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PERSONAGE IN SCIENCE

Professor A.A.Martynyuk

V. Lakshmikantham1∗ and Yu.A. Mitropolskii2

1Department of Mathematical Sciences, Florida Institute of Technology,

Melbourne, FL 32901, USA
2Institute of Mathematics, National Academy of Sciences of Ukraine,

Tereshckenkovs’ka Str., 3, Kiev, 01601, Ukraine

On March 6, 2006, the Corresponding Member of the National Academy of

Sciences of Ukraine, Habilitation Doctor and Ph.D. of physical and math-

ematical sciences, Professor Anatoly Andreevich Martynyuk turns 65. The

Editorial Board of the International Scientific Journal “Nonlinear Dynamics

and Systems Theory” congratulates him on the occasion of his 65th birthday

and wishes him a great health and new significant achievements in his scien-

tific endeavors. In this regard, the Editorial Board of “Nonlinear Dynamics

and Systems Theory” publishes a biographical sketch highlighting Martynyuk’s

research and scholarly activities.

1 A Brief Survey of Martynyuk’s Life

Anatoly A. Martynyuk was born in the family of a railwayman, Andrey Gerasimovich
Martynyuk, who lived in Ukraine (Cherkassy region). In 1958, Martynyuk graduated
from a high school and the same year he was admitted to the Department of Physics
and Mathematics of the Cherkassy State Pedagogical Institute (now B. Khmelnitzky
Cherkassy State University). Martynyuk graduated from the Institute with an honor
Master of Science degree and for one year he was employed as an instructor of physics
and mathematics at a Polessye high school.

In September 1964, Martynyuk was admitted to the post-graduate school of the In-
stitute of Mechanics of Acad. of Sci. of Ukr. SSR (now the S.P.Timoshenko Institute of
Mechanics Nat. Acad. of Sci. of Ukraine) chaired by Professor A.N. Golubentzev. Mar-
tynyuk’s Master’s dissertation was focused on the problems of finite stability (on a given
time interval). This research was supported both by Professor A.N. Golubentzev and the
Department of Differential Equations of the Institute of Mathematics (the Head of the
Department the Corresponding Member of Ac. of Sci. of Ukr. SSR, Prof. Yu.D. Sokolov).
Martynyuk successfully defended his Master’s thesis in the Institute of Mathematics in
1967. In 1969-1973, he worked for his doctorate under Yu.A.Mitropolskii. In 1973 he

∗Corresponding author: lakshmik@fit.edu

c© 2006 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 1



2 V. LAKSHMIKANTHAM AND YU.A. MITROPOLSKII

defended his highest degree of Habilitation (with the Academician Yu.A. Mitropolskii
serving on his committee). Shortly thereafter, Martynyuk was employed at the Insti-
tute of Mathematics, Department of the Presidium Acad. of Sci. of Ukr. SSR, Division
of Mathematics, Mechanics and Cybernetics of Acad. of Sci. of Ukr. SSR. In 1978 he
founded the Department of Stability of Processes at the Institute of Mechanics of Acad.
of Sci. of Ukr. SSR and since then he has been the Head of this Department. In 1988
Martynyuk was elected a Corresponding Member of the Acad. of Sci. of Ukr. SSR, and
in 1981 he was presented the prestigious N.M. Kryloff’s award of the Acad. of Sci. of
Ukr. SSR for his celebrated series of works on nonlinear mechanics.

2 Main Directions of the Scientific Investigations

Martynyuk represents the scientific school of Bogolyubov–Mitropolskii, going back to
A.M. Liapunov. Thorough his first studies on the theory of the stability of motion, car-
ried out under the influence of works by Ye.A. Barbashin, N.G. Chetaev, I.G. Malkin,
N.N. Krasovskii, K.P. Persidskii, V.I. Zubov. The main directions of the scientific re-
search by Martynyuk are:

* construction of approximate solutions of differential equations systems,
* nonclassical motion stability theories (technical, practical, stability in the whole),
* applications of integral inequalities in the stability theory,
* development of the comparison technique in nonlinear dynamics,
* stability analysis of large scale systems,
* topological dynamics (the method of limiting equations),
* creation of the method of the matrix-valued Liapunov functions,
* qualitative analysis of mathematical models in biology.

We shall outline in brief the development of the above directions in the works by
Martynyuk.

2.1 Construction of approximate solutions of differential equations

In a series of his papers Martynyuk treats systems of ordinary differential equations
(autonomous or nonautonomous) and proposes construction of solutions in the form of
power series or series in Poincaré variable

w =
(

eν(t−t0) − 1
)(

eν(t−t0) + 1
)

−1
, ν =

π

2h
. (2.1)

In transformation (2.1) the interior of the strip of width 2h in the τ -plane is transformed
conformally onto the interior of the unit circle {|w| = 1} in the w-plane.

If the domain containing solution of the initial system is totaly embedded into the
domain of asymptotic stability of the system under investigation, the corresponding
series converge for all values of the variable t. He constructs new recurrent formulas for
calculation of coefficients of these series and studies stability of approximate solutions
obtained as a result of approximate solutions obtained as a result of application of a
finite number of terms of the series.
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Monograph [ I ] provides generalization of the results [5–7, 9, 16, 18, 21, 22, 25, 30, 34]
and presents some applications in dynamics of mechanical systems.

2.2 Nonclassical theories of motion stability

Martynyuk’s research of nonclassical stability theory is the tantamount of stability anal-
ysis of solutions to nonlinear systems, in which the domain interval of the independent
(time) variable is a fixed interval. His results are about technical stability, stability on
a finite interval and practical stability. Stability problems in the nonclassical sense arise
in aviation, rocket building, robot technical systems construction and alike.

In the early sixties, different methods were adapted to the problems of nonclassical
stability theory by many investigators. In particular, Martynyuk introduced the “lo-
cally large Liapunov function” and proved general theorems on technical stability of the
continuous nonlinear systems and systems with delay in general.

Under various assumptions imposed on the system

dx

dt
= X(t, x), x(t0) = x0, (2.2)

where t ∈ R+, x ∈ Rn and X : R+ × Rn → Rn, numerous sufficient conditions for the
technical stability of motion were established by means of the Liapunov functions of the
form

v(t, x) = e−DtxTKx, (2.3)

where D is the diameter of the domain of admissible motion deviations and K is a
n× n-matrix of definite sign.

The development of some ideas and results of [1–4, 8, 17, 20, 27–29, 39, 47, 48] enabled
Martynyuk to obtain new tests for practical stability of motion for some classes of systems
of equations presented in [60, 68–70,75, 86, 91]. An efficient application of the direct
Liapunov method in the practical stability problems by Martynyuk yielded significant
extensions of this method, which are as follows:

(i) an extension of the class of auxiliary functions suitable for the studying practical
stability of motion;

(ii) elimination of the property of having a fixed sign of the total derivative of an
auxiliary function along with solutions of the system under investigation;

(iii) establishing a relationship between the quantitative values of the auxiliary func-
tion in given (finite) domains of the phase space and decrement (increment) of
this function, along with solutions of the system under investigation.

The generalized results on practical stability of non-linear systems are found in mono-
graphs [V, X]. The criteria of practical stability presented in [X] was obtained with V. Lak-
shmikantham and S. Leela and include discrete and impulsive systems, systems of integral
differential and functional-differential equations, reaction-diffusion equations, controlled
systems, and systems with multi-valued right-hand sides.

Major recent developments in this direction are summarized in monographs [XVIII]
published in Chinese. For the application of the obtained results in the dynamics of
wheeled transport vehicles and rocket dynamics, the reader is referred to monographs
[IV] and [XXIII].
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2.3 Applications of the integral inequalities in the stability theory

It is rather difficult to study the behavior of solutions, with unbounded jumps of systems
of the type

dx

dt
= f(t, x) + g(t, x), x(t0) = x0, (2.4)

where x ∈ Rn, f ∈ C(R+ × Rn, Rn), g(t, x) ∈ C(R+ × Rn, Rn). In system (2.4), the
vector function g(t, x) can characterize the terms of higher order of smallness compared
to the function f(t, x) or to persistent perturbations. Boundedness, asymptotic behavior,
oscillations and stability of solutions to system (2.4) are of great interest.

A utilization of integral inequalities is at the heart of a fundamental approach when
analyzing the above mentioned properties of solutions to system (2.4) and its particular
cases.

Furthermore, an application of integral inequalities for a rough estimation of the qual-
itative behavior of solutions to linear and nonlinear systems of differential equations
represents an essential part in the theory of motion stability.

In the papers [46, 58, 63], the author applied integral inequalities to problems of qual-
itative analysis of motion in the theory of motion stability. The idea leads to

(i) the utilization of known techniques and the development of new ones in order to
reduce system (2.4) to a form suitable for application of integral inequalities;

(ii) developing the method of estimating the nonlinear terms in system (2.4) corre-
sponding to the structure of the employed integral inequalities;

(iii) the investigation of general properties of systems with lumped and distributed
parameters, such as boundedness, continuous dependence on the initial values and
parameters, stability via Liapunov and Lagrange and stability under persistent
perturbation, as well as nonclassical problems of stability theory.

Nonlinear systems of (2.4) type are investigated in [III] under various assumptions
imposed on dynamical properties of solutions of nonlinear (linear) approximation to
system (2.4).

For further progress of integral inequalities techniques in qualitative analysis of solu-
tions to nonlinear systems of differential equations the reader is referred to monograph
[IX], while some applications are found in monograph [XIV].

2.4 Comparison technique and averaging method in nonlinear dynamics

Difficulties in analyzing nonlinear systems (2.2) or (2.4) under their high dimensions
stipulate a new method of qualitative analysis referred to as the comparison method.
As it is known, this method is based on the construction of the comparison equation
(system)

du

dt
= G(t, u), u(t0) = u0 ≥ 0, (2.5)

where u ∈ Rm
+ , G ∈ C(R+ × R+, R

m), G(t, 0) = 0 for all t ≥ t0 whose maximal

u+(t; t0, u0) (minimal u−(t; t0, u0)) solution is correlated with the solution x(t; t0, x0) of
system (2.2) as

Q(t, x(t; t0, x0)) ≤ u+(t; t0, u0),

Q(t, x(t; t0, x0)) ≥ u−(t; t0, u0),
(2.6)
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where Q ∈ C(R+ ×Rn, Rm
+ ), Q(t, 0) = 0 for all t ∈ R+.

In many fundamental works, researchers suggested constructing comparison system
(2.5) and comparison functions Q(t, ·) , which allow one to analyze stability of the state
x = 0 of system (2.2) in terms of the solution u = 0 to the comparison system.

In Martynyuk’s monograph [II], the development of the comparison technique is asso-
ciated with the analysis of systems of the type

dxs

dt
= fs(t, xs) + gs(t, x1, . . . , xm), s = 1, 2, . . . ,m, (2.7)

where xs ∈ Rns , fs ∈ C(R+×Rns , Rns), gs ∈ C(R+×Rn1×· · ·×Rnm , Rns), fs(t, 0) = 0,
g(t, 0, . . . , 0) = 0. Here the comparison technique is based on the integral inequalities

ϕs(t) ≤ ψs(t) +

t
∫

t0

σs(τ, ϕ1(τ), . . . , ϕm(τ)) dτ, s = 1, 2, . . . ,m, (2.8)

and the comparison system

dus

dt
= σs(t, ψ1(t) + u1, . . . , ψm(t) + um),

s = 1, 2, . . . ,m,
(2.9)

where σ(t, ψ(t) + y) is continuous on the open domain D = {(t, y) : a < t < b, y ∈ Rm}
and satisfies the condition of quasimonotonicity.

For inequalities (2.8) and some additional conditions, the estimates

ϕs(t) ≤ ψs(t) + u+
s (t, t0, u0s), s = 1, 2, . . . ,m, (2.10)

are valid, where u+
s (t, t0, u0s) is the maximal solution of system (2.9).

Using this type of the comparison technique, the problems on technical stability with
respect to separate coordinates and technical stability of multidimensional system were
solved in [27]. The applications of this type of the comparison technique to various
problems of qualitative analysis of solutions to nonlinear equations are found in the papers
[35–37, 50, 55, 57]. In particular, Martynyuk, in his monograph [XIV], studied many
problems concerning the qualitative behavior of solutions to equations in the standard
form, systems with quick and slow variables, systems with small persistent perturbations,
and singularly-perturbed systems. For other results in the direction see [41, 43, 49, 52–
54, 61, 62, 66, 74, 78, 81, 95, 93, 99, 100].

2.5 Stability analysis of large-scale dynamical systems

Stability of large-scale system of (2.2) type or more general systems modeled by equations
in a Banach space, has been discussed in many well-known monographs. An application
of vector Liapunov functions or vector norms leads to comparison systems of (3.1) type
or other types with the common property of the right-hand side being quasimonotone.

This way, we arrive at a stability problem of a quasimonotone system in a cone.
The other important stability problem of large scale systems was an efficient account
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of the influence of small interconnections between the subsystems in the case when the
subsystems are not asymptotically stable.

In the papers [32, 33], for the large scale system

dxs

dt
= fs(t, xs) + µgs(t, x1, . . . , xm), s = 1, 2, . . . ,m, (2.11)

it was proposed to apply the vector function

V (t, x) = (v1(t, x1), . . . , vm(t, xm))T,

whose components vs ∈ C(R+ × Rns , R+) are constructed for the independent subsys-
tems

dxs

dt
= fs(t, xs), xs(t0) = xs0, (2.12)

of system (2.11). The functions

ψs(t) =

t
∫

t0

(∇vs(t, xs))
Tgs(s, x1(s), . . . , xm(s)) ds,

s = 1, 2, . . . ,m,

(2.13)

yield the solutions x1(s), . . . , xm(s) of subsystems (2.12) and they estimate the influence
of interconnections gs(t, x1, . . . , xm) on the dynamics of whole system (2.11).

Comparison system (2.9), with functions (2.13), lead to estimates (2.10) to be ob-
tained. The latter are a source of various sufficient stability conditions for system of
(2.11) type.

In monographs [XVII, XIX], Martynyuk finds estimates (2.8) – (2.12) and develops
stability theory of large-scale systems (3.3) under various assumptions on the dynamical
properties of subsystems (2.12) and he establishes interconnection functions between
them.

In monographs [VI, VII], he developed new aggregation forms for large-scale systems
under nonclassical structural perturbations. See also many results in [77, 80, 82, 85, 87,
110–113,122, 128].

2.6 Limiting equations and stability theory

The Poincaré and Liapunov ideas on qualitative solutions to the systems of differential
equations with no direct integration, combined with abstract theory of dynamical sys-
tems, gave rise to a new direction in the theory of equations, which is based on the notion
of limiting equation (system).

Stability or other steady state dynamical properties of system (2.2) are associated
with the limiting behavior of solutions as t → ∞ and, therefore, are determined by the
limiting characteristics of (2.2) for t→ ∞.

It appeared to be fruitful to consider the translations

dx

dt
= f τ (x, t) (2.15)
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of equation (2.2), where f τ (x, t) = f(x, t + τ). These results in a family of equations
(2.15) are parametrized by the shift τ . The translation convergence when t → +∞
under some topology, enables one to study the asymptotic behavior of solutions to initial
system (2.2). The equation obtained as a result of this convergence is referred to as the
limiting equation.

Monographs [XI, XV] generalize in this direction the theory of motion stability. The
authors treat a stability problem of nonautonomous systems modelled by ordinary dif-
ferential equations, integral equations, equations with infinite delay, systems with small
forces, integro-differential systems, abstract compact and uniform dynamical processes,
dynamical processes on the space of convergence, asymptotically autonomous evolu-
tionary equations of parabolic and hyperbolic type in Banach spaces, etc. Moreover,
the method of limiting equations is applied here to investigate large-scale systems with
weakly interacting subsystems. Besides, both stability and instability of large-scale sys-
tems are studied. The topics include stability with respect to a subset of variables. See
also [115, 119].

2.7 The Liapunov’s matrix-valued functions method

At the end of the 1970s, Martynyuk began research in the field of matrix-valued Liapunov
functions. He proposed an approach to problems of stability based on the two-index
system of functions

U(t, x) = [uij(t, x)], i, j = 1, 2, . . . ,m, (2.16)

where uii ∈ C(R+ × Rn, R+) and uij ∈ C(R+ ×Rn, R) for all i 6= j, which is suitable
for the construction of Liapunov functions.

Both the scalar function

v(t, x, η) = ηTU(t, x)η, η ∈ Rm, (2.17)

and the vector function

V (t, x, w) = AU(t, x)w, w ∈ Rm, (2.18)

with A being a constant matrixm×m, can be constructed in terms of matrix-valued func-
tion (2.16). The function (2.16) together with (2.17) and (2.18) were put by Martynyuk
in the basis of the direct Liapunov method and comparison principle with matrix-valued
function (see [64, 71–73,79, 83, 94–97] and the monographs [XIV, XVII, XIX, XX, XXIV]).

The application of function (2.16) in the direct Liapunov method is beneficial in study-
ing stability of large-scale systems (3.3), with no use of the comparison systems of (3.1)
or (3.5) type. This enables one to bypass the quasimonotonicity condition when studying
stability of large-scale systems, and as a by-product, it preserves the vector function

V (t, x) = diag [u11(t, x), . . . , umm(t, x)], (2.19)

which is the principle diagonal of matrix-valued function (2.16).
The non-diagonal elements uij(t, xi, xj) are constructed for all (i 6= j) ∈ [1,m] in

light of the interconnection functions gs(t, x1, . . . , xm) acting between the subsystems.
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In nutshell, the development of the Liapunov matrix functions method rendered by
Martynyuk is as follows:

* the discovery of a two-index system of functions as a structure suitable for con-
struction of Liapunov functions;

* the introduction of the formalism of matrix Liapunov functions with the property
of having fixed sign of the matrix-valued functions and their derivatives by virtue
of the system of motion equations;

* the formulation of the invariance principle in terms of the matrix-valued functions
and stability of solutions to the autonomous systems;

* the analytical construction of the matrix and hierarchical matrix-valued Liapunov
functions.

As a result of the development of these powerful techniques, Martynyuk and his stu-
dents established a new efficient stability condition for some classes of systems of equa-
tions. Namely,

(a) systems with lumped parameters;
(b) singularly perturbed systems including Lur’e–Postnikov systems;
(c) system with random parameters including singularly perturbed stochastic sys-

tems;
(d) impulsive systems;
(e) large-scale discrete systems;
(f) hybrid systems;
(g) large-scale power systems modelled by ODE;
(h) uncertain systems;
(i) systems with delay;
(j) systems in Banach and metric spaces;
(k) systems modelling the population dynamics (generalization of Kolmogorov model);
(l) classes (a), (b), (d) and (e) under nonclassical structural perturbations.

Recently, Martynyuk developed the method of matrix Liapunov functions for the
investigation of polystability of motion, stability with respect to two measures, stability
analysis of discontinuous systems, and polydynamics of nonlinear system on time scales
(see [78, 84, 88-90, 101–106,108, 118, 123–129].

2.8 Analysis of mathematical models in biology

The work of Martynyuk in this direction deals with the analysis of qualitative properties
of solutions to the Lotka–Volterra system of equations and its generalizations in the form
of the Kolmogorov system of equations

dxi

dt
= βi(xi)Fi(t, x1, . . . , xn, µ),

xi(t0) = x0 ≥ 0, i = 1, 2, . . . , n.

(2.20)

Here βi are the functions infinitely many times differentiable on R+ = [0,∞), βi(0) = 0,

β′

i(xi) > 0 for xi > 0, βj
i (xi) ≥ 0, j = 2, 3, . . . and Fi ∈ C(R+ × Rn

+ ×Mk, R), where

Mk = [0, 1]×· · ·×[0, 1], i = 1, 2, . . . , n. System (2.20) is a multiplicatively and additively
perturbed Kolmogorov system of equations that models the population dynamics.

Also, Martynyuk established the boundedness conditions for the population growth
with respect to two measures, as well as the stability conditions for the population
quantity. See also [110, 116].
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3 Organizing and Scholarly Activity

Alongside the intensive scientific research, Martynyuk carries out great organizing and
scholarly activity. He initiated the publication of “The Lectures on Theoretical Mechan-
ics” of A.M.Liapunov in 1982. He also performs a considerable work as an Editor of the
International Series of Scientific Monographs “Stability and Control: Theory, Methods,
and Applications” at the Taylor and Francis Publishers (Great Britain). Since 1992, they
published 22 volumes in this Series which have gained a world-wide recognition. He is
founder of a new International journal “Nonlinear Dynamics and Systems Theory” since
2001, published in English.

Martynyuk serves on editorial boards of six international academic journals: Interna-

tional Applied Mechanics, Elektronnoe Modelirovanie, and Nonlinear Oscillations pub-
lished in Russian and Journal of Applied Mathematics and Stochastic Analysis (USA),
Differential Equations and Dynamical Systems (India), and International Journal of In-

novative, Computing & Control (Japan) published in English.
He supervised 21 doctoral and 2 habilitation theses in physical and mathematical

sciences. All of his former students are presently employed in different countries of the
former Soviet Union.

4 Sports and Hobbies

Besides doing an incredible amount of scientific work, Martynyuk takes time to enjoy
being with his family, his children and his grandchildren. On weekends he leaves his work
for a cycle ride or walking about the forest suburbs of Kiev. Contacts with a wildlife is
a source of delight and inspiration for him. Home library of Martynyuk contains about
2000 volumes of scientific literature, fiction and poetry. The books on history, philosophy,
natural sciences and art are of his particular interest. He also collects postage-stamps
and a series of periodicals “The Great Painters”.

After the Chernobyl nuclear accident in 1986 Martynyuk actively opposed to un-
founded decision of Political Bureau of Communist Party on construction of 28 nuclear
power blocks in Ukraine. His article “A warning to the careless mankind” (see “Vech-
erniy Kiev”, No. 273, November 29, 1989) produced a perceptible effect on the scientific
and public society.

Professor Martynyuk and his apprentices proceed with the investigations in chosen
areas of applied mathematics and mechanics providing the world science with new inter-
esting results.

The American Biographical Institute recognized Martynyuk as an “Outstanding Man
of the 20th Century” and awarded him the “2000 Millennium Medal of Honor”.

List of Monographs and Books by A.A. Martynyuk

I. Technical Stability in Dynamics. Tekhnika, Kiev, 1973. [Russian]
II. Motion Stability of Composite Systems. Naukova Dumka, Kiev, 1975. [Russian]

III. Integral Inequalities and Stability of Motion. Naukova Dumka, Kiev, 1979. (with R. Gu-
towski). [Russian]

IV. Dynamics and Motion Stability of Wheeled Transporting Vehicles. Tekhnika, Kiev, 1981.
(with L.G. Lobas and N.V. Nikitina). [Russian]



10 V. LAKSHMIKANTHAM AND YU.A. MITROPOLSKII

V. Practical Stability of Motion. Naukova Dumka, Kiev, 1983. [Russian]
VI. Large Scale Systems Stability under Structural and Singular Perturbations. Naukova

Dumka, Kiev, 1984. (with Ly.T. Grujić and M. Ribbens-Pavella). [Russian]
VII. Large-Scale Systems Stability under Structural and Singular Perturbations. Springer-

Verlag, Berlin, 1987. (with Ly.T. Grujić and M. Ribbens-Pavella).
VIII. Stability Analysis of Nonlinear Systems. Marcel Dekker, New York, 1989. (with V. Lak-

shmikantham and S. Leela).
IX. Stability of Motion: Method of Integral Inequalities. Naukova Dumka, Kiev, 1989. (with

V. Lakshmikantham and S. Leela). [Russian]
X. Practical Stability of Nonlinear Systems. World Scientific, Singapore, 1990. (with V. Lak-

shmikantham and S. Leela).
XI. Stability of Motion: Method of Limiting Equations. Naukova Dumka, Kiev, 1990. (with

J. Kato and A.A. Shestakov). [Russian]
XII. Stability of Motion: Method of Comparison. Naukova Dumka, Kiev, 1991. (with V. Lak-

shmikantham and S. Leela). [Russian]
XIII. Some Problems of Mechanics of Nonautonomous Systems. Mathematical Institute of

SANU, Beograd–Kiev, 1992. (with V.A. Vujicic). [Russian]
XIV. Stability Analysis: Nonlinear Mechanics Equations. Gordon and Breach Science Publish-

ers, Amsterdam, 1995.
XV. Stability of Motion of Nonautonomous Systems: Method of Limiting Equations. Gordon

and Breach Science Publishers, Amsterdam, 1996. (with J. Kato and A.A. Shestakov).
XVI. Advances in Nonlinear Dynamics. Gordon and Breach Science Publishers, Amsterdam,

1997. (Eds.: with S. Sivasundaram).
XVII. Stability by Liapunov’s Matrix Function Method with Applications. Marcel Dekker, New

York, 1998.
XVIII. Theory of Practical Stability with Applications. Harbin Institute of Technology, Harbin,

1999. (with Sun Zhen qi). [Chinese]
XIX. Qualitative Methods in Nonlinear Dynamics: Novel Approaches to Liapunov’s Matrix

Function. Marcel Dekker, New York, 2002.
XX. Stability and Stabilization of Nonlinear Systems with Random Structures. Taylor & Fran-

cis, London and New York, 2002. (with I.Ya. Kats).
XXI. Advances in Stability Theory at the End of the 20th Century. Taylor & Francis, London

and New York, 2003. (Ed.: A.A. Martynyuk).
XXII. Theory of Practical Stability with Applications. Second Edition, Revised and Expanded.

Chinese Academy of Sciences Publishing Company, Beijing, 2003. (with Sun Zhen qi).
[Chinese]

XXIII Qualitative Analysis of Nonlinear Systems with Small Parameter. Chinese Academy of
Sciences Publishing Company, Beijing, 2006 (with Sun Zhen qi). [Chinese]

XXIV Stability of Motion: The Role of Multicomponent Liapunov’s Functions, Cambridge Sci-
entific Publishers, London, 2006.

List of Personal Papers by A.A. Martynyuk*

1. To the stability of transient motion on a given interval of time. Prikl. Mekh. 3(5) (1967)
121–125. [Russian]

2. Statistical estimate of stability probability of motion on a given interval of time. Dokl. Akad.

Nauk USSR, Series A, No.5, (1967) 443–445. [Russian]
3. On the stability in finite interval of systems with delay. Dokl. Akad. Nauk USSR, Series A.,

No.8, (1969) 165–167. [Russian]

*This list is prepared and checked by L.N. Chernetskaja and Yu.A. Martynyuk-Chernienko

via Zentralblatt MATH CD-ROM.
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4. Estimate of transient processes in an engine with non-linear elements. Theory of Mechanisms

and Engines, No.4, (1969) 338–341. [Russian]
5. About the stability of approximate solutions of nonlinear systems. Prikl. Mekh. 5(12) (1969)

39–46. [Russian]
6. To the estimates of N.G. Chetaev of approximate integration. Dokl. Akad. Nauk USSR,

Series A., No.4, (1969) 338–341. [Russian]
7. On construction of solutions of a dynamical system in the domain of asymptotic stability.

Dokl. Akad. Nauk USSR. Series A., No.11, (1969) 1014–1018.
8. About the stability under persistent perturbation which is bounded in the mean. Mathemat-

ical Physics, No.6, (1969) 126–131.
9. Stability of approximate solutions of nonlinear systems and some adjacent questions. In:

Proc. V Intern. Conference on Nonlin. Oscillations. (Eds.: N.N. Bogoliubov and Yu.A. Mit-
ropolskii), Naukova Dumka, Kiev, 1970, P. 333–340. [Russian]

10. On construction of solution of differential equation in the domain of asymptotic stability.
Ukr. Matem. Zhurnal 22(3) (1970) 403–412. [Russian]

11. Polynomial approximation of solution of a nonlinear equation. Ukr. Matem. Zhurnal 22(4)
(1970) 557–563. [Russian]

12. A principle of packet the power of input. Dokl. Acad. Nauk USSR. Series A., No.10, (1970)
819–823. [Russian]

13. About a realization of a rapidly decreasing process of solution of ordinary differential equa-
tions and some applications. Ukr. Matem. Zhurnal 22(6) (1970) 734–748. [Russian]

14. To one method of investigation of mechanical systems with distributed parameters. Prikl.

Mekh. 6(12) (1970) 97–103. [Russian]
15. Some questions of the theory of stability of approximate solution and differential approxima-

tion. Mathematical Physics 7 (1970) 129–139. [Russian]
16. On construction of integral matrices. Dokl. Akad. Nauk USSR, Series A, No.1, (1971) 26–31.

