Uniqueness of Solution to the von Karman Equations with Free Boundary Conditions

J. Oudaani ${ }^{1 *}$, A. El Mouatasim ${ }^{2}$ and B. El-Aqqad ${ }^{3}$
1,2 Department of Mathematics, Informatics and Management, Ibn Zohr University, Poly-Disciplinary Faculty, Code Postal 638, Ouarzazate, Morocco.
${ }^{3}$ College of Idlssan-Ouarzazate, Morocco.

Received: April 11, 2020; Revised: September 18, 2020
]

Abstract

The purpose of this paper is to give some theoretical results, under weaker hypotheses imposed on the external, internal, linear potential loads and three measurable portions with non null area of the boundary of the shallow shell, for the local existence and uniqueness of solution to the stationary von Karman equations, with free-type boundary conditions of the elastic shallow shell. Finally, in some theoretical results, we describe an iterative method for constructing a unique weak solution for the problem.

Keywords: static von Karman equations; free-type boundary; elastic shallow shell.

Mathematics Subject Classification (2010): 74F10, 74B20, 74K25, 65N05.

1 Introduction

In nonlinear three-dimensional elasticity theory, the stationary von Karman equations are two dimensional equations for the nonlinearly elastic shallow shell. The mathematical model is a modeling of the physical situation of buckling phenomenon of the elastic shallow shell, which is perturbed by the external and internal forces and potentially non conservative loads L (.) applied to the system, see 3]. In case of free-type and mixed homogenous boundary conditions, we know the static von Karman equations for vertical displacement u of the middle surface of the reference configuration of the shell from a plane, and the Airy stress function ϕ has the form, see, for instance, [3].

[^0]Find $\left.(u, \phi) \in\left(H_{0}^{2}(\omega)\right)^{2}\right)$ such that

$$
(\mathbb{P}) \begin{cases}\Delta^{2} u-\left[\phi+F_{0}, u+\theta\right]+L(u)=p(x) & \text { in } \omega, \\ \Delta^{2} \phi+[u, u+2 \theta]=0 & \text { on } \omega, \\ u=\partial_{\nu} u=0 & \text { on } \Gamma_{0}, \\ u=0, \Delta u+(1-\mu) B_{1} u=0 & \text { on } \Gamma_{1}, \\ \Delta u+(1-\mu) B_{1} u=0, \partial_{\nu}(\Delta u)+(1-\mu) B_{2} u-\vartheta u=0 & \text { on } \Gamma_{2}, \\ \phi=0, \partial_{\nu} \phi=0 & \text { on } \Gamma .\end{cases}
$$

Here ω is the middle surface of the initial configuration of the shell, the parameter μ is the Poisson ratio, $\vartheta \geq 0$ is a positive reel and $[u, v]$ is a von Karman bracket defined by 15

$$
\begin{equation*}
[\phi, u]=\partial_{11} \phi \partial_{22} u+\partial_{11} u \partial_{22} \phi-2 \partial_{12} \phi \partial_{12} u . \tag{1}
\end{equation*}
$$

The shell is subjected to the internal force F_{0}, which is a given function determined by the in-plane mechanical loads, and the shell is subjected also to the external force p, and $\theta(x, y)$, see [3, 7], is a mapping measuring the deviation of the middle surface of the reference configuration of the shell from a plane. This function determines the initial form of the shell and the case $\theta=0$ corresponds to the plate theory.

In $[3$, I.Chueshov and I.Lasiecka studied the stationary and dynamic von Karman equations and established different theoretical results for generalized, strong and weak solutions under weaker hypotheses imposed at different loads, namely, for free-type boundary conditions the authors take the assumption $F_{0} \in H^{\frac{5}{2}+\epsilon}(\omega)$, by using the theory of nonlinear semi-group. To justify the uniqueness, the authors used the limit definition of generalized solution along weak continuity of the nonlinear terms involving the Airy stress function and knowing the Lipschitz continuity of von Karman bracket with the Airy stress function. Moreover, in 4, P.G. Ciarlet and L. Gratie justified the generalized von Karman equations by means of a formal asymptotic analysis and established the existence of the system.

The aim of this paper is to find a condition verified by the internal and external loads, the linear bounded operator L and, also, three measurable portions $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$ with non null area of the boundary $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$ of the shallow shell. Moreover, in this paper, for justifying some theoretical results, we take only the following weak assumption $F_{0} \in H^{2}(\omega)$.

This paper will be organized as follows. After this introduction, Section 2 contains some basic results and tools that will be needed later. Section 3 is devoted to the description of the mathematical structure of the model under consideration by using an iterative method for establishing the existence and uniqueness of the weak solution associated to the static von Karman equations.

2 Preliminary Results and Needed Tools

In this paper, ω denotes a nonempty connected and bounded open domain in $I R^{2}$, with its boundary $\Gamma=\partial \omega$ of C^{∞}-regularity. We assume that in this section $\Gamma=$
$\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$, where Γ_{0}, Γ_{1} and Γ_{2} are three measurable portions of Γ with non null area and $\Gamma_{0} \cap \Gamma_{1} \cap \Gamma_{2}=\emptyset$.

Let us consider the following problem [3]. Find $(u, \phi) \in H^{2}(\omega) \times H_{0}^{2}(\omega)$ such that

$$
(\mathbb{P}) \begin{cases}\Delta^{2} u-\left[\phi+F_{0}, u+\theta\right]+L(u)=p(x) & \text { in } \omega, \\ \Delta^{2} \phi+[u, u+2 \theta]=0 & \text { on } \omega, \\ u=\partial_{\nu} u=0 & \text { on } \Gamma_{0}, \\ u=0, \Delta u+(1-\mu) B_{1} u=0 & \text { on } \Gamma_{1}, \\ \Delta u+(1-\mu) B_{1} u=0, \partial_{\nu}(\Delta u)+(1-\mu) B_{2} u-\vartheta u=0 & \text { on } \Gamma_{2}, \\ \phi=0, \partial_{\nu} \phi=0 & \text { on } \Gamma,\end{cases}
$$

where $[u, v]$ is defined in (1) and

$$
\begin{gathered}
B_{1} u=2 n_{1} n_{2} \partial_{12} u-n_{1}^{2} \partial_{11} u-n_{2}^{2} \partial_{22} u \\
B_{2} u=\partial_{\tau}\left[\left(n_{1}^{2}-n_{2}^{2}\right) \partial_{12} u+n_{1} n_{2}\left(\partial_{22} u-\partial_{11} u\right)\right]
\end{gathered}
$$

with $n=\left(n_{1}, n_{2}\right)$ being the outer normal to Γ and $\tau=\left(-n_{2}, n_{1}\right)$ being the unit tangent vector along Γ.

