj ≥ 0 is fixed charge cost at firm j. Then the utility function of firm j can be
given by

uj(x, y) := pj(

m
∑

i=1

yi)yj − hj(x, yj).

Let

Xi := {t : 0 ≤ t ≤ ξi} (i = 1, ..., n),

Yj := {τ : 0 ≤ τ ≤ ηj} (j = 1, ..., m),

where ξi is the upper bound for material i, and ηj is the upper bound for the quantity
of goods can be produced by firm j.
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Let

X := X1 × X2... × Xn, Y = Y1 × ... × Ym

be the feasible (strategy)-sets of the model.
Given x ∈ X each firm j seeks to find its producing quantity yj such that its benefit

uj(x, y) is maximal. However, a maximal policy for all firms altogether, in general, does
not exist. So they agree with an equilibrium point in the sense of Nash.

By definition, a vector (y∗
1 , ..., y∗

m) ∈ Y1×Y2...×Ym is said to be a (Nash) equilibrium
point with respect to x∗ ∈ X if

{

uj(x
∗, y∗

1 , ..., y∗
j−1, yj , y

∗
j+1, ..., y

∗
m)

≤ uj(x
∗, y∗

1 , ..., y∗
j−1, y

∗
j , y∗

j+1, ..., y
∗
n) ∀yj ∈ Yj , ∀j.

(2.3)

We will refer to a pair (x∗, y∗) satisfying (2.3) as an equilibrium pair of the model.
Besides the utility function of each firm, there is another cost function (leader’s ob-

jective function) f(x, y) depending on x and the quantity y of the goods. The problem
to be solved is of finding an equilibrium pair that minimizes leader’s objective function
over the set of all equilibrium pairs. This problem can be formulated as a mathematical
program with affine equilibrium. To this end let

{

Hj(x, y) := ∇yj
hj(x, yj) (j = 1, ..., m),

e := (1, ..., 1)T , σy :=
∑m

j=1 yj.
(2.4)

Applying Proposition 3.2.6 in [12] we see that a point (y1, ..., ym) is equilibrium with
respect to x if and only if it is a solution to the variational inequality problem

Find y ∈ Y : 〈F (x, y), z − y〉 ≥ 0 ∀z ∈ Y,

where F (x, y) is m-dimensional vector whose jth component is

Fj(x, y) := Hj(x, y) − pj(σy)e −∇pj(σy)y. (2.5)

Using (2.4) and (2.5) we have

F (x, y) =





∑n

i=1 ci1xi − α1 + β1

∑m

j=1 yj + β1y1

......
∑n

i=1 cimxi − αm + βm

∑m

j=1 yj + βmym





= P (y)x + Qy + q,

where

Q =







2β1 β1 ... β1

β2 2β2 ... β2

... ... ... ...

βm βm ... 2βm






(2.6)

and P (y) is the n × m matrix independent of y whose Pij entry is

Pij = cij , j = 1, ..., m, i = 1, ..., n, (2.7)

and

q = (δ1 − α1, ..., δm − αm)T . (2.8)
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Thus problem to be solved can take the form














min f(x, y) subject to
x ∈ X = X1 × ... × Xn, y ∈ Y = Y1 × ... × Yn,

where y solves the parametric variational inequality
〈Px + Qy + q, z − y〉 ≥ 0 ∀z ∈ Y,

with Q, P and q being given by (2.6), (2.7) and (2.8) respectively. Clearly, this problem
is of form (P ) with M = 0, N = 0, p = 0.

3 A Lagrangian Bounding Algorithm

The algorithm to be described in this section relies on the branch-and-bound strategy.
Two main operations in a branch-and-bound algorithm are bounding and branching
ones. The Lagrangian bound is widely used in global optimization as well as in discrete
programming [6, 11, 14, 26]. To the algorithm we are going to describe for AMPEC
problem (P) we also use the Lagrangian bounding operation.

3.1 The Lagrangian Bound

First, we consider the case when Y is a polytope and all of its vertices are known in
advance. This case occurs frequently, for instant, in economics equilibrium models where
Y is a simplex or a box. Let y1, y2, ..., ys be the vertices of polytope Y . It is easy to
verify that

〈P (y)x + Qy + q, z − y〉 ≥ 0 ∀z ∈ Y

if and only if
〈P (y)x + Qy + q, yk − y〉 ≥ 0 ∀k = 1, ..., s.