[Russian]
17. Stability of systems with random parameters on finite interval and differential inequalities.

Dokl. Akad. Nauk USSR, Series A, No.5, (1971) 462–465. [Russian]
18. On stability of motions describing a parametric expansion. Dokl. Akad. Nauk USSR, Series

A, No.11, (1971) 980–983. [Russian]
19. About a test of stability of solutions to nonlinear differential equations. Ukr. Matem. Zhurnal

23(2) (1971) 253–257. [Russian]
20. The averaging method and the comparison principle in the technical theory of motion sta-

bility. Prikl. Mekh. 7(9) (1971) 64–69. [Russian]
21. To the problem of stability of analytical motions. Ukr. Matem. Zhurnal 23(4) (1971)

536–542. [Russian]
22. On some questions of stability and integrating in mechanics. Mathematical Physics 9 (1971)

80–89. [Russian]
23. A theorem on instability in the bounded systems with delay. In: Differential-Difference

Equations. Inst. of Mathematics, Kiev, 1971, P. 40–44. [Russian].
24. On the method of R-functions in the problems of stability and specialized formation. Math-

ematical Physics 11 (1972) 69–82. [Russian]
25. Inequalities of stability of the systems unsolved with respect to highest derivative. Dokl.

Akad. Nauk USSR, Series A, No.2, (1972) 130–134. [Russian]
26. On an iterated formula of constructing Liapunov functions. Ukr. Matem. Zhurnal 24(2)

(1972) 255–260. [Russian]
27. About technical stability with respect to a part of variables. Prikl. Mekh. 8(2) (1972) 87–91.

[Russian]
28. On technical stability of complex systems. Cybernetics and Comput. Techn., No.15, (1972)

58–64. [Russian]
29. On stability of many-dimensional system. In: Analytical and Qualitative Methods of the The-

ory of Differential Equations. Inst. Mathem. AN USSR, Kiev, 1972, P. 158–174. [Russian]
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30. About a realization of A.M. Liapunov’s method of integrating linear equations. Dokl. Akad.

Nauk USSR, Series A, No.4, (1972) 329–334. [Russian]
31. On construction of Liapunov’s functions. Dokl. Akad. Nauk USSR, Series A, No.7, (1972)

623–626. [Russian]
32. On instability of equilibrium state of many-dimensional system which consists of “neutral”

unstable subsystems. Prikl. Mekh. 8(6) (1972) 77–82. [Russian]
33. A theorem of Liapunov type stability of many-dimensional system. Ukr. Matem. Zhurnal

24(4) (1972) 532–537. [Russian]
34. About approximation of solutions of linear systems in Banach space. Diff. Eqns. 8(11)

(1972) 1988–1999. [Russian]
35. The stability of a multidimensional system. In: Analytic and Qualitative Methods of the

Theory of Differential Equations. Inst. Math. Akad. Nauk Ukr. SSR, Kiev, 1972, P. 158–
174. [Russian]

36. The averaging method in the stability theory. Zag. Drgan. Nielin., No.14, (1973) 71–79.
[Russian]

37. The averaging method in the theory of stability of motion. Nonlinear Vibration Problems.
In: Proc. Sixth Internat. Conf. Nonlinear Oscillations, Poznań, 1972, Part I. PWN–Polish
Sci. Publ., Warsaw, 1973, Vol.14, P. 71–79. [Russian]

38. Stability of coupled systems of nonlinear differential equations with delayed argument. Soviet

Automat. Control 6 (1973) 10–15. [Russian]
39. The finite stability of a motion on an infinite time interval. Mathematical Physics 13 (1973)

55–59. [Russian]
40. Stability on a finite interval under constantly acting perturbations. Dokl. Akad. Nauk Ukr.

SSR, Series A, (1973) 920–922. [Ukrainian]
41. The stability of a standard system with constantly acting perturbations. Dokl. Akad. Nauk

Ukr. SSR, Series A, (1973) 406–408. [Ukrainian]
42. The stability of a standard system under constantly acting perturbations. Mathematical

Physics 16 (1974) 35–39. [Russian]
43. A study of the stability of composite systems that are composed of neutrally stable subsys-

tems. Dokl. Akad. Nauk Ukr. SSR, Series A, No.10, (1974) 125–128.
44. The stability of systems with perturbations that evolve. Dokl. Akad. Nauk Ukr. SSR, Series

A, No.7, (1975) 611–614. [Ukrainian]
45. A theorem on the stability of a nonlinear system with a singular linear approximation. Dokl.

Akad. Nauk Ukr. SSR, Series A, No.5, (1975) 409–411. [Ukrainian]
46. Integro-differential inequalities in the theory of the stability of motion. Dokl. Akad. Nauk

Ukr. SSR, Series A, No.6, (1976) 529–532. [Russian]
47. A qualitative and numerical analytic study of stability of motion. Prikl. Mekh. 13(10) (1977)

87–93. [Russian]
48. Technical stabilization of controlled motions. Mathematical Physics, No.24, (1978) 22–27.

[Russian]
49. A theorem on the averaging principle in nonlinear mechanics. Prikl. Mekh. 14(10) (1978)

129–132. [Russian]
50. A theorem of the type of first averaging Bogoljubov theorem. Dokl. Akad. Nauk SSSR

241(2) (1978) 279–281. [Russian]
51. Development of the method of Liapunov functions in the theory of motion stability of complex

systems. Prikl. Mekh. 15(10) (1979) 3–23. [Russian]

52. The Ljapunov–Čaplygin comparison principle for standard systems. Mathematical Physics,

No.25, (1979) 49–53. [Russian]
53. The averaging principle in nonlinear mechanics. Prikl. Mekh. 15(8) (1979) 80–86. [Russian]

54. The Čaplygin-Ljapunov comparison principle in nonlinear mechanics. Teor. Primen. Meh.,
No.5, (1979) 85–90. [Russian]

55. Generalization of the second theorem of the averaging Bogoljubov’s principle. Dokl. Akad.

Nauk SSSR 249(1) (1979) 46–48. [Russian]
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56. Stability of motion in the neutral case with increasing perturbations. In: Asymptotic methods

in the theory of nonlinear oscillations. (Proc. All-Union Conf. Asymptotic Methods in
Nonlinear Mech., Katsiveli, 1977). Naukova Dumka, Kiev, 1979, P. 86–92. [Russian]

57. The principle of comparison and averaging in systems with fast and slow motions. Dokl.

Akad. Nauk SSSR 253(6) (1980) 1307–1310. [Russian]
58. Method of integral inequalities in the theory of stability of motion. Soviet Appl. Mech. 16(4)

(1980) 267–281.
59. Stability and instability of systems of processes with respect to two multivalent measures.

Soviet Appl. Mech. 17(2) (1981) 184–189.
60. Practical stability and stabilization of control processes. Soviet Appl. Mech. 17(10) (1981)

859–873.
61. Stability of motions in nonlinear mechanics. Dokl. Akad. Nauk SSSR 264(5) (1982) 1073–

1077. [Russian]
62. The averaging method and optimal stabilization of motions of nonlinear systems. Dokl. Akad.
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67. Method of averaging and optimal stabilization of motion of large scale systems. In: Real
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1 Introduction

One of the important problems arising in the investigation of nonlinear systems is the
problem of absolute stability [1, 3, 8]. This problem is of both theoretical and applied
significance. The main approach for the determination of conditions for the absolute
stability is the Lyapunov direct method. By means of this approach, the criteria of
absolute stability for many types of systems are obtained. However, it should be noted
that until now there are no general methods of construction of Lyapunov’s functions for
nonlinear systems.

In the present paper a certain class of differential equations systems is investigated.
The method of construction of Lyapunov’s functions for these systems is suggested. The
main goal of the paper is to prove that for the absolute stability of systems considered it
is necessary and sufficient that the Lyapunov’s functions in the given form exist satisfying
the assumptions of the Lyapunov asymptotic stability theorem [3].
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2 Statement of the Problem

Consider the system of differential equations

ẋs =

n
∑

j=1

psjfj(xj), s = 1, . . . , n. (2.1)

Here psj are constant coefficients, functions fj(xj) are defined and continuous for xj ∈
(−∞, +∞) and possess the property xjfj(xj) > 0 for xj 6= 0. Hence, system (2.1)
has the zero solution. Equations of this kind are widely used in the design of automatic
control systems [3, 10].

The problem of absolute stability for system (2.1) was investigated in the works
[3, 10, 14]. For the solution of this problem in [3] it was suggested to construct Lya-
punov’s function in the form

V =

n
∑

s=1

λs

xs
∫

0

fs(τ) dτ, (2.2)

where λs are positive constants. Thus, V is a positive definite function. In [3, 14] the
sufficient conditions are obtained under which one may choose numbers λs for the function

dV

dt

∣

∣

∣

(2.1)
=

n
∑

s,j=1

λspsjfs(xs)fj(xj)

to be negative definite.
Suppose that coefficients psj in (2.1) satisfy the conditions

pss < 0, psj ≥ 0 for s 6= j. (2.3)

For instance, inequalities (2.3) are valid if (2.1) is obtained as a comparison system for
complex system [5, 11].

In this case the criterion of absolute stability for (2.1) was established by S.K. Per-
sidsky [10]. It is proved that system (2.1) is absolutely stable if and only if there exist
positive constants θ1, . . . , θn such that

n
∑

j=1

psjθj < 0, s = 1, . . . , n. (2.4)

It should be noted that the existence of a positive solution for (2.4) is equivalent to the
fulfillment of the Sevast’yanov–Kotelyanskij conditions [11]:

(−1)k det (psj)
k

s,j=1 > 0, k = 1, . . . , n. (2.5)

On the other hand, it is known [11] that if inequalities (2.5) are valid, then one may

choose numbers λs for the function W =
n
∑

s,j=1

λspsjysyj to be negative definite. Thus,

system (2.1) is absolutely stable if and only if for this system there exists Lyapunov’s
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function in the form (2.2), satisfying the assumptions of the Lyapunov asymptotic sta-
bility theorem.

The main goal of the present paper is to extend the above results to the system of the
form

ẋs = asfs(xs) +

ks
∑

j=1

bsjf
α

(j)

s1

1 (x1) . . . f
α(j)

sn

n (xn), s = 1, . . . , n. (2.6)

Here as and bsj are constant coefficients, functions fj(xj) possess the same properties

as in system (2.1), α
(j)
si are nonnegative rationals with odd denominators.

3 Construction of Lyapunov’s Functions

Let the inequalities
n
∑

i=1

α
(j)
si > 0, j = 1, . . . , ks, s = 1, . . . , n, be valid. The fulfillment of

this assumption provides the existence of the zero solution for system (2.6). Furthermore,
we suppose that coefficients as and bsj satisfy the conditions

as < 0, bsj > 0. (3.1)

Definition 3.1 We call (2.6) absolutely stable if the zero solution of this system is
asymptotically stable for any admissible functions fj(xj).

Let us investigate the conditions of absolute stability for (2.6). Along with equations
(2.6), consider the system of inequalities

asθs +

ks
∑

j=1

bsjθ
α

(j)

s1

1 . . . θ
α(j)

sn

n < 0, s = 1, . . . , n. (3.2)

Definition 3.2 We shall say that (2.6) satisfies the Martynyuk–Obolenskij condi-

tion [9] (MO-condition) if for any δ > 0 there exists solution θ1, . . . , θn of system (3.2)
such that 0 < θs < δ, s = 1, . . . , n.

Let us note that in the case, where fj(xj) are nondecreasing functions, (2.6) is the
Wazewskij’s system [5, 11]. In the paper [9] the autonomous Wazewskij’s systems were
treated. The criterion for the asymptotic stability in the positive cone of the zero solution
was obtained. Using this result, we get that the MO-condition is a necessary one for the
absolute stability for system (2.6).

To prove sufficiency of this condition for the absolute stability, construct Lyapunov’s
function in the form

˜V =

n
∑

s=1

λs

∫ xs

0

fµs

s (τ)dτ. (3.3)

Here λs > 0 are constant coefficients, µs > 0 are rationals with odd numerators and
denominators.

Function ˜V is positive definite. By differentiating ˜V with respect to (2.6), one arrives
to

d˜V

dt

∣

∣

∣

(2.6)
=

n
∑

s=1

λsasf
µs+1
s (xs) +

n
∑

s=1

λsf
µs

s (xs)

ks
∑

j=1

bsjf
α

(j)

s1

1 (x1) . . . f
α(j)

sn

n (xn).
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Our aim is to determine the conditions under which one may choose coefficients λs

and exponents µs for the function

˜W =
n

∑

s=1

λsasy
µs+1
s +

n
∑

s=1

λsy
µs

s

ks
∑

j=1

bsjy
α

(j)

s1

1 . . . y
α(j)

sn

n (3.4)

to be negative definite.

Let us denote hs = 1/(µs + 1), s = 1, . . . , n. By the use of generally-homogeneous

functions properties [12], we get that ˜W may be negative definite only in the case, where
the inequalities

−hs +

n
∑

i=1

α
(j)
si hi ≥ 0, j = 1, . . . , ks, s = 1, . . . , n, (3.5)

are valid.

Remark 3.1 Let positive rationals h1, . . . , hn with odd numerators and even denom-
inators satisfy conditions (3.5). Suppose that for some values of indices j and s corre-
sponding inequalities in (3.5) are strict. In this case one may construct, instead of (3.4),

new function ̂W by setting bsj = 0 for all such j and s. If there exist positive coefficients

λ1, . . . , λn for which ̂W is negative definite, then for these values of λ1, . . . , λn function
˜W possesses the same property [12].

Remark 3.2 If there exist positive rationals h1, . . . , hn for which all the inequalities
in (3.5) are strict, i.e.

−hs +
n

∑

i=1

α
(j)
si hi > 0, j = 1, . . . , ks, s = 1, . . . , n, (3.6)

then for corresponding values of µs and for any admissible values of as, bsj and λs

function ˜W will be negative definite.

4 Auxiliary Results

In this section we will investigate the relationship between the fulfillment of the MO-
condition and the existence of positive solutions for systems (3.5) and (3.6).

Lemma 4.1 If there exists a positive solution for (3.6), then system (2.6) satisfy the

MO-condition.

Proof Let for positive constants h1, . . . , hn inequalities (3.6) be valid. Then the
numbers θs = τhs , s = 1, . . . , n, satisfy conditions (3.2) for sufficiently small values
of τ > 0.
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Lemma 4.2 Let (2.6) satisfies the MO-condition. Then for any set of indices j1, . . . ,

jn (js ∈ {1, . . . , ks}, s = 1, . . . , n) there exists a positive solution for the system

−hs +
n

∑

i=1

α
(js)
si hi ≥ 0, s = 1, . . . , n. (4.1)

Proof For specified values of indices j1, . . . , jn consider the inequalities

asθs + bsjs
θ

α
(js)

s1

1 . . . θ
α(js)

sn

n < 0, s = 1, . . . , n. (4.2)

If for (2.6) the MO-condition is fulfilled, then in any neighborhood of the state

(θ1, . . . , θn)∗ = (0, . . . , 0)∗ there exists a positive vector (θ̃1, . . . , θ̃n)∗ satisfying (4.2).
Along with (4.1), we investigate the system

−hs +

n
∑

i=1

α
(js)
si hi = cs, s = 1, . . . , n, (4.3)

where cs are nonnegative constants. Let us apply the Gaussian elimination procedure [4]
to linear system (4.3). This procedure generates equivalent systems of equations with the
coefficients changed in the similar way as the orders of θ1, . . . , θn under the successive
elimination of these variables from (4.2).

Since in any neighborhood of the state (θ1, . . . , θn)∗ = (0, . . . , 0)∗ there exists a pos-
itive solution for inequalities (4.2), one may assume, without loss of generality, that
application of the Gaussian elimination procedure to the system (4.3) yields the system

n
∑

i=s

βsihi = c̃s, s = 1, . . . , r,

n
∑

i=r+1

βsihi = c̃s, s = r + 1, . . . , n.

Here 1 ≤ r < n; βss < 0 for s = 1, . . . , r; βsi ≥ 0 for s = 1, . . . , r, i = s + 1, . . . , n

and for every s = 1, . . . , r there exists is > s such that βsis
> 0; βsi ≥ 0 for s, i =

r + 1, . . . , n; c̃s ≥ 0 for s = 1, . . . , n.

Let h̃r+1, . . . , h̃n be arbitrary positive numbers,

h̃s = −
1

βss

n
∑

i=s+1

βsih̃i, s = 1, . . . , r.

For these values of h̃1, . . . , h̃n we get cs = c̃s = 0 for s = 1, . . . , r and cs = c̃s ≥ 0 for

s = r + 1, . . . , n. Hence, the vector (h̃1, . . . , h̃n)∗ is a positive solution for (4.1).

Lemma 4.3 If (2.6) satisfies the MO-condition, then there exists a positive solution

for system (3.5).

Proof Consider the system

−hs +
n

∑

i=1

α
(j)
si hi = c(j)

s , j = 1, . . . , ks, s = 1, . . . , n, (4.4)
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where c
(j)
s are nonnegative constants. This system may be splitted into n subsystems.

Let us apply to (4.4) the modified Gaussian elimination procedure. On the s-th step of
this procedure we keep in the s-th subsystem only equations with negative coefficients
of hs. Each of the equations kept is used for the elimination of hs from the (s + 1)-th,
etc., and n-th subsystems. This results in a new set of subsystems with (generally) the
number of equations other than that in the initial system.

According to Lemma 4.2, for any set of indices j1, . . . , jn, system (4.1) possesses a
positive solution. Hence, one may assume, without loss of generality, that after the
application of the above procedure we obtain the system

n
∑

i=s

β
(j)
si hi = c̃(j)

s , j = 1, . . . , qs, s = 1, . . . , r.

Here 1 ≤ r < n, c̃
(j)
s ≥ 0, β

(j)
ss < 0, β

(j)
si ≥ 0 for i = s + 1, . . . , n, and for any j and s

there exists isj > s such that β
(j)
sisj

> 0, j = 1, . . . , qs, s = 1, . . . , n.

It can be easily shown that if h̃r+1, . . . , h̃n are arbitrary positive numbers and

h̃s = − max
j=1,...,qs

1

β
(j)
ss

n
∑

i=s+1

β
(j)
si h̃i, s = 1, . . . , r,

then the vector (h̃1, . . . , h̃n)∗ is a positive solution for (3.5).

Remark 4.1 Since systems of inequalities (3.5), (3.6) are linear, the investigation of
conditions for the existence of positive solutions for them is a much more simple problem
than for nonlinear system (3.2).

Remark 4.2 The proof of Lemma 4.3 contains a constructive algorithm for finding a
positive solution for (3.5). Moreover, let us note that using this algorithm one may choose

h̃r+1, . . . , h̃n for the numbers µs = 1/h̃s − 1, s = 1, . . . , n, to be positive rationals with
odd numerators and denominators.

5 Criterion for Absolute Stability

We will find now the necessary and sufficient conditions for system (2.6) to be absolutely
stable.

Theorem 5.1 System (2.6) is absolutely stable if and only if for this system there

exists Lyapunov’s function in the form (3.3) satisfying the assumptions of the Lyapunov

asymptotic stability theorem.

Proof Sufficiency Suppose that there exists Lyapunov’s function in the form (3.3)
with negative definite derivative with respect to (2.6). Then for arbitrary admissible
functions fj(xj) the zero solution of the system considered is asymptotically stable.
Hence, (2.6) is absolutely stable.

Necessity If (2.6) is absolutely stable, then for this system the MO-condition is ful-
filled [9]. According to Lemma 4.3, there exist positive rationals µ1, . . . , µn with odd

numerators and denominators such that for the numbers h̃s = 1/(µs + 1), s = 1, . . . , n,
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inequalities (3.5) are valid. We shall take these values of µ1, . . . , µn as exponents in Lya-
punov’s function (3.3). Let us show that one may choose positive constants λ1, . . . , λn

for the function (3.4) to be negative definite.

Consider a positive solution (θ̃1, . . . , θ̃n)∗ of (3.2). Let us denote zs = ys/θ̃s, γs =

θ̃µs

s λs, s = 1, . . . , n. Then function ˜W takes the form

˜W =
n

∑

s=1

γsâsz
µs+1
s +

n
∑

s=1

γsz
µs

s

ks
∑

j=1

b̂sjz
α

(j)

s1

1 . . . z
α(j)

sn

n .

Here âs = asθ̃s, b̂sj = bsj θ̃
α

(j)

s1

1 . . . θ̃
α(j)

sn

n , and âs +
ks
∑

j=1

b̂sj < 0, s = 1, . . . , n.

We will assume, without loss of generality (v. Remark 3.1), that for the numbers

h̃1, . . . , h̃n, corresponding to chosen values of µ1, . . . , µn, all the inequalities in (3.5)
turn to equalities.

Let D = {dsi}
n
s,i=1, where

dss = âs +

ks
∑

j=1

b̂sjα
(j)
ss , dsi =

ki
∑

j=1

b̂ijα
(j)
is for s 6= i.

Matrix D is the Metzler matrix [5, 11].

It can be easily shown that the inequality D∗h < 0 possesses the solution h̃ =

(h̃1, . . . , h̃n)∗. Hence [11], there exists a positive solution γ̃ = (γ̃1, . . . , γ̃n)∗ for the
inequality Dγ < 0.

By the use of the Jensen inequality [6], one gets that for such values of coefficients
γ̃1, . . . , γ̃n the relations

˜W ≤

n
∑

s=1

γ̃sâsz
µs+1
s +

n
∑

s=1

γ̃s

ks
∑

j=1

b̂sj

(

µs

µs + 1
zµs+1

s +

n
∑

i=1

α
(j)
si

µi + 1
z

µi+1
i

)

=
n

∑

s=1

γ̃sµs

µs + 1
zµs+1

s

(

âs +

ks
∑

j=1

b̂sj

)

+
n

∑

s=1

zµs+1
s

µs + 1

n
∑

i=1

dsiγ̃i ≤ −c

n
∑

s=1

zµs+1
s

µs + 1

are valid. Here c is a positive constant. This completes the proof.

Corollary 5.1 System (2.6) is absolutely stable if and only if it satisfies the MO-
condition.

Remark 5.1 Corollary 5.1 is similar to the criterion for the asymptotic stability ob-
tained in [9] for autonomous Wazewskij’s systems. However, in comparison with this cri-
terion, in the present paper it has been proved that only the MO-condition is a sufficient
one for the asymptotic stability of the zero solution of (2.6), i.e. the other assumptions
from [9] (concerning the uniqueness of solutions, isolation of the equilibrium position at
the origin and nondecreasement of the functions fj(xj)) are redundant.

Corollary 5.2 Let system (2.6) satisfy the MO-condition. If there exist parameters
µ1, . . . , µn such that for corresponding values of h1, . . . , hn all the inequalities in (3.5)

turn to equalities, and
∫ xs

0
fµs

s (τ) dτ → +∞ as |xs| → ∞, s = 1, . . . , n, then the zero

solution of (2.6) is globally asymptotically stable.



24 A.YU. ALEKSANDROV AND A.V. PLATONOV

It should be noted that Remark 3.1 makes possible, in some cases, to simplify the MO-
condition verifying. Let positive rationals h1, . . . , hn satisfy system (3.5). Then one may
assume that in (2.6) bsj = 0 if for these values of s and j the corresponding inequality in
(3.5) is strict. By the use of Remark 3.1, we get that the fulfillment of the MO-condition
for such reduced system is equivalent to that one for the initial system (2.6).

Example 5.1 Let system (2.6) be of the form

ẋ1 = a1f1(x1) + b11f
2/3
2 (x2)f

1/3
3 (x3),

ẋ2 = a2f2(x2) + b21f1(x1) + b22f
3
3 (x3),

ẋ3 = a3f3(x3) + b31f1(x1) + b32f
3
2 (x2).

(5.1)

Consider inequalities (3.5) corresponding to (5.1). We get

−h1 +
2

3
h2 +

1

3
h3 ≥ 0,

−h2 + h1 ≥ 0,

−h2 + 3h3 ≥ 0,

−h3 + h1 ≥ 0,

−h3 + 3h2 ≥ 0.

(5.2)

By the use of the procedure of successive elimination of variables, it can be easily shown
that if positive constants h1, h2, h3 satisfy (5.2), then h1 = h2 = h3. For such values
of variables the third and the fifth inequalities in (5.2) are strict, and the others turn to
equalities. Hence, for (5.1) the MO-condition is fulfilled if and only if this condition is
fulfilled for the reduced system

ẋ1 = a1f1(x1) + b11f
2/3
2 (x2)f

1/3
3 (x3),

ẋ2 = a2f2(x2) + b21f1(x1),

ẋ3 = a3f3(x3) + b31f1(x1).

(5.3)

Verifying the MO-condition for (5.3), we obtain that for (5.1) to be absolutely stable it
is necessary and sufficient that the inequality a3

1a
2
2a3 > b3

11b
2
21b31 holds.

Remark 5.2 In a similar way, the criterion for absolute stability can be obtained for
the case when the inequalities bsj > 0 in (3.1) are replaced by the connecting coefficients

bsj and a basis ω1, . . . , ωn: bsjωsω
α

(j)

s1

1 . . . ω
α(j)

sn

n > 0 for j = 1, . . . , ks, s = 1, . . . , n [10].
Here every constant ω1, . . . , ωn takes either the value +1 or −1.

Example 5.2 Consider the system

ẋ1 = a1 f1(x1) + b1 fα1

n (xn),

ẋi = ai fi(xi) + bi fαi

i−1(xi−1), i = 2, . . . , n − 1,

ẋn = an fn(xn) + bn fν1

1 (x1) . . . f
νn−1

n−1 (xn−1),

(5.4)

where aj and bj are constant coefficients, aj < 0, bj 6= 0, functions fj(xj) possess
the same properties as in (2.6), αi and νi are rationals with odd denominators, αi > 0,
νi ≥ 0, ν1 + · · · + νn−1 > 0, j = 1, . . . , n, i = 1, . . . , n − 1.
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By the use of Remark 3.2, we obtain that under the condition

α1ν1 + α1α2ν2 + · · · + α1 . . . αn−1 νn−1 > 1

system (5.4) is absolutely stable for any admissible values of coefficients aj and bj .
Next, consider the case, where

α1ν1 + α1α2ν2 + · · · + α1 . . . αn−1 νn−1 = 1. (5.5)

It can be easily shown that for the existence of the basis ω1, . . . , ωn such that

b1ω1ω
α1

n > 0, biωiω
αi

i−1 > 0, i = 2, . . . , n − 1, bnωnων1

1 . . . ω
νn−1

n−1 > 0

it is necessary and sufficient that the inequality

b
ξ1

1 b
ξ2

2 . . . b
ξn−1

n−1 bn > 0 (5.6)

is fulfilled. Here ξi = νi + αi+1ξi+1, i = 1, . . . , n − 2, ξn−1 = νn−1.
Making the substitution zj = ωjxj , j = 1, . . . , n, in (5.4) and applying Corollary 5.1

for the system obtained, we get that under conditions (5.5) and (5.6) system (5.4) is
absolutely stable if and only if the inequality

(

−
b1

a1

)ξ1
(

−
b2

a2

)ξ2

. . .

(

−
bn−1

an−1

)ξn−1
(

−
bn

an

)

< 1

is valid.

6 Stability Analysis for Large Scale Systems in Critical Cases

Let us now show that the results obtained in the present paper may be used to refine
some of the known conditions of stability for large scale systems.