Let $p \geq 1$ and $m \in I N^{*}$, we denote

$$
|u|_{p}=\left(\int_{\omega}|u|^{p}\right)^{1 / p}, \quad\|u\|=\sum_{\alpha, \beta=1,2}\left|\partial_{\alpha \beta} u\right|_{2} \quad \text { and }\|u\|_{0}^{2}=\int_{\omega}(\Delta u)^{2}
$$

and $\|u\|_{m, \omega}$ is the classical norm in $H^{m}(\omega)$. For the sake of simplicity, we define

$$
\mathbb{V}=\left\{u \in H^{2}(\omega) / u=\partial_{\nu} u=0 \text { on } \Gamma_{0} \text { and } u=0 \text { on } \Gamma_{1}\right\},
$$

which is a subspace of $H^{2}(\omega)$, and

$$
\begin{equation*}
a_{0}(u, v)=\int_{\omega}(\Delta u \Delta v-(1-\mu)[u, v]) . \tag{2}
\end{equation*}
$$

The following result is of interest.
Proposition 2.1 Let Γ_{0} and Γ_{1} be two portions of Γ, if we do not choose the next two portions Γ_{0} or Γ_{1} of Γ in a linear segment, then the semi norm $\|$.$\| is a norm in \mathbb{V}$ equivalent to the usual norm of $H^{2}(\omega)$.

Proof. To establish that the semi-norm $\|$.$\| is a norm in the subspace \mathbb{V}$, we show the following result:

$$
\forall u \in \mathbb{V} ; \quad\|u\|=\sum_{\alpha, \beta=1,2}\left|\partial_{\alpha \beta} u\right|_{2}=0 \Rightarrow u=0
$$

Then, for $\forall u \in \mathbb{V}$, we have

$$
\|u\|=0 \Rightarrow \forall \alpha, \beta=1,2, \quad \partial_{\alpha \beta} u=0 .
$$

Now, by using a classical result from distribution theory [5], and since the set ω is connected, with $\forall \alpha, \beta=1,2, \quad \partial_{\alpha \beta} u=0$, we have that

$$
\forall(x, y) \in \bar{\omega}, \exists(a, b, c) \in I R^{3} \text { such that } u(x, y)=a x+b y+c
$$

If Γ_{0} or Γ_{1} is not in a linear segment, then

$$
u_{\Gamma_{0}}=\left.(a x+b y+c)\right|_{\Gamma_{0}}=0 \text { and } u_{\Gamma_{1}}=\left.(a x+b y+c)\right|_{\Gamma_{1}}=0
$$

this implies that

$$
\Gamma_{0} \subset\left\{(x, y) \in I R^{2} / a x+b y+c=0\right\}
$$

or

$$
\Gamma_{1} \subset\left\{(x, y) \in I R^{2} / a x+b y+c=0\right\}
$$

that contradicts the assumption that one of two portions Γ_{0} or Γ_{1} is not in a linear segment, and we conclude that $a=b=c=0$.

Now, if we have that two portions Γ_{0} and Γ_{1} are in linear segments, then

$$
\Gamma_{0} \subset\left\{(x, y) \in I R^{2} / a x+b y+c=0\right\} \text { and } \Gamma_{1} \subset\left\{(x, y) \in I R^{2} / a x+b y+c=0\right\}
$$

Since Γ_{0} and Γ_{1} are not in the identical linear segment, we deduce that

$$
a=b=c=0 \Rightarrow u=0 .
$$

Finally, the semi-norm $\|$.$\| is a norm in \mathbb{V}$.
Now we show that the subspace \mathbb{V} is a Banach space in $H^{2}(\omega)$. Let $\left(u_{n}\right)_{n \geq 0}$ be the sequence elements in the space \mathbb{V} such that $\left(u_{n}\right)_{n \geq 0}$ converge to u in $H^{2}(\omega)$.

Since the operator "trace" and ∂_{ν} are continuous, we have the sequences $\left(u_{n}\right)_{\Gamma_{\Gamma_{0}}}$, $\left(u_{n}\right)_{\left.\right|_{\Gamma_{1}}}$ and $\partial_{\nu}\left(u_{n}\right)_{\Gamma_{\Gamma_{0}}}$ converge to $u_{\left.\right|_{\Gamma_{0}}}, u_{\left.\right|_{\Gamma_{1}}}$ and $\partial_{\nu} u_{\left.\right|_{\Gamma_{0}}}$, then $u_{\Gamma_{\Gamma_{0}}}=u_{\left.\right|_{\Gamma_{1}}}=0$ and $\partial_{\nu} u_{\Gamma_{\Gamma_{0}}}=0$. Hence $u \in \mathbb{V}$, then \mathbb{V} is a closed subspace in $H^{2}(\omega)$.

Moreover, we prove that the norm $\|$.$\| in the space \mathbb{V}$ is equivalent to the usual norm of $H^{2}(\omega)$.

The inequality $\|u\| \leq\|u\|_{2, \omega}$ clearly holds. But if we suppose that the other inequality is false, then there exists a sequence $\left(u_{n}\right)$ in \mathbb{V}, such that

$$
\begin{equation*}
\forall n \in I N, \quad\left\|u_{n}\right\|_{2, \omega}=1 \text { and } \lim _{n \rightarrow+\infty}\left\|u_{n}\right\|=0 \tag{3}
\end{equation*}
$$

For more detail, see [5].
So, u_{n} is bounded in the space $H^{2}(\omega)$. We use the compact injection $H^{2}(\omega) \hookrightarrow_{c} L^{2}(\omega)$, then there exists a subsequence u_{m} such that, with (3), we have u_{m} converges in the space $L^{2}(\omega)$ and also u_{m} converges to 0 , with the norm $\|$.$\| in the space \mathbb{V}$.