Thus, AMPEC problem (P) can be rewritten equivalently as

(P )















minimize {f(x, y) := aT x + bT y}
subject to x ∈ X, y ∈ Y, (x, y) ∈ Z := {(x, y) : Mx + Ny + p ≤ 0},
and y ∈ Y satisfying inequalitis
〈P (y)x + Qy + q, yk − y〉 ≥ 0 ∀k = 1, ..., s.

Let
Ŷ := {y ∈ Y : ∃x ∈ X such that Mx + Ny + p ≤ 0,

〈P (y)x + Qy + q, yk − y ≥ 0 ∀y = 1, ..., s}.

Note that if 〈P (y)x, y〉 is convex with respect to y, in particular when X ⊂ Rn
+ and

P (y) = P (see examples 2.1, 2.2 for linear case and 2.3 ), or when P (y) = Diag(y), then
Ŷ is convex.

Define the function ϕ : Ŷ → IR by setting, for each y ∈ Ŷ ,







ϕ(y) := minx{f(x, y) := aT x + bT y}
s. t. x ∈ X, (x, y) ∈ Z := {(x, y) : Mx + Ny + p ≤ 0},
〈P (y)x + Qy + q, yk − y〉 ≥ 0 ∀k = 1, ..., s.

(Py)

Then the master problem
min{ϕ(y) : y ∈ Ŷ } (MP )
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is equivalent to Problem (P) in the sense of the following proposition whose proof is
obvious directly from the definitions.

Proposition 3.1 A point (x∗, y∗) is optimal to Problem (P) if and only if y∗ is
optimizer to (MP) and f(x∗, y∗) = ϕ(y∗).

Note that, unlike global optimization problems having nonconvex feasible domains,
feasible points of a MPEC problem can be computed by available methods of variational
inequalities (see e. g. [1, 2, 10, 12] and the references therein). However for Problem
(P), a feasible point can be obtained by solving a suitable linear program. In fact, if
y ∈ Ŷ is fixed and xy is an optimal solution of the linear problem (Py) then (xy , y) is
feasible for (P). So upper bounds for the optimal value w∗ of (P) can be computed by
solving a linear program. As the algorithm executes more feasible points can be found,
and thereby upper bounds for w∗ can be iteratively improved.

We now compute a tight lower bound for w∗ by using Lagrangian duality. To be
specific suppose that X is given explicitly as

X := {x ∈ Rn : x ≥ 0, Ax + d ≤ 0},

where d ∈ Rl and A is l × n-matrix. Let S be a fully dimensional simplex or a rectangle
in y-space such that S ∩ Ŷ 6= ∅. Consider Problem (P) restricted on S ∩ Ŷ , i.e.,

w∗(S) = min
x,y

f(x, y) := aT x + bT y

subject to






Mx + Ny + p ≤ 0
Ax + d ≤ 0, x ≥ 0, y ∈ S ∩ Ŷ

〈P (y)x + Qy + q, y − yk〉 ≤ 0 ∀k = 1, ..., s.
(PS)

Let L(x, y, λ, µ, ξ) be the Lagrangian function of this problem associated with all con-
straints except the constraints x ≥ 0, y ∈ S ∩ Ŷ . That is

L(x, y, λ, µ, ξ) := aT x+bT y+
s

∑

k=1

λk〈P (y)x+Qy+q, y−yk〉+µT (Mx+Ny+p)+ξT (Ax+d).

Define the function m(y, λ, µ, ξ) as

m(y, λ, µ, ξ) := inf
x≥0

L(x, y, λ, µ, ξ).

From the Lagrangian duality theorem we have

m(y, λ, µ, ξ) ≤ ϕ(y) ∀λ ≥ 0, µ ≥ 0, ξ ≥ 0, y ∈ S ∩ Ŷ . (3.1)

Since for each fixed y the functions Mx+Ny+p, Ax+d, and 〈P (y)x+Qy+q, y−yk〉 ∀k =
1, ..., s are affine with respect to x, by the Lagrangian duality theorem, we have

sup
λ,µ,ξ≥0,

m(y, λ, µ, ξ) = ϕ(y) ∀y ∈ S ∩ Ŷ .