Consider the system

ẋs = Fs(xs) +

ks
∑

j=1

Qsj(t, x), s = 1, . . . , n, (6.1)

where xs ∈ Rms , x = (x∗

1, . . . , x
∗

n)∗; the elements of the vectors Fs(xs) are continuously
differentiable homogeneous functions of the orders σs > 1; the vector functions Qsj(t, x)
are continuous for t ≥ 0, ‖x‖ < H (H is a positive constant, ‖ · ‖ is the Euclidean norm
of a vector) and satisfy the inequalities

‖Qsj(t, x)‖ ≤ csj ‖x1‖
β

(j)

s1 . . . ‖xn‖
β(j)

sn , csj > 0, β
(j)
si ≥ 0.

We will assume that (6.1) has the zero solution.
This system describes the dynamics of a complex system composed of n interconnected

subsystems [1, 5]. Here xs are state vectors, the functions Fs(xs) define the interior con-
nections of subsystems while the functions Qsj(t, x) characterize the interaction between
the subsystems.
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Suppose that the zero solutions of isolated systems

ẋs = Fs(xs), s = 1, . . . , n, (6.2)

are asymptotically stable. We will look for the conditions under which the zero solution
of (6.1) is also asymptotically stable.

In the papers [2, 7], approaches to studying stability for (6.1) are suggested. For this
purpose, methods of the Lyapunov vector [7] or scalar [2] functions are used.

It is known [13] that for isolated systems (6.2) there exist Lyapunov’s functions Vs(xs),
which are continuously differentiable positive homogeneous functions of orders γs−σs+1,
s = 1, . . . , n. Here γs are arbitrary numbers such that γs > σs. These functions satisfy
the inequalities

a1s‖xs‖
γs−σs+1 ≤ Vs(xs) ≤ a2s‖xs‖

γs−σs+1,
∥

∥

∥

∥

∂Vs

∂xs

∥

∥

∥

∥

≤ a3s‖xs‖
γs−σs ,

(

∂Vs

∂xs

)

∗

Fs ≤ −a4s‖xs‖
γs

for all xs ∈ Rms , where a1s, a2s, a3s, a4s are positive constants. By differentiating
Vs(xs) with respect to (6.1), one can deduce that the estimations

dVs

dt

∣

∣

∣

(6.1)
≤ −a4s‖xs‖

γs + a3s‖xs‖
γs−σs

ks
∑

j=1

csj ‖x1‖
β

(j)

s1 . . . ‖xn‖
β(j)

sn

are valid for t ≥ 0, ‖x‖ < H , s = 1, . . . , n.
According to approach suggested in [7], the Lyapunov vector function is chosen in the

form V = (V1, . . . , Vn)∗. Using this function, we construct the comparison system

u̇s = −ãsu
γs

γs−σs+1

s + u
γs−σs

γs−σs+1

s

ks
∑

j=1

b̃sju

β

(j)

s1

γ1−σ1+1

1 . . . u
β

(j)

sn

γn−σn+1

n , s = 1, . . . , n, (6.3)

for (6.1). Here

ãs = a4sa
−

γs

γs−σs+1

2s , b̃sj = a3scsja
−

γs−σs

γs−σs+1

1s a
−

β

(j)

s1

γ1−σ1+1

11 . . . a
−

β

(j)

sn

γn−σn+1

1n .

System (6.3) is the Wazewskij one [5]. By analogy with the proof of Theorem 5.1, it can
be easily shown that for the zero solution of (6.3) to be asymptotically stable it is sufficient
that the corresponding MO-condition is fulfillment. Hence, if in any neighborhood of
the state (θ1, . . . , θn)∗ = (0, . . . , 0)∗ there exists a positive solution for the system of
inequalities

−ãsθs +

ks
∑

j=1

b̃sjθ
β

(j)

s1
/σ1

1 . . . θ
β(j)

sn
/σn

n < 0, s = 1, . . . , n, (6.4)

then the zero solution of (6.1) is asymptotically stable.
Let us now show that the condition obtained for the asymptotic stability of the zero

solution may be weakened by using the results of the previous section. Consider the
Lyapunov scalar function

˜V =
n

∑

s=1

λsVs,
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where λs are positive coefficients, Vs are positive homogeneous functions of orders γs −
σs + 1 corresponding to isolated subsystems (6.2). For all t ≥ 0 and ‖x‖ < H we get

d˜V

dt

∣

∣

∣

(6.1)
≤ −

n
∑

s=1

λsa4s‖xs‖
γs +

n
∑

s=1

λsa3s‖xs‖
γs−σs

ks
∑

j=1

csj ‖x1‖
β

(j)

s1 . . . ‖xn‖
β(j)

sn .

Hence, to prove the asymptotic stability of the zero solution for (6.1) it is sufficient to
show that one may choose positive coefficients λ1, . . . , λn for the function

˜W = −
n

∑

s=1

λsa4sy
µs+1
s +

n
∑

s=1

λsa3sy
µs

s

ks
∑

j=1

csj y
β

(j)

s1
/σ1

1 . . . y
β(j)

sn
/σn

n

to be negative definite. Here µs = γs/σs − 1.
Suppose that parameters γ1, . . . , γn satisfy the inequalities

−
σs

γs

+
n

∑

i=1

β
(j)
si

γi

≥ 0, j = 1, . . . , ks, s = 1, . . . , n. (6.5)

In this case, by analogy with the proof of Theorem 5.1, we get that the following theorem
is valid.

Theorem 6.1 If in any neighborhood of the state (θ1, . . . , θn)∗ = (0, . . . , 0)∗ there

exists a positive solution for the system of inequalities

−a4sθs + a3s

ks
∑

j=1

csj θ
β

(j)

s1
/σ1

1 . . . θ
β(j)

sn
/σn

n < 0, s = 1, . . . , n, (6.6)

then the zero solution of (6.1) is asymptotically stable.

Remark 6.1 Coefficients ãs, b̃sj , a3s, a4s in (6.4) and (6.6) depend, in general, on the
chosen values of γ1, . . . , γn.

Remark 6.2 For given values of γ1, . . . , γn, Theorem 6.1 provides one with more precise
conditions of asymptotic stability in comparison with those obtained via the Lyapunov
vector function. However, in (6.6), compared with (6.4), it is assumed that γ1, . . . , γn

satisfy additional restrictions (6.5).

Example 6.1 Let the system

ẋ1 = −ρ2x1 − x2
1x2,

ẋ2 = 100x3
1 − 100ρ2x2 + ax9

3,

ẋ3 = −x9
3 + bρ3

(6.7)

be given. Here ρ =
√

x2
1 + x2

2, a and b are constants. System (6.7) describes the
interaction of two isolated subsystems

ẋ1 = −ρ2x1 − x2
1x2,

ẋ2 = 100x3
1 − 100ρ2x2,

ẋ3 = −x9
3.
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Consider the functions

V1 = 50 x2
1 +

1

2
x2

2, V2 = x
γ
3 ,

where γ > 1 is a rational with even numerator and odd denominator. Differentiating
these functions with respect to (6.7), one gets

V̇1 = −100ρ4 + ax2x
9
3,

V̇2 = −γx
γ+8
3 + γbρ3x

γ−1
3 .

Hence, the differential inequalities

V̇1 ≤ −
1

25
V 2

1 + |a|(2V1)
1/2V

9/γ
2 ,

V̇2 ≤ −γV
1+8/γ
2 + γ|b|(2V1)

3/2V
1−1/γ
2

(6.8)

are valid. Verifying the MO-condition for the comparison system corresponding to (6.8),
it can be shown that if the inequality

|ab| < 1/100 (6.9)

holds, then the zero solution of (6.7) is asymptotically stable.
This condition for the asymptotic stability of the zero solution may be weakened by

the use of Theorem 6.1. Taking into account the additional restriction (6.5), we get
γ = 4. Hence, system of inequalities (6.6) for (6.7) is of the form

−100θ1 + |a|θ2 < 0,

−4θ2 + 4|b|θ1 < 0.
(6.10)

According to Theorem 6.1, the zero solution of (6.7) is asymptotically stable if in any
neighborhood of the state (θ1, θ2)

∗ = (0, 0)∗ there exists a positive solution for system
(6.10). Eliminating variables θ1, θ2 from (6.10), we obtain new sufficient condition for
asymptotic stability: |ab| < 100, which is more precise than (6.9).
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Abstract: A weakened notion of multivalued contraction mapping is intro-
duced. Some fixed point results relying on this notion are presented. The
associated fixed points sets are shown to enjoy a Lipschitzian behaviour with
respect to the graphs of the multifunctions. Applications are given to the
dependence of solutions of differential inclusions of the form ẋ(t) ∈ R(t, x(t))
on initial values or on the right-hand sides or on parameters.
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1 Introduction

Studies about the behavior of fixed points are far less abundant than existence results
(let us mention [23 – 25, 29]). However such studies are important; for instance they
can be used to describe the dependence of solutions to differential inclusions or partial
differential equations on some parameters or on boundary data.

Since in general the fixed points are not unique, one is led to use concepts of con-
vergence of sets. Such concepts abound (see [1, 6, 8, 21, 31] for instance). But since we
are interested in quantitative estimates and not only in qualitative results, we are led
to use a recent variant of the Pompeiu–Hausdorff distance or hemi-metric (see [2, 3, 7,
20, 26, 27, 31]). In these developments, briefly recalled below, the stringent convergence
relying on the Pompeiu–Hausdorff hemi-metric is replaced by a convergence relativized
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32 D. AZÉ AND J.-P. PENOT

to bounded sets (the so-called bounded hemi-convergence or bounded convergence or
Attouch–Wets convergence). This more realistic approach is justified by a number of
facts and results: in finite dimensional spaces, bounded convergence coincides with the
classical Painlevé–Kuratowski convergence; convergence in norms of operators is equiv-
alent to bounded convergence of their graphs (see [20, 34]). Moreover the continuity
of several usual operations can be obtained for this type of convergence (see [7, 31] for
example).

Although the dependence of fixed point sets is a subject which is not limited to the case
of Lipschitzian multifunctions, we only consider this case here ; for other approaches see
for instance [4]. The reason lies in the fact that in the Lipschitzian case one disposes of an
estimate about the distance of a given base point to the fixed point sets ([19, 13, 32]); in
[32] a first step towards the study of the dependence of the fixed point sets was made. Here
we complete this study in a more symmetric and systematic way (Section 2). Moreover
we show how these results can be illustrated by an application to differential inclusions
(Section 3). In particular we reveal a connection with a famous result of Filippov (see
[5, 14, 15, 35, 36, 37]): while we just give a new method to get the existence theorem, our
perturbation results seem to be new.

In the sequel (X, d) is a metric space. Given x0 ∈ X , r > 0, we denote by B(x0, r)
(resp. U(x0, r)) the closed (resp. open) ball with center x0 and radius r. Given a base
point x0 ∈ X and given subsets C, D ⊂ X, we set, for r > 0,

er(C, D) = e(C ∩ U(x0, r), D)

and

hr(C, D) = max{er(C, D), er(D, C)}

with e(∅, D) = 0,

e(C, D) = sup
x∈C

d(x, D) if D 6= ∅, e(C, ∅) = +∞ if C 6= ∅,

d(x, D) = inf
z∈D

d(x, z) with the convention inf
∅

= +∞.

In the preceding definition we used open balls U(x0, r) for technical reasons: many proofs
are simpler when using these balls. The reader would easily convince himself that the
use of closed balls would not produce any significant change in the results of this paper.
Since it is the use of the whole family (hr)r>0 which is important, it is clear that the
choice of balls is unessential. We shall also use the classical Pompeiu–Hausdorff metric

h(C, D) = max{e(C, D), e(D, C)}.

A multifunction F from a set X to a set Y is considered as a subset of X × Y . For all
x ∈ X , F (x) denotes the (possibly empty) set of y ∈ Y such that (x, y) ∈ F . The
multifunction F−1 ⊂ Y × X is defined by F−1 = {(y, x) : (x, y) ∈ F}. A fixed point of
a multifunction F : X −→

−→
X is an element x ∈ X such that x ∈ F (x). We denote by ΦF

the set of fixed points of F . Given θ ∈ R+, we say that a multifunction F : X −→

−→
X is

pseudo-θ-Lipschitzian with respect to the subset U ⊂ X whenever for all x, x′ ∈ U

e(F (x) ∩ U, F (x′)) ≤ θd(x, x′).
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It is said to be pseudo-θ-contractive with respect to U if it is pseudo-θ-Lipschitzian
with respect to U for some θ ∈ [0, 1). The multifunction F ⊂ X × X is said to be
θ-Lipschitzian whenever

h(F (x), F (x′)) ≤ θd(x, x′)

for all x, x′ ∈ X ; it is said to be θ-contractive if it is θ-Lipschitzian with θ ∈ (0, 1). The
limit inferior of a sequence (Cn) of closed subsets of a metric space (X, d) is the set of
those x ∈ X such that limn→∞ d(x, Cn) = 0. Equivalently it is the set of x ∈ X for
which there exists a sequence (xn) converging to x such that xn ∈ Cn eventually.

In the sequel a product X×Y of metric spaces will be endowed with the box distance
given by

d((x, y), (x′, y′)) = max{d(x, x′), d(y, y′)}.

Remark 1.1 Let F ⊂ X × X be a multifunction such that for some x0 ∈ X , r > 0
and θ ∈ R+ the multifunction Fr(x) = F (x) ∩ U(x0, r) is θ-Lipschitzian on U(x0, r).
Then F is pseudo-θ-Lipschitzian with respect to U(x0, r) since for any x, x′ ∈ X

e(F (x) ∩ U(x0, r), F (x′)) ≤ e(Fr(x), Fr(x
′)).

Nevertheless the converse is false as shown by the following simple example. Let θ ∈
[0, 4), r = 1 and let f : R → R be the θ-Lipschitzian function defined by f(x) =
θ|x| + 1 − θ/2. Then f is pseudo-θ-Lipschitzian with respect to U(0, 1) since f is θ-
Lipschitzian and {f(x)} ∩ U(0, 1) is either empty or equal to {f(x)}. Now

e
(

{f(0)} ∩ U(0, 1),
{

f
(1

2

)}

∩ U(0, 1)
)

= +∞

since {f(0)} ∩ U(0, 1) 6= ∅ and {f(1
2 )} ∩ U(0, 1) = ∅.

2 Fixed Points of Pseudo-Contractive Multifunctions

In this section we consider the behavior of the fixed point set ΦF = {x ∈ X : x ∈ F (x)}
of a pseudo-contractive multifunction F : X −→

−→
X as F is perturbed. The existence

of fixed points for such multifunctions is well known (see [13, 19 (Lemma 1, p.31), 32
(Proposition 2.5)]). In many cases they are obtained by iterative techniques of one sort
or another (see [22, 28]). Such results extend widely the well known result of S.B. Nadler
in [28]. Since the estimates of the existence result are crucial for what follows, we give a
proof for the convenience of the reader.

Proposition 2.1 Let (X, d) be a complete metric space and let F : X −→

−→
X be a

multifunction with closed nonempty values which is assumed to be pseudo-θ-contractive

with respect to some ball U(x0, r) with r > (1 − θ)−1d(x0, F (x0)). Then for any β >

d(x0, F (x0)) such that β(1 − θ)
−1

≤ r, there exists a sequence (xn)n∈N ⊂ U(x0, r) such

that

xn+1 ∈ F (xn) and d(xn+1, xn) ≤ θnβ for all n ∈ N. (1)

Moreover, for any sequence (xn)n∈N of U(x0, r) satisfying (1), its limit x belongs to

U(x0, r) and is a fixed point of F yielding that ΦF is nonempty and

d(x0, ΦF ) ≤ (1 − θ)−1d(x0, F (x0)).
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Proof Let β > d(x0, F (x0)) be such that β(1 − θ)
−1

≤ r. Since d(x0, F (x0)) < β,
we can find x1 ∈ F (x0) with d(x0, x1) < β. As β < r, we get x1 ∈ U(x0, r). Assuming
that θ = 0, we get x1 ∈ F (x0) ∩ U(x0, r) ⊂ F (x1) thus, setting xn = x1 for all n ≥ 1,
we are done. Assume now that θ 6= 0 and suppose we have constructed a finite sequence
x1, . . . , xn in U(x0, r) with xi ∈ F (xi−1) and d(xi, xi−1) < θi−1β for i = 1, . . . , n. As
xn ∈ F (xn−1) ∩ U(x0, r) we have

d(xn, F (xn)) ≤ er(F (xn−1), F (xn)) ≤ θd(xn−1, xn) < θnβ,

so that we can find xn+1 ∈ F (xn) with d(xn, xn+1) ≤ θnβ. Then

d(xn+1, x0) ≤

n+1
∑

p=1

d(xp, xp−1) ≤

n+1
∑

p=1

θp−1β ≤ (1 − θ)−1β,

hence xn+1 ∈ U(x0, r). The sequence (xn) is thus well defined and is a Cauchy sequence
in B(x0, r). Let x be its limit. We have

d(x, x0) ≤ lim
n→∞

d(xn+1, x0) ≤ (1 − θ)−1β,

so that x ∈ B(x0, r) and

d(x, F (x)) ≤ d(x, xn) + d(xn, F (x)) ≤ d(x, xn) + θd(xn−1, x)

since xn ∈ F (xn−1)∩U(x0, r). Hence d(x, F (x)) = 0 and x ∈ F (x). Thus x ∈ ΦF and
d(x0, x) ≤ (1− θ)−1β. Letting β decrease to d(x0, F (x0)), we get the announced result.

The Nadler’s fixed point theorem ([28, Theorem 5]) follows readily from Proposi-
tion 2.1. Observe that no boundedness assumption on the values is required.

Corollary 2.1 ([28, Theorem 5]) Let (X, d) be a complete metric space and let

F : X −→

−→
X be a multifunction with nonempty graph and closed values which is assumed

to be θ-contractive. Then F admits a fixed point.

Proof Let us choose x0 ∈ X such that F (x0) is nonempty and r ≥ 0 such that
r > (1 − θ)−1d(x0, F (x0)). We can apply Proposition 2.1 which proves the corollary.

Proposition 2.1 is of local character. If one is interested in a global result, one can use
the following proposition.

Proposition 2.2 Let (X, d) be a complete metric space and let F : X −→

−→
X be a

multifunction with closed nonempty values. Assume that for some x0 ∈ X and for all

r > 0 the multifunction F is θr-contractive on U(x0, r) for some θr ∈ [0, 1). Then F

has a fixed point in X if and only if

inf
r>0

inf
x∈U(x0,r)

(1 − θr)d(x, x0) + d(x, F (x))

r(1 − θr)
< 1.

Proof Taking x ∈ ΦF and r > d(x0, x) we see that the condition is necessary. Let
us show it is sufficient. By assumption, we can choose r > 0 and x1 ∈ U(x0, r) such
that

(1 − θr)d(x1, x0) + d(x1, F (x1)) < r(1 − θr),
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yielding
d(x1, F (x1)) < (r − d(x1, x0))(1 − θr)

and F is pseudo-θr-contractive with respect to U(x1, r − d(x1, x0)). Thus we can apply
Proposition 2.1 with x1 and r − d(x1, x0) instead of x0 and r respectively, from which
we get ΦF 6= ∅.

It is of interest to study the sensitivity of the fixed points sets ΦF when F varies in
the power set 2(X×X) (hyperspace of subsets of X × X) endowed with some topology.
We turn now to this question. It is natural to choose (x0, x0) as a base point in X ×X .

Proposition 2.3 Let (X, d) be a complete metric space. Let F : X −→

−→
X be a mul-

tifunction with closed nonempty values which is assumed to be pseudo-θ-contractive with

respect to U(x0, r). Then for any s ∈ (0, r) and for any multifunction G : X −→

−→
X

satisfying

es(G, F ) < (1 − θ)(1 + θ)−1(r − s)

one has

es(ΦG, ΦF ) ≤ (1 − θ)−1(1 + θ)es(G, F ) < r − s.

Proof Let t > es(G, F ) be such that t < (1 − θ)(1 + θ)−1(r − s) and let y ∈ ΦG ∩
U(x0, s) (if there is no such y, there is nothing to prove). Since (y, y) ∈ G∩U((x0, x0), s),
there exists (w, z) ∈ F with d(y, w) < t and d(y, z) < t. Due to the choice of t, we have
t < r − s , thus w, z ∈ U(x0, r), whence we get

d(y, F (y)) ≤ d(y, z) + d(z, F (y)) ≤ d(y, z) + er(F (w), F (y)) ≤ t(1 + θ) < (1 − θ)(r − s).

As F is pseudo-θ-contractive with respect to U(y, r − s), it follows from the preceding
estimate and from Proposition 2.1 that

d(y, ΦF ) ≤ (1 − θ)−1d(y, F (y)) ≤ (1 − θ)−1(1 + θ)t,

hence the result, letting t decrease to es(G, F ).

If instead of an estimate on the excess of the graph of G to the graph of F one assumes
a uniform estimate on the images, one gets a more precise result about the fixed points
sets.

Proposition 2.4 Let (X, d) be a complete metric space. Let F : X −→

−→
X be a

multifunction with closed nonempty values which is pseudo-θ-contractive with respect to

U(x0, r). Then for any s ∈ (0, r) and for any multifunction G : X −→

−→
X satisfying

es(G(x), F (x)) < (1 − θ)(r − s) for each x ∈ U(x0, s)

one has

es(ΦG, ΦF ) ≤ (1 − θ)−1 sup
x∈U(x0,r)

es(G(x), F (x)) ≤ (1 − θ)−1es(G, F ).

Proof Let y ∈ ΦG∩U(x0, s) and let t > es(G(y), F (y)) be such that t < (1−θ)(r−
s). Since y ∈ G(y) ∩ U(x0, s) we can pick z ∈ F (y) such that d(y, z) < t. Since F is
pseudo-θ-contractive with respect to U(y, r − s), it follows from Proposition 2.1 that

d(y, ΦF ) ≤ (1 − θ)−1d(y, F (y)) ≤ (1 − θ)−1t,
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hence the result, taking the infimum over t > es(G, F ).

By using Proposition 2.3, we obtain the following result on the dependence of the
fixed point set ΦF when the graph of F is perturbed. Some care is needed in order to
obtain a significant result since the conclusion of Proposition 2.3 does not prevent from
emptiness of ΦG. Here we adopt a parametric formulation which is equivalent to the
preceding framework (take for Λ the set of graphs of multifunctions which are pseudo-θ
contractive provided with the topology associated with (hr)r≥0).

Theorem 2.1 Let (X, d) be a complete metric space and let Λ be a topological space.

Let F ⊂ Λ×X×X be a multifunction such that for some x0 ∈ X, θ ∈ [0, 1), r > 0 and

for all λ ∈ Λ the multifunction Fλ = F (λ, ·) ⊂ X × X is nonempty, closed-valued and

pseudo-θ-contractive with respect to U(x0, r). Assume r > r0 = (1−θ)−1d(x0, F (λ0, x0))
for some λ0 ∈ Λ and

lim
λ→λ0

hr(F (λ, ·), F (λ0, ·)) = 0. (2)

Then for any s ∈ (r0, r) there exists a neighborhood Λ0 of λ0 such that for all λ ∈ Λ0

one has ΦF (λ,·) ∩ U(x0, s) 6= ∅ and

hs(ΦF (λ,·), ΦF (λ0,·)) ≤ (1 − θ)−1(1 + θ)hs(F (λ, ·), F (λ0, ·)). (3)

Proof Let t ∈ (r0, s) be such that s − t < r − s. Proposition 2.1 ensures that
ΦF (λ0,·) ∩ U(x0, t) is nonempty. Let Λ0 be a neighborhood of λ0 such that for λ ∈ Λ0

and δλ = hs(F (λ0, ·), F (λ, ·)) one has

δλ < (1 − θ)(1 + θ)−1(s − t) < (1 − θ)(1 + θ)−1(r − s).

We obtain from Proposition 2.3 applied to G = F (λ0, ·), F (λ, ·) that

es(ΦF (λ0,·), ΦF (λ,·)) ≤ δλ(1 − θ)−1(1 + θ) ≤ s − t. (4)

Since ΦF (λ0,·) ∩ U(x0, t) is nonempty, we get

ΦF (λ,·) ∩ U(x0, s) 6= ∅

for all λ ∈ Λ0. Interchanging the role played by F (λ0, ·) and F (λ, ·) and applying again
Proposition 2.3 we obtain that for all λ ∈ Λ0

es(ΦF (λ,·), ΦF (λ0,·)) ≤ (1 − θ)−1(1 + θ)es(F (λ, ·), F (λ0, ·)),

which combined with (4) gives estimate (3).

For multivalued contractions in the usual sense we have the following result.

Corollary 2.2 Let (X, d) be a complete metric space and let Λ be a topological space.

Let F ⊂ Λ×X ×X be a multifunction such that for some θ ∈ [0, 1) and for all λ ∈ Λ,

the multifunction F (λ, ·) ⊂ X×X is nonempty closed-valued and θ-contractive. Assume

that

lim
λ→λ0

h(F (λ, ·), F (λ0, ·)) = 0,
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or, more generally that for every r > 0 (2) holds. Let x0 ∈ X. Then for all t ≥ 0 there

exists a neighborhood Λ0 of λ0 such that for all λ ∈ Λ0 we have

ht(ΦF (λ,·), ΦF (λ0,·)) ≤ (1 − θ)−1(1 + θ)h(F (λ, ·), F (λ0 , ·)).

Proof Choose r, s with s ≥ t, r > s > r0 := (1 − θ)−1d(x0, F (λ0, x0)) and apply
Theorem 2.1, using the fact that ht ≤ hs.

Remark 2.1 The preceding corollary represents a slight sharpening of the result of
Markin in [24]. Indeed this author proves that if A is a closed bounded subset of a
Hilbert space H and if (Fn) is a sequence of θ-contractive multifunctions from A to A

with nonempty closed convex values such that lim
n→∞

h(Fn(x), F (x)) = 0 uniformly on A

then lim
n→∞

h(ΦF , ΦFn
) = 0. Let us set X = A and let us introduce x0 ∈ A and s ≥ 0

such that A ⊂ U(x0, s) hence UX(x0, s) = A. Observe that lim
n→∞

h(Fn(x), F (x)) = 0

uniformly on A implies lim
n→∞

h(F, Fn) = 0 since for all (x, y) ∈ F one has d((x, y), Fn) ≤

d(y, Fn(x)) ≤ h(F (x), Fn(x)) and the same inequality exchanging F and Fn yielding

h(F, Fn) ≤ sup
x∈A

h(F (x), Fn(x)).

From Corollary 2.2 we get
lim

n→∞

hs(ΦF , ΦFn
) = 0

which turns to
lim

n→∞

h(ΦF , ΦFn
) = 0

since ΦF ∩ U(x0, s) = ΦF and ΦFn
∩ U(x0, s) = ΦFn

. Moreover we do not need any
convexity assumption and we get a quantitative estimate. Corollary 2.2 also improves
[23, Theorem 1].

At this stage a natural question arises: is a limit of pseudo-Lipschitzian multifunctions
also pseudo-Lipschitzian? The answer is positive and easy for a sequence of θ-Lipschitzian
multifunctions which pointwise converges with respect to the Pompeiu–Hausdorff metric.
The question is more delicate when graph convergence is used. In this setting, a partial
answer is given in the following proposition.

Proposition 2.5 Let (Fn) ⊂ X × X be a sequence of multifunctions from a metric

space X into X. Assume that for some x0 ∈ X, r > 0, θ ∈ R+ the multifunctions

Fn are pseudo-θ-Lipschitzian with respect to U(x0, r). Let F ⊂ X × X be a closed

multifunction such that

lim
n→∞

e(2θ+1)r(Fn, F ) = 0 and F ⊂ lim inf
n→∞

Fn.

