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Abstract: In this paper, we utilize the local fractional differential transform
(LFDTM) and Laplace variational iteration methods (LFLVIM) to obtain approx-
imate solutions for the Laplace equation (LE) within local fractional derivative op-
erators (LFDOs). The efficiency of the considered methods is illustrated by some
examples. The results obtained by the LFDTM are compared with the results ob-
tained by the LFLVIM. We demonstrate that the two approaches are very effective
and convenient for finding the approximate analytical solutions of PDEs with LFDOs.
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1 Introduction

The LFDTM and LFVIM are powerful approximate methods for various kinds of linear
and nonlinear PDEs with LFDOs. For example, the Laplace variational iteration method
(LFLVIM) has been applied to PDEs in physics and mathematics. Jassim et al. applied
this method to diffusion and wave equations [1] and the Laplace equation [2]. Further-
more, Liu et al. [3] used the LFLVIM for a fractal vehicular traffic flow, and Li et al. to
a fractal heat conduction problem [4]. Furthermore, the LFDTM has been applied to
solve ordinary and partial differential equations on the Cantor sets. Jafari et al. utilized
this method to find the approximate solution of ODEs [5–7]. Yang et al. applied the
LFDTM to solve a two dimensional diffusion equation [8].

Our aim is to extend the applications of the proposed methods to obtain the analytical
approximate solutions to the Laplace equation within local fractional derivative operators
of the form

∂2ϑψ(η, κ)

∂κ2ϑ
+
∂2ϑψ(η, κ)

∂η2ϑ
= 0 (1)

with

ψ(η, 0) = φ1(η),
∂ϑ

∂κϑ
ψ(η, 0) = φ2(η), (2)

where φ1(η) and φ2(η) are given functions.
There are many approximate and numerical methods utilized to solve PDEs within

LFDOs, namely, the LFFDM [9], LFDM [10], LFSEM [11,12], LFVIM [13–15], LFLDM
[16], RDTM [17] and SVIM [18].

2 Local Fractional DTM

In the following the basic definitions and fundamental operations of the LFDTM are
shown [8].

The two dimensional differential transform of the LF analytic function ψ(η, κ) via
LFDOs is

Ψ(β, ε) =
1

Γ(1 + βϑ)

1

Γ(1 + εϑ)

[
∂(β+ε)ϑψ(η, κ)

∂ηβϑ∂κεϑ

]
η=η0,κ=κ0

, (3)

where β, ε = 0, 1, . . . , n and 0 < ϑ ≤ 1.
The 2D differential inverse transform of Ψ(β, ε) via LFDOs is

ψ(η, κ) =

∞∑
β=0

∞∑
ε=0

Ψ(β, ε)(η − η0)βϑ(κ− κ0)εϑ. (4)

By combining (3) and (4), it can be obtained that

ψ(η, κ) =

∞∑
β=0

∞∑
ε=0

1

Γ(1 + βϑ)

1

Γ(1 + εϑ)

[
∂(β+ε)ϑψ(η, κ)

∂ηβϑ∂κεϑ

]
η=η0,κ=κ0

(η − η0)βϑ(κ− κ0)εϑ.

(5)
If η0 = 0 and κ0 = 0, then (3) is shown as follows:

Ψ(β, ε) =
1

Γ(1 + βϑ)

1

Γ(1 + εϑ)

[
∂(β+ε)ϑψ(η, κ)

∂ηβϑ∂κεϑ

]
η=0,κ=0

, (6)
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and (4) is expressed as follows:

ψ(η, κ) =

∞∑
β=0

∞∑
ε=0

Ψ(β, ε)ηβϑκεϑ. (7)

Theorem 2.1 Suppose that ψ(η, κ), ϕ(η, κ) and θ(η, κ) are local fractional analytic
functions and Ψ(β, ε), Φ(β, ε)and Θ(β, ε) are their corresponding local fractional differ-
ential transforms with order of fraction ϑ, then we have

1. If ψ(η, κ) = ϕ(η, κ) + θ(η, κ), then Ψ(β, ε) = Φ(β, ε) + Θ(β, ε).

2. If ψ(η, κ) = ϕ(η, κ) + θ(η, κ), then Ψ(β, ε) =
∑β
r=0

∑ε
s=0 Φ(β, ε− s)Θ(β − r, ε).