Finally, we conclude that u_{m} is a Cauchy sequence with the norm $\left(|\cdot|_{2}^{2}+\|\cdot\|^{2}\right)^{1 / 2}$. In 5, the norm $\left(|\cdot|_{2}^{2}+\|\cdot\|^{2}\right)^{1 / 2}$ is equivalent to the usual norm of $H^{2}(\omega)$, this implies that u_{m} converges to u in \mathbb{V}, therefore the limit u satisfies

$$
\|u\|=\lim _{m \rightarrow+\infty}\left\|u_{m}\right\|=0 \Rightarrow u=0
$$

but this result contradicts the equality $\forall m \in I N,\left\|u_{m}\right\|_{2, \omega}=1$ and the desired result is obtained.

Remark 2.1 The norm $\|$.$\| is equivalent to the norm \|.\|_{0}$ in the space \mathbb{V}.
Proof. By the analogous method as in Proposition 2.1, we prove that

$$
\forall u \in \mathbb{V}, \quad \exists \alpha>0, \beta>0 ; \quad \alpha\|u\|_{0} \leq\|u\|_{2, \omega} \leq \beta\|u\|_{0}
$$

and, with the result of Proposition 2.1. we have

$$
\forall u \in \mathbb{V}, \quad \exists \alpha_{1}>0, \beta_{1}>0 ; \quad \alpha_{1}\|u\| \leq\|u\|_{2, \omega} \leq \beta_{1}\|u\|
$$

then

$$
\forall u \in \mathbb{V}, \quad \frac{\alpha_{1}}{\beta}\|u\| \leq\|u\|_{0} \leq \frac{\beta_{1}}{\alpha}\|u\|
$$

Finally, the desired result is verified.
We recall the following results, see $[1,3,8,10,11]$ for instance.
Theorem 2.1 Let $u \in H^{4}(\omega), v \in H^{2}(\omega)$ and $\mu \in I R$, we have that, with (2),

$$
\int_{\omega} \Delta^{2} u v=a_{0}(u, v)+\int_{\Gamma}\left[\left(\partial_{\nu} \Delta u+(1-\mu) B_{2} u\right) v-\left(\Delta u+(1-\mu) B_{1} u\right) \partial_{\nu} v\right]
$$

Lemma 2.1 The space $\mathbb{V} \cap H^{4}(\omega)$ is dense in the space \mathbb{V} for the induct norm of $H^{4}(\omega)$ and for every u and v in \mathbb{V} the equality

$$
\int_{\omega} \Delta^{2} u v=a_{0}(u, v)+\int_{\Gamma}\left[\left(\partial \nu \Delta u+(1-\mu) B_{2} u\right) v-\left(\Delta u+(1-\mu) B_{1} u\right) \partial_{\nu} v\right]
$$

holds.
Theorem 2.2 Let $f \in L^{1}(\omega)$, then the following problem

$$
\begin{cases}\Delta^{2} v=f & \text { in } \omega, \\ v=0 & \text { on } \quad \Gamma, \\ \partial_{\nu} v=0 & \text { on } \quad \Gamma\end{cases}
$$

has one and only one solution v in $H_{0}^{2}(\omega)$ satisfying the relation

$$
\|v\|_{0} \leq c_{0}|f|_{1}
$$

where $c_{0} \succ 0$ is a constant which depends only on mes (ω).
We are now in a position to state the following result.
Theorem 2.3 Let $f \in L^{1}(\omega)$, the following problem

$$
(\mathbb{Q}) \begin{cases}\Delta^{2} u=f & \text { in } \omega, \\ u=\partial_{\nu} u=0 & \text { on } \Gamma_{0}, \\ u=0, \Delta u+(1-\mu) B_{1} u=0 & \text { on } \Gamma_{1}, \\ \Delta u+(1-\mu) B_{1} u=0 & \text { on } \Gamma_{2}, \\ \partial_{\nu}(\Delta u)+(1-\mu) B_{2} u-\vartheta u=0 & \text { on } \Gamma_{2}\end{cases}
$$

has one and only one solution in \mathbb{V} such that

$$
\|u\| \leq c_{00}|f|_{1}
$$

where $c_{00} \succ 0$ is a constant which depends only on mes (ω).
Proof. By virtue of Lemma 2.1, for all $(u, v) \in \mathbb{V}^{2}$ we have

$$
\begin{equation*}
\int_{\omega} \Delta^{2} u v=a_{0}(u, v)+\int_{\Gamma}\left[\left(\partial_{\nu} \Delta u+(1-\mu) B_{2} u\right) v-\left(\Delta u+(1-\mu) B_{1} u\right) \partial_{\nu} v\right] . \tag{4}
\end{equation*}
$$

Since $v \in \mathbb{V}$, we have

$$
v_{\left.\right|_{\Gamma_{0}}}=0, v_{\left.\right|_{\Gamma_{1}}}=0,\left.\partial_{\nu} v\right|_{\Gamma_{0}}=0,\left(\partial \nu \Delta u+(1-\mu) B_{2} u\right)_{\left.\right|_{\Gamma_{2}}}=0,
$$

and

$$
\left(\Delta u+(1-\mu) B_{1} u\right)_{\left.\right|_{\Gamma_{1} \cup \Gamma_{2}}}=0, \int_{\Gamma_{2}}\left(\partial_{\nu} \Delta u+(1-\mu) B_{2} u\right) v=\vartheta \int_{\Gamma_{2}} u v,
$$

hence, with (4) we deduce that

$$
a_{0}(u, v)+\vartheta \int_{\Gamma_{2}} u v=\int_{\omega} f v=l(v) .
$$

The mapping $a_{0}(.,$.$) is a bilinear, symmetric and continuous in the Hilbert space \mathbb{V}$. Moreover, the linear operator $l($.$) is also continuous.$
So

$$
\forall u \in \mathbb{V}, a_{0}(u, u)=\int_{\omega}(\Delta u)^{2}-(1-\mu) \int_{\omega}[u, u]=\|u\|_{0}^{2}-(1-\mu) \int_{\omega}[u, u]
$$

and

$$
\int_{\omega}[u, u]=\int_{\omega}\left(2 \partial_{11} u \partial_{22} u-2\left(\partial_{12} u\right)^{2}\right) \leq \int_{\omega} 2 \partial_{11} u \partial_{22} u .
$$

Moreover,

$$
\int_{\omega}(\Delta u)^{2}=\int_{\omega}\left(\partial_{11} u+\partial_{22} u\right)^{2}=\int_{\omega}\left(\partial_{11} u\right)^{2}+\left(\partial_{22} u\right)^{2}+2 \int_{\omega}\left(\partial_{11} u \partial_{22} u\right) .
$$