Then F is pseudo-θ-Lipschitzian with respect to U(x0, r) whenever one of the following

conditions holds

(a) F is closed and for any compact set K ⊂ U(x0, r) the set F (K) is relatively

compact;

(b) X is a reflexive Banach space and F is sequentially s×w-closed, where w and s

denote respectively the weak and the strong topology on X.
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Proof Let (x, y) ∈ F ∩ U((x0, x0), r) and let x′ ∈ U(x0, r). Since F ⊂ lim inf
n→∞

Fn

there exists a sequence (xn, yn) ∈ Fn which converges to (x, y). Given α > 0 such
that d(x0, y) < r − α, we may suppose d(x0, xn) < r and d(x0, yn) < r − α for n large
enough, so that there exists z′n ∈ Fn(x′) with d(z′n, yn) < θd(x′, xn) + α < 2θr + α for
n large enough. Thus d(x0, z

′

n) < (2θ + 1)r for such n’s and one has

(x′, z′n) ∈ Fn ∩ U((x0, x0), (2θ + 1)r);

thus there exists a sequence (x′

n, y′

n) ⊂ F such that (d(x′

n, x′)) and (d(y′

n, z′n)) converge
to 0.

(a) Let K := {x′

n} ∪ {x′} and let y′ ∈ F (K) be the limit of a convergent subse-
quence of (y′

n). Since F is closed, one has y′ ∈ F (x′) and d(y′, y) ≤ limn d(y′

n, yn) =
limn d(z′n, yn) ≤ limn θd(x′, xn) = θd(x′, x), hence d(y, F (x′)) ≤ θd(x, x′) and then

e(F (x) ∩ U(x0, r), F (x′)) ≤ θd(x, x′).

(b) As the sequence (y′

n) is bounded, there exists a subsequence which converges
weakly to some y′ ∈ F (x′) in view of our closedness assumption. Using the weak lower
semicontinuity of the norm we also get d(y, y′) ≤ θd(x, x′) so that

e(F (x) ∩ U(x0, r), F (x′)) ≤ θd(x, x′).

3 Applications to Differential Inclusions

In the sequel, we apply the stability result obtained in the previous section to the case
where fixed points are solutions of differential inclusions in some functional spaces. Let us
present the data of the problem. Let E be Banach space whose closed unit ball is denoted
by B and let T ⊂ R be an interval endowed with the Lebesgue measure, with end points
t0 ∈ R and t1 ∈ R ∪ {+∞}. Following [38], we say that a multifunction with nonempty
values G : T −→

−→
E is measurable if there exists a sequence (gn)n of measurable mappings

from T into E such that gn(t) ∈ G(t) a.e. on T for all n ∈ N and G(t) ⊂
⋃

n∈N
{gn(t)}

a.e. on T .
We are interested in the behavior of the set of solutions to the differential inclusion

ẋ(t) ∈ R(t, x(t)) (5)

where R : T × E −→

−→
E is a multifunction. In (5) the solution x(·) is assumed to belong

to the space X = W 1,1(T, E) of continuous functions x : T → E such that there exists
u ∈ L1(T, E) (the space of Bochner integrable functions from T into E) such that

x(t) = x(t0) +

t
∫

t0

u(s) ds for all t ∈ T

and x is said to be a solution if u(t) ∈ R(t, x(t)) a.e. t ∈ T . Given x0 ∈ X and
ξ ∈ B(x0(t0), δ) with δ > 0, we denote by SR(ξ) the set of solutions x of (5) such
that x(t0) = ξ. We shall make a frequent use of Lemma 3.2 of [38] (see also [11] and
Lemma 1.3 in [15] when E is separable).
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Lemma 3.1 Let G : T −→

−→
E be a measurable multifunction with values in a Banach

space. Let v0 : T → E and γ : T →]0, +∞[ be measurable. Then there exists a measur-

able mapping v : T → E such that

v(t) ∈ G(t) and ‖v(t) − v0(t)‖ ≤ d(v0(t), G(t)) + γ(t) almost everywhere on T.

Let us give to E the base point ξ0 and to X = W 1,1(T, E) the base point x0 with

x0(t) = x0(t0) +
t
∫

t0

u0(s) ds and let k ∈ L1(T ) = L1(T, R), k(t) ≥ 0 a.e. In the sequel

we shall endow the space X = W 1,1(T, E) with the norm

‖x‖X = ‖x(t0)‖ +

∫

T

e−m(s)‖u(s)‖ ds, (6)

and the associated distance dX , where

m(s) =

s
∫

t0

k(τ) dτ (7)

and u ∈ L1(T, X) is such that x(s) = x(t0) +
s
∫

t0

u(τ) dτ on T . This norm is equivalent

to the usual norm x 7−→ ‖x(t0)‖ +
∫

T

‖u(s)‖ ds since

e−m(t1)

(

‖x(t0)‖ +

∫

T

‖u(s)‖ ds

)

≤ ‖x‖X ≤ ‖x(t0)‖ +

∫

T

‖u(s)‖ ds.

Our approach relies on the following lemma which refines a trick in [9] (see also [18]).

Lemma 3.2 Given k and m as in (7), let θ(t) = 1 − e−m(t). For i = 1, 2, let

xi ∈ W 1,1(T, E), with xi(s) = xi(t0) +
s
∫

t0

ui(τ) dτ , ui ∈ L1(T, E). Then for all t ∈ T

t
∫

t0

e−m(s)k(s)‖x2(s)−x1(s)‖ ds ≤ θ(t)

(

‖x1(t0)−x2(t0)‖+

t
∫

t0

e−m(s)‖u2(s)−u1(s)‖ ds

)

.

Proof Setting

I(t) =

t
∫

t0

e−m(s)k(s)‖x2(s) − x1(s)‖ ds,

one has

I(t) ≤

t
∫

t0

e−m(s)k(s)
(

‖x1(t0) − x2(t0)‖ +

s
∫

t0

‖u2(τ) − u1(τ)‖ dτ
)

ds

≤ θ(t)‖x2(t0) − x1(t0)‖ +

t
∫

t0

( t
∫

τ

e−m(s)k(s) ds

)

‖u2(τ) − u1(τ)‖ dτ.
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Observing that

t
∫

τ

e−m(s)k(s) ds = e−m(τ) − e−m(t) ≤ (1 − e−m(t))e−m(τ),

we get the result of the lemma.

3.1 A variant of the Filippov’s theorem

Let us assume that the multifunction R : T ×E → E and the data x0 ∈ X, k ∈ L1(T ),

δ > 0 satisfy the following assumptions in which b(t) := rem(t) for some r > 0, m(t) :=
t
∫

t0

k(s) ds and Tb := ∪t∈T {t} × B(x0(t), b(t)):

for each (t, e) ∈ Tb the set R(t, e) is closed, nonempty and R(·, e) is measurable;
(8)

for a.e. t ∈ T the multifunction R(t, ·) is k(t)-Lipschitzian on B(x0(t), b(t)); (9)

γ(·) = d (u0(·), R(·, x0(·))) ∈ L1(T ) (10)

We also suppose

em(t1)

(

δ +

∫

T

e−m(s)γ(s) ds

)

≤ r. (11)

Proposition 3.1 Let R : T×E −→

−→
E be a multifunction with closed nonempty values

satisfying assumptions (8) – (10) where relation (11) holds. Then for all ξ ∈ B(x0(t0), δ)
the set SR(ξ) of solutions of

ẋ(t) ∈ R(t, x(t)) a.e. on T,

x(t0) = ξ,
(12)

is nonempty and one has d(x0, SR(ξ)) = inf{‖x − x0‖X : x ∈ SR(ξ)} ≤ r.

Here the Lipschitz assumption (9) bears on a ball with a variable radius b(t) instead of
a ball with a fixed radius supt∈T b(t) as in [6, Theorem 10.4.1], [14], [37, Theorem 2.4.3].

Our conclusion involves an estimate of the W 1,1 norm of x−x0 and, more importantly,
we avoid the following assumption

(H) There exists σ ∈ L1(T ) such that R(t, ξ) ⊂ σ(t)B for all ξ ∈ E and t ∈ T

made in [18, 37] which excludes unbounded right hand sides. However, we do not get a
point-wise estimate of the derivative of x − x0 as in [14], [6, Theorem 10.4.1].

Proof Given ξ ∈ B(x0(t0), δ), let F : X −→

−→
X be the multifunction defined by

y ∈ F (x) ⇐⇒







y(s) = ξ +
s
∫

t0

v(τ) dτ for all s ∈ T

v ∈ L1(T, E) is such that v(s) ∈ R(s, x(s)) a.e. on T.

It is clear that x ∈ X is a solution of (12) if and only if x is a fixed point of F . The
existence of such a fixed point is ensured by Proposition 2.1 and the following lemma.
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Lemma 3.3 Given ξ ∈ B(x0(t0), δ), and r > 0 as in relation (11), the multifunction

F : U(x0, r)
−→

−→
X defined above is closed, nonempty-valued, and is θ(t1)-contractive on

U(x0, r) with θ(t) = 1 − e−m(t). Moreover one has d(x0, F (x0)) < r(1 − θ(t1)).

Proof Given x ∈ U(x0, r), with x(t) = x(t0) +
t
∫

t0

u(τ) dτ for t ∈ T, we have

‖x(t) − x0(t)‖ ≤ ‖x(t0) − x0(t0)‖ + em(t)

t
∫

t0

e−m(τ) ‖u(τ) − u0(τ)‖ dτ

≤ em(t) ‖x − x0‖X < em(t)r = b(t),

so that x(t) ∈ B(x0(t), b(t)) for each t ∈ T . From Theorem 2.2 of [38], the multi-
function s 7→ R(s, x(s)) is measurable on T . Moreover, using (9) and (10), one sees
that d(u0(s), R(s, x(s))) ≤ γ̄(s) a.e. on T with γ̄(s) = γ(s) + k(s)‖x(s) − x0(s)‖. As
γ̄ ∈ L1(T ), Lemma 3.1 yields the existence of an integrable mapping u : T → E such
that u(s) ∈ R(s, x(s)) a.e. on T , hence F (x) 6= ∅. It is easily shown that F (x) is
closed.

Now let us prove that F is θ(t1)-contractive on U(x0, r) with θ(t) = 1 − e−m(t).

For i = 1, 2, let xi ∈ U(x0, r) with xi(s) = xi(t0) +
s
∫

t0

ui(τ) dτ , ui ∈ L1(T, E), let

y1 ∈ F (x1) with y1(s) = ξ +
s
∫

t0

v1(τ) dτ , v1(τ) ∈ R(τ, x1(τ)) a.e. on T , and let ε > 0.

Given α ∈ L1(T ) with α(τ) > 0 p.p. and
∫

T

α(τ) dτ < ε, we have

d(v1(s), R(s, x2(s))) ≤ k(s)‖x1(s) − x2(s)‖ a.e. on T.

Thus we derive from Lemma 3.1 the existence of a measurable mapping v2 : T → E

such that v2(s) ∈ R(t, x2(s)) a.e. on T and

‖v2(s) − v1(s)‖ ≤ k(s)‖x2(s) − x1(s)‖ + α(s) a.e. on T.

Setting y2(s) := ξ +
s
∫

t0

v2(τ) dτ , we get y2 ∈ F (x2) and using Lemma 3.2

‖y2 − y1‖X =

∫

T

e−m(s)‖v2(s) − v1(s)‖ ds

≤

∫

T

e−m(s)
(

k(s)‖x2(s) − x1(s)‖ + α(s)
)

ds

≤ θ(t1)

(

‖x1(t0) − x2(t0)‖ +

∫

T

e−m(s)‖u2(s) − u1(s)‖ ds + ε

)

≤ θ(t1)
(

‖x1 − x2‖X + ε
)

.

Taking the infimum over ε, it follows that d(y1, F (x2)) ≤ θ(t1)‖x2 − x1‖X . Taking
the supremum on y1 ∈ F (x1) one obtains that e(F (x1), F (x2)) ≤ θ(t)‖x2 − x1‖X and
then, interchanging x1 and x2

h(F (x1), F (x2)) ≤ θ(t1)‖x2 − x1‖X . (13)
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Now let us estimate d(x0, F (x0)). Let ε > 0 be such that

δ +

∫

T

e−m(s)γ(s)ds + ε < re−m(t1),

and let α ∈ L1(T ) be such that
∫

T

α < ε and α(t) > 0 for each t ∈ T . Applying again

Lemma 3.1, we get a measurable mapping v : T → E such that v(s) ∈ R(s, x0(s)) a.e.
on T and

‖v(s) − u0(s)‖ ≤ γ(s) + α(s) a.e. on T.

Setting

y(t) := ξ +

t
∫

t0

v(s)ds,

one has y ∈ F (x0) and

‖y − x0‖X ≤ δ +

∫

T

e−m(s) (γ(s) + α(s)) ds

≤ δ +

∫

T

e−m(s)γ(s)ds + ε < r(1 − θ(t1)).

From this fact the quoted authors give a result on the dependence of the solution of
(12) with respect to the initial value. In fact, it is possible to obtain a stronger result
and to allow a variation of the right-hand side. Given a multifunction R which satisfy
(8) and (9) and given ξ ∈ E, again we denote by SR(ξ) the set of solutions of (12) and
we endow W 1,1(T, E) with the norm ‖ · ‖X , providing it with the base point x0.

Proposition 3.2 Let R1, R2 be multifunctions which satisfy (8) and (9). Let us set

ρ(t) = sup{h(R1(t, z), R2(t, z)) : z ∈ B(x0(t), b(t))}, (14)

let us assume that ρ ∈ L1(T ) and let s ∈ (0, r), ξ1, ξ2 ∈ E be such that

em(t1)

(

‖ξ1 − ξ2‖ +

t1
∫

t0

e−m(t)ρ(t) dt

)

< r − s. (15)

Then

hs(SR1
(ξ1), SR2

(ξ2)) ≤ em(t1)

(

‖ξ1 − ξ2‖ +

t1
∫

t0

ρ(t) dt

)

.

Proof It suffices to check the assumptions of Proposition 2.4 in which F, G are re-
placed with the multifunctions F1 and F2 defined as in the proof of Proposition 3.1
with ξ and R replaced with ξ1, R1 and ξ2, R2 respectively. Now, given u ∈ L1(T, E),
x ∈ B(x0, s) and y1 ∈ F1(x), as in the proof of Lemma 3.3 we have x(t) ∈ B(x0(t), b(t))
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for each t ∈ T . Taking v ∈ L1(T, E) such that v(t) ∈ R1(t, x(t)) for a.e. t ∈ T and

y1(t) = ξ1 +
t
∫

t0

v(s)ds we have d(v(t), R2(t, x(t))) ≤ ρ(t) and for any ε > 0 such that

em(t1)

(

‖ξ1 − ξ2‖ +

t1
∫

t0

e−m(t)ρ(t) dt

)

+ ε < r − s,

we can find α ∈ L1(T ), v2 ∈ L1(T, E) such that α(t) > 0 for each t ∈ T ,
∫

T

e−m(t)α(t) dt ≤ e−m(t1)ε

and
v2(t) ∈ R2(t, x(t)), ‖v2(t) − v(t)‖ ≤ ρ(t) + α(t) a.e. t ∈ T.

Then, for y2(t) = ξ2 +
t
∫

t0

v2(s) ds we have

‖y1 − y2‖X = ‖ξ1 − ξ2‖ +

∫

T

e−m(s)‖v2(s) − v1(s)‖ ds

≤ ‖ξ1 − ξ2‖ +

t1
∫

t0

e−m(t)(ρ(t) + α(t)) dt ≤ e−m(t1)(r − s).

Thus es(F2(x), F1(x)) < (1−θ)(r−s) for each x ∈ U(x0, s), where θ = 1−e−m(t1). Since
SRi

(ξi) is the set of fixed points of Fi for i = 1, 2, the result follows from Proposition 2.4
and the fact that the roles of F1 and F2 are symmetric.

Remark 3.1 This perturbation result can also be deduced from Proposition 3.1 by
replacing x0 and r with x1 ∈ SR1

(ξ1) ∩ B(x0, s) and r − s respectively. As in the

proof of Lemma 3.3, we have x1(t) ∈ B(x0(t), se
m(t)) for each t ∈ T and B(x1(t), (r −

s)em(t)) ⊂ B(x0(t), b(t)) for t ∈ T ; moreover we have d(u1(t), R2(t, x1(t))) ≤ ρ(t), where

x1(t) = ξ1 +
t
∫

t0

u1(s)ds. Then assumptions (8), (9) and (10) are satisfied with r and x0

replaced respectively by r − s and x1. Thus, applying the quoted existence result, we
get the conclusion of the proposition.

3.2 Stability of global solutions

We can also derive a stability result for the set SR(ξ) when the right-hand side R and
the initial value ξ vary. Let Λ be a topological space and let R : Λ × T × E −→

−→
E be a

family of multifunctions with closed nonempty values parametrized by λ ∈ Λ. Let us
introduce the following assumptions

(aΛ) R(λ, ·, x) is measurable for all λ ∈ Λ, x ∈ E;

(bΛ) R(λ, t, ·) is k(t)-Lipschitz for all λ ∈ Λ a.e. with k ∈ L1(T );

(cΛ) there exists ξ0 ∈ E and λ0 ∈ Λ such that

d(0, R(λ0, t, ξ0)) ∈ L1(T ).
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Theorem 3.1 Let Λ be a topological space and let R : Λ×T ×E −→

−→
E be a family of

multifunctions with closed nonempty values parametrized by Λ. Assume that assumptions

(aΛ), (bΛ) and (cΛ) are satisfied. For all s > 0, λ ∈ Λ, let εs(·, ·) be a function defined

on T × Λ such that for all (t, λ) ∈ T × Λ

sup
z∈B(ξ0,s)

h(R(λ, t, z), R(λ0, t, z)) < εs(t, λ).

Assume that for all s > 0 and for all λ ∈ Λ

εs(·, λ) ∈ L1(T ) and εs(·, λ) converges to 0 in L1(T ) as λ → λ0. (16)

Then there exist a constant c > 0 such that for all r, s with

em(t1)

t1
∫

t0

d(0, R(λ0, t, ξ0)) dt < s < r

and for all ξ ∈ E one has

SR(λ,·,·)(ξ) ∩ U(0, s) 6= ∅

and there exist neighborhoods Λ0 of λ0 and Ξ0 of ξ0 such that for all λ ∈ Λ0 and ξ ∈ Ξ0

one has

hs

(

SR(λ0,·,·)(ξ0), SR(λ,·,·)(ξ)
)

≤ c
(

‖ξ − ξ0‖ + ‖εσ(·, λ)‖L1(T )

)

,

with σ = rem(t1).

Proof Let X = W 1,1(T, E) endowed with the norm (6). For all (λ, ξ) ∈ Λ× E, one
has

d(0, R(λ, t, ξ)) ≤ ρ(t)

with ρ(t) = d(0, R(λ0, t, ξ0)) + εs(t, λ) + k(t)‖ξ − ξ0‖ ∈ L1(T ). Thus we can define a
multifunction F : Λ×E×X −→

−→
X with nonempty closed values by y ∈ F (λ, ξ, x) if and

only if there exists v ∈ L1(T, E) with v(t) ∈ R(λ, t, x(t)) a.e. and

y(t) = ξ +

t
∫

t0

v(s) ds for all t ∈ T.

Relying on Lemma 3.3, we obtain that the multifunction F (λ, ξ, ·) is θ-Lipschitz with

θ = 1 − e−m(t1). Moreover one easily checks that

d(0, F (λ0, ξ0, 0) ≤

t1
∫

t0

d(0, R(λ0, t, ξ0)) dt.

Let us set

r0 = (1 − θ)d(0, F (λ0, ξ0, 0) ≤ e−m(t1)

t1
∫

t0

d(0, R(λ0, t, ξ0)) dt.
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Let (λ, ξ) ∈ Λ×E and let (y, x) ∈ F (λ0, ξ0, ·)∩U((0, 0), r). It follows that x(t) remains

in B(ξ0, σ) with σ = em(t1)r. For almost all t ∈ T we have v(t) ∈ R(λ0, t, x(t)) then

d(v(t), R(λ, t, x(t))) < εσ(t, λ)

thus, from Lemma 3.1 there exists a measurable function w : T → E such that for
all t ∈ T

w(t) ∈ R(λ, t, x(t)) and ‖w(t) − v(t)‖ ≤ εσ(t, λ) a.e.

Observe that w ∈ L1(T, E) and that z ∈ F (λ, ξ, x) where z(t) = ξ+
t
∫

t0

w(s) ds, yielding

d((y, x), F (λ, ξ, ·)) ≤ ‖y − z‖ ≤ ‖ξ − ξ0‖ +

t1
∫

t0

e−m(t)εσ(t, λ) dt.

Choosing (0, 0) as base point in X × X and interchanging (λ, ξ) and (λ0, ξ0) we get

hr(F (λ0, ξ0, ·), F (λ, ξ, ·)) ≤ ‖ξ − ξ0‖ +

t1
∫

t0

e−m(t)εσ(t, λ) dt,

hence
lim

(λ,ξ)→(λ0,ξ0)
hr(F (λ0, ξ0, ·), F (λ, ξ, ·)) = 0

and the result follows, applying Theorem 2.1 and observing that

SR(λ,·,·)(ξ) = ΦF (λ,ξ,·).

In the particular case when there is no explicit dependence on the parameter λ we get
a slight improvement of the result of [25] and [23].

Corollary 3.1 Let R : T ×E −→

−→
E be a multifunction with closed nonempty values.

Assume that assumptions (a), (b) and (c) are satisfied. Then there exists a constant

c ≥ 0 such that, for all s > em(t1)
t1
∫

t0

d(0, R(λ0, t, ξ0)) dt there exist a neighborhood Ξ0 of

ξ0 such that for all ξ ∈ Ξ0 one has SR(ξ) ∩ U(x0, s) 6= ∅ and

hs(SR(ξ0), SR(ξ)) ≤ c‖ξ − ξ0‖.
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[9] Bielecki, A. Une remarque sur la méthode de Banach–Cacciopoli–Tikhonov dans la théorie
des équations diffé rentielles ordinaires. Bull. Polish Acad. Sci. 4 (1956) 261– 264.
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Abstract: This paper deals with both analytical and quantitative analysis
of multiple impacts of a two-dimensional rod. The successions of clattering
sequence of a rod dropping to the floor are modeled and analyzed to find out
the impact responses as it collides with the ground. The model is described by
a system of ordinary differential equations, with a classical contact problem.
We conduct a comparison study of the cases where the effect of the gravity is
neglected, versus the cases where the gravity is considered. This mathematical
analysis can further provide useful information for durability study of the
impact on mobile electronic device.

Keywords: Two-dimensional rod; clattering impacts; analytical and quantitative

analysis.
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1 Introduction

In a pioneering study of Goyal, et al. [1, 2], it was found that when a two-dimensional
rod was dropped at a small angle to the ground, the second impact might be as large as
twice of the initial impact under some assumptions. For its consequence in applications,
their surprising result stirred some interest on this otherwise classical problem.

In the related literature, mathematical issues of one impact or first impact have been
considered in a number of papers, see for example, [3 – 5] for rigid body collisions. Even
in single-impact cases, the topic remains a focus of much discussion [6 – 8] as many
theoretical contact dynamics issues involving frictions started to get resolved recently.
Recent attention has been directed to detect and calculate the micro-collisions that occur

∗Corresponding author: su@uta.edu
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in a short time interval, when the bodies are allowed to be flexible [9, 10]. These micro-
collisions are consequence of the elastic oscillations during one impact, and occur in a
relatively short period of time. During the sequence of micro-collisions, the location and
posture of the bodies change very little.

The study of multiple-impacts, however, is only an emerging area. Goyal, et al. (1998)
[1, 2] used transition matrix method to calculate the clattering sequence and its impacts.
In a surprising way, they showed that when a two dimensional rod with uniform density
is dropped to the ground at a very small angle, the second impact can be as large as twice
of the first impact. Of course, this result is derived based on a number of assumption
and simplifications such as full restitution and ignoring the effect of gravity, etc.

In this paper, we provide a study of the entire multiple-impact sequence of a two-
dimensional rod with/without consideration of gravity, and using a general restitution
coefficient. Our methodology allows us to consider a prototype problem for cell phone
multi-impact dropping by several initial postures. We prove a number of assumptions
required in Goyal’s study are in fact valid, and interesting application is found in studying
of clattering phenomenon of falling rigid bodies referred in [1, 2]. This model is a first step
towards model study for the design and optimization of electronic components for mobile
electronic product, future modeling considerations will involve flexible or multiple-body
impacts.

We outline our article as follows. In Section 2, we state the basic rigid body dynamics
equation. Section 3 includes impacts of analysis in absence of gravity. We give a com-
parison study to see the effect of gravity in Section 4. Discussion and conclusion are in
Section 5.

2 Collision Equations for a Falling Rod

The model presented in this section is based on the linear impulse-momentum principle,
the angular impulse-momentum principle for the rigid body, and some impact parameters
that relates the pre- and post-impact variables, such as the coefficient of restitution,
which is defined as the ratio of the post-impact relative normal velocity to the pre-
impact relative normal velocity at the impact location. The limitation of the model is
such that only sliding friction can occur. We assume that there is no sticking during
the impact process. When sticking does occur, the situation becomes very complex. We
defer discussion to Section 5.

We consider two rigid bodies having masses m1 and m2 respectively. We denote the
initial velocities, before collision, in lower cases, and after collision, with capital letters.
Collision equations are the following:

mi (
−→
V i −

−→v i) =
−→
P i, i = 1, 2, (1)

−→
H i −

−→
h i =

−→
d i ×

−→
P i, i = 1, 2, (2)

where for body i = 1, 2, we denoted: mi is the mass, −→v i and
−→
V i are the pre- and post-

impact velocity,
−→
P i is the impulse,

−→
h i and

−→
H i are the pre- and post- impact angular

momentum,
−→
d i is the position vector from the mass center to the collision contact point.

We can write:
−→
P i = Pn (−→n + µ

−→
t ), (3)
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where µ is the sliding friction coefficient, −→n and
−→
t are the normal and tangential unit

vectors of the contact surface.
The post-impact relative velocity

−→
V r and pre-impact relative velocity −→v r at the

collision contact point are related by:

−→
V r ·

−→n = −e−→v r ·
−→n , (4)

where e is the coefficient of restitution.
Related to the center of mass, velocity and angular velocity,

−→
V r and −→v r can be

written as:

−→
V r =

−→
V 1 +

−→
Ω 1 ×

−→
d 1 − (

−→
V 2 +

−→
Ω 2 ×

−→
d 2), (5)

−→v r = −→v 1 + −→ω 1 ×
−→
d 1 − (−→v 2 + −→ω 2 ×

−→
d 2), (6)

where −→ω i and
−→
Ω i are the vectors of the pre- and post- impact angular velocities,

respectively. For two-dimensional case, −→ω i = ωi

−→
k and

−→
Ω i = Ωi

−→
k , where

−→
k is the

unit vector normal to the two-dimensional work plane.
The equations (1)–(6) form a closed system. Solving the equations above, we derive

(see [4] for example):

V1n = v1n +
m(1 + e)q

m1
vrn, V1t = v1t +

µm(1 + e)q

m1
vrn,

V2n = v2n −
m(1 + e)q

m2
vrn, V2t = v2t −

µm(1 + e)q

m2
vrn,

Ω1 = ω1 +
m(1 + e)q(d1t − µd1n)

I1
vrn, Ω2 = ω2 −

m(1 + e)q(d2t − µd2n)

I2
vrn,

(7)

In the above solution, we denoted:

m =
m1m2

m1 + m2
, vrn = (v2n − d2tω2) − (v1n + d1tω1),

q =

[

1 +
md2

1t

I1
+

md2
2t

I2
− µ

(

md1td1n

I1
+

md2td2n

I2

)]

−1

,

e = −
V2n − V1n

v2n − v1n

, µ =
Pt

Pn

.

The formula for e is called the Newton’s Law of Restitution. The value µ is the relative
ratio of impulses (tangential over normal), and it reflects the friction coefficient, as long
as no sticking is happening during the impact. The terms I1 and I2 represent the mass
moment of inertia with respect to center of mass, for the two rigid bodies. The subscripts
“n” and “t” in the equations (7) stand for the normal and tangential components of the
velocity vector and the position vectors respectively. The Figure 2.1 shows the position

vectors from the mass center to the collision contact point,
−→
d 1 and

−→
d 2 , together with

their normal and tangential components.
If a planar barrier collision occurs, for simplicity, let the moving body be the body 1

and the barrier be the body 2. All velocities related to body 2 are set to zero. The above
approach is now applied to the multiple impacts of a falling rod, see Figure 2.2. In this
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Figure 2.1. Rigid collision between two bodies.