Let
γS(λ, µ, ξ) = min

y∈S∩Ŷ

m(y, λ, µ, ξ).
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Then from (3.1) it follows that

γS(λ, µ, ξ) ≤ min
y∈S∩Ŷ

ϕ(y) = w∗(S) ∀λ ≥ 0, µ ≥ 0, ξ ≥ 0.

Thus
sup

λ,µ,ξ≥0
γS(λ, µ, ξ) ≤ w∗(S).

Hence
β(S) := sup

λ,µ,ξ≥0
γS(λ, µ, ξ) (3.2)

is a lower bound β(S) for w∗(S). The following lemma states that this lower bound can
be computed by minimizing a certain convex function on S ∩ Ŷ .

Lemma 3.1 Suppose that Q is positive semidefinite matrix. Then

β(S) = min
y∈S∩Ŷ

gS(y),

where

gS(y) := sup
(λ,µ,ξ)∈Ω(S)

{bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}

is convex on S and

Ω(S) := {(λ, µ, ξ) : λ ≥ 0, µ ≥ 0, ξ ≥ 0, Gv(λ, µ, ξ) ≥ 0 ∀v ∈ S ∩ Ŷ }

with

Gv(λ, µ, ξ) := a + µM + ξA +

s
∑

k=1

λk(P (v))T (v − yk).

Proof From (3.1) and the definition of νS(λ, µ, ξ), it follows that

β(S) = sup
λ,µ,ξ≥0

γS(λ, µ, ξ) = sup
λ,µ,ξ≥0

min
y∈S∩Ŷ

m(y, λ, µ, ξ).

Hence














































β(S) = supλ,µ,ξ≥0 min
y∈S∩Ŷ

minx≥0 L(x, y, λ, µ, ξ) =

supλ,µ,ξ≥0 miny∈S∩Ŷ

[

minx≥0{aT x + bT y +
∑s

k=1 λk〈P (y)x + Qy + q, y − yk〉

+µT (Mx + Ny + p) + ξT (Ax + d)}
]

=

supλ,µ,ξ≥0 min
y∈S∩Ŷ

[

{bT y +
∑s

k=1 λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}

+ minx≥0{aT x + µT Mx + ξT Ax +
∑s

k=1 λk〈P (y)x, y − yk〉}
]

.

(3.3)
We now consider the last term of (3.3), that is

min
x≥0

{aT x + µT Mx + ξT Ax +

s
∑

k=1

λk〈P (y)x, y − yk〉} =
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min
x≥0

{aT x + µT Mx + ξT Ax +

s
∑

k=1

λk〈x, PT (y)(y − yk)〉} =

min
x≥0

{aT x + µT Mx + ξT Ax + 〈x,

s
∑

k=1

λkPT (y)(y − yk)〉} =

min
x≥0

〈x, a + MT µ + AT ξ +
s

∑

k=1

λkPT (y)(y − yk)〉,

here and afterward, PT (y) denotes the transportation of the matrix P (y).
If there exists v ∈ S ∩ Ŷ such that

a + MT µ + AT ξ +

s
∑

k=1

λkPT (v)(v − yk) 6≥ 0 ∀λ ≥ 0, µ ≥ 0, ξ ≥ 0,

then

min
x≥0

〈x, a + µM + ξA +
s

∑

k=1

λkPT (v)(v − yk)〉 = −∞.

So, the supremum in (3.3) can be taken over, all λ ≥ 0, µ ≥ 0 and ξ ≥ 0 satisfying

a + MT µ + AT ξ +
s

∑

k=1

λkPT (v)(v − yk) ≥ 0 ∀v ∈ S ∩ Ŷ .

Clearly, under the condition

a + µM + ξA +

s
∑

k=1

λkPT (y)(y − yk) ≥ 0 ∀y ∈ S ∩ Ŷ ,

one has

min
x≥0

〈x, a + MT µ + AT ξ +

s
∑

k=1

λkPT (y)(y − yk)〉 = 0.