It follows that

$$
\int_{\omega}[u, u] \leq\|u\|_{0}^{2}
$$

this implies that

$$
a_{0}(u, u)=\int_{\omega}(\Delta u)^{2}-(1-\mu) \int_{\omega}[u, u] \geq\|u\|_{0}^{2}-(1-\mu)\|u\|_{0}^{2}=\mu\|u\|_{0}^{2}
$$

Using Remark 2.1, we have

$$
\exists \alpha>0, \quad a_{0}(u, u) \geq \alpha\|u\|^{2}
$$

Then the map $a_{0}(.,$.$) is coercive.$
It turns out that, by the Lax-Milgramme theorem, the following problem

$$
\forall v \in \mathbb{V}, \quad a_{0}(u, v)+\vartheta \int_{\Gamma_{2}} u v=\int_{\omega} f v=l(v)
$$

has one and only one solution in \mathbb{V}.
To prove completely the theorem we show that

$$
\|u\| \leq c_{0}|f|_{1} .
$$

Since u is a solution of the following problem

$$
\forall v \in \mathbb{V}, \quad a_{0}(u, v)+\vartheta \int_{\Gamma_{2}} u v=\int_{\omega} f v=l(v)
$$

and using the injection $H^{2}(\omega) \hookrightarrow C(\bar{\omega})$, we have

$$
\forall u \in \mathbb{V}, \exists \beta>0 \text { such that }\|u\|_{\infty} \leq \beta\|u\| \text {, }
$$

with $a_{0}(u, u)+\vartheta \int_{\Gamma_{1}} u^{2}$ being coercive, then there exists $\alpha \succ 0$ such that

$$
\alpha\|u\|^{2} \leq a_{0}(u, u)+\vartheta \int_{\Gamma_{2}} u^{2}=\int_{\omega} f u \leq\|u\|_{\infty}|f|_{1} \leq \beta\|u\||f|_{1}
$$

Finally,

$$
\|u\| \leq c_{00}|f|_{1}
$$

with $c_{00}=\frac{\beta}{\alpha}$.
Now, let us put

$$
\begin{equation*}
F_{1}(u, \phi)=\left[\phi+F_{0}, u+\theta\right]-L(u) . \tag{5}
\end{equation*}
$$

Before giving our main result, we now state the following results.
Proposition 2.2 Let $(u, v) \in\left(H_{0}^{2}(\omega)\right)^{2}, \theta \in H^{2}(\omega)$ and $F_{0} \in H^{2}(\omega)$ be with small norms. Let $\phi, \varphi \in H_{0}^{2}(\omega)$ be the solutions of the following two problems:

$$
\Delta^{2} \phi=-[u, u] \quad \text { and } \Delta^{2} \varphi=-[v, v] .
$$

Then the following estimations

$$
|[u, \phi]-[v, \varphi]|_{2} \leq c_{1}\|u-v\|
$$

and

$$
\left|F_{1}(u, \phi)-F_{1}(v, \varphi)\right|_{1} \leq c_{1}\|u-v\|
$$

hold for some $0<c_{1}<1$.
Proof. Following [3] and Proposition 2.1 we have

$$
|[u, \phi]-[v, \varphi]|_{2} \leq k\left(\|u\|^{2}+\|v\|^{2}\right)\|u-v\|
$$

for some $k>0$. Let $c>0$ be small enough so that $\|u\| \leq c$ and $\|v\| \leq c$. We have

$$
|[u, \phi]-[v, \varphi]|_{2} \leq 2 k c^{2}\|u-v\|
$$

and

$$
|[u, \phi]-[v, \varphi]|_{1} \leq k_{1}|[u, \phi]-[v, \varphi]|_{2} \leq 2 k k_{1} c^{2}\|u-v\| .
$$

Moreover, we have

$$
\begin{aligned}
\left|\left[u-v, F_{0}\right]\right|_{1} & \leq\left(\int_{\omega}\left|\partial_{11}(u-v)\right|\left|\partial_{22} F_{0}\right|\right)+\left(\int_{\omega}\left|\partial_{22}(u-v)\right|\left|\partial_{11} F_{0}\right|\right) \\
& +2\left(\int_{\omega}\left|\partial_{12}(u-v)\right|\left|\partial_{12} F_{0}\right|\right) \\
& \leq\left\|\partial_{22} F_{0}\right\|_{2}\left|\partial_{11}(u-v)\right|_{2}+\left\|\partial_{11} F_{0}\right\|_{2}\left|\partial_{22}(u-v)\right|_{2} \\
& +2\left\|\partial_{12} F_{0}\right\|_{2}\left|\partial_{12}(u-v)\right|_{2} \\
& \leq 4 c_{2}\left\|F_{0}\right\|_{2, \omega}\|u-v\| .
\end{aligned}
$$

Using the similar proof for the next inequality, with Proposition 2.1 and Theorem 2.2 we have

$$
\begin{aligned}
|[\phi-\varphi, \theta]|_{1} & \leq 4 c_{2}\|\theta\|_{2, \omega}\|\phi-\varphi\| \leq 4 c_{0} c_{2}\|\theta\|_{2, \omega}|[u, u]-[v, v]|_{1} \\
& \leq 4 c_{0} c_{2}\|\theta\|_{2, \omega}\left(|[u, u-v]|_{1}+|[v, u-v]|_{1}\right) \\
& \leq 16 c_{0} c_{2}\|\theta\|_{2, \omega}(\|u\|+\|v\|)\|u-v\| \\
& \leq 32 c_{0} c_{2} c\|\theta\|_{2, \omega}\|u-v\|
\end{aligned}
$$

and so, with $c_{3}=3 \max \left(4 c_{2} c_{0}, 32 c c_{0} c_{2}, 1\right)$

$$
\begin{aligned}
\left|F_{1}(u, \phi)-F_{1}(v, \varphi)\right|_{1} & \leq\left|\left[\phi+F_{0}, u+\theta\right]-\left[\varphi+F_{0}, v+\theta\right]\right|_{1}+|L(u-v)|_{1} \\
& \leq|[\phi, u]-[\varphi, v]|_{1}+\left|\left[F_{0}, u-v\right]\right|_{1}+|[\theta, \phi-\varphi]|_{1} \\
& +\|L\|\|u-v\| \\
& \leq\left(2 k k_{1} c^{2}+4 c_{2} c_{0}\left\|F_{0}\right\|_{2, \omega}+32 c c_{0} c_{2}\|\theta\|_{2, \omega}+\|L\|\right)\|u-v\| \\
& \leq\left(2 k k_{1} c^{2}+c_{3}\left(\left\|F_{0}\right\|_{2, \omega}+\|\theta\|_{2, \omega}+\|L\|\right)\right)\|u-v\|
\end{aligned}
$$