Figure 2.2. A rod colliding with the ground.

study, we consider a rod with uniform density. The mass of the rod m1 = 1, the length
of rod l = 1, the moment of inertia of the rod I1 = 1/12, the friction coefficient µ = 0,
and the restitution coefficient e ∈ [0, 1]. The mass of the ground m2 = ∞.

Hence, for our case, the equations (7) will reduce to

Vn = vn + (1 + e)qvrn, Ω = ω + 12(1 + e)qdtvrn

with

q =
1

1 + 12d2
t

, vrn = −(vn + dtω), dt − µdn = dt = −
cosα

2
.

We dropped the index {1, 2} in the previous text because we will refer just to the normal
and angular velocity of the rod relative to the ground. The tangential velocity remains
zero at all the time. Further, we will be interested in the angle at the moment of the
impact, and a qualitative estimation of the impact. We will be having the initial velocity
v at the moment right before the first impact, as a unit.

3 The First Three Impacts, Disregarding the Effect of Gravity

We assume the impact sequence occurs without gravity. The clattering sequence termi-
nates when the rod will no longer collide with the ground. The impact contact angles at
the first three impacts are denoted as α, β and γ, as shown in Figure 3.1.

Following from the equations (7), for the first bounce, the quantities can be calculated
as

V I
n =

e − 3 cos2 α

1 + 3 cos2 α
v, ΩI = −

6(1 + e) cosα

1 + 3 cos2 α
v, (8)
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Figure 3.1. The succession of the first three impacts of the falling rod. The acute

angle between the rod and the ground will be considered at all the times.

where α is the initial drop angle. Then the first impact is

P I
n = V I

n + v =
1 + e

1 + 3 cos2 α
vI

rn, (9)

where vI
rn = v.

Let us consider hI the vertical height of the rod’s center of mass at first impact, and
hII the vertical height at the center of mass at second impact, without considering the
gravity. These heights are related to the contact angles as

hI =
sin α

2
, hII =

sin β

2
.

For the second impact, we have the equation

hI + V I
n T I = hII ,

where T I is the duration of airborne. It can be analytically written as

T I =
−(α + β)

ΩI
.

We can determine the angle β numerically, for a given initial angle α, using the height
relation, so that

sin α +
e − 3 cos2 α

3(1 + e) cosα
(α + β) = sin β. (10)

The new velocities for the second bounce are

V II
n = V I

n +
1 + e

1 + 3 cos2 β
vII

rn, ΩII = ΩI +
6(1 + e) cosβ

1 + 3 cos2 β
vII

rn,

where

vII
rn = −V I

n −
cosβ

2
ΩI .

This gives the relation between the velocities of first two impacts

V II
n =

−e + 3 cos2 β

1 + 3 cos2 β
V I

n +
− 1+e

2 cosβ

1 + 3 cos2 β
ΩI ,

ΩII =
−6(1 + e) cosβ

1 + 3 cos2 β
V I

n +
1 − 3e cos2 β

1 + 3 cos2 β
ΩI .

(11)
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Hence, by substituting equations (8) into equations (11), we derive

V II
n =

−(e − 3 cos2 α)(e − 3 cos2 β) + 3(1 + e)2 cosα cosβ

(1 + 3 cos2 α)(1 + 3 cos2 β)
v,

ΩII =
−6(1 + e)(cosα + e cosβ)(1 − 3 cosα cosβ)

(1 + 3 cos2 α)(1 + 3 cos2, β)
v,

vII
rn = v + (1 + e)

−1 + 3 cosα cosβ

(1 + 3 cos2 α)
v.

The second angle, β, is numerically determined by solving equation (10) using Math-
ematica [11], and the impulse for second impact is

P II
n = V II

n − V I
n =

1 + e

1 + 3 cos2 β
vII

rn.

The third impact can be calculated in a similar way. The height at the center of mass

at the third impact will be hIII = sinγ
2 , where γ is the third impact angle between the

rod and the floor.
At the third impact

hII + V II
n T II = hIII , (12)

where T II =
β + γ

ΩII
is the elapsed time between the second and the third impacts.

Therefore, we obtain that

V II
n T II =

−(e − 3 cos2 α)(e − 3 cos2 β) + 3(1 + e)2 cosα cosβ

6(1 + e)(cosα + e cosβ)(−1 + 3 cosα cosβ)
(β + γ). (13)

Using the relations in equations (12) and (13), we obtain the following equation that
relates α, β and γ for a general value of the restitution coefficient e

sin β +
−(e − 3 cos2 α)(e − 3 cos2 β) + 3(1 + e)2 cosα cosβ

3(1 + e)(cosα + e cosβ)(−1 + 3 cosα cosβ)
(β + γ) = sin γ. (14)

Once the angle β is obtained by equation (10) for any given α, the angle γ can be
computed numerically by equation (14).

Now we find the center of mass’ velocity and angular velocity, Vn and Ω, for the third
bounce:

V III
n = V II

n +
1 + e

1 + 3 cos2 γ
vIII

rn , ΩIII = ΩII +
6(1 + e) cosγ

1 + 3 cos2 γ
vIII

rn ,

where

vIII
rn = −V II

n +
cosγ

2
ΩII .

Hence,

V III
n =

−e + 3 cos2 γ

1 + 3 cos2 γ
V II

n +
1+e
2 cos γ

1 + 3 cos2 γ
ΩII ,

ΩIII =
−6(1 + e) cos γ

1 + 3 cos2 γ
V II

n +
1 + 3(e + 2) cos2 γ

1 + 3 cos2 γ
ΩII .

(15)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(1) (2006) 49–62 55

To derive an explicit expression of V III
n and ΩIII , we substitute the expression of V II

n

and ΩII to get

V III
n =

1

(1 + 3 cos2 α)(1 + 3 cos2 β)(1 + 3 cos2 γ)
[(e − 3 cos2 α)(e − 3 cos2 β)(e − 3 cos2 γ)

− 3(1 + e)2(cosα cosβ(e − 3 cos2 γ) + cosβ cos γ(e − 3 cos2 α)

+ cos γ cosα(e − 3 cos2 β))] v,

ΩIII =
6(1 + e)

(1 + 3 cos2 α)(1 + 3 cos2 β)(1 + 3 cos2 γ)
[−3(1 + e)2 cosα cosβ cos γ

+ cos γ(e − 3 cos2 α)(e − 3 cos2 β) + cosα(1 − 3e cos2 β)(1 + 3(1 + e) cos2 γ)

+ cosβ(1 + 3(2 + e) cos2 γ)(e − 3 cos2 α)]v.

Also, the contact velocity at the third impact is

vIII
rn = v +

(e2 − 1) − 3(e + 1)(cos2 α + cos2 β) − 3(e + 1)2 cosα cosβ

(1 + 3 cos2 α)(1 + 3 cos2 β)
v

+ 3(e + 1)
cos γ(cosα + e cosβ)(−1 + 3 cosα cosβ)

(1 + 3 cos2 α)(1 + 3 cos2 β)
v,

and the impulse at the third impact is

P II
n = V III

n − V II
n =

1 + e

1 + 3 cos2 γ
vIII

rn .

We give numerical examples of the formulae for the impact sequence.

For complete restitution case with e = 1, given a small angle α, the angle β should
be less than or equal to α, as long as 1 − 3 cos2 α < 0. We have the equality α = β at
54.74◦. Numerically, solution β exists until the rod drops on an angle of α = 58.49◦.
Also, up to this value, the impulse keeps a positive value. There is no solution for β

afterwards. From physical point of view, the rod impact sequence ends with just one
impact for α > 58.49◦.

The impulse for the third impact decreases from 0.5 to 0, and it reaches the zero
value for α = 24.79◦. Afterwards, the third impact ceases to exist. The results for full
restitution are expressed graphically in Figure 3.2 and Figure 3.3.

In engineering applications it was found the restitution e = 0.5 is of significance. We
show the impact results for half restitution (e = 0.5) in a comparison study below.

The results when the restitution coefficient is 0.5 are similar to the full restitution
case, although the rebounds at both ends are slower due to energy loss. We can obtain
solution for β until the rod drops on an angle of α = 67.21◦. There is no solution for β

afterwards.

The impulse for the third impact reaches the zero value for α = 35.00◦. The results
for half restitution are expressed graphically in Figure 3.4 and Figure 3.5.
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Figure 3.2. The dropping angles at the second and the third impact are shown

as functions of the angle α, when e=1. When α is small, β is roughly half of angle

α, and γ is nearly the same as angle α.

Figure 3.3. The impulses at the first, second and third impacts are shown as

functions of the initial angle α, when e=1. When α is small, the second impact is

nearly twice of first one, and the third impact is about the same as the first one.

The first two impulses become equal at α = 54.74◦.
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Figure 3.4. The dropping angle at the second and the third impact as function

of initial angle, when e=0.5. They are smaller than those for full restitution. The

angles where second and third impact terminate are relative higher values, when

e=0.5.

Figure 3.5. The impulses at the first, second and third impact are presented as

function of initial angle α, when e=0.5. The impact with half restitution involves

energy loss during the impact process. Still, the second impact shows much larger

impulse when the angle α is relatively small.
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4 The First Three Impacts, with the Gravity

In previous studies [1, 2], it is generally assumed there is no gravity. The validity of such
an assumption needs to be checked. In this section, we compare quantitatively the effect
of gravity for the impacts sequence. Now, with gravitational force, the impact sequence
does not end in finite number, as the rod will fall back again and again. We will still
define the clattering sequence as the same number of impact as the case without gravity.

In order to determine the new angles β and γ, we will use the following equations

hI + V I
n T I −

1

2
gT I2

= hII ,

hII + V II
n T II −

1

2
gT II2

= hIII ,

(16)

respectively.
From (16), we use

V I
n =

e − 3 cos2 α

1 + 3 cos2 α
v,

and

T I =
−(α + β)

ΩI
=

1 + 3 cos2 α

6(1 + e) cosα
(α + β)

1

v
.

Hence the new angle relation for first and second impact is expressed as

sin α + 2

(

e − 3 cos2 α

6(1 + e) cosα
(α + β)

)

−
1

2

g

v2

(

1 + 3 cos2 α

6(1 + e) cosα
(α + β)

)2

= sin β. (17)

To derive the relation from second angle to third angle, we use

V II
n =

−(e − 3 cos2 α)(e − 3 cos2 β) + 3(1 + e)2 cosα cosβ

(1 + 3 cos2 α)(1 + 3 cos2 β)
v

and

T II =
β + γ

ΩII
=

−(1 + 3 cos2 α)(1 + 3 cos2 β)

6(1 + e)(cosα + e cosβ)(1 − 3 cosα cosβ)
(β + γ)

1

v
.

Hence

sin β + 2

(

(e − 3 cos2 α)(e − 3 cos2 β) − 3(1 + e)2 cosα cosβ

(1 + 3 cos2 α)(1 + 3 cos2 β)
(β + γ)

)

−
1

2

g

v2

(

−(1 + 3 cos2 α)(1 + 3 cos2 β)

6(1 + e)(cosα + e cosβ)(1 − 3 cosα cosβ)
(β + γ)

)2

= sin γ.

(18)

Using the equations (17) and (18), we can find the angles β and γ, respectively, given
velocity v.

For example, as we are motivated by the cell phone dropping problem, that phone
typically starts a free fall from the pocket. Supposing it drops from a height of one
meter, we can find v and go on to find the impact angles

1

2
g t2 = 1 ⇒ t =

√

2

g
,

v = g t ⇒ v =
√

2 g ⇒
g

v2
=

1

2
.
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Figure 4.1. The second and the third angles, for total restitution and in both

cases, with and without gravity, as a function of initial angle α.

So, by plugging in 1/2 for g/v2 value in the above equations, we find the impact angles
and impulses as shown in Figures 4.1 – 4.4 below.

As we observe in Figure 4.1 that the second and third angles change very little for
small initial angles by the effect of gravity. Both angles β and γ are smaller in the case
with gravity, and also the second and third clattering moment exists for slightly wider
ranges of intervals of α, than in the case when gravity is not considered. The difference
between the values for β and also the difference of the values for γ, in the cases without
and with gravity, is less than one degree for roughly half of the interval of existence of β

and γ respectively, which is 12 and 25 degrees respectively.
The results for the impulse are similar, in the sense that for the same landmarks (say

at 12 degree and 25 degree), the difference between the values of impulse in the two cases
is less than 0.003 for the second impact, and less than 0.005 for the third impact, while
the ranges of the impulses for both cases are at (1.000, 1.018) for the second impact when
0◦ ≤ β ≤ 12◦, and are at (0.435, 0.500) for the third impact when 0◦ ≤ γ ≤ 25◦, as we
see in Figure 4.2.

For both figures, the discrepancy is present when the clattering sequence takes longer
time to finish.

When the restitution coefficient equals 0.5, we also compare the results.
As we observe in Figure 4.3, that is similar to the cases with total restitution, the

angles β and γ change very little for small angles of α by the gravity effect. Both impact
angles β and γ are smaller in the case with gravity though, and also the second and third
clattering moment exists for a wider interval for α than in the case without gravity. The
difference between the values for β and also the difference for the values for γ, in the
cases without and with gravity, is less than one degree for roughly half of the interval of
existence of β and γ respectively, which is 17 and 23 degrees respectively, comparing to
12 and 25 in the case with total restitution.
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Figure 4.2. The impulses of the first, second and third impact, for total restitu-

tion and in both cases, with and without gravity, are shown as a function of initial

angle α.

Figure 4.3. The second and the third angle for e=0.5, in both cases, with and

without gravity, are shown as a function of initial angle α.
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The results for impulses are also similar, in the sense that for the same landmarks
(at 17 and 23 degree respectively), the difference between the values in the without
gravity/with gravity cases is less than 0.001 for the second impact, and less than 0.01
for the third impact. The ranges of the impulses are both at (0.6563, 0.6593) for the
second impact when 0◦ ≤ β ≤ 17◦, and at (0.1930, 0.2344) for the third impact when
0◦ ≤ β ≤ 23◦, as we observe in Figure 4.4.

Figure 4.4. The impulse of the first, second and third impact, for e=0.5, in both

cases, with and without gravity, is shown as a function of initial angle α.

5 Discussions

The overall aim of this article is to study analytically the issues surrounding clattering.
Our discussions are limited to a rod with a uniformly distributed mass. Our study
confirms the results of Goyal, et al. [1, 2] that if a rod falls to ground in a small angle,
then its clattering impact series has a much larger second impact than the initial one.
Furthermore, our analytic study finds that same phenomenon is happening to angles
as large as 54 degree. In realistic situations, the range might be small when energy
dissipation and softness of the ground are included in consideration as we indicated in
the case study of e = 0.5.

In both situations of e = 0.5 and e = 1.0 without gravity, there is no forth impact.
With gravity, the forth impact will occur, but it does not belong to the same clattering
sequence of the first three impacts. So we restrict our discussion to first three impacts.
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Through the comparison study at Section 4, we find that gravity plays only a minor
role in our clattering problems. Though friction is not considered in this study, we
understand that the fiction is a much complex issues. Some initial study indicated that
with a certain friction on the ground, when drop angle is small, sticking might occur
during the impact process. If the initial rotation is also included, then there is possibility
of revered sliding as well as sticking, as discussed in [8]. These topics as well as the
clattering of multiple-body and flexible body remain subject of further study.
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Abstract: In this paper we study a semi-linear retarded differential equation
with a nonlocal history condition considered in an arbitrary Banach space.
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1 Introduction

Let X be a Banach space with its norm denoted by ‖ · ‖ and for t ∈ [0, T ], 0 < T <∞,
let Ct = C([−τ, t];X), 0 < τ <∞, be the Banach space of all continuous functions from
[−τ, t] into X endowed with the supremum norm

‖ψ‖t = sup
−τ≤θ≤t

‖ψ(θ)‖.

Let A be a linear operator defined from D(A) ⊂ X into X be such that −A is
the infinitesimal generator of an analytic semigroup {S(t) : t ≥ 0} of bounded linear
operators in X . It follows that the fractional power Aα of A is defined for 0 ≤ α ≤ 1
and D(Aα) is a Banach space endowed with the graph norm of Aα. Let Xα be the
Banach space D(Aα) endowed with the norm

‖x‖α = ‖Aαx‖, x ∈ D(Aα),
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equivalent to the graph norm of Aα. For u ∈ CT and t ∈ [0, T ], let ut ∈ C0 be given by
ut(θ) = u(t+ θ). Consider the following semilinear retarded differential equation with a
nonlocal history condition:

u′(t) +Au(t) = f(t, u(t), ut), t ∈ (0, T ],

H(u0) = φ on [−τ, 0],
(1.1)

where the nonlinear map f is defined from [0, T ]×Xα ×Cα
0 into X , Cα

0 being the space
of all continuous functions from [−τ, 0] into D(Aα) endowed with the norm

‖ψ‖0,α = sup
−τ≤θ≤0

‖Aαψ(θ)‖, ψ ∈ Cα
0 ,

and the map H is defined from C0 into C0, φ ∈ C0.
The theory of functional differential equations with the history conditions of the type

considered in (1.1) may be applied to the epidemic population dynamic models. For such
related works we refer to Alaoui [8] and references cited therein.

For the earlier works on existence, uniqueness and stability of various types of so-
lutions of differential and functional differential equations with nonlocal conditions we
refer to Byszewski and Akca [6], Byszewski and Lakshmikantham [2], Byszewski [3], Bal-
achandran and Chandrasekaran [4], Lin and Liu [5] and references cited in these papers.

Bahuguna [11] has considered the existence of mild, strong and classical solutions
of (1.1) for the particular case F (t, u, ψ) ≡ F (t, u) under different conditions on the
operator A and local Lipschitz-like condition from [0, T ]×X into X . Here we consider
the case when −A is the infinitesimal generator of an analytic semigroup and on f we
consider a Lipschitz-like condition from [0, T ]×D(Aα)×Cα

0 into X for some 0 < α < 1.
We first establish the local existence and uniqueness of a mild solution of (1.1) for

every χ ∈ CT satisfying H(χ0) = φ. Finally, we establish a global existence result in the
sense that classical solution u of (1.1) exists on [−τ, T ] for any arbitrary finite positive T .

2 Preliminaries

We continue to use the notations of the earlier section. We note that if −A is the
infinitesimal generator of an analytic semigroup then −(A+cI) is invertible and generates
a bounded analytic semigroup for c > 0 large enough. This allows us to reduce the
general case in which −A is the infinitesimal generator of an analytic semigroup to
the case in which the semigroup is bounded and the generator is invertible. Hence for
convenience, we suppose that

‖S(t)‖ ≤M for t ≥ 0

and

0 ∈ ρ(−A),

where ρ(−A) is the resolvent set of −A. It follows that for 0 ≤ α ≤ 1, Aα can be
defined as a closed linear invertible operator with its domain D(Aα) being dense in X .
We have Xβ →֒ Xα for 0 < α < β and the embedding is continuous.
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It can be seen easily that Cα
t = C([−τ, t];Xα), for all t ∈ [0, T ], is a Banach space

endowed with the supremum norm,

‖ψ‖t,α = sup
−τ≤η≤t

‖ψ(η)‖α, ψ ∈ Cα
t .

For 0 ≤ α ≤ 1, we define A−α : C0 → C0 by (A−αψ)(t) = A−α(ψ(t)) for any ψ ∈ C0.
We assume the following conditions on the functions f , H and φ.

A1. There exist χ ∈ Cα
T such that H(χ0) = φ on [−τ, 0] and the function χ is locally

Hölder continuous on [−τ, 0].
A1. The nonlinear map f : [0, T ] × Xα × Cα

0 → X satisfies a local Lipschitz-like
condition,

‖f(t, x, ψ) − f(s, y, ψ̃)‖ ≤ Lf (r)[|t − s|θ + ‖x− y‖α + ‖ψ − ψ̃‖0,α],

for all t, s ∈ [0, T ], a fixed θ, 0 ≤ θ ≤ 1 and ψ, ψ̃ ∈ Br(C
α
0 , A

αχ), x, y ∈
Br(Xα, χ(s)) where Lf : R+ → R+ is a nondecreasing function and for z0 in a
Banach space (Z, ‖ · ‖Z) and r, r1 > 0,

Br(Z, z0) = {z ∈ Z : ‖z − z0‖Z ≤ r}.

3 Existence of Mild Solutions

Let ˜T be any number such that 0 < ˜T ≤ T . A function u ∈ C
˜T

is called a mild solution

of (1.1) on [−τ, ˜T ] if it satisfies the integral equation given by

u(t) =







χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
t
∫

0

S(t− s)f(s, u(s), us) ds, t ∈ [0, ˜T ],

where χ ∈ CT is such that H(χ0) = φ on [−τ, 0]. As pointed out earlier, we may
suppose without loss of generality that the analytic semigroup generated by −A is
bounded and that −A is invertible. Furthermore, we assume that 0 < T < ∞. With
these simplifications we have the following theorem.

Theorem 3.1 Suppose that the operator −A generates the analytic semigroup S(t)
with ‖S(t)‖ ≤ M , t ≥ 0 and that 0 ∈ ρ(−A). If the conditions A1, A2 and χ(t) ∈
D(Aβ) for all t ∈ [−τ, 0], α < β are satisfies then (1.1) has a local mild solution on

[−τ, t0] for some 0 < t0 ≤ T . The solution is unique if and only if χ is unique on [−τ, 0]
satisfying H(χ0) = φ on [−τ, 0].

Proof We establish the existence of a mild solution u on [−τ, t0] for some 0 < t0 ≤ T .

For any 0 < ˜T ≤ T , we define a mapping F from C
˜T

into C
˜T

given by,

(Fψ)(t) =







Aαχ(t), t ∈ [−τ, 0],

S(t)Aαχ(0) +
t
∫

0

AαS(t− s)f(s, A−αψ(s), A−αψs) ds, t ∈ [0, ˜T ].
(3.1)
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Clearly F is well defined. For R > 0, let

S = {ψ ∈ BR(Ct0 , A
αχ) : ψ(t) = Aαχ(t), t ∈ [−τ, 0]}.

Choose 0 < t0 ≤ T such that for 0 < t ≤ t0, we have,

‖(S(t) − I)Aαχ(0)‖ ≤
R

3
,

‖Aαχ(t) −Aαχ(0)‖ ≤
R

3

and

t0 <

[

R

3
Cα

−1(1 − α){Lf (R)(T + 2R+ 2‖χ‖T,α) + β}−1

]
1

1−α

, (3.2)

where Cα is a positive constant depending on α satisfying ‖AαS(t)‖ ≤ Cαt
−α, for t > 0

and β = ‖f(0, 0, 0)‖. Clearly, F : S → Ct0 . We first show that F : S → S. For any
ψ ∈ Ct0 , Fψ = Aαχ on [−τ, 0]. Thus, to show that F maps from S into S we only need
to show that,

‖Fψ −Aαχ‖t0 ≤ R.

For this, we have (Fψ)(t) −Aαχ(t) = 0 if t ∈ [−τ, 0] and for t ∈ [0, t0],

(Fψ)(t) −Aαχ(t) = [(S(t) − I)Aαχ(0)] + [Aαχ(0) −Aαχ(t)]

+

t
∫

0

AαS(t− s)[f(s,A−αψ(s), A−αψs) − f(0, 0, 0)] ds,

+

t
∫

0

AαS(t− s)f(0, 0, 0) ds.

Hence we have,

‖(Fψ)(t) −Aαχ(t)‖ ≤ ‖(S(t) − I)Aαχ(0)‖ + ‖Aαχ(0) −Aαχ(t)‖

+

t
∫

0

‖AαS(t− s)‖‖f(s,A−αψ(s), A−αψs) − f(0, 0, 0)‖ ds,

+

t
∫

0

‖AαS(t− s)‖‖f(0, 0, 0)‖ ds, t ∈ [0, t0]

≤
2R

3
+ Cα[Lf(R)(T + 2R+ 2‖χ‖T,α) + β]

∫ t

0

(t− s)−α ds

≤
2R

3
+

Cα

(1 − α)
[Lf(R)(T + 2R+ 2‖χ‖T,α) + β]t1−α

0 .

(3.3)

From (3.2) and (3.3), we have ‖(Fψ) − Aαχ‖t0 ≤ R for 0 < t < t0. Hence the map
F : S → S. Now, we show that F is a contraction mapping on S. For this, we have

‖(Fψ)(t) − (Fψ̃)(t)‖ = 0 for all t ∈ [−τ, 0] and

(Fψ)(t) − (Fψ̃)(t) =

t
∫

0

AαS(t− s)[f(s,A−αψ(s), A−αψs) − f(s,A−αψ̃(s), A−αψ̃s)] ds,
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for t ∈ [0, t0] and ψ, ψ̃ ∈ S. Hence,

‖(Fψ)(t)−(Fψ̃)(t)‖ ≤

t
∫

0

‖AαS(t−s)‖ ‖f(s,A−αψ(s), A−αψs)−f(s,A−αψ̃(s), A−αψ̃s)‖ds

for all ψ, ψ̃ ∈ S and t ∈ [−τ, t0]. From A2 we have,

‖(Fψ)(t) − (Fψ̃)(t)‖ ≤
1

R

Cα

(1 − α)
[Lf (R)(T + 2R) + β]t1−α

0 ‖ψ − ψ̃‖t0 ≤
1

3
‖ψ − ψ̃‖t0 ,

for all ψ, ψ̃ ∈ S. Thus F is a strict contraction map on S and therefore by the Banach
contraction principle there exists a unique fixed point ψ of F in S i.e. there is a unique
ψ ∈ S such that (Fψ)(t) = ψ(t), for all t ∈ [−τ, t0], that is,

ψ(t) =







Aαχ(t), t ∈ [−τ, 0],

S(t)Aαχ(0) +
t
∫

0

AαS(t− s)f(s,A−αψ(s), A−αψs) ds, t ∈ [0, t0].

Thus, if we take u = A−αψ, then for t ∈ [−τ, t0], we have

u(t) =







χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
t
∫

0

S(t− s)f(s, u(s), us) ds, t ∈ [0, t0],
(3.4)

and H(u0) = φ on [−τ, 0]. Hence u given by the above equation is a mild solution of
equation (1.1). Now we show that a mild solution u ∈ Ct0 of (1.1) on [−τ, t0] with
u = χ on [−τ, 0] is unique. Let u1 and u2 be two such functions. Let u = u1 − u2.
Then u = 0 on [−τ, 0] and for t ∈ [0, t0], we have

‖u(t)‖α ≤ 2Lf( ˜R)

t
∫

0

(t− s)−α sup
−τ≤θ≤0

‖u(s+ θ)‖αds, (3.5)

where ˜R = max{‖u1‖t0 , ‖u2‖t0}. Let θ̄ ∈ [−t, 0] and t ∈ [0, t0] and let us assume that
t0 ≤ τ , hence we have 0 ≤ t ≤ τ . For t ≤ −θ̄, we have u(t+ θ̄) = 0. For t ≥ −θ̄, we
have

‖u(t+ θ̄)‖α ≤ 2Lf( ˜R)

t+θ̄
∫

0

(t+ θ̄ − s)−α sup
−τ≤θ≤0

‖u(s+ θ)‖αds.

Now we put θ̄ − s = −η, in the above inequality to obtain

‖u(t+ θ̄)‖α ≤ 2Lf( ˜R)

t
∫

−θ̄

(t− η)−α sup
−τ≤θ≤0

‖u(η + θ̄ + θ)‖α dη.

Let θ = γ − θ̄ in the above inequality to get

‖u(t+ θ̄)‖α ≤ 2Lf( ˜R)

∫ t

−θ̄

(t− η)−α sup
−τ+θ̄≤γ≤0

‖u(η + γ)‖αdη.
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Since u(η + γ) = 0 on [−τ + θ̄,−τ ], the above inequality may be written as

‖ut(θ̄)‖α ≤ 2Lf( ˜R)

∫ t

−θ̄

(t− η)−α sup
−τ≤γ≤0

‖uη(γ)‖αdη

≤ 2Lf( ˜R)

∫ t

0

(t− η)−α sup
−τ≤γ≤0

‖uη(γ)‖αdη.