Thus we deduce from (3.3) that















β(S) = supλ,µ,ξ≥0 miny∈S∩Ŷ

[

bT y +
∑r

k=1 λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d
]

subject to

a + MT µ + AT ξ +
∑s

k=1 λkPT (v)(v − yk) ≥ 0 ∀v ∈ S ∩ Ŷ .

(3.4)
Let

Ω(S) := {(λ, µ, ξ) : λ ≥ 0, µ ≥ 0, ξ ≥ 0, Gv(λ, µ, ξ) ≥ 0 ∀v ∈ S ∩ Ŷ }.

Then Ω(S) is a closed convex set and

{

β(S) = sup(λ,µ,ξ)∈Ω(S) min
y∈S∩Ŷ

{bT y +
∑r

k=1 λk〈Qy + q, y − yk〉+

µT (Ny + p) + ξT d}.
(3.5)
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Since, by the assumption, Q is positive semidefinite, the function

bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d

is convex-linear on (S ∩ Ŷ ) × Ω(S). Then, by the well known minimax theorem, we can
interchange the supremum and infimum in (3.5) to obtain

β(S) = min
y∈S∩Ŷ

sup
(λ,µ,ξ)∈Ω(S)

{bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}.

Note that, since

bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d

is convex with respect to y, the function

gS(y) := sup
(λ,µ,ξ)∈Ω(S)

{bT y +
s

∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}

is convex on S ∩ Ŷ . Hence
β(S) = min

y∈S∩Ŷ

gS(y)

is a convex program. 2

Remark 3.1 (a) If PT (y)y − PT (y)yk is concave on Y (in the sense that its every
component is concave), then Ω(S) is a polyhedral convex set, since it can be represented
by a finite affine inequalities. Indeed, since PT (y)y − PT (y)sk is concave, it is easy to
verify that

a + MT µ + AT ξ +

s
∑

k=1

λkPT (y)(y − yk) ≥ 0 ∀y ∈ Y ∩ S

if and only if

a + MT µ + AT ξ +

s
∑

k=1

λkPT (y)(y − yk) ≥ 0 ∀y ∈ V (Y ∩ S),

where V (Y ∩ S) denotes the vertex-set of Y ∩ S.
In the case S ⊆ Y the last inequalities can be written as

a + MT µ + AT ξ +

s
∑

k=1

λkPT (vj)(vj − yk) ≥ 0 ∀j = 1, 2, ..., r,

where v1, ..., vr are the vertices of S.

(b) From the presentation of Section 2 we can see that
• For bilevel quadratic convex problem, P (y) ≡ P (constant matrix).
• For optimization problem over the efficient set of an affine vector optimization

program PT (y)yk is affine and PT (y)y ≡ 0.
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3.2 Simplicial and Rectangular Bisections

At each iteration k of algorithm to be described below, a partition simplex (or rectangle)
will be bisected into subsimplices (or subrectangles) such a way so that as the algorithm
executes the obtained lower and upper bounds tend to the same limit. This can be
achieved by using the following exhaustive simplicial (or rectangular) bisection that is
commonly known in global optimization (see e. g. [14]).

Simplicial Bisection. We will use the following simplicial bisection [14].
Let Sk be a subsimplex of full dimension that we want to bisect at iteration k. Let

vk, wk be two vertices of Sk such that the edge joining these vertices is longest. Let
uk = tkvk + (1 − tk)wk with 0 < tk < 1. Let Sk1

, Sk2
be the subsimplices obtained

from Sk by replacing vk and wk respectively by uk. It is well known from [14] that
Sk = Sk1

∪ Sk2
, and that if {Sk} is an infinite sequence of nested simplices generated by

this simplicial bisection process such that 0 < δ0 < tk < δ1 < 1 for every k, then the
sequence {Sk} shrinks to a singleton.

Rectangular Bisection. Suppose that the partition set is a rectangle given by

Sk := {y = (y1, ..., ym) ∈ Rm : ai ≤ yi ≤ bi i = 1, ..., m}.