If we choose

$$
\|\theta\|_{2, \omega}+\left\|F_{0}\right\|_{2, \omega}+\|L\|<\frac{1}{c_{3}} \quad \text { and } \quad 0<c<\sqrt{\frac{1-c_{3}\left(\left\|F_{0}\right\|_{2, \omega}+\|\theta\|_{2, \omega}+\|L\|\right)}{2 c_{0} k k_{1}}}
$$

we have

$$
0<c_{1}=2 k k_{1} c^{2}+c_{3}\left(\left\|F_{0}\right\|_{2, \omega}+\|\theta\|_{2, \omega}+\|L\|\right)<1
$$

we then conclude the proof.
Remark 2.2 In the next result, from the mechanical point of view, our weaker assumptions concerning F_{0} in $H_{0}^{2}(\omega)$ mean that no external stresses are applied to the shell 3]. F_{0} is a given function determined by mechanical loads. For some of the results, less regularity on F_{0} is required. For example, to prove the uniqueness of weak solution to the dynamic problem with free boundary conditions and, also, to the thermoelastic plates, some authors take F_{0} in $H_{0}^{3+\epsilon}(\omega)$.

3 Iterative Approach: the Main Results

We will study the problem (\mathbb{P}) by considering the following iterative problem.
Let $n \geq 1,0 \neq u_{0} \in \mathbb{V}$ be given. We first find $\phi_{n} \in H_{0}^{2}(\omega)$ as a solution of the equation $\Delta^{2} \phi_{n}=-\left[u_{n-1}, u_{n-1}+2 \theta\right]$ and u_{n} as a solution of the following problem:

$$
\left(\mathbb{P}_{n}\right) \begin{cases}\Delta^{2} u_{n}=F_{1}\left(u_{n-1}, \phi_{n}\right)+p & \text { in } \omega, \\ u_{n}=\partial_{\nu} u_{n}=0 & \text { on } \Gamma_{0}, \\ u_{n}=0, \Delta u_{n}+(1-\mu) B_{1} u_{n}=0 & \text { on } \Gamma_{1}, \\ \Delta u_{n}+(1-\mu) B_{1} u_{n}=0, \partial_{\nu}\left(\Delta u_{n}\right)+(1-\mu) B_{2} u_{n}-\vartheta u_{n}=0 & \text { on } \Gamma_{2},\end{cases}
$$

where F_{1} is defined by (5).
We are now in a position to state our main result of this section.
Theorem 3.1 Let $p \in L^{2}(\omega)$. If $|p|_{2},\|\theta\|_{2, \omega},\|L\|$ and $\left\|F_{0}\right\|_{2, \omega}$ are small, then the $\operatorname{problem}(\mathbb{P})$ has one and only one solution $(u, \phi) \in \mathbb{V} \times H_{0}^{2}(\omega)$.

Proof. We divide it into three steps.
Step 1: Let us consider the problem $\left(\mathbb{P}_{n}\right)$ with $u_{0} \neq 0$. We will show that

$$
\forall n \in I N, \quad\left\|u_{n}\right\| \leq\left\|u_{0}\right\| \text { and }\left\|\phi_{n+1}\right\| \leq\left\|u_{0}\right\|
$$

For $n=0$, we have $\left\|u_{0}\right\| \leq\left\|u_{0}\right\|$. Otherwise, for ϕ_{1} being the solution of the problem $\Delta^{2} \phi_{1}=-\left[u_{0}, u_{0}+2 \theta\right]$, Proposition 2.1 and Theorem 2.2 ensure that there exists $c_{0}>0$ such that

$$
\left\|\phi_{1}\right\| \leq c_{0}\left|\left[u_{0}, u_{0}+2 \theta\right]\right|_{1}
$$

using the proof of Proposition 2.2 with

$$
\left\|u_{0}\right\|<c, \quad 0<c_{0} k k_{1} c<1 \text { and }\|\theta\|_{2, \omega} \leq \frac{1-c_{0} k k_{1} c}{8 c_{0}}
$$

we can deduce that

$$
\left\|\phi_{1}\right\| \leq c_{0} k k_{1}\left\|u_{0}\right\|^{2}+8 c_{0}\|\theta\|_{2, \omega}\left\|u_{0}\right\| \leq\left(c_{0} k k_{1} c+8 c_{0}\|\theta\|_{2, \omega}\right)\left\|u_{0}\right\| \leq\left\|u_{0}\right\| .
$$

The desired inequalities are true for $n=0$.
Suppose that

$$
\forall k=1, \ldots, n, \quad\left\|u_{k}\right\| \leq\left\|u_{0}\right\| \text { and }\left\|\phi_{k+1}\right\| \leq\left\|u_{0}\right\| .
$$

Since u_{n+1} is a solution of the problem $\left(\mathbb{P}_{n+1}\right)$, Theorem 2.3 yields that there exists $c_{00} \succ 0$, and by Proposition 2.2 we have that

$$
\begin{aligned}
\left\|u_{n+1}\right\| \leq & c_{00}\left(\left|F_{1}\left(u_{n}, \phi_{n+1}\right)\right|_{1}+|p|_{1}\right) \\
& \leq c_{00}\left(c_{1}\left\|u_{n}\right\|+|p|_{1}\right) \\
& \leq c_{00}\left(c_{1}\left\|u_{0}\right\|+|p|_{1}\right) .
\end{aligned}
$$

If we choose $c \succ 0$ sufficiently small, such that

$$
0 \prec c_{1} \prec 1, \quad 0<c_{00} c_{1} \prec 1 \text { and }|p|_{1} \leq \frac{\left(1-c_{00} c_{1}\right)}{c_{00}}\left\|u_{0}\right\|,
$$

it follows that

$$
\left\|u_{n+1}\right\| \leq\left\|u_{0}\right\| .
$$

Moreover, for ϕ_{n+2} being the solution of the problem $\Delta^{2} \phi_{n+2}=-\left[u_{n+1}, u_{n+1}+2 \theta\right]$ and after the case $n=0$, we have

$$
\left\|u_{0}\right\|<c, \quad 0<c_{0} k k_{1} c<1 \text { and }\|\theta\|_{2, \omega} \leq \frac{1-c_{0} k k_{1} c}{8 c_{0}}
$$

moreover, we can deduce that

$$
\left\|\phi_{n+2}\right\| \leq c_{0} k k_{1}\left\|u_{n+1}\right\|^{2}+8 c_{0}\|\theta\|_{2, \omega}\left\|u_{n+1}\right\| \leq\left(c_{0} k k_{1} c+8 c_{0}\|\theta\|_{2, \omega}\right)\left\|u_{n+1}\right\| \leq\left\|u_{0}\right\|
$$