(3.6)

Taking supremum on θ̄ over [−τ, 0], we get

‖ut‖0,α ≤ 2Lf( ˜R)

∫ t

0

(t− η)−α‖uη‖0,αdη. (3.7)

Now by applying the Gronwall’s inequality to the above inequality we get the required
result.

4 Regularity of Mild Solutions

In this section we establish the regularity of the mild solutions to (1.1).

Theorem 4.1 Suppose that −A generates the analytic semigroup S(t) such that

‖S(t)‖ ≤M for t ≥ 0, and 0 ∈ ρ(−A). Further suppose that the conditions A1 and A2

hold and χ(t) ∈ D(A) for all t ∈ [−τ, 0]. Then (1.1) has a local classical solution and it

is unique if and only if χ is unique on [−τ, 0] satisfying H(χ0) = φ on [−τ, 0].

Proof From Theorem 3.1, it follows that there exist t0, 0 < t0 ≤ T and a function u
such that u is a unique mild solution to equation (1.1) on [−τ, t0] given by

u(t) =







χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
t
∫

0

S(t− s)f(s, u(s), us) ds, t ∈ [0, t0].

Let ψ(t) = Aαu(t). Then

ψ(t) =







Aαχ(t), t ∈ [−τ, 0],

S(t)Aαχ(0) +
t
∫

0

AαS(t− s)f(s,A−αψ(s), A−αψs) ds, t ∈ [0, t0].

As u is unique hence ψ(t) is also unique. Since ψ(t) is continuous on [−τ, t0] and the
map f satisfy assumption A2, it follows that f is continuous, and therefore bounded on
[0, t0]. Let N1 = Lf (R)(T + 2R+ 2‖χ‖T,α) + β. Now we want to show that f is locally
Hölder continuous on (0, t0]. From Theorem 2.6.13 in Pazy [1], it follows that for every
0 < β < 1 − α, t > s > 0 and every 0 < h < 1, we have

‖(S(h) − I)AαS(t− s)‖ ≤ Cβh
β‖Aα+βS(t− s)‖

≤ Chβ(t− s)−(α+β).
(4.1)
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Next, for 0 < t < t+ h ≤ t0, we have

‖ψ(t+ h) − ψ(t)‖ ≤ ‖(S(h) − I)S(t)Aαχ(0)‖

+

t
∫

0

‖(S(h) − I)AαS(t− s)‖ ‖f(s,A−αψ(s)A−αψs)‖ds

+

t+h
∫

t

‖AαS(t+ h− s)‖‖f(s,A−αψ(s), A−αψs)‖ds.

(4.2)

Now,

‖(S(h) − I)S(t)Aαχ(0)‖ ≤ Ct−(α+β)hβ ≤M1h
β, (4.3)

where M1 depends on t and blows up as t decreases to zero. Furthermore

t
∫

0

‖(S(h)−I)AαS(t−s)‖ ‖f(s,A−αψ(s), A−αψs)‖ds ≤ ChβN1

t
∫

0

(t−s)−(α+β)ds ≤M2h
β ,

(4.4)
where M2 is independent of t. Also,

t+h
∫

t

‖AαS(t+ h− s)‖ ‖f(s,A−αψ(s), A−αψs)‖ds ≤ CαN1

t+h
∫

t

(t+ h− s)−αds ≤M3h
β,

(4.5)
where M3 is independent of t.

Hence inequalities (4.1) – (4.5) imply that there exists a constant C1 such that

‖ψ(t) − ψ(s)‖ ≤ C1|t− s|β , (4.6)

for all 0 < t, s < t0 < T , thus ψ is locally Hölder continuous on (0, t0]. Now, as-
sumptions A1 and A2 together with (4.6) imply that there exist constants C2 ≥ 0 and
0 < γ < 1 such that for all 0 < t, s < t0 < T , we have

‖f(t, A−αψ(t), A−αψt) − f(s,A−αψ(s), A−αψs)‖ ≤ C2|t− s|γ . (4.7)

Hence f is locally Hölder continuous on (0, t0].
Let h(t) = f(t, A−αψ(t), A−αψt). Consider the following initial value problem

dw(t)

dt
+Aw(t) = h(t), t ∈ (0, t0],

w(0) = χ(0).
(4.8)

By Corollary 4.3.3 in Pazy [1], (4.8) has a unique solution w ∈ C1((0, t0];X) given by

w(t) = S(t)χ(0) +

t
∫

0

S(t− s)h(s)ds, t ∈ [0, t0]. (4.9)
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Let w(t) = χ(t) on [−τ, 0]. Clearly for each t ∈ [0, t0] each term of the right-hand
side of (4.9) belongs to D(A) and hence belongs to D(Aα). Applying Aα to both sides
of (4.9)and using the fact that u ∈ Ct0 with u(t) = χ(t) on [−τ, 0] and satisfying

u(t) = S(t)χ(0) +

t
∫

0

S(t− s)f(s, u(s), us)ds, t ∈ (0, t0],

is unique, we have that Aαw(t) = ψ(t) = Aαu(t) for all t ∈ [−τ, t0]. Thus we have

ψ(t) =







Aαχ(t), t ∈ [−τ, 0],

S(t)Aαχ(0) +
t
∫

0

AαS(t− s)f(s,A−αψ(s), A−αψs) ds, t ∈ [0, t0].

Thus if we put u(t) = A−αψ(t) in the above equation then we get

u(t) =







χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
t
∫

0

S(t− s)f(s, u(s), us) ds, t ∈ [0, t0],

it follows that u is the unique classical solution to (1.1) on [−τ, t0].

5 Global Existence

Theorem 5.1 Suppose that 0 ∈ ρ(−A) and the operator −A generates the analytic

semigroup S(t) with ‖S(t)‖ ≤ M for t ≥ 0, the conditions A1, A2 are satisfied and

χ(t) ∈ D(Aα) for all t ∈ [−τ, 0]. If there is a continuous nondecreasing real valued

function k(t) such that

‖f(t, x, y)‖ ≤ k(t)(1 + ‖x‖α + ‖y‖0,α) for t ≥ 0, x ∈ Xα, y ∈ Cα
0 , (5.1)

then the initial value problem (1.1) has a unique solution u which exists for all t ∈ [−τ, T ].

Proof By Theorem 3.1 we can continue the solution of (1.1) as long as ‖u(t)‖α stays
bounded. It is therefore sufficient to show that if u exist on [−τ, T [ then ‖u(t)‖α is
bounded as t ↑ T . Since if t ∈ [−τ, 0] then we have

‖u(t)‖α ≤ ‖χ‖0,α.

For t ∈ [0, T [, we have

‖u(t)‖α ≤ C1 + C2

∫ t

0

(t− s)−α sup
−τ≤θ≤0

‖u(s+ θ)‖αds, (5.2)

where

C1 = M‖Aαχ(0)‖ +
2k(T )CαT

1−α

(1 − α)
and C2 = 2k(T )Cα.
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First Case (0 ≤ t ≤ τ) We replace t by t + θ̄, where −t ≤ θ̄ ≤ 0 in the above
inequality (5.2), so we get

‖u(t+ θ̄)‖α ≤ C1 + C2

t+θ̄
∫

0

(t+ θ̄ − s)−α sup
−τ≤θ≤0

‖u(s+ θ)‖α ds. (5.3)

In the above inequality we put η = s− θ̄ and ν = θ+ θ̄, thus inequality (5.3) after some
simplification becomes

‖u(t+ θ̄)‖α ≤ C1 + C2

t
∫

−θ̄

(t− η)−α sup
−τ+θ̄≤ν≤0

‖u(η + ν)‖α dη.

Since u(η + ν) = χ(η + ν) for −τ + θ̄ ≤ ν ≤ −τ , we have

‖u(t+ θ̄)‖α ≤ C1 + C2

t
∫

−θ̄

(t− η)−α sup
−τ+θ̄≤ν≤−τ

‖u(η + ν)‖αdη

+ C2

t
∫

−θ̄

(t− η)−α sup
−τ≤ν≤0

‖u(η + ν)‖αdη

≤ C3 + C2

t
∫

−θ̄

(t− η)−α sup
−τ≤ν≤0

‖u(η + ν)‖αdη,

(5.4)

where

C3 = C1 +

t
∫

0

(t− η)−α sup
−τ+θ̄≤ν≤−τ

‖χ(η + ν)‖αdη.

Now, the inequality (5.4) leads to

sup
−t≤θ̄≤0

‖u(t+ θ̄)‖α ≤ C3 + C2

t
∫

0

(t− η)−α sup
−τ≤ν≤0

‖u(η + ν)‖αdη. (5.5)

From the above inequality we get

‖ut‖0,α = sup
−τ≤θ̄≤0

‖u(t+ θ̄)‖α

≤ sup
−τ≤θ̄≤−t

‖u(t+ θ̄)‖α + sup
−t≤θ̄≤0

‖u(t+ θ̄)‖α

≤ sup
−τ≤θ̄≤−t

‖χ(t+ θ̄)‖α + C3 + C2

t
∫

0

(t− η)−α‖uη‖0,αdη.

(5.6)
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Hence applying the Gronwall’s inequality to the above inequality (5.6), we get

‖ut‖0,α ≤M1 for all t ∈ [−τ, τ ]. (5.7)

Second Case (τ ≤ t ≤ 2τ) In this case we have

‖u(t)‖α ≤ C1 + C2

τ
∫

0

(t− s)−α sup
−τ≤θ≤0

‖u(s+ θ)‖α ds

+ C2

t
∫

τ

(t− s)−α sup
−τ≤θ≤0

‖u(s+ θ)‖α ds

≤ C4 + C2

∫ t

τ

(t− s)−α sup
−τ≤θ≤0

‖u(s+ θ)‖αds,

(5.8)

where

C4 = C1 + C2

τ
∫

0

(t− s)−α sup
−τ≤θ≤0

‖u(s+ θ)‖αds.

We replace t by t+ θ̄ in (5.8) where θ̄ ∈ [τ − t, 0], we get

‖u(t+ θ̄)‖α ≤ C4 + C2

t+θ̄
∫

τ

(t+ θ̄ − s)−α sup
−τ≤θ≤0

‖u(s+ θ)‖α ds. (5.9)

In (5.9) we put η = s− θ̄ and ν = θ + θ̄ to obtain

‖u(t+ θ̄)‖α ≤ C4 + C2

t
∫

τ−θ̄

(t− η)−α sup
−t≤ν≤−τ

‖u(η + ν)‖α dη

+ C2

t
∫

τ−θ̄

(t− η)−α sup
−τ≤ν≤0

‖u(η + ν)‖α dη.

(5.10)

Since u(η+ ν) = χ(η+ ν) for τ − θ̄ ≤ η ≤ t and −t ≤ ν ≤ −τ , inequality (5.10) implies
that

‖u(t+ θ̄)‖α ≤ C5 + C2

t
∫

0

(t− η)−α‖uη‖0,α dη, (5.11)

where C5 = C4 + C2‖χ‖0,α(T 1−α/(1 − α)). Now taking supremum on θ̄ over [τ − t, 0]
we get

sup
τ−t≤θ̄≤0

‖u(t+ θ̄)‖α ≤ C5 + C2

t
∫

0

(t− η)−α‖uη‖0,α dη. (5.12)
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Now,

‖u‖0,α = sup
−τ≤θ̄≤0

‖u(t+ θ̄)‖α

≤ sup
−τ≤θ̄≤τ−t

‖u(t+ θ̄)‖α + sup
τ−t≤θ̄≤0

‖u(t+ θ̄)‖α

≤M1 + C5 + C2

t
∫

0

(t− η)−α‖uη‖0,αdη.

(5.13)

Hence applying the Gronwall’s inequality to the above inequality (5.13), we get

‖u(t)‖α ≤M2 for all t ∈ [−τ, 2τ ]. (5.14)

Hence by repeating the above process we get the required result. This completes the
proof of the theorem.

6 Applications

Let X = L2((0, 1);R), and τ > 0. Consider the partial differential equations

∂tw(t, x) − ∂2
xw(t, x) = f1(t, x),

+

1
∫

0

h1(w(t, x), ∂xw(t, x)) dx

0
∫

−τ

k(−θ)g(w(t+ θ, x), ∂xw(t+ θ, x)) dθ,

x ∈ (0, 1), t > 0,

0
∫

−τ

k(−θ)g(w(θ, x),
∂w

∂x
(θ, x)) dθ = φ(x), x ∈ (0, 1),

w(t, 0) = w(t, 1) = 0, t ∈ [0, T ], 0 < T <∞,

(6.1)

where g and h1 are real valued smooth functions and k is a square integrable function.
We define an operator A as follows:

Au = −u′′ with u ∈ D(A) = {u ∈ H1
0 (0, 1) ∩H2(0, 1): u′′ ∈ X}. (6.2)

Here clearly the operator A is self-adjoint, with compact resolvent and is the infinitesimal
generator of an analytic semigroup S(t). Now we take α = 1/2, D(A1/2) is the Banach
space endowed with the norm

‖x‖1/2 = ‖A1/2x‖, x ∈ D(A1/2),

and we denote this space by X1/2. Also, for t ∈ [0, T ], we denote

C
1/2
t = C([−τ, t]; D(A1/2)),
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endowed with the sup norm

‖ψ‖t,1/2 = sup
−τ≤η≤t

‖ψ(η)‖1/2, ψ ∈ C
1/2
t .

We observe some properties of the operators A and A1/2 defined by (6.2) (cf. [9] for more
details). For u ∈ D(A) and λ ∈ R, with Au = −u′′ = λu, we have 〈Au, u〉 = 〈λu, u〉;
that is,

〈−u′′, u〉 = |u′|2L2 = λ|u|2L2

so λ > 0. A solution u of Au = λu is of the form

u(x) = C cos(
√
λx) +D sin(

√
λx)

and the conditions u(0) = u(1) = 0 imply that C = 0 and λ = λn = n2π2, n ∈ N .
Thus, for each n ∈ N , the corresponding solution is given by

un(x) = D sin(
√

λnx).

We have 〈un, um〉 = 0 for n 6= m and 〈un, un〉 = 1 and hence D =
√

2. For u ∈ D(A),
there exists a sequence of real numbers {αn} such that

u(x) =
∑

n∈N

αnun(x),
∑

n∈N

(αn)2 < +∞ and
∑

n∈N

(λn)2(αn)2 < +∞.

We have
A1/2u(x) =

∑

n∈N

√

λn αn un(x)

with u ∈ D(A1/2); that is,
∑

n∈N λn(αn)2 < +∞.

The equation (6.1) can be reformulated as the following abstract equation in X =
L2((0, 1); R):

du(t)

dt
+Au(t) = f(t, u(t), ut) t > 0,

H(u0) = φ,

(6.3)

where u(t) = w(t, ·) that is u(t)(x) = w(t, x), ut(θ)(x) = w(t + θ, x), t ∈ [0, T ],
θ ∈ [−τ, 0], x ∈ (0, 1), the operator A is as define in equation (6.2), the function

f : [0, T ]×X1/2 × C
1/2
0 → X is given by

f(t, ψ, ξ)(x) = f1(t, x) +

1
∫

0

h(ψ(x), ψ′(x)) dx

0
∫

−τ

k(−θ)g(ξ(θ)(x), ∂x(ξ(θ)(x))) dθ, (6.4)

and the function H : C0 → C0 is given by

H(ψ)(x) =

0
∫

−τ

k(−θ)g
(

ψ(θ, x),
∂ψ

∂x
(θ, x)

)

dθ.
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Also f1, defined from [0, T ] × (0, 1) into R, is such that f1(0, ·) ∈ L2(0, 1) and satisfies
the following property

|f1(t, x) − f1(s, x)| ≤ k1(x)|t − s|θ, for all t, s ∈ R a.e. x ∈ (0, 1),

where k1 ∈ L2(0, 1). It may be verified that the assumptions of Theorem 3.1 are satisfied
which ensures the existence of solutions of (6.3) as well as that of (6.1).
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Abstract: IS-LM model is used for comparative static analysis and many
dynamic factors are not considered, so dynamic analysis is introduced to IS-
LM model to analyze economy more deeply. Control without model proposed
by Mr. Han Zhi-gang has many advantages, such as strong adaptability, strong
tracking ability, strong anti-disturbance ability, time lag controlling and so
on, so it is fit for macro-economy dynamic analysis. The property of maximal
energy saving of control law without model makes it possible to save more
fund when government uses finance policy and currency policy.
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1 Introduction

As it is well known the IS-LM model is the core of modern macro-economy [1]. The
IS-LM model can be used to analyze every kind of problems of the public finance policy
and currency policy and the match of these policies so that the national macro-economy
can attain the aim of high economy growth rate and low inflation rate. But this model
has some weakness, it is a kind of static balanced analysis, and does not consider many
dynamic factors (for example, time lag) within economy, so it is difficult to do more
in-depth analysis of economy. The macro-economic system is a complicated one, and
is nonlinear with time lag. It is difficult to establish an available mathematical model,
and along with the economic reformation going deep and system innovating, the model’s
structure changes constantly too.
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Therefore, the control law for regulating macro-economy must not only adapt to the
model parameters change, and also adapt to the variety of the model structure. Control
without model is an effective tool for solving this kind of problem. The mathematical
model of dynamic system generally need to be established before designing the control
law. The classical method requests this kind of mathematical model be established in
advance, at least its construction must be certain in advance, and the model parameters
are as accurate as possible. When designing control law without model, it breaks the
restrict that control law must be based on the accurate mathematical model. The process
of establishing model goes along with feedback control [2]. The initial mathematical
model can be not accurate, but it must guarantee the control law designed having proper
astringency.

The control law without model works along with establishing model. After getting
new data, the model is established again and control is established again. Going on
like this, and making the model gradually accurate the performance of system under
the control law improves. Real-time establishing model and feedback controlling become
integral. The means make the control law have structure self-adaptability with real-time
identification i.e. real-time feedback control used by control without model combines
identification with control law designing. At the same time we can prove that the control
law without model has the property of maximal “energy saving” so that government can
use minimum fund to do the same thing when government makes use of finance policy
and currency policy.

2 Some Control Without Model Theory

In reference [3], the following lemma has been proved.

Lemma 1 For any dynamic system with one step delay, if input-output data

{u(k − 2), y(k − 1)}, {u(k − 1), y(k)} are given and u(k − 2) 6= u(k − 1), then there

exists a vector ϕ(k) such that

y(k) − y(k − 1) = ϕ(k − 1)τ [u(k − 1) − u(k − 2)] (1)

where (τ ) is a symbol of transposition, y(k) is one-dimension output of system and u(k)
is input vector, ϕ(r) is called pseudo-gradient.

By the following way, ϕ(k) can be estimated.

Let

z(k) = y(k) − y(k − 1),

φ(k) = u(k − 1) − u(k − 2).

Using the above notation, we now can rewrite (1) as

z(k) = φ(k)τϕ(k − 1). (2)
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Real-time observed values y(k) and u(k − 1), z(k) and φ(k) are obtained. Therefore
ϕ(k − 1) is estimated by the value ϕ̂(k − 1) as follows

ϕ̂(k − 1) = ϕ̂1(k − 1) +
δ

ηk + ‖φ(k)‖2
φ(k){z(k) − φ(k)τ ϕ̂1(k − 1)},

ϕ̂1(k − 1) = ϕ̂1(k − 2) + M(k − 1){z(k)− φ(k)τ ϕ̂1(k − 2)},

M(k − 1) =
p(k − 2)φ(k)

λ + φ(k)τp(k − 2)φ(k)
,

p(k − 1) =
1

λ
[I − M(k − 1)φ(k)τ ] p(k − 2)

(3)

where ηk is a suitable small positive value and δ is a proper constant.
Then we find forecasting value of ϕ̂(k − 1) signed as ϕ̂∗(k). A simple method is

ϕ̂∗(k) = ϕ̂(k − 1).

When we design control law, also sign ϕ̂∗(k) as ϕ̂(k). So using the basic form of
control law without model

u(k) = u(k − 1) +
λk

a + ‖ϕ̂(k)‖2
ϕ̂(k){y0(k + 1) − y(k)}, (4)

where λk is called control parameter, y0(k +1) is expectation output at k+1 time, and
a is suitable small positive constant which makes denominator not equal to zero, we can
obtain control vector u(k). It acts on the system, so we can obtain new output y(k +1)
and a new group of data {y(k + 1), u(k)}.

The next theorem shows that control variation has the property of minimum.

Theorem 1 If y0(k + 1), y(k), u(k − 1), ϕ(k) are known and ‖ϕ(k)‖2 6= 0, then

vector of control is defined by

u(k) = u(k − 1) +
1

‖ϕ(k)‖2
ϕ(k){y0(k + 1) − y(k)}

and satisfies the conditions

y0(k + 1) − y(k) = ϕ(k)τ [u(k) − u(k − 1)],

‖u(k) − u(k − 1)‖2 = min
u

‖u − u(k − 1)‖2.

Proof The Lagrangian multiplier can be used here.
Let

f(u, λ) = ‖u − u(k − 1)‖2 + λ{y0(k + 1) − y(k) − ϕ(k)τ [u − u(k − 1)]}

be Lagrangian function. For this case, it can be shown that

∂f

∂u
= 2(u − u(k − 1)) − λϕ(k),

∂f

∂λ
= y0(k + 1) − y(k) − ϕ(k)τ [u − u(k − 1)].
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Let
∂f

∂u
= 0 and

∂f

∂λ
= 0.

We can compute

u − u(k − 1) =
λ

2
ϕ(k),

y0(k + 1) − y(k) = ϕ(k)τ [u − u(k − 1)] =
λ

2
‖ϕ(k)‖

2
.

(5)

Hence, when ‖ϕ(k)‖2 6= 0 we obtain

λ =
2

‖ϕ(k)‖
2 {y0(k + 1) − y(k)}.

Thus, from (5) it can be obtained that

u(k) = u(k − 1) +
1

‖ϕ(k)‖
2 ϕ(k){y0(k + 1) − y(k)}

which satisfies the conclusion of Theorem 1, since there is only minimum point for the
function ‖u − u(k − 1)‖2.

Above is the case of multi-input and single-output. Reference [4] extended it to MIMO
system. Suppose that the dimension of system output variable y(k) is n, the dimension
of input (control) variable u(k) is m, and that n ≤ m. Suppose the time lag of system
is 1, so the model can be written as

y(k + 1) − y(k) = ϕ(k)[û(k) − û(k − 1)],

where

ϕ(k) =







ϕ1(k)τ

ϕ2(k)τ

. . . . . .

ϕn(k)τ






=







ϕ11(k) ϕ12(k) . . . ϕ1m(k)
ϕ21(k) ϕ22(k) . . . ϕ2m(k)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕn1(k) ϕn2(k) . . . ϕnm(k)






,

i.e. ϕ(k) is called pseudo-gradient matrix. Set

r(k) = rank{ϕ(k)}.

Apparently r(k) ≤ n. Suppose Dt(k) is r(k) full-rank submatrix of ϕ(k), t =
1, 2, . . . , N , N is the number of r(k) full-rank submatrix of ϕ(k). Let ‖Dt(k)‖ denote
a kind of norm of Dt(k). There must be one r(k) full-rank submatrix

D(k) =







ϕi1j1(k) ϕi1j2(k) . . . ϕi1jr
(k)

ϕi2j1(k) ϕi2j2(k) . . . ϕi2jr
(k)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕirj1(k) ϕirj2(k) . . . ϕirjr
(k)







that makes
‖D(k)‖ = max

1≤t≤N
‖Dt(k)‖ .
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We call D(k) dominant r(k) full-rank submatrix of ϕ(k). Its corresponding uj1(k),
uj2(k), . . . , ujr

(k) are called dominant control variables. Its corresponding output vari-
ables are yi1(k), yi2(k), . . . , yir

(k), set

y∗(k + 1) = (yi1(k + 1), yi2(k + 1), . . . , yir
(k + 1))τ ,

u∗(k) = (uj1(k), uj2(k), . . . , ujr
(k))τ .

Eliminating y∗(k + 1) from y(k + 1), the rest can be written as vector y−(k + 1).
Similarly eliminating u∗(k) from u(k), the rest can be written as vector u−(k). Ordering
y(k + 1) and u(k) properly, there exists

y(k + 1) = (y∗(k + 1)τ , y−(k + 1)τ )τ , u(k) = (u∗(k)τ , u−(k)τ )τ .

So we can acquire MIMO control law without model

û∗(k) = û∗(k − 1) +
λk

a + | ̂D(k)|
D̂∗(k){y∗(k + 1) − y∗(k)},

û−(k) = û−(k − 1),

(6)

where ̂D∗(k) denotes adjoint of ̂D(k), |D̂(k)| denotes determinant of D̂(k), and y∗(k+1)
denotes expectation value of the component determined by y(k + 1) independently. We
have the matrix

λk =









λ1(k) 0
λ2(k)

. . .

0 λr(k)









,

where λ1(k), λ2(k), . . . , λr(k) are proper parameters, λk is called control parameter
matrix.

3 Control without Model Application in Macro-Economy

In the model IS-LM, finance policy variable (M) and currency policy variable (G) can
be taken as control(input) variables and Gross Domestic Product (GDP) and nominal
interest rate (i) can be taken as output variables. Nominal interest rate is equal to actual
interest rate plus inflation rate. What shows economy running well is high economic
growth rate and low inflation rate, so the control aim of macro-economy system can be

aim :

{

i(t) = i∗,

Y (t) = Y ∗(1 + α)t,

where i∗ and Y ∗ are given constants, α is given economy growth rate. According to
actual situation of China, annual interest rate is 2.25% and expected inflation rate is
under 3%, so set i∗ = 5% and economic growth rate is α = 8%. So the model may be
written as

[

Y (k + 1) − Y (k)
i(k + 1) − i(k)

]

= ϕ(k)

[

G(k) − G(k − 1)
M(k) − M(k − 1)

]

.
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According to the data of National Bureau of Statistics of China, see Table 3.1, by
formula (3), ϕ̂(k) can be obtained. Suppose target value is

[

Y0(k + 1)
i0(k + 1)

]

=

[

117.25 (1 + 0.08)
5%

]

.

By formula (6), ̂G(k) and ̂M(k) that meet the target can be obtained. In formula

(6), λk =

[

1 0
0 1

]

denotes neutral finance policy and balanced currency policy.

Table 3.1. 1990 – 2003 statistics datum.

year
Gross Domestic
Product GDP
billion yuan

Finance
Payout G

billion yuan

Money
Supply M2
billion yuan

Consumer Price
Index CPI

Annual
Interest

%

1990 1854.79 308.359 1529.34 103.1 8.64

1991 2161.78 338.662 1934.99 103.4 7.92

1992 2663.81 374.22 2540.22 106.4 7.56

1993 3463.44 464.23 3487.98 114.7 9.26

1994 4675.94 579.262 4692.35 124.1 10.98

1995 5847.81 682.372 6075.05 117.1 10.98

1996 6788.46 793.755 7609.49 108.3 9.21

1997 7446.26 923.356 9099.53 102.8 7.17

1998 7834.52 1079.818 10449.85 99.2 5.03

1999 8206.75 1318.767 11989.79 98.6 2.89

2000 8946.81 1588.65 13461.04 100.4 2.25

2001 9731.48 1890.258 15830.19 100.7 2.25

2002 10517.23 2205.315 18500.70 99.2 2.03

2003 11725.19 2464.995 22122.28 101.2 1.98

Note: Annual Interest is arithmetic mean.
Going on with

[

̂Y (k + 1)

î(k + 1)

]

=

[

Y (k)
i(k)

]

+ ϕ̂(k)

[

̂G(k) − G(k − 1)
̂M(k) − M(k − 1)

]

,

estimated values of next year can be obtained. Repeating formulas (3),(6) graph 1 can
be obtained. From the graph we can draw the following conclusions:

1. From (c) and (d), we can see that system tracking ability is very good, estimated
values superimpose with target values.