Let [aik
, bik

] be a longest edge of Sk and uik
= tik

aik
+ (1− ikbik

with 0 < tik
< 1. Then

we bisect Sk into two rectangles Sk1
and Sk2

where

Sk1
= {y ∈ Rm : ai ≤ yi ≤ bi ∀i 6= ik, aik

≤ yik
≤ uik

},

and
Sk2

= {y ∈ Rm : ai ≤ yi ≤ bi ∀i 6= ik, uik
≤ yik

≤ bik
}.

As before, we have Sk = Sk1
∪ Sk2

, and that if {Sk} is an infinite sequence of nested
rectangles generated by this bisection process such that 0 < δ0 < tk < δ1 < 1 for every
k, then the sequence {Sk} shrinks to a singleton.

Now we are in a position to describe the algorithm for solving AMPEC problem (P),
where Y is a polytope. We suppose that 〈P (y)x, y〉 is convex in Y with respect to y. In
the sequel, as usual, we call (x, y) an ǫ-global optimal solution to (P) if it is feasible and
f(x, y)−w∗ ≤ ǫ(|f(x, y)|+1) where w∗ stands for its optimal value. Having the vertices
y1, ..., ys of Y we can describe the algorithm as follows.

Algorithm 1.
Initialization. Choose a tolerance ǫ > 0 and a simplex or a rectangle S0 containing

Y . Compute the lower bound β(S0) by solving the convex program

β(S0) := min
y∈Ŷ

{

g0(y) := sup
(λ,µ,ξ)∈Ω(S0)

{bT y +

s
∑

k=1

λk〈Qy + q, y− yk〉+µT (Ny + p)+ ξT d}
}

.

Let y0 ∈ S0 be the obtained solution.
Solve the linear program

min
x

{f(x, y0) := aT x + bT y0}

subject to






Mx + Ny0 + p ≤ 0
Ax + d ≤ 0, x ≥ 0
〈P (y0)x + Qy0 + q, y0 − yk〉 ≤ 0 ∀k = 1, ..., s
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to obtain x0 (hence (x0, y0) is feasible). Let α0 := f(x0, y0) (an upper bound for the
optimal value w∗) and β0 := β(S0) (a lower bound for w∗). Take

Γ0 :=

{

{S0} if α0 − β0 > ǫ(|α0| + 1),
∅ otherwise

and go to iteration k with k := 0.

Iteration (k = 0, 1...). At the beginning of each iteration k we have family Γk of
partition sets to each element S ∈ Γk a real number β(S) has been computed that serves
as a lower bound for Problem (P) restricted in S. Moreover we have a lower bound βk

for w∗, a currently best feasible point (xk, yk) and an upper bound αk = f(xk, yk) for
w∗.

Step 1 (selection):
(i) If Γk = ∅ then terminate, (xk, yk) is an ǫ-global optimal solution and αk is the ǫ-
optimal value to Problem (P).
(ii) If Γk 6= ∅, then select Sk ∈ Γk such that

βk = β(Sk) = min{β(S) : S ∈ Γk}.

Step 2 (bisection): Use the simplicial bisection (if Sk is simplicial) or use the
rectangular bisection (if Sk is rectangular) to bisect Sk into two sets Sk1

and Sk2
.

Step 3 (bounding): For each newly generated sets Skj
(j = 1, 2) satisfying Skj

∩Ŷ 6= ∅,
compute

β(Skj
) := min

y∈Skj
∩Ŷ

gSkj
(y),

where

gSkj
(y) := sup

(λ,µ,ξ)∈Ω(Skj
)

{bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}.

Let ykj be the obtained solution.

Step 4 (updating upper bound): Solve the linear programs, one for each ykj , j = 1, 2

min
x

{f(x, ykj ) := aT x + bT ykj}

subject to






Mx + Nykj + p ≤ 0
Ax + d ≤ 0, x ≥ 0
〈P (ykj )x + Qykj + q, ykj − yk〉 ≤ 0 ∀k = 1, ..., s

to obtain new feasible points. Use these feasible points to update the upper bound. Let
(xk+1, yk+1) be the currently best feasible point among (xk, yk) and the newly generated
feasible points. Set αk+1 := f(xk+1, yk+1) and

Γk+1 :=
{

S ∈ (Γk\{Sk}) ∪ {Sk1
, Sk2

} : αk+1 − β(S) > ǫ(|αk+1| + 1)
}

.