Hence,

$$
\forall n \in I N, \quad\left\|u_{n}\right\| \leq\left\|u_{0}\right\|, \text { and }\left\|\phi_{n+1}\right\| \leq\left\|u_{0}\right\| .
$$

Step 2: Let $m \prec n$, $u_{n}\left(\right.$ resp, $\left.u_{m}\right)$ be a solution of the problem $\left(\mathbb{P}_{n}\right)\left(\operatorname{resp},\left(\mathbb{P}_{m}\right)\right)$, then $u_{n}-u_{m}$ is a solution of the following problem :

$$
\begin{cases}\Delta^{2}\left(u_{n}-u_{m}\right)=F_{1}\left(u_{n-1}, \phi_{n-1}\right)-F_{1}\left(u_{m-1}, \phi_{m-1}\right) & \text { in } \omega \\ u_{n}-u_{m}=0 \partial_{\nu}\left(u_{n}-u_{m}\right)=0 & \text { on } \Gamma_{0} \\ u_{n}-u_{m}=0, \Delta\left(u_{n}-u_{m}\right)+(1-\mu) B_{1}\left(u_{n}-u_{m}\right)=0 & \text { on } \Gamma_{1} \\ \Delta\left(u_{n}-u_{m}\right)+(1-\mu) B_{1}\left(u_{n}-u_{m}\right)=0 & \text { on } \Gamma_{2} \\ \partial_{\nu}\left(\Delta\left(u_{n}-u_{m}\right)+(1-\mu) B_{2}\left(u_{n}-u_{m}\right)-\vartheta\left(u_{n}-u_{m}\right)=0\right. & \text { on } \Gamma_{2}\end{cases}
$$

Using Theorem 2.3 again, we have

$$
\begin{aligned}
\left\|u_{n}-u_{m}\right\| & \leq c_{00}\left|F_{1}\left(u_{n-1}, \phi_{n-1}\right)-F_{1}\left(u_{m-1}, \phi_{m-1}\right)\right|_{1} \\
& \leq c_{00} c_{1}\left\|u_{n-1}-u_{m-1}\right\| \\
& \leq\left(c_{00} c_{1}\right)^{m}\left\|u_{n-m+1}-u_{0}\right\| \\
& \leq\left(c_{00} c_{1}\right)^{m} \sum_{k=0}^{n-m-1}\left(c_{00} c_{1}\right)^{k}\left\|u_{1}-u_{0}\right\| \\
& \leq 2\left(c_{00} c_{1}\right)^{m} \sum_{k=0}^{n-m-1}\left(c_{00} c_{1}\right)^{k}\left\|u_{0}\right\| .
\end{aligned}
$$

Moreover, for $\phi_{n}-\phi_{m}$ being the solution of the problem

$$
\Delta^{2}\left(\phi_{n}-\phi_{m}\right)=-\left[u_{n+1}, u_{n+1}+2 \theta\right]+\left[u_{m+1}, u_{m+1}+2 \theta\right]
$$

Theorem 2.2 ensures that there exists $c_{0}>0$ such that

$$
\begin{aligned}
\left\|\phi_{n}-\phi_{m}\right\| & \leq c_{0}\left|\left[u_{n+1}, u_{n+1}+2 \theta\right]-\left[u_{m+1}, u_{m+1}+2 \theta\right]\right|_{1} \\
& \leq c_{0}\left(\left|\left[u_{n+1}, u_{n+1}-u_{m+1}\right]\right|_{1}\right. \\
& \left.+\left|\left[u_{m+1}, u_{n+1}-u_{m+1}\right]\right|_{1}+\left|\left[2 \theta, u_{n+1}-u_{m+1}\right]\right|_{1}\right) \\
& \leq 8 c_{0} k k_{1} c\left\|u_{n+1}-u_{m+1}\right\|+8 c_{0}\|\theta\|_{2, \omega}\left\|u_{n+1}-u_{m+1}\right\| \\
& \leq\left(8 c_{0} k k_{1} c+8 c_{0}\|\theta\|_{2, \omega}\right)\left\|u_{n+1}-u_{m+1}\right\| .
\end{aligned}
$$

Using the proof of Proposition 2.2 and Theorem 2.2 with

$$
\left\|u_{0}\right\|<c, \quad 0<8 c_{0} k k_{1} c<1 \text { and }\|\theta\|_{2, \omega} \leq \frac{1-8 c_{0} k k_{1} c}{8 c_{0}}
$$

we can deduce that

$$
\left\|\phi_{n}-\phi_{m}\right\| \leq\left(8 c_{0} k k_{1} c+8 c_{0}\|\theta\|_{2, \omega}\right)\left\|u_{n+1}-u_{m+1}\right\| .
$$

This implies that the sequence $\left(u_{n}, \phi_{n}\right)_{n \geq 0}$ is a Cauchy sequence in $\mathbb{V} \times H_{0}^{2}(\omega)$, hence the sequence $\left(u_{n}, \phi_{n}\right)_{n \geq 0}$ converges to (u, ϕ) in $\mathbb{V} \times H_{0}^{2}(\omega)$ and, with Proposition 2.2 , we deduce that $F_{1}\left(u_{n}, \phi_{n+1}\right)+p$ converges to $F_{1}(u, \phi)+p$ in $L^{1}(\omega)$.

Since the operator "trace" and the operator " ∂_{ν} " are continuous, we have that $\left(u_{n}\right)_{\left.\right|_{\Gamma_{0}}},\left(u_{n}\right)_{\Gamma_{\Gamma_{1}}},\left(u_{n}\right)_{\left.\right|_{\Gamma_{2}}}$ and $\partial_{\nu}\left(u_{n}\right)_{\left.\right|_{\Gamma_{0}}}$ converge to $u_{\left.\right|_{\Gamma_{0}}}, u_{\left.\right|_{\Gamma_{1}}}, u_{\left.\right|_{\Gamma_{2}}}$ and $\partial_{\nu} u_{\left.\right|_{\Gamma_{0}}}$ and ϕ_{n} converges to ϕ on Γ.