2. Estimated finance payout amplitude is 9.4% on the average, money supply am-
plitude is 14.8% on the average. They are less than the average value 18.0% and
16.2% of past 5 years.
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Figure 3.1. System simulation curve.
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Abstract: The Tonelli existence theorem in the calculus of variations and its
subsequent modifications were established for integrands f which satisfy con-
vexity and growth conditions. In our previous work a generic well-posedness
result (with respect to variations of the integrand of the integral functional)
without the convexity condition was established for a class of optimal control
problems satisfying the Cesari growth condition. In this paper we extend this
generic well-posedness result to two classes of linear optimal control problems.
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1 Introduction

The Tonelli existence theorem in the calculus of variations [11] and its subsequent gen-
eralizations and extensions (e.g. [2, 3, 6, 9, 10]) were established for integrands f which
satisfy convexity and growth conditions. Moreover, certain convexity assumptions are
also necessary for properties of lower semicontinuity of integral functionals which are
crucial in most of the existence proofs, although there are some interesting theorems
without convexity (see [2, Ch. 16] and [1, 7, 8]).

In [13] it was shown that the convexity condition is not needed generically, and not
only for the existence but also for well-posedness of the problem (with respect to some
natural topology in the space of integrands). More precisely, in [13] we considered a
class of optimal control problems (with the same system of differential equations, the
same functional constraints and the same boundary conditions) which is identified with
the corresponding complete metric space of cost functions (integrands), say M. We did
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not impose any convexity assumptions. These integrands are only assumed to satisfy
the Cesari growth condition. The main result in [13] establishes the existence of an
everywhere dense Gδ-set F ⊂ M such that for each integrand in F the corresponding
optimal control problem has a unique solution.

The next steps in this area of research were done in [5, 12, 14]. In [5] we introduced a
general variational principle having its prototype in the variational principle of Deville,
Godefroy and Zizler [4]. A generic existence result in the calculus of variations without
convexity assumptions was then obtained as a realization of this variational principle.
It was also shown in [5] that some other generic well-posedness results in optimization
theory known in the literature and their modifications are obtained as a realization of
this variational principle. Note that the generic existence result in [5] was established
for variational problems but not for optimal control problems and that the topologies in
the spaces of integrands in [13] and [5] are different.

In [12] we suggested a modification of the variational principle in [5] and applied
it to classes of optimal control problems with various topologies in the corresponding
spaces of integrands. As a realization of this principle we established a generic existence
result for a class of optimal control problems in which the constraint maps are also
subject to variations as well as the cost functions [12]. In [14] we applied the variational
principle obtained in [12] and established generic well-posedness results for two classes of
variational problems in which the values at the end points are also subject to variations
as well as the cost functions. In the present paper we establish generic well-posedness
results for two classes of linear optimal control problems in which the right-hand side of
the governing linear differential equations is also subject to variations.

2 Main Results

In this paper we use the following notations and definitions. Let k ≥ 1 be an integer.
We denote by mes(E) the Lebesgue measure of a measurable set E ⊂ Rk, by | · | the
Euclidean norm in Rk and by 〈·, ·〉 the scalar product in Rk. We use the convention that
∞−∞ = 0. For any f ∈ Cq(Rk) we set

‖f‖Cq = ‖f‖Cq(Rk) = sup
z∈Rk

{|∂|α|f(z)/∂xα1

1 . . . ∂xαk

k | :

αi ≥ 0 is an integer, i = 1, . . . , k, |α| ≤ q},

where |α| =
∑k

i=1 αi.
For each function f : Y → [−∞,∞], where Y is nonempty, we set inf(f) = inf{f(y) :

y ∈ Y }.
In this paper we usually consider topological spaces with two topologies where one is

weaker than the other. (Note that they can coincide.) We refer to them as the weak and
the strong topology, respectively. If (X, d) is a metric space with a metric d and Y ⊂ X ,
then usually Y is also endowed with the metric d (unless another metric is introduced
in Y ). Assume that X1 and X2 are topological spaces and that each of them is endowed
with a weak and a strong topology. Then for the product X1 ×X2 we also introduce a
pair of topologies: a weak topology which is the product of the weak topologies of X1

and X2 and a strong topology which is the product of the strong topologies of X1 and
X2. If Y ⊂ X1, then we consider the topological subspace Y with the relative weak
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and strong topologies (unless other topologies are introduced). If (Xi, di), i = 1, 2, are
metric spaces with the metric d1 and d2 respectively, then the space X1×X2 is endowed
with the metric d defined by

d((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2), (xi, yi) ∈ X × Y, i = 1, 2.

Let 0 ≤ T1 < T2 < ∞ and let m, n be natural numbers. Denote by X the set of
all pairs of functions (x, u), where x : [T1, T2] → Rn is an absolutely continuous (a.c.)
function and u : [T1, T2] → Rm is a measurable function.

To be more precise, we have to define elements of X as classes of pairs equivalent in
the sense that (x1, u1) and (x2, u2) are equivalent if and only if x2(t) = x1(t) for all
t ∈ [T1, T2] and u2(t) = u1(t) for almost every t ∈ (T1, T2).

For the set X we consider the metric ρ defined by

ρ((x1, u1), (x2, u2)) = inf
ǫ>0

{mes{t ∈ [T1, T2] : |x1(t) − x2(t)| + |u1(t) − u2(t)| ≥ ǫ} ≤ ǫ},

(x1, u1), (x2, u2) ∈ X.

(2.1)
For each z ∈ Rn, each matrix A of dimension of n×n and each matrix B of dimension
n×m denote by X(z,A,B) the set of all (x, u) ∈ X such that

x(T1) = z, (2.2)

x′(t) = Ax(t) +Bu(t), t ∈ (T1, T2) (a.e.). (2.3)

Denote by M the set of all functions f : (T1, T2)×Rn ×Rm → R1 with the following
properties:

(i) f is measurable with respect to the σ-algebra generated by products of Lebesgue
measurable subsets of (T1, T2) and Borel subsets of Rn ×Rm;

(ii) f(t, ·, ·) is lower semicontinuous for almost every t ∈ (T1, T2);
(iii) for each ǫ > 0 there exists an integrable scalar function ψǫ(t) ≥ 0, t ∈ (T1, T2),

such that

|u| + |x| ≤ ψǫ(t) + ǫf(t, x, u) for all (t, x, u) ∈ (T1, T2) ×Rn ×Rm;

(iv) for each ǫ,M > 0 there exists δ > 0 such that for almost every t ∈ (T1, T2) the
inequality |f(t, x1, u1) − f(t, x2, u2)| ≤ ǫ holds for each x1, x2 ∈ Rn and each
u1, u2 ∈ Rm satisfying

|xi|, |ui| ≤M, i = 1, 2 and |x1 − x2|, |u1 − u2| ≤ δ;

(v) for each M, ǫ > 0 there exist Γ, δ > 0 such that for almost every t ∈ (T1, T2)
the inequality

|f(t, x1, u) − f(t, x2, u)| ≤ ǫmax{|f(t, x1, u)|, |f(t, x2, u)|} + ǫ

is valid for each x1, x2 ∈ Rn and each u ∈ Rm satisfying

|x1|, |x2| ≤M, |u| ≥ Γ, |x1 − x2| ≤ δ;

(vi) there is a constant cf > 0 such that |f(t, 0, 0)| ≤ cf for almost every t ∈ (T1, T2).
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The growth condition used in (iii) was proposed by Cesari [2] and its equivalents and
modifications are rather common in the literature. It follows from property (i) that for
any f ∈ M and any (x, u) ∈ X the function f(t, x(t), u(t)), t ∈ (T1, T2), is measurable.
Properties (iv) and (vi) imply that for each M > 0 there is cM > 0 such that for almost
every t ∈ (T1, T2) the inequality |f(t, x, u)| ≤ cM holds for each x ∈ Rn and each
u ∈ Rm satisfying |x|, |u| ≤M .

It is an elementary exercise to show that a function f = f(t, x, u) ∈ C1((T1, T2) ×
Rn ×Rm) belongs to M if (iii) and (vi) are true and the following conditions hold:

(a) for each M > 0

sup{|∂f/∂x(t, x, u)| + |∂f/∂u(t, x, u)| : t ∈ (T1, T2),

x ∈ Rn, u ∈ Rm and |x|, |u| ≤M} <∞;

(b) there exist an increasing function ψ : [0,∞) → [0,∞) and a bounded (on bounded
subsets of [0,∞)) function ψ0 : [0,∞) → [0,∞) such that for each (t, x, u) ∈
(T1, T2) ×Rn ×Rm,

|∂f/∂x(t, x, u)| ≤ ψ0(|x|)ψ(|u|)

and
ψ(|u|) ≤ f(t, x, u).

Denote by Ml (respectively Mc) the set of all lower semicontinuous (respectively
continuous) functions f ∈ M. Now we equip the set M with the strong and weak
topologies. For the space M we consider the uniformity determined by the following
base:

EM(ǫ) = {(f, g) ∈ M×M : |f(t, x, u) − g(t, x, u)| ≤ ǫ,

(t, x, u) ∈ (T1, T2) ×Rn ×Rm},
(2.4)

where ǫ > 0. It is easy to see that the uniform space M with this uniformity is metrizable
(by a metric dM) and complete. This uniformity generates in M the strong topology.
Clearly Ml and Mc are closed subsets of M with this topology.

For each ǫ > 0 we set

EMw(ǫ) =
{

(f, g) ∈ M×M : there exists a nonnegative φ ∈ L1(T1, T2)

such that

T2
∫

T1

φ(t) dt ≤ 1, and for almost every t ∈ (T1, T2),

|f(t, x, u) − g(t, x, u)| < ǫ+ ǫmax{|f(t, x, u)|, |g(t, x, u)|} + ǫφ(t)

for each x ∈ Rn and each u ∈ Rm
}

.

(2.5)

From [12, Lemma 1.1] (see also Lemma 4.1 below) it follows that for the set M, there
exists a uniformity which is determined by the base EMw(ǫ), ǫ > 0. This uniformity
induces in M the weak topology.

For each f ∈ M define I(f) : X → R1 ∪ {∞} by

I(f)(x, u) =

T2
∫

T1

f(t, x(t), u(t)) dt, (x, u) ∈ X. (2.6)
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Now we define subspaces of M which consist of integrands differentiable with respect
to the control variable u.

Let k ≥ 1 be an integer. Denote by Mk the set of all f ∈ M such that for each
(t, x) ∈ (T1, T2) × Rn the function f(t, x, ·) ∈ Ck(Rm). We consider the topological
subspace Mk ⊂ M with the relative weak topology. The strong topology on Mk is
induced by the uniformity which is determined by the following base:

EMk(ǫ) = {(f, g) ∈ Mk ×Mk : |f(t, x, u) − g(t, x, u)| ≤ ǫ

for all (t, x, u) ∈ (T1, T2) ×Rn ×Rm and

‖f(t, x, ·) − g(t, x, ·)‖Ck(Rm) ≤ ǫ for all (t, x) ∈ (T1, T2) ×Rn},

(2.7)

where ǫ > 0. It is easy to see that the space Mk with this uniformity is metrizable (by
a metric dM,k) and complete. Define

Ml
k = Mk ∩Ml, Mc

k = Mk ∩Mc.

Clearly Ml
k and Mc

k are closed sets in Mk with the strong topology.
Finally we define subspaces of M which consist of integrands differentiable with respect

to the state variable x and the control variable u. Denote by M∗

k the set of all f : (T1, T2)×

Rn×Rm → R1 in M such that for each t ∈ (T1, T2) the function f(t, ·, ·) ∈ Ck(Rn×Rm).
We consider the topological subspace M∗

k ⊂ M with the relative weak topology. The
strong topology in M∗

k is induced by the uniformity which is determined by the following
base:

E∗

Mk(ǫ) = {(f, g) ∈ M∗

k ×M∗

k : |f(t, x, u) − g(t, x, u)| ≤ ǫ

for all (t, x, u) ∈ (T1, T2) ×Rn ×Rm and

‖f(t, ·, ·) − g(t, ·, ·)‖Ck(Rn+m) ≤ ǫ for all t ∈ (T1, T2)},

(2.8)

where ǫ > 0. It is easy to see that the space M∗

k with this uniformity is metrizable (by
a metric d∗

M,k) and complete. Define

M∗l
k = M∗

k ∩Ml, M
∗c
k = M∗

k ∩Mc.

Clearly M∗l
k and M∗c

k are closed sets in M∗

k with the strong topology.
Let A1 be one of the following spaces:

M, Ml, Mc, Mk, Ml
k, Mc

k, M∗

k, M∗l
k , M∗c

k .

Denote by A21 the set of all matrices A of dimension of n× n. For each A = (aij)
n
i,j=1

set
‖A‖ = max{|aij | : i, j = 1, . . . , n}.

The space A21 is equipped with the metric d21 defined by

d21(A,B) = ‖A−B‖

where A,B ∈ A21.
Denote by A22 the set of all matrices A of dimension of n×m. For each

A = (aij : i = 1, . . . , n, j = 1, . . . ,m)
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set

‖A‖ = max{|aij | : i = 1, . . . , n, j = 1, . . . ,m}.

The space A22 is equipped with the metric d22 defined by

d22(A,B) = ‖A−B‖

for each A,B ∈ A22.

Let A23 = Rn be equipped with the metric

d23(x, y) = |x− y|, x, y ∈ Rn.

Let z ∈ Rn, A2 = A21 ×A22 and let A = A1 ×A2.

For each a2 = (A,B) ∈ A2 set

Sa2
= X(z,A,B).

For each a = (a1, a2) ∈ A1 ×A2 we define Ja : X → R1 ∪ {∞} by

Ja(x, u) = I(a1)(x, u), (x, u) ∈ Sa2
, Ja(x, u) = ∞, (x, u) ∈ X\Sa2

. (2.9)

It follows from Propositions 4.1 and 4.2 of [12] that Ja is lower semicontinuous for all
a ∈ A1 × A2. It is not difficult to see that for each a ∈ A, inf(Ja) is finite. We will
establish the following result.

Theorem 2.1 There exists a set B ⊂ A which is a countable intersection of open

(in the weak topology) everywhere dense (in the strong topology) subsets of A such that

for any a ∈ B, inf(Ja) is finite and attained at a unique point (xa, ua) ∈ X and the

following assertion holds:

For each ǫ > 0 there exist a neighborhood V of a in A with the weak topology and δ > 0
such that for each b ∈ V, inf(Jb) is finite and if (z, v) ∈ X satisfies Jb(z, v) ≤ inf(Jb)+δ,
then ρ((xa, ua), (z, v)) ≤ ǫ and |Jb(z, v) − Ja(xa, ua)| ≤ ǫ.

Now we will state our second main result.

Let A2 = A21 ×A22 ×A23 and let A = A1 ×A2. For each a2 = (A,B, z) ∈ A2 we
set

Sa2
= X(z,A,B).

For each a = (a1, a2) ∈ A1 ×A2 we define ̂Ja : X → R1 ∪ {∞} by

̂Ja(x, u) = I(a1)(x, u), (x, u) ∈ Sa2
, ̂Ja(x, u) = ∞, (x, u) ∈ X \ Sa2

.

It follows from Propositions 4.1 and 4.2 of [12] that ̂Ja is lower semicontinuous for all

a ∈ A1 × A2. It is not difficult to see that for each a ∈ A, inf( ̂Ja) is finite. We will
establish the following result.
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Theorem 2.2 There exists a set B ⊂ A which is a countable intersection of open

(in the weak topology) everywhere dense (in the strong topology) subsets of A such that

for any a ∈ B, inf( ̂Ja) is finite and attained at a unique point (xa, ua) ∈ X and the

following assertion holds:

For each ǫ > 0 there exist a neighborhood V of a in A with the weak topology and δ > 0

such that for each b ∈ V, inf( ̂Jb) is finite and if (z, v) ∈ X satisfies ̂Jb(z, v) ≤ inf( ̂Jb)+δ,

then ρ((xa, ua), (z, v)) ≤ ǫ and | ̂Jb(z, v) − ̂Ja(xa, ua)| ≤ ǫ.

3 Variational Principles

We consider a metric space (X, ρ) which is called the domain space and a complete
metric space (A, d) which is called the data space. We always consider the set X with
the topology generated by the metric ρ. For the space A we consider the topology
generated by the metric d. This topology will be called the strong topology and denoted
by τs. In addition to the strong topology we also consider a weaker topology on A which
is not necessarily Hausdorff. This topology will be called the weak topology and denoted
by τw. We assume that with every a ∈ A a lower semicontinuous function fa on X

is associated with values in R = [−∞,∞]. In our study we use the following basic
hypotheses about the functions.

(H1) For any a ∈ A, any ǫ > 0 and any γ > 0 there exist a nonempty open set
W in A with the weak topology, x ∈ X , α ∈ R1 and η > 0 such that

W ∩ {b ∈ A : d(a, b) < ǫ} 6= ∅

and for any b ∈ W

(i) inf(fb) is finite;
(ii) if z ∈ X is such that fb(z) ≤ inf(fb) + η, then ρ(z, x) ≤ γ and |fb(z)− α| ≤ γ.

(H2) If a ∈ A, inf(fa) is finite, {xn}
∞

n=1 ⊂ X is a Cauchy sequence and the
sequence {fa(xn)}∞n=1 is bounded, then the sequence {xn}

∞

n=1 converges in X .

Let a ∈ A. We say that the minimization problem for fa on (X, ρ) is strongly well-
posed with respect to (A, τw) if inf(fa) is finite and attained at a unique point xa ∈ X

and the following assertion holds:
For each ǫ > 0 there exist a neighborhood V of a in A with the weak topology and

δ > 0 such that for each b ∈ V , inf(fb) is finite and if z ∈ X satisfies fb(z) ≤ inf(fb)+δ,
then ρ(xa, z) ≤ ǫ and |fb(z) − fa(xa)| ≤ ǫ.

(In a slightly different setting a similar property was introduced in [15].)
The following result was established in [12, Theorem 2.1].

Theorem 3.1 Assume that (H1) and (H2) hold. Then there exists a set B ⊂ A
which is a countable intersection of open (in the weak topology) everywhere dense (in the

strong topology) subsets of A such that for any a ∈ B the minimization problem for fa

on (X, ρ) is strongly well posed with respect to (A, τw).

Now we assume that A = A1 × A2 where (Ai, di), i = 1, 2, are complete metric
spaces and

d((a1, a2), (b1, b2)) = d1(a1, b1) + d2(a2, b2), (a1, a2), (b1, b2) ∈ A.
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For the space A2 we consider the topology induced by the metric d2 (the strong and
weak topologies coincide) and for the space A1 we consider the strong topology which is
induced by the metric d1 and a weak topology which is weaker than the strong topology.
The strong topology of A is the product of the strong topology of A1 and the topology
of A2 and the weak topology of A is the product of the weak topology of A1 and the
topology of A2.

Assume that with every a ∈ A1 a function φa : X → R1∪{∞} is associated and with
every a ∈ A2 a nonempty set Sa ⊂ X is associated. For each a = (a1, a2) ∈ A1 ×A2

define fa : X → R1 ∪ {∞} by

fa(x) = φa1
(x) for all x ∈ Sa2

, fa(x) = ∞ for all x ∈ X \ Sa2
. (3.1)

Fix θ ∈ A2. We use the following hypotheses.

(A1) For each a ∈ A, inf(fa) is finite and fa is lower semicontinuous.

(A2) For each a1 ∈ A1, each ǫ > 0 and each D > 0 there exists a neighborhood V
of a1 in A1 with the weak topology such that for each b ∈ V and each x ∈ X satisfying
min{φa1

(x), φb(x)} ≤ D the inequality |φa1
(x) − φb(x)| ≤ ǫ holds.

(A3) For each (a1, a2) ∈ A1 ×A2, each γ ∈ (0, 1) and each r ∈ (0, 1) there exist
ā1 ∈ A1, x̄ ∈ Sa2

, δ > 0 such that d1(ā1, a1) < r and for each x ∈ Sa2
satisfying

φā1
(x) ≤ inf(f(ā1,a2)) + δ the inequality ρ(x, x̄) ≤ γ is valid.

(A4) For each a1 ∈ A1, each M,D > 0 and each ǫ ∈ (0, 1) there exists a number
δ > 0 such that for each a2 ∈ A2 satisfying d2(a2, θ) ≤ M , each x ∈ Sa2

satisfying
φa1

(x) ≤ D and each ξ ∈ A2 satisfying d2(a2, ξ) ≤ δ there exists y ∈ Sξ such that
ρ(x, y) ≤ ǫ and |φa1

(x) − φa1
(y)| ≤ ǫ.

The following result was proved in [14, Proposition 1.1].

Proposition 3.1 Assume that (A1)–(A4) hold. Then (H1) holds.

4 Proofs of Theorems 2.1 and 2.2

The following result was proved in [12, Lemma 1.1].

Lemma 4.1 Let a, b ∈ R1, ǫ ∈ (0, 1), ∆ ≥ 0 and let

|a− b| < (1 + ∆)ǫ+ ǫmax{|a|, |b|}.

Then

|a− b| < (1 + ∆)(ǫ+ ǫ2(1 − ǫ)−1) + ǫ(1 − ǫ)−1 min{|a|, |b|}.

Analogously to Proposition 4.4 of [12] we can prove the following result.

Proposition 4.1 Let f ∈ M, ǫ ∈ (0, 1) and D > 0. Then there exists a neighbor-
hood V of f in M with the weak topology such that for each g ∈ V and each (x, u) ∈ X

satisfying min{If (x, u), Ig(x, u)} ≤ D the inequality |If (x, u) − Ig(x, u)| ≤ ǫ is valid.

We preface the proofs of our main results by the following lemma.
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Lemma 4.2 Let f ∈ M, M,D > 0 and let ǫ ∈ (0, 1). Then there exists a number

δ > 0 such that for each z ∈ Rn, A ∈ A21, B ∈ A22 satisfying

|z| ≤M and ‖A‖, ‖B‖ ≤M, (4.1)

each

(x, u) ∈ X(z,A,B) (4.2)

which satisfies

I(f)(x, u) ≤ D (4.3)

and each ξ ∈ Rn, P ∈ A21 and Q ∈ A22 satisfying

|z − ξ|, ‖A− P‖, ‖B −Q‖ ≤ δ (4.4)

there exists (y, v) ∈ X(ξ, P,Q) such that

v(t) = u(t), t ∈ (T1, T2) a.e., (4.5)

|x(t) − y(t)| ≤ ǫ, t ∈ [T1, T2], (4.6)

|I(f)(x, u) − If (y, v)| ≤ ǫ. (4.7)

Proof By property (iii) (see the definition of M) there is an integrable scalar function
ψ1(t) ≥ 0, t ∈ (T1, T2), such that

|x| + |u| ≤ ψ1(t) + f(t, x, u) for all (t, x, u) ∈ (T1, T2) ×Rn ×Rm. (4.8)

Choose a positive number d0 such that

d0 > sup{‖eτC‖ : τ ∈ [0, T2 − T1], C ∈ A21 and ‖C‖ ≤M + 1}. (4.9)

Set

‖ψ1‖ =

T2
∫

T1

ψ1(t) dt. (4.10)

Inequality (4.8) implies that for each (t, x, u) ∈ (T1, T2) ×Rn ×Rm

|f(t, x, u)| ≤ f(t, x, u) + 2ψ1(t). (4.11)

Choose a number

M0 > 2 +M(‖ψ1‖ +D + 1). (4.12)

We show that the following property holds:

(P) If z ∈ Rn, A ∈ A21 and B ∈ A22 satisfy (4.1) and (x, u) ∈ X(z,A,B) satisfies
(4.3), then

|x(t)| ≤M0 − 2 for all t ∈ [T1, T2]. (4.13)
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Assume that z ∈ Rn, A ∈ A21 and B ∈ A22 satisfy (4.1) and that (x, u) ∈ X(z,A,B)
satisfies (4.3). Then it follows from the definition of X(z,A,B), (2.2), (2.3), (4.1), (4.3),
(4.8), (4.10) and (4.12) that for each t ∈ [T1, T2]

|x(t)| ≤ |x(T1)| +

∣

∣

∣

∣

∣

t
∫

T1

[Ax(s) +Bu(s)] ds

∣

∣

∣

∣

∣

≤ |x(T1)| + ‖A‖

t
∫

T1

|x(s)| ds + ‖B‖

t
∫

T1

|u(s)|ds ≤M +M

t
∫

T1

(|x(s)| + |u(s)|) ds

≤M

(

1 +

T2
∫

T1

(|x(s)| + |u(s)|) ds

)

≤M

(

1 +

T2
∫

T1

f(s, x(s), u(s)) ds+

T2
∫

T1

ψ1(s) ds

)

≤M(1 +D + ‖ψ1‖) ≤M0 − 2.

Thus property (P) holds.
Choose a positive number

ǫ0 < ǫ (T2 − T1 +D + 2‖ψ1‖ + 1)−1/4 (4.14)

and a positive number ǫ1 < 1 for which

ǫ1 + ǫ1(1 − ǫ1)
−1 < ǫ0/8. (4.15)

In view of property (v) (see the definition of M) there exist Γ0, δ0 > 0 such that for
almost every t ∈ (T1, T2)

|f(t, x1, u) − f(t, x2, u)| ≤ ǫ1 max{|f(t, x1, u)|, |f(t, x2, u)|} + ǫ1 (4.16)

for each u ∈ Rm and each x1, x2 ∈ Rn which satisfy

|xi| ≤M0, i = 1, 2, |u| ≥ Γ0, |x1 − x2| ≤ 4δ0. (4.17)

By property (iv) (see the definition of M) there exists a positive number

δ1 < min{δ0, ǫ1, 1} (4.18)

such that for almost every t ∈ (T1, T2) the inequality

|f(t, x1, u1) − f(t, x2, u2)| ≤ ǫ0 (4.19)

holds for each x1, x2 ∈ Rn and each u1, u2 ∈ Rm such that

|xi|, |ui| ≤M0 + Γ0 + 1, i = 1, 2, |x1 − x2|, |u1 − u2| ≤ δ1. (4.20)
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Let δ2 > 0 satisfy

(δ2d0 +Mδ2)

(

1 +D +

T2
∫

T1

ψ1(t) dt

)

< δ1/4.

Choose δ > 0 such that
δ < min{1, δ1, δ2} (4.22)

and that for each A,P ∈ A21 satisfying

‖A‖ ≤M, ‖A− P‖ ≤ δ

and each τ ∈ [0, T2 − T1] the inequality

‖eτP − eτA‖ ≤ δ2 (4.23)

holds.
Assume that z ∈ Rn, A ∈ A21 and B ∈ A22 satisfy (4.1), (x, u) ∈ X satisfy (4.2),

(4.3) and ξ ∈ Rn, P ∈ A21 and Q ∈ A22 satisfy (4.4). It follows from (4.2), (2.2) and
(2.3) that

x(T1) = z, (4.24)

x′(t) = Ax(t) +Bu(t), t ∈ (T1, T2) a.e. (4.25)

Relations (4.24) and (4.25) imply that

x(t) = e(t−T1)Az +

t
∫

T1

e(t−s)ABu(s) ds, t ∈ [T1, T2]. (4.26)

In view of (4.3) and (4.8)
T2
∫

T1

|u(t)| dt <∞. Define

y(t) = e(t−T1)P ξ +

t
∫

T1

e(t−s)PQu(s) ds, t ∈ [T1, T2]. (4.27)

It is not difficult to see that
(y, u) ∈ X(ξ, P,Q). (4.28)

It follows from (4.27), (4.26), (4.1), (4.4), (4.22), (4.9) and the choice of δ (see (4.23))
that for each t ∈ [T1, T2]

|y(t) − x(t)| =

∣

∣

∣

∣

∣

e(t−T1)Az +

t
∫

T1

e(t−s)ABu(s) ds− e(t−T1)P ξ −

t
∫

T1

e(t−s)PQu(s) ds

∣

∣

∣

∣

≤ |e(t−T1)P ξ − e(t−T1)P z| + |e(t−T1)P z − e(t−T1)Az|
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+

∣

∣

∣

∣

∣

t
∫

T1

e(t−s)PQu(s)ds−

T
∫

T1

e(t−s)PBu(s)ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

t
∫

T1

e(t−s)PBu(s)ds−

t
∫

T1

e(t−s)ABu(s)ds

∣

∣

∣

∣

∣

≤ |ξ − z| sup{‖eτCx‖ : τ ∈ [0, T2 − T1], C ∈ A21, ‖C‖ ≤M + 1} + |z|δ2

+

t
∫

T1

‖e(t−s)P ‖‖B−Q‖|u(s)|ds+

( t
∫

T1

‖B‖|u(s)|ds

)

sup{‖eτP−eτA‖ : τ ∈ [0, T2 − T1]}

≤ δd0 +Mδ2 + d0δ

t
∫

T1

|u(s)|ds+ δ2M

t
∫

T1

|u(s)|ds

≤ δd0 +Mδ2 +





T2
∫

T1

|u(t)|dt



 (d0δ + δ2M). (4.29)

Relations (4.8) and (4.3) imply that

T2
∫

T1

|u(t)| dt ≤

T2
∫

T1

f(t, x(t), u(t)) dt +

T2
∫

T1

ψ1(t) dt ≤ D +

T2
∫

T1

ψ1(t) dt. (4.30)

In view of (4.29), (4.30), (4.22) and (4.21) for each t ∈ [T1, T2]

|y(t) − x(t)| ≤ (δd0 +Mδ2)

(

1 +D +

T2
∫

T1

ψ1(t) dt

)

< δ1/4. (4.31)

By property (P), (4.1), (4.2) and (4.3)

|x(t)| ≤M0 − 2, t ∈ [T1, T2]. (4.32)

Set

Ω = {t ∈ (T1, T2) : |u(t)| ≥ Γ0}. (4.33)

We will estimate
T2
∫

T1

|f(t, x(t), u(t)) − f(t, y(t), u(t))| dt.