Increase k by 1 and go to Step 1 of iteration k.
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Theorem 3.1 a) If Algorithm terminates at iteration k, then (xk, yk) is an ǫ-global
optimal solution to Problem (P).
b) If the algorithm does not terminate, then βk ր w∗, αk ց w∗ as k → +∞, and any
cluster point of the sequence {(xk, yk)} is a global optimal solution to (P).

Proof a) If the algorithm terminates at iteration k then Γk = ∅. This implies
that αk − βk ≤ ǫ(|αk| + 1). Since βk ≤ w∗ and αk = f(xk, yk) ≥ w∗, it follows that
f(xk, yk) − w∗ ≤ ǫ(|f(xk, yk)| + 1). Hence (xk, yk) is an ǫ-global optimal solution.

b) Suppose that the algorithm does not terminate. First, note that since Sk =
Sk1

∪ Sk2
, by the rule for computing lower bound β(Sk) we have

βk = β(Sk) ≤ β(Sk+1) = βk+1 ∀k.

Also, by definition of αk, we have αk+1 ≤ αk ∀k. Thus, both β∗ = lim βk and α∗ = limαk

exist and satisfying
β∗ ≤ w∗ ≤ α∗. (3.6)

Since the algorithm does not terminate, it generates an infinite sequence of nested parti-
tion sets that, for simplicity of notation, we also denote by {Sk}. Since the subdivision
is exhaustive, this sequence strinks to a singleton, say y∗ ∈ Ŷ . By the rule for computing
lower bound βk we have

βk = sup
τ≥0

min
y∈Sk∩Ŷ

m(y, τ) ≥ min
y∈Sk

m(y, τ) ∀τ ≡ (λ, µ, ξ) ≥ 0.

Since the sequence {Sk} shrinks to y∗ as k → +∞, we obtain

β∗ = lim βk ≥ m(y∗, τ) ∀τ ≥ 0.

By definition, since ϕ(yk) is an upper bound determined at iteration k and αk+1 is the
currently smallest upper bound obtained at this iteration, we can write

αk+1 ≤ ϕ(yk) ∀k.

From yk → y∗, it follows, by the continuity of ϕ (see e. g. [3, 5]), that

α∗ = limαk = limαk+1 ≤ limϕ(yk) = ϕ(y∗).

On the other hand, by Lagrangian duality theorem for the convex program determining
ϕ(y∗), we have

sup
τ≥0

m(y∗, τ) = ϕ(y∗).

Hence
α∗ ≤ ϕ(y∗) ≤ β∗

which together with (3.6) implies

β∗ = w∗ = α∗ = ϕ(y∗).

Let (x∗, y∗) be any cluster point of the sequence {(xk, yk)}. By the definition we have
αk = f(xk, yk). Since αk ց w∗, it follows from continuity of f that w∗ = f(x∗, y∗).
Hence (x∗, y∗) is a globally optimal solution to Problem (P). 2
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Remark 3.2 Note that when Q is positive semidefinite, the function

gS(y) := max
(λ,µ,ξ)∈Ω(S)

{bT y +

s
∑

k=1

λk〈Qy + q, y − yk〉 + µT (Ny + p) + ξT d}

is convex and subdifferentiable, since it is the maximum of a family of convex functions.
The subgradient of gS at a point y can be obtained by taking the convex envelope of the
gradients of those quadratic functions in the family at which gS(y) is attained [4].