Finally, we have that $u_{\left.\right|_{\Gamma_{0}}}=u_{\left.\right|_{\Gamma_{1}}}=0, \partial_{\nu} u_{\left.\right|_{\Gamma_{0}}}=0, \phi_{\left.\right|_{\Gamma}}=0$ and $\partial_{\nu} \phi_{\left.\right|_{\Gamma}}=0$.
To conclude that u is a solution of the problem (\mathbb{P}), we show that u satisfies the following equality:

$$
\left.\left(\Delta u+(1-\mu) B_{1} u\right)\right|_{\Gamma_{1} \cup \Gamma_{2}}=0 \text { and }\left.\left(\partial_{\nu} \Delta u+(1-\mu) B_{2} u-\vartheta u\right)\right|_{\Gamma_{2}}=0
$$

By Lemma 2.1 we have for all $v \in \mathbb{V}$

$$
\begin{aligned}
\int_{\omega} \Delta^{2}\left(u_{n}-u\right) v & =a_{0}\left(u_{n}-u, v\right)+\int_{\Gamma}\left(\partial_{\nu} \Delta\left(u_{n}-u\right)+(1-\mu) B_{2}\left(u_{n}-u\right)\right) v \\
& -\int_{\Gamma}\left(\Delta\left(u_{n}-u\right)+(1-\mu) B_{1}\left(u_{n}-u\right)\right) \partial_{\nu} v
\end{aligned}
$$

But u_{n} is a solution of the problem $\left(\mathbb{P}_{n}\right)$, it follows that

$$
\begin{equation*}
\left(\Delta u_{n}+(1-\mu) B_{1} u_{n}\right)_{\mid \Gamma_{1} \cup \Gamma_{2}}=0 \text { and }\left(\partial_{\nu} \Delta u_{n}+(1-\mu) B_{2} u_{n}\right)_{\mid \Gamma_{2}}-\vartheta\left(u_{n}\right)_{\mid \Gamma_{2}}=0 \tag{6}
\end{equation*}
$$

or $v \in \mathbb{V}$ implies that $v_{\left.\right|_{\Gamma_{1} \cup \Gamma_{2}}}=0$ and $\partial_{\nu} v_{\left.\right|_{\Gamma_{0}}}=0$, then

$$
\int_{\Gamma}\left(\Delta\left(u_{n}-u\right)+(1-\mu) B_{1}\left(u_{n}-u\right)\right) \partial_{\nu} v=\int_{\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}}\left(\Delta\left(u_{n}-u\right)+(1-\mu) B_{1}\left(u_{n}-u\right)\right) \partial_{\nu} v
$$

$$
=\int_{\Gamma_{1} \cup \Gamma_{2}}\left(\Delta\left(u_{n}-u\right)+(1-\mu) B_{1}\left(u_{n}-u\right)\right) \partial_{\nu} v
$$

This, together with (6), yield

$$
\int_{\Gamma_{1} \cup \Gamma_{2}}\left(\Delta\left(u_{n}-u\right)+(1-\mu) B_{1}\left(u_{n}-u\right)\right) \partial_{\nu} v=-\int_{\Gamma_{1} \cup \Gamma_{2}}\left(\Delta u+(1-\mu) B_{1} u\right) \partial_{\nu} v
$$

hence

$$
\int_{\Gamma}\left(\Delta\left(u_{n}-u\right)+(1-\mu) B_{1}\left(u_{n}-u\right)\right) \partial_{\nu} v=-\int_{\Gamma_{1} \cup \Gamma_{2}}\left(\Delta u+(1-\mu) B_{1} u\right) \partial_{\nu} v
$$

Moreover,

$$
\begin{aligned}
\int_{\Gamma}\left(\partial_{\nu} \Delta\left(u_{n}-u\right)+(1-\mu) B_{2}\left(u_{n}-u\right)\right) v & =\int_{\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}}\left(\partial_{\nu} \Delta\left(u_{n}-u\right)+(1-\mu) B_{2}\left(u_{n}-u\right)\right) v \\
& =\int_{\Gamma_{2}}\left(\partial_{\nu} \Delta\left(u_{n}-u\right)+(1-\mu) B_{2}\left(u_{n}-u\right)\right) v
\end{aligned}
$$

In view of (6), we deduce that

$$
\int_{\Gamma}\left(\partial_{\nu} \Delta\left(u_{n}-u\right)+(1-\mu) B_{2}\left(u_{n}-u\right)\right) v=\vartheta \int_{\Gamma_{2}} u_{n} v-\int_{\Gamma_{2}}\left(\partial_{\nu} \Delta u+(1-\mu) B_{2} u\right) v .
$$

It follows that

$$
\begin{gathered}
\int_{\omega} \Delta^{2}\left(u_{n}-u\right) v=a_{0}\left(u_{n}-u, v\right)+\vartheta \int_{\Gamma_{2}} u_{n} v-\int_{\Gamma_{2}}\left(\partial_{\nu} \Delta u+(1-\mu) B_{2} u\right) v \\
+\int_{\Gamma_{1} \cup \Gamma_{2}}\left(\Delta u+(1-\mu) B_{1} u\right) \partial_{\nu} v
\end{gathered}
$$

Now, letting $n \rightarrow+\infty$ in the next equality, we deduce that

$$
\forall v \in \mathbb{V}, \quad \vartheta \int_{\Gamma_{2}} u v-\int_{\Gamma_{2}}\left(\partial_{\nu} \Delta u+(1-\mu) B_{2} u\right) v+\int_{\Gamma_{1} \cup \Gamma_{2}}\left(\Delta u+(1-\mu) B_{1} u\right) \partial_{\nu} v=0
$$

This equality implies that

$$
\forall v \in H_{0}^{1}(\omega) \cap \mathbb{V}, \quad \int_{\Gamma_{1} \cup \Gamma_{2}}\left(\Delta u+(1-\mu) B_{1} u\right) \partial_{\nu} v=0
$$

it turns out that

$$
\Delta u+(1-\mu) B_{1} u=0, \text { on } \Gamma_{1} \cup \Gamma_{2}
$$

And also, we deduct

$$
\forall v \in \mathbb{V}, \vartheta \int_{\Gamma_{2}} u v-\int_{\Gamma_{2}}\left(\partial_{\nu} \Delta u+(1-\mu) B_{2} u\right) v=0
$$

it follows that

$$
\partial_{\nu} \Delta u+(1-\mu) B_{2} u-\vartheta u=0, \text { on } \Gamma_{2} .
$$