Clearly

T2
∫

T1

|f(t, x(t), u(t)) − f(t, y(t), u(t))| dt ≤

∫

Ω

|f(t, x(t), u(t)) − f(t, y(t), u(t))| dt

+

∫

[T1,T2]\Ω

|f(t, x(t), u(t)) − f(t, y(t), u(t))| dt.

(4.34)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(1) (2006) 85–98 97

It follows from (4.33), (4.32), (4.31) and the choice of Γ0, δ0 (see (4.16)–(4.18)) that for
almost every t ∈ Ω

|f(t, x(t), u(t))− f(t, y(t), u(t))| ≤ ǫ1 + ǫ1 max{|f(t, x(t), u(t))|, |f(t, y(t), u(t))|}. (4.35)

In view of (4.35), (4.15) and Lemma 4.1 for almost every t ∈ Ω

|f(t, x(t), u(t)) − f(t, y(t), u(t))| ≤ ǫ1 + ǫ21(1 − ǫ1)
−1 + ǫ1(1 − ǫ1)

−1|f(t, x(t), u(t))|

< ǫ0/8 + (ǫ0/8)|f(t, x(t), u(t))|.

Combined with (4.8), (4.3), (4.10) and (4.14) this inequality implies that

∫

Ω

|f(t, x(t), u(t)) − f(t, y(t), u(t))| dt ≤

T2
∫

T1

[ǫ0/8 + (ǫ0/8)|f(t, x(t), u(t))| dt

≤ (ǫ0/8)(T2 − T1) + (ǫ0/8)

T2
∫

T1

(f(t, x(t), u(t)) + 2ψ1(t)) dt

≤ (ǫ0/8)(T2 − T1) + (ǫ0/8)(D + 2‖ψ1)‖) < ǫ/8.

(4.36)

It follows from the choice of δ1 (see (4.18)–(4.20)), (4.33), (4.32) and (4.31) that for
almost every t ∈ (T1, T2)\Ω

|f(t, x(t), u(t)) − f(t, y(t), u(t))| ≤ ǫ0.

Together with (4.14) this implies that

∫

(T1,T2)\Ω

|f(t, x(t), u(t)) − f(t, y(t), u(t))| ≤ ǫ0(T2 − T1) < ǫ/4.

Combined with (4.36) and (4.31) this inequality implies that

|If (x, u) − If (y, u)| ≤ ǫ/2.

This completes the proof of Lemma 4.2.

Proofs of Theorems 2.1 and 2.2 By Theorem 3.1 and Proposition 3.1 we need only to
show that the hypotheses (A1) – (A4) and (H2) hold. We have already noted in Section 2
that (A1) is valid. (H2) follows from Proposition 4.2 of [12]. Proposition 4.1 implies
(A2). (A3) follows from Lemma 5.1 of [12]. Lemma 4.2 implies (A4). This completes
the proofs of Theorems 2.1 and 2.2.
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Abstract: This paper considers a decentralized H2 control problem for multi-
channel linear time-invariant (LTI) descriptor systems. Our interest is to
design a low order dynamic output feedback controller. The control problem
is reduced to a feasibility problem of a bilinear matrix inequality (BMI) with
respect to variables of a coefficient matrix defining the controller, a Lyapunov
matrix and a matrix related to the descriptor matrix. Under a matching
condition between the descriptor matrix and the measurement output matrix
(or the control input matrix), we propose to set the Lyapunov matrix in the
BMI as block diagonal appropriately so that the BMI is reduced to LMIs.

Keywords: Multi-channel descriptor system; H2 control; decentralized control; bi-

linear matrix inequality (BMI); linear matrix inequality (LMI).
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1 Introduction

It is well known that descriptor systems (also known as singular systems or implicit sys-
tems) have high abilities in representing dynamical systems. They can preserve physical
parameters in the coefficient matrices, and describe the dynamic part, static part, and
even improper part of the system in the same form. In this sense, descriptor systems are
much superior to systems represented by state-space models.

There have been reported many works on descriptor systems, e.g., [2, 13, 10]. Among
these works, Ref. [10] applied the LMI approach (e.g., [2]) to stabilization and H∞ control
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pr  o  ble  ms  fo  r  de s c r ipto r s y s te ms . Sinc e the L MI - ty p e c o nditio ns pr o p o s e d the r e c o nta in
equality constraints, which are not desirable in real applications, Ref. [17] derived strict
LMI conditions for stability, robust stabilization and H∞ control of linear descriptor
systems. Since the strict LMIs are definite ones without equality constraints, they are
highly tractable and reliable when we use recent popular softwares for solving LMIs.
Later, Ref. [8] extended the consideration to H2 control problem for descriptor systems
and derived a strict LMI condition which is necessary and sufficient for H2 control.

Concerning decentralized control of descriptor systems, Ref. [9] considered a decen-
tralized stabilization problem for large-scale interconnected descriptor systems, which are
special cases of multi-channel descriptor systems. In that context, the design problem
was reduced to feasibility of a BMI, and to solve the BMI, a homotopy-based method
was proposed, where the interconnections between subsystems are increased gradually
from zeros to the given magnitudes. Ref. [20] extended the results in [17] to decentralized
H∞ control for descriptor systems and proposed strict LMI conditions for designing low
order decentralized controller. However, to the best of our knowledge, there is very few
existing result considering decentralized H2 controller design for multi-channel descriptor
systems.

Motivated by the above observations, we consider low order decentralized H2 controller
design for multi-channel descriptor systems in this paper. More precisely, for the multi-
channel descriptor systems under consideration, in addition to the requirement that the
controller should be decentralized (composed of local controllers), we require that the
sum of the orders of local controllers should be smaller than the order of the system
to be controlled. As pointed out in many references [4, 7], the problem of computing a
low order controller is quite difficult. In [18], the homotopy-based algorithm was also
extended to low order decentralized H∞ controller design for multi-channel LTI systems,
by augmenting the matrix variable defining the decentralized controller of desired low
order to a matrix variable defining a full order decentralized controller. Although the
homotopy-based method in [18] can also be applied for the present problem by some
modifications, the convergence of the algorithm depends on how to choose the initial
full order centralized controller, and the random search of such a centralized controller
introduced in [18] needs huge computational efforts in general.

In this paper, we first apply the existing results in [8] for H2 control of linear descriptor
systems, to express the existence condition of decentralized H2 controllers with desired
orders as a BMI with respect to variables of a coefficient matrix defining the controller,
a Lyapunov matrix and a matrix related to the descriptor matrix. As also pointed out
in [18], although it is not difficult to obtain such a BMI, there has been no guaranteed
method for solving general BMIs, especially of large size [6, 10]. Here, under a matching
condition between the descriptor matrix and the measurement output matrix (or the
control input matrix), we apply and modify the method developed in [12, 19, 13] so that
the BMI on hand is reduced to an LMI [2] which is sufficient to the BMI but much more
tractable. More precisely, we propose to set the Lyapunov matrix variable in the BMI
as block diagonal appropriately corresponding to the controller’s desired order. Because
the structure of the block diagonal matrix variables can be set freely, we can consider
the controller’s order arbitrarily.

The remainder of this paper is organized as follows. In Section 2 we formulate our
control problem and rewrite compactly the closed-loop decentralized control system com-
posed of the original descriptor system and the local controllers, by defining some nota-
tions. In Section 3, under a matching condition between the descriptor matrix and the
measurement output matrix, we derive the first LMI condition for existence of desired
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controllers by setting the Lyapunov matrix variable in the BMI as block diagonal appro-
priately. In Section 4, under a matching condition between the descriptor matrix and
the control input matrix, we derive the second LMI condition.

2 Problem Formulation

We consider the N -channel LTI descriptor system described by

Eẋ = Ax + B1w +

N
∑

i=1

B2iui,

z = C1x,

yi = C2ix, i = 1, 2, . . . , N,

(1)

where x ∈ Rn is the descriptor variable, w ∈ Rh is the disturbance input, z ∈ Rp is the
controlled output, ui ∈ Rmi and yi ∈ Rqi are the control input and the measurement
output of channel i (i = 1, 2, . . . , N). The matrices E, A, B1, B2i, C1, C2i are constant
and of appropriate size, N > 1 is the number of subsystems. The matrix E may be
singular and we denote its rank by r = rankE ≤ n. Without loss of generality, we assume
that for every i, B2i is of full column rank, and C2i is of full row rank. Furthermore,
to ensure fitness of the H2 control problem, we assume that the system (1) satisfies the
following condition [16, 8]

kerE ⊂ kerC1. (2)

For the system (1), we consider a decentralized output feedback controller

ẋci = Acixci + Bciyi,

ui = Ccixci + Dciyi

(3)

where xci ∈ Rnci is the state of the i-th local controller, nci is a specified dimension,
and Aci, Bci, Cci, Dci, i = 1, 2, . . . , N, are constant matrices to be determined. Since
we are interested in designing a low order decentralized controller, we require that nc =
∑N

i=1 nci < n̄ ≤ n, where n̄ is the order of the system described by the transfer function

C1(sE − A)−1B1.
The closed-loop system obtained by applying the controller (3) to the system (1) is

Eẋ =

(

A +

N
∑

i=1

B2iDciC2i

)

x +

N
∑

i=1

B2iCcixci + B1w,

ẋci = BciC2ix + Acixci,

z = C1x.

(4)

By Tzw(s), we denote the transfer function from w to z in the above closed-loop
system. Then, the control problem of this paper is stated as follows:

Decentralized H2 control problem. For a specified scalar γ > 0, design a low order

decentralized controller (3) for the system (1) so that the resultant closed-loop system (4)
is stable and ‖Tzw(s)‖2 < γ. If such a decentralized controller exists, we say the descriptor
system (1) is stabilizable with H2 norm γ via a decentralized controller (3).
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We collect the controller state xci and the coefficient matrices Aci, Bci, Cci, Dci as

xc = [xT
c1 xT

c2 . . . xT
cN ]T,

AcD = diag {Ac1, Ac2, . . . , AcN},

BcD = diag {Bc1, Bc2, . . . , BcN},

CcD = diag {Cc1, Cc2, . . . , CcN},

DcD = diag {Dc1, Dc2, . . . , DcN},

and define the matrices
B2 = [ B21 B22 . . . B2N ] ,

C2 = [ CT
21 CT

22 . . . CT
2N ]

T

to describe the closed-loop system (4) as

Eẋ = (A + B2DcDC2)x + B2CcDxc + B1w,

ẋc = BcDC2x + AcDxc,

z = C1x.

(5)

Since it is reasonable to consider the case where all the input/output channels are
independent, we assume that B2 is of full column rank and C2 is of full row rank.

We further write the matrices AcD, BcD, CcD and DcD in a single matrix

GD =

[

AcD BcD

CcD DcD

]

(6)

and introduce the notations

[

˜E Ã
]

=

[

E 0
∣

∣ A 0n×nc

0 Inc

∣

∣ 0nc×n 0nc×nc

]

,

[

˜B1
˜B2

]

=

[

B1

∣

∣ 0n×nc
B2

0nc×h

∣

∣ Inc
0nc×m

]

,

[

˜C1

˜C2

]

=







C1 0p×nc

0nc×n Inc

C2 0q×nc






,

where m =
N
∑

i=1

mi, q =
N
∑

i=1

qi. Then, the system (5) is written in a compact form as

˜E ˙̃x = (Ã + ˜B2GD
˜C2)x̃ + ˜B1w,

z = ˜C1x̃,
(7)

where x̃ = [xTxT
c ]T ∈ Rn+nc . In this description, only the controller coefficient matrix

GD is unknown, while all the other matrices are given by the system (1) and specified
orders of local controllers.
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3 Controller Design I

We first recall an existing result for H2 control of linear descriptor systems.

Lemma 1 [8] Consider the linear descriptor system described by

Eẋ = Ax + Bw,

z = Cx,
(8)

where x ∈ Rn is the descriptor variable, w ∈ Rh is the disturbance input, z ∈ Rp is the

controlled output, and E, A, B, C are constant matrices of appropriate size. The matrix

E may be singular and rank E = r ≤ n. Let matrices V, U ∈ Rn×(n−r) be of full column

rank and composed of bases of Null E and Null ET, respectively. Assume that the fitness

condition (2) is true between E and C. Then, for a given positive scalar γ, the system

(8) is stable and ‖C(sE−A)−1B‖2 < γ if and only if there exist P > 0 and S satisfying

the LMIs

A(PET + V SUT) + (PET + V SUT)TAT + BBT < 0,

trace [CPCT] < γ2.

Translating Lemma 1 in terms of the closed-loop system (7), we see that the decen-
tralized H2 control problem is reduced to solving the matrix inequalities

(Ã + ˜B2GD
˜C2)( ˜P ˜ET + ˜V ˜S ˜UT) + ( ˜P ˜ET + ˜V ˜S ˜UT)T(Ã + ˜B2GD

˜C2)
T + ˜B1

˜BT
1 < 0, (9)

trace [ ˜C1
˜P ˜CT

1 ] < γ2 (10)

with respect to GD, ˜P > 0 and ˜S, where

˜V =

[

V

0nc×(n−r)

]

, ˜U =

[

U

0nc×(n−r)

]

.

It is observed from the above that the existence condition (9) for a desired decentralized

H2 controller is a BMI with respect to ( ˜P , ˜S) and GD, and at present there is no
globally effective method to solve general BMI problems. Although global optimization
approaches using branch and bound methods for general BMIs have been proposed [6, 10],
the necessary computational efforts would be prohibitive when their methods are applied
to solve our BMI for systems of high dimensions in unlimited regions of the matrix
variables in (9). Another algorithm has been proposed in [18] for solving the BMI (9) by
using the idea of the homotopy method, where the controller’s coefficient matrices are
deformed from full matrices defined by a centralized controller, to block diagonal matrices
of specified dimensions which describe a decentralized controller. Since the convergence
of the algorithm in [18] depends on the choice of the initial centralized controller, a
random search has been proposed for such centralized controller. However, for large
scale problems, the computation efforts for such random search is still very large. For
this reason, we propose to set the Lyapunov matrix variable in (9) as block diagonal
appropriately so that the BMI (9) is reduced to an LMI, which is easy to solve by using
the existing softwares (for example, the LMI Control Toolbox of MATLAB [5]).

Throughout this section, we assume:
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Assumption 1 There exists a matrix C2e such that C2 = C2eE.

This assumption requires a matching condition between the descriptor matrix E and
the measurement output matrix C2, which implies that the null space of E is included
in that of C2. We note that the measurement output in control systems is the quantity
that we can adjust in real implementation, and thus Assumption 1 is not an unrealistic
condition.

Theorem 1 The system (1) under Assumption 1 is stabilizable with H2 norm γ via

a decentralized controller (3) if there exist a matrix ˜S ∈ R(n−r)×(n−r), a positive definite

matrix ̂P structured as

̂P =

[

̂P1 0
0 ̂P2

]

, ̂P1 =

[

̂PA
̂PB

̂PT
B

̂PD

]

,

̂PA = diag { ̂PA1, ̂PA2, . . . , ̂PAN},

̂PB = diag { ̂PB1, ̂PB2, . . . , ̂PBN},

̂PD = diag { ̂PD1, ̂PD2, . . . , ̂PDN}

with ̂PAi ∈ Rnci×nci , ̂PBi ∈ Rnci×qi , ̂PDi ∈ Rqi×qi , and a matrix W structured as

W =

[

WA WB

WC WD

]

, (11)

WA = diag {WA1, WA2, . . . , WAN},

WB = diag {WB1, WB2, . . . , WBN},

WC = diag {WC1, WC2, . . . , WCN},

WD = diag {WD1, WD2, . . . , WDN}

with WAi ∈ Rnci×nci , WBi ∈ Rnci×qi , WCi ∈ Rmi×nci , WDi ∈ Rmi×qi , such that the

LMIs

Φ1 + ΦT
1 + ̂B1

̂BT
1 < 0, (12)

Φ1 = Â( ̂P ̂ET + V̂ ˜SÛT) + ̂B2 [ W 0 ] ̂ET,

trace [Ĉ1
̂PĈT

1 ] < γ2 (13)

hold. Here, ̂E = T−1
˜ET , Â = T−1ÃT , ̂B1 = T−1

˜B1, ̂B2 = T−1
˜B2, Ĉ1 = ˜C1T ,

V̂ = T−1
˜V , Û = T−1

˜U, and T ∈ R(n+nc)×(n+nc) is a nonsingular matrix satisfying

˜C2T = [ Inc+q 0 ] . (14)

When the LMIs (12) – (13) are feasible, one desired controller is computed as

GD = W ̂P−1
1 . (15)

Proof We first note that since we have assumed in the previous section that C2 is

of full row rank, ˜C2 is also of full row rank, and thus there always exists a nonsingular



105  G. ZH A I, M . Y O SH IDA , J. IM A E A N D T . KO B AYA SH I

matrix T such that (14) is satisfied. Although such a matrix is not unique, we can see
later that the choice of T does not affect the feasibility of the LMIs (12) – (13).

Pre-multiplying the first LMI (12) by T and post-multiplying it by T T, and then

substituting all the notations we defined together with ˜P = T ̂PT T, we obtain

Φ̃1 + Φ̃T
1 + ˜B1

˜BT
1 < 0 (16)

Φ̃1 = Ã( ˜P ˜ET + ˜V ˜S ˜UT) + ˜B2 [ W 0 ]T T
˜ET.

It is easy to confirm from (14) and (15) that

[ W 0 ] = GD
˜C2T ̂P,

and that

˜C2
˜V =

[

0nc×n Inc

C2 0q×nc

] [

V

0nc×(n−r)

]

=

[

0
C2V

]

=

[

0
C2eEV

]

= 0.

Thus, we obtain from (16) that

Ã( ˜P ˜ET + ˜V ˜S ˜UT) + ( ˜P ˜ET + ˜V ˜S ˜UT)TÃT + ˜B2GD
˜C2

˜V ˜S ˜UT + ( ˜B2GD
˜C2

˜V ˜S ˜UT)T

+ ˜B2GD
˜C2

˜P ˜ET + ( ˜B2GD
˜C2

˜P ˜ET)T + ˜B1
˜BT

1 < 0

which is exactly the matrix inequality (9). Since the second LMI (13) is the same as
(10), we declare that the closed-loop system (7) with (15) is stable with H2 norm γ.

What we have to do next is to prove that the controller coefficient matrix GD given

by (15) has the decentralized structure defined in (6). Since we required ̂P > 0 in the

theorem, we get ̂PA > 0 and ̂PD > 0. Then, it is not difficult to obtain that

̂P−1
1 =

[

PA PB

PT
B PD

]

where

PA = ̂P−1
A + ̂P−1

A
̂PB( ̂PD − ̂PT

B
̂PT
A

̂PB)−1
̂PT
B

̂P−1
A

PB = − ̂P−1
A

̂PB( ̂PD − ̂PT
B

̂P−1
A

̂PB)−1

PD = ( ̂PD − ̂PT
B

̂P−1
A

̂PB)−1.

Since ̂PA, ̂PB , ̂PD are block diagonal, PA, PB and PD are block diagonal too. Then, we
obtain from (15) that

GD = W ̂P−1
1 =

[

WAPA + WBPT
B WAPB + WBPD

WCPA + WDPT
B WCPB + WDPD

]

. (17)

Since WA, WB , WC , WD are block diagonal, we see that all the four elements in (17) are
block diagonal and thus the above GD has the decentralized structure specified in (6).
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Remark 1 It is understood from the above proof that the block diagonal structures of

W and ̂P1 are designed so that a decentralized controller is obtained, and the block diag-

onal structure of ̂P is assumed so that the coupling between GD and ˜P can be removed
by using some equivalent transformation. Although the structures of the variables are
complicated at a first glimpse, the matrix inequalities (12) – (13) are linear with respect

to ˜S, ̂P , W , and thus are very easy to solve by using the existing software LMI Control
Toolbox [5].

4 Controller Design II

In this section, we assume:

Assumption 2 There exists a matrix B2e such that B2 = EB2e.

This assumption requires a matching condition between the descriptor matrix E and
the control input matrix B2, which implies that the space spanned by B2 is included in
that by E. We note that the control input in control systems is the quantity that we can
adjust in real implementation, and thus Assumption 2 is not an unrealistic condition.

To proceed, we first derive another form of Lemma 1 for the benefit of the discussion
in this section. To do this, we consider the same system (8) as in Lemma 1. Noticing
that ‖C(sE −A)−1B‖2 < γ is equivalent to ‖BT(sET −AT)−1CT‖2 < γ together with
the fact

(ET)TV = 0, (ET)U = 0,

we apply Lemma 1 to the dual system of (8), described by (ET, AT, CT, BT), to obtain
the following result. It is noted that the result has also appeared in [8].

Lemma 2 For a given positive scalar γ, the system (8) is stable and ‖C(sE −
A)−1B‖2 < γ if and only if there exist Q > 0 and R satisfying the LMIs

AT(QE + URV T) + (QE + URV T)TA + CTC < 0

trace [BTQB] < γ2.

Translating Lemma 2 in terms of the closed-loop system (7), we see that the decen-
tralized H2 control problem is reduced to solving the matrix inequalities

(

Ã + ˜B2GD
˜C2

)T
( ˜Q ˜E + ˜U ˜R˜V T) + ( ˜Q ˜E + ˜U ˜R˜V T)T

(

Ã + ˜B2GD
˜C2

)

+ ˜CT
1

˜C1 < 0, (18)

trace [ ˜BT
1

˜Q ˜B1] < γ2 (19)

with respect to GD, ˜Q > 0 and ˜R. Same as in the previous section, the matrix inequality

(18) is a BMI with respect to ( ˜Q, ˜R) and GD, there is no globally effective method for
solving it. Here, under Assumption 2, we propose to set the Lyapunov matrix variable
˜Q as block diagonal appropriately so that the BMI (18) is reduced to an LMI.
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Theorem 2 The system (1) under Assumption 2 is stabilizable with H2 norm γ via

a decentralized controller (3) if there exist a matrix ˜R ∈ R(n−r)×(n−r), a positive definite

matrix ̂Q structured as

̂Q =

[

̂Q1 0

0 ̂Q2

]

, ̂Q1 =

[

̂QA
̂QB

̂QT
B

̂QD

]

,

̂QA = diag { ̂QA1, ̂QA2, . . . , ̂QAN},

̂QB = diag { ̂QB1, ̂QB2, . . . , ̂QBN},

̂QD = diag { ̂QD1, ̂QD2, . . . , ̂QDN},

with ̂QAi ∈ Rnci×nci , ̂QBi ∈ Rnci×mi , ̂QDi ∈ Rmi×mi , and a matrix W structured as

(11) such that the LMIs

Υ1 + ΥT
1 + C̆T

1 C̆1 < 0, (20)

Υ1 = (ĔT
̂Q + V̆ ˜RTŬT)Ă + ĔT

[

W

0

]

C̆2

trace [B̆T
1

̂QB̆1] < γ2 (21)

hold. Here, Ĕ = X ˜EX−1, Ă = XÃX−1, B̆1 = X ˜B1, C̆1 = ˜C1X
−1, C̆2 = ˜C2X

−1,

V̆ =
(

X−1
)T

˜V , Ŭ =
(

X−1
)T

˜U, and X ∈ R(n+nc)×(n+nc) is a nonsingular matrix

satisfying

X ˜B2 =

[

Inc+m

0

]

. (22)

When the LMIs (20) – (21) are feasible, one desired controller is computed as

GD = ̂Q−1
1 W. (23)

Proof We first note that since we have assumed that B2 is of full column rank, ˜B2 is
also of full column rank, and thus there always exists a nonsingular matrix X such that
(22) is satisfied. Also, we can see later that the choice of X does not affect the feasibility
of the LMIs (20) – (21).

Pre-multiplying the first LMI (20) by XT and post-multiplying it by X , and then

substituting all the notations we defined with ˜Q = XT
̂QX , we obtain

Υ̃1 + Υ̃T
1 + ˜CT

1
˜C1 < 0, (24)

Υ̃1 = ( ˜ET
˜Q + ˜V ˜RT

˜UT)Ã + ˜ETXT

[

W

0

]

˜C2.

According to (22) and (23), we compute

̂QX ˜B2GD =

[

̂Q1 0

0 ̂Q2

] [

I

0

]

̂Q−1
1 W =

[

W

0

]

.
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Together with the fact

˜BT
2

˜U =

[

0 In̂

BT
2 0

] [

U

0

]

=

[

0
BT

2eE
TU

]

= 0, (25)

we obtain (18) easily from (24)–(25).
Since the second LMI (21) is the same as (19), and the decentralized structure of

GD = ̂Q−1
1 W can be proved by using the same technique as used in Theorem 1, we

conclude that the system (1) is stabilized with H2 norm γ via the decentralized controller
(3) given by (23).

Remark 2 Although Theorems 1 and 2 come up with dual forms, they are not equiv-
alent and are supposed to deal with different cases of Assumption 1 or Assumption 2,
respectively. Furthermore, the LMI conditions provided by the theorems are sufficient
ones. Therefore, even in the case where both Assumption 1 and Assumption 2 hold and
thus both theorems can be applied, the LMI conditions of one theorem would be satisfied
while the other would not.

Remark 3 When it is necessary, we can try to obtain a tight H2 norm γ by considering
the generalized eigenvalue problem (EVP) [2]: “minimize γ2, s.t. (12) – (13) or (20) – (21),
respectively”.

5 Conclusion

This paper has considered a decentralized H2 control problem for multi-channel lin-
ear time-invariant (LTI) descriptor systems. We first reduce the control problem to a
feasibility problem of a bilinear matrix inequality (BMI) with respect to variables of a
coefficient matrix defining the controller, a Lyapunov matrix and a matrix related to
the descriptor matrix. Then, under a matching condition between the descriptor matrix
and the measurement output matrix (or the control input matrix), we has proposed to
set the Lyapunov matrix in the BMI as block diagonal appropriately so that the BMI
is reduced to LMIs. Since the structure of the block diagonal matrix variables can be
set freely, we can consider the controller’s order arbitrarily. We suggest that the present
approach should be applicable for any controller design problem with controller structure
constraints.

Noting that there are several references [1, 14] dealing with H2 and/or H∞ control of
descriptor systems also using the matrix inequality approach, our future research interest
includes the extension of the results in the present paper to the case of mixed H2/H∞

decentralized control for time-delay descriptor systems. Stochastic or probabilistic con-
trol [1] is another interesting issue for descriptor systems.
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