3.3 Optimization over the Weakly Efficient Set

Now we return to the optimization over the weakly efficient set mentioned in the previous
section. By using again the necessary and sufficient condition due to Malivert (see
Theorem 2.1) the minimization problem over the weakly efficient set of a multicriteria
affine fractional program can be written as

min f(v)

subject to
v ∈ V, u ∈ U,

ρ
∑

i=1

〈

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], w − v
〉

≥ 0 ∀w ∈ V,

where

U := {u ∈ Rρ : u ≥ 0,

p
∑

i=1

ui = 1}

is a simplex in the criteria space.
Since

〈

ρ
∑

i=1

uiB
T
i v + ti)Ai − (AT

i v + si)Bi], w − v
〉

is affine with respect to w, we can easily check that

〈

ρ
∑

i=1

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], w − v
〉

≥ 0 ∀w ∈ V

if and only if

〈

ρ
∑

i=1

ui[(B
T
i v + ti)Ai − (AT

i v + si)Bi], v
j − v

〉

≥ 0 ∀j = 1, ..., r,

where vj (j = 1, ..., r) are vertices of V . Thus we can write this problem as

{

min f(v) : s. t. v ∈ V, u ∈ U,
〈

∑ρ

i=1 ui[(B
T
i v + ti)Ai − (AT

i + si)Bi], v
j − v

〉

≥ 0 ∀j = 1, ..., r.
(3.7)

It is worth pointing out that, in contrast to the linear case, this problem does not
necessarily attain its optimal solution among the vertices of V .
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In this formulation we require that all vertices of V are known. This case appeared
already in some applications in economics (see e. g. [18, 27, 28]) where each component
vj of the decision variable v represents the ratio of ith quantity to be determined. In
such practical models, V is a simplex given by

V :=
{

vT = (v1, ..., vm) :

m
∑

i=1

vi = 1, vj ≥ 0 ∀j = 1, ..., m
}

,

whose vertices are easy to compute. Generally, let us assume that V is a polytope given
explicitly as

V := {v ∈ Rm : v ≥ 0, Gv − g ≤ 0}.

For simplicity of notation, for each vertex vj , we take

Mj(u, v) :=
〈

ρ
∑

k=1

uk[(BT
k v + tk)Ak − (AT

k v + sk)Bk], v − vj
〉

,

Gj(u) :=

ρ
∑

k=1

uk[(BT
k vj + tk)AT

k − (AT
k vj + sk)BT

k ],

gj(u) :=

ρ
∑

k=1

uk[tkAT
k − skBT

k ]vj .

Let G(u) denote the (r×m)-matrix whose ith row is Gj(u) (j = 1, ..., r), and g(u) denote
the r-dimensional vector whose jth entry is gj(u). Now let

H(u) :=

(

G

G(u)

)

, h(u) :=

(

g

g(u)

)

.

Under these notations we can write the problem (3.7) in the form

min{f(v) : H(u)v − h(u) ≤ 0, v ≥ 0, u ∈ U}. (3.8)

To apply the Lagrangian duality we take the Lagrangian function for this problem with
respect to the constraint H(u)v − h(u) ≤ 0, that is

L(λ, u, v) := f(v) + λT
(

H(u)v − h(u)
)

.

Using the fact that both H(u) and h(u) are affine, by a similar argument as in the proof
of Lemma 2.1, we can compute lower bounds by solving linear programs as stated by
the following lemma.

Lemma 3.2 Suppose f(v) = bT v. Let S be the subsimplex of the simplex U , and sj

(j = 1, ..., ρ) be the vertices of S. Then β(S) = min{β(sj) : j = 1, ..., ρ} where, for each
fixed sj, β(sj) is the optimal value of the linear program

β(sj) := max{−hT (sj)u : HT (sj)u + b ≥ 0}.

Having this lower bounding operation we can use Algorithm 1 with the exhaustive
simplicial bisection taking over subsimplices of the simplex U to solve problem (3.8).
Note that in this case, if (uS , vS) is a solution obtained by computing lower bound
β(S) according to Lemma 3.2, then vS is weakly efficient. Hence (uS , vS) can serve for
updating upper bound in the algorithm.
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4 A Relaxation Algorithm

In the algorithm presented in the preceding section we required that all vertices of the
polytope Y are known in advance. In the case computing all of these vertices is expensive,
we recommend to use another algorithm that allows that these vertices can be computed
iteratively. It is expected that the algorithm finds an approximate solution without
computing all of these vertices. In order to present the algorithm, suppose that we
know already some vertices v1, ..., vr of Y . Having these vertices we form the relaxation
problem















r∗ = min f(x, y) := aT x + bT y

s.t. Mx + Ny + p ≤ 0
Ax + d ≤ 0, x ≥ 0, y ∈ Y

〈P (y)x + Qy + q, vk − y〉 ≥ 0 ∀k = 1, ..., r.