Finally, (u, ϕ) is a solution of the static von Karman equations in $\mathbb{V} \times H_{0}^{2}(\omega)$.
Step 3 : For the uniqueness, we suppose that the problem (\mathbb{P}) has two solutions $\left(u_{1}, \phi_{1}\right)$ and $\left(u_{2}, \phi_{2}\right)$ in $\mathbb{V} \times H_{0}^{2}(\omega)$ such that

$$
\left\|u_{1}\right\| \leq c \text { and }\left\|u_{2}\right\| \leq c
$$

where, c is sufficiently small. Since $u_{1}-u_{2}$ is a solution of the following problem:

$$
\begin{cases}\Delta^{2}\left(u_{1}-u_{2}\right)=F_{1}\left(u_{1}, \phi_{1}\right)-F_{1}\left(u_{2}, \phi_{2}\right) & \text { in } \omega \\ u_{1}-u_{2}=0, \quad \partial_{\nu}\left(u_{1}-u_{2}\right)=0 & \text { on } \Gamma_{0} \\ u_{1}-u_{2}=0, \quad \Delta\left(u_{1}-u_{2}\right)+(1-\mu) B_{1}\left(u_{1}-u_{2}\right)=0 & \text { on } \Gamma_{1} \\ \Delta\left(u_{1}-u_{2}\right)+(1-\mu) B_{1}\left(u_{1}-u_{2}\right)=0 & \text { on } \Gamma_{2} \\ \partial_{\nu}\left(\Delta\left(u_{1}-u_{2}\right)+(1-\mu) B_{2}\left(u_{1}-u_{2}\right)-\vartheta\left(u_{1}-u_{2}\right)=0\right. & \text { on } \Gamma_{2}\end{cases}
$$

Theorem 2.3 implies that there exists $c_{00} \succ 0$ such that

$$
\left\|u_{1}-u_{2}\right\| \leq c_{00}\left|F_{1}\left(u_{1}, \phi_{1}\right)-F_{1}\left(u_{2}, \phi_{2}\right)\right|_{1} \leq c_{00} c_{1}\left\|u_{1}-u_{2}\right\|,
$$

c is small, thus $0<c_{00} c_{1}<1$, then $u_{1}=u_{2}$ and $\phi_{1}=\phi_{2}$.
Lastly, the stationary von Karman equations have one and only one solution (u, ϕ) in the space $\mathbb{V} \times H_{0}^{2}(\omega)$.

Remark 3.1 In this section we described an iterative method for constructing a unique weak solution, this technique is a good tool for illustrating this weak solution from the numerical point of view.

4 Conclusion

In this paper, we described an iterative method for constructing a unique weak solution to the model with free boundary conditions of buckling and flexible phenomenon of small nonlinear vibrations of the homogenous, isotropic and elastic thin shells of uniform thickness. Our approach is a good tool for justifying the theoretical results under the following weak assumption $F_{0} \in H^{2}(\omega)$. Similar study for the models of dynamic von Karman equations with and without rotational inertia and for free boundary conditions of the shell could be the purpose for future research.

Acknowledgments

The authors would like to thank the anonymous referee for his/her valuable comments and suggestions which improved the final version of the present manuscript.

References

[1] A. Aberqui, J. Bennouna and M. Elmassoudi. Nonlinear Elliptic Equation with Some Measure Data in Musielak-Orlicz Spaces. Nonlinear Dynamics and Systems Theory $\mathbf{1 9}(2)$ (2019) 227-242.
[2] A. Yu. Aleksandrov, A. A. Martynyuk and A. A. Tikhonov. Some Problems of Attitude Dynamics and Control of a Rigid Body. Nonlinear Dynamics and Systems Theory 20(2) (2020) 132-143.
[3] I. Chueshov and I. Lasiecka. von Karman Evolution, Well-posedness and Long Time Dynamics. New York, Springer, 2010.
[4] P.G. Ciarlet and L. Gratie. From the classical to the generalized von Karman and Marguerre von Karman equations. Journal of Computational and applied Mathematics 190 (2006) 470-486.
[5] P.G. Ciarlet. Mathematical Elasticity. Vol. I. Three Dimensional Elasticity. Amsterdam, Elsevier Science, 1988.
[6] P.G. Ciarlet and R. Rabier. Les Equations de von Karman. New York, Springer, 1980.
[7] P.G. Ciarlet. Mathematical Elasticity. Vol.III, Theory of Shells. Amsterdam, Elesevier, 2000.
[8] M. Dilmi, H. Benseridi and Guesmia. Problme de contact sans frotement-Dirichlet pour les quations de Laplace et de Lamé dans un polygone. Analele Universitatii oradea, Fasc. Matematica, Tom XIV, 2007 212-236.
[9] R. Glowinski and O. Pironneau. Numerical methods for the first biharmonic equation and for the two-dimentional stokes problem. SIAM 21 (1979) 167-212.
[10] P. Grisvard. Singularities in Boundary Value Problems. Masson. Paris, 1992.
[11] J.L. Lions and E. Magenes. Problème aux Limites non Homogènes et Applications. Vol. 1. Dunod, Paris, 1968.
[12] J.L. Lions. Quelques Méthodes de Résolutions des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969.
[13] N.F. Morozov. Selected Two-Dimensional Problems of Theory Elasticity. LGU, Leningrad, 1978.
[14] J. Oudaani. Numerical approch to the Uniqueness solution of von Karman evolution. International Journal of Mathematics in Operational Research 13(4) (2018) 450-470.
[15] S. Stuart Antman. Theodore von Karman. In: A Panorama of Hungarian Mathematics in the Twentieth Centuray, pp. 373-382. Springer, Berlin, 2006.
[16] A. Talha, A. Benkirane and M.S.B. Elemine Vall. Existence of Renormalized Solutions for Some Strongly Parabolic Problems in Musielak-Orlicz-Sobolev Spaces. Nonlinear Dynamics and Systems Theory $19(1)$ (2019) 97-110.

[^0]: * Corresponding author: mailto:oudaani1970@gmail.com