3. If ψ(η, κ) = aϕ(η, κ), where a is a constant, then Ψ(β, ε) = Φ(β, ε).

4. If ψ(η, κ) =
∂ϑ

∂ηϑ
ϕ(η, κ), then Ψ(β, ε) =

Γ(1 + (β + 1)ϑ)

Γ(1 + βϑ)
Φ(β + 1, ε).

5. If ψ(η, κ) =
∂ϑ

∂κϑ
ϕ(η, κ), then Ψ(β, ε) =

Γ(1 + (ε+ s)ϑ)

Γ(1 + εϑ)
Φ(β, ε+ 1).

6. If ψ(η, κ) =
∂(r+s)ϑ

∂ηrϑ∂κsϑ
ϕ(η, κ), then

Ψ(β, ε) =
Γ(1 + (β + r)ϑ)

Γ(1 + βϑ)

Γ(1 + (ε+ s)ϑ)

Γ(1 + εϑ)
Φ(β + r, ε+ s).

7. If ψ(η, κ) =
(η − η0)rϑ

Γ(1 + rϑ)

(κ− κ0)sϑ

Γ(1 + sϑ)
, Ψ(β, ε) =

δϑ(β − r)
Γ(1 + rϑ)

δϑ(ε− s)
Γ(1 + sϑ)

,

where the local fractional Dirac delta function is given by

δϑ(β − r) =

{
1, β = r,
0, β 6= r,

and δϑ(ε− s) =

{
1, ε = s,
0, ε 6= s.

3 Local Fractional LVIM

Let us consider the following local fractional PDEs on the Cantor sets with LFDOs:

Lϑϕ(η, κ) +Rϑϕ(η, κ) +Nϑϕ(η, κ) = ω(η, κ), (8)

where Lϑ =
∂mϑ

∂κmϑ
denotes the linear LFDO, Rϑ is the remaining linear operator, Nϑ

represents the general nonlinear LFDO, and ω is the source term.
According to the rule of LFVIM, the correction local fractional functional for (8)

is [13–15]

ϕn+1(κ) = ϕn(κ) + (9)

1

Γ(1 + ϑ)

∫ κ

0

σ(κ− ξ)ϑ

Γ(1 + ϑ)
(Lϑ [ϕn(ξ)] +Rϑ [ϕ̃n(ξ)] +Nϑ [ϕ̃n(ξ)]− ω(ξ)) (dξ)ϑ,

where σ(κ−ξ)ϑ
Γ(1+ϑ) is a fractal Lagrange multiplier.
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For initial value problems of (8), we can start with

ϕ0(η, κ) = ϕ(η, 0) +
κϑ

Γ(1 + ϑ)
ϕ(ϑ)(η, 0) + · · ·+ κ(m−1)ϑ

Γ(1 + (m− 1)ϑ)
ϕ((m−1)ϑ)(η, 0). (10)

We now take the local fractional Laplace transform for (9), we get

L̃ϑ {ϕn+1(κ)} = L̃ϑ {ϕn(κ)}+ (11)

L̃ϑ

{
1

Γ(1 + ϑ)

∫ κ

0

σ(κ− ξ)ϑ

Γ(1 + ϑ)
(Lϑ [ϕn(ξ)] +Rϑ [ϕ̃n(ξ)] +Nϑ [ϕ̃n(ξ)]− ω(ξ)) (dξ)ϑ

}
,

or, equivalently,

L̃ϑ {ϕn+1(κ)} = L̃ϑ {ϕn(κ)}+ L̃ϑ

{
σ(κ)ϑ

Γ(1 + ϑ)

}
× (12)

L̃ϑ {Lϑ [ϕn(ξ)] +Rϑ [ϕ̃n(ξ)] +Nϑ [ϕ̃n(ξ)]− ω(ξ)} .

Take the local fractional variation of (12), which is given by

δϑ
(
L̃ϑ {ϕn+1(κ)}

)
= δϑ

(
L̃ϑ {ϕn(κ)}

)
+ (13)

δϑ
(
L̃ϑ

{
σ(κ)ϑ

Γ(1 + ϑ)

}
L̃ϑ {(Lϑ [ϕn(κ)] +Rϑ [ϕ̃n(κ)] +Nϑ [ϕ̃n(κ)]− ω(κ))}

)
.