(RP )

Clearly, the feasible domain of this problem contains that of Problem (P) presented in
Section 2 with X = {x ≥ 0 : Ax + d ≤ 0}. Applying Algorithm 1 to this problem
we obtain an ǫ-global optimal solution of (RP). If this solution satisfies the variational
inequality constraint, then it is also an ǫ-global solution to the original problem (P).
Otherwise, it violates at least one constraint. Then we add one or more violated con-
straints to obtain new relaxation problem and repeat the process. The algorithm can be
described in detail as follows.

Algorithm 2.
Step 1. Choose distinct vertices v1, ..., vr of Y and a tolerance ǫ > 0.
Step 2. Use Algorithm 1 to solve (RP) to obtain an ǫ-global optimal solution (xr, yr)

to (RP).
Step 3. Solve the linear program

min{〈P (yr)xr + Qyr + q, y〉 : y ∈ Y } (Lr)

to obtain an basis (vertex) solution yr+1.
(a) If

〈P (yr)xr + Qyr + q, yr〉 ≤ 〈P (yr)xr + Qyr + q, yr+1〉

(hence yr also solves (Lx)), then terminate: (xr , yr) is an ǫ-global optimal solution to
the original problem.

(b) Otherwise, take vr+1 := yr+1. Add vr+1 to the list of known vertices of Y to
form the new relaxation problem (RP) and go back to Step 2.

The following theorem shows validity and finiteness of this algorithm.

Theorem 4.1 (i) If the algorithm terminates at case (a) of Step 3, then (xr , yr) is
an ǫ-global optimal solution.

(ii) The algorithm terminates after a finite number of Step 2 yielding an ǫ-global
optimal solution to the original problem (P).

Proof (i) Note that Problem (P) can be written as

w∗ := min{f(x, y) := aT x + bT y}

subject to






Mx + Ny + p ≤ 0
Ax + d ≤ 0, x ≥ 0, y ∈ Y

〈P (y)x + Qy + q, v − y〉 ≥ 0 ∀v ∈ V (Y )
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while the relaxation problem is

r∗ := min{f(x, y) := aT x + bT y}

subject to






Mx + Ny + p ≤ 0
Ax + d ≤ 0, x ≥ 0, y ∈ Y

〈P (y)x + Qy + q, vk − y〉 ≥ 0 ∀k = 1, ..., r

with vk (k = 1, ..., r) being some vertices of Y .
In the case (a) we have

〈P (yr)xr + Qyr + q, yr〉 ≤ 〈P (yr)xr + Qyr + q, yr+1〉.

Since yr+1 is an optimal solution of (Lr), we have

〈P (yr)xr + Qyr + q, yr+1〉 ≤ 〈P (yr)xr + Qyr + q, y〉 ∀y ∈ Y.

Thus
〈P (yr)xr + Qyr + q, y − yr〉 ≥ 0 ∀y ∈ Y.

Hence (xr , yr) is feasible for (P). But, since (xr , yr) is an ǫ-global optimal solution to the
relaxed problem (RP), it must be an ǫ-global solution to (P).

(ii) Note that if yr+1 = vj for some j ≤ r, then we have the case (a), and therefore,
the algorithm terminates. Thus, if situation (a) is not the case, we have vr+1 6= vj for
all r and all j ≤ r, since the number of the vertices of Y is finite, the algorithm must
terminate with case (a). 2

5 Conclusion

We have considered a class of mathematical programs with affine variational inequality
constraints and presented some of its important special cases such as bilevel convex
programming, optimization over the efficient set and Cournot-Nash oligopolistic market
model. We have developed two decomposition branch-and-bound algorithms for globally
solving this class of mathematical programs with affine equilibrium constraints. The
proposed algorithms use the Lagrangian bound and exhaustive simplicial and rectangular
subdivisions widely used in global optimization. The main subproblems needed to be
solved in the algorithms are convex programs that can be solved by well developed
methods of nonsmooth convex programming.
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