By using the computation of (13), we get

δϑ
(
L̃ϑ {ϕn+1(κ)}

)
= δϑ

(
L̃ϑ {ϕn(κ)}

)
+ L̃α

{
σ(κ)ϑ

Γ(1 + ϑ)

}
δϑ
(
L̃ϑ {Lϑ [ϕn(κ)]}

)
= 0. (14)

Hence, from (14) we get

1 + L̃ϑ

{
σ(κ)ϑ

Γ(1 + ϑ)

}
smϑ = 0, (15)

where

δϑ
(
L̃ϑ {Lϑ [ϕn(κ)]}

)
= δϑ

(
smϑL̃ϑ {ϕn(κ)} − s(m−1)ϑϕn(0)− · · · − ϕ((m−1)ϑ)

n (0)
)

= smϑδϑ
(
L̃ϑ {ϕn(κ)}

)
. (16)

Therefore, we have

L̃ϑ

{
σ(κ)ϑ

Γ(1 + ϑ)

}
= − 1

smϑ
. (17)

Taking the inverse version of the Yang-Laplace transform into (17), we have

σ(κ)ϑ

Γ(1 + ϑ)
= L̃ϑ

(
− 1

smϑ

)
= − κ(m−1)ϑ

Γ(1 + (m− 1)ϑ
. (18)
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Hence, we have the following iteration algorithm:

L̃ϑ {ϕn+1(κ)} = L̃ϑ {ϕn(κ)} − 1

smϑ
L̃ϑ {Lϑ [ϕn(κ)] +Rϑ [ϕn(κ)] +Nϑ [ϕn(κ)]− ω(κ)}

= L̃ϑ {ϕn(κ)} − 1

smϑ
L̃ϑ

{
smϑϕn(κ)− · · · − ϕ((m−1)ϑ

n (0)
}

− 1

smϑ
L̃ϑ {Rϑ [ϕn(κ)] +Nϑ [ϕn(κ)]− ω(κ)}

=
1

sϑ
ϕn(0)− 1

s2ϑ
ϕ(ϑ)
n (0)− · · · − 1

smϑ
ϕ((m−1)ϑ
n (0) (19)

− 1

smϑ
L̃ϑ {Rϑ [ϕn(κ)] +Nϑ [ϕn(κ)]− ω(κ)} ,

where the initial value reads as

L̃ϑ {ϕ0(η, κ)} =
1

sϑ
ϕ(η, 0) +

1

s2ϑ
ϕ(ϑ)(η, 0) + · · ·+ 1

smϑ
ϕ((m−1)ϑ)(η, 0). (20)

Therefore, the local fractional series solution of (8) is

ϕ(η, κ) = lim
n→∞

L̃−1
ϑ

(
L̃ϑ {ϕn(η, κ)}

)
. (21)

4 Applications

In this section, an example for the Laplace equation involving LFDOs is presented in
order to demonstrate the simplicity and the efficiency of the above methods.

Example 4.1 Let us consider the Laplace equation within LFDOs:

∂2ϑϕ(η, κ)

∂κ2ϑ
+
∂2ϑϕ(η, κ)

∂η2ϑ
= 0, (22)

ϕ(η, 0) = −Eϑ(ηϑ),
∂ϑϕ(η, κ)

∂κϑ
= 0. (23)

I. Below we present the LFDTM.
Using the LFDTM on both sides of (22), we can write

Γ(1 + (ε+ 2)ϑ)

Γ(1 + εϑ)
Φ(β, ε+ 2) +

Γ(1 + (β + 2)ϑ)

Γ(1 + βϑ)
Ψ(β + 2, ε) = 0. (24)

The transformed initial conditions are

Φ(β, 0) = − 1

Γ(1 + βϑ)
, Φ(β, 1) = 0. (25)
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In view of (24) and (25), the results are listed as follows:

Ψ(0, 0) = −1, Ψ(0, 1) = 0, Ψ(0, 2) =
1

Γ(1 + 2ϑ)
, Ψ(0, 3) = 0,

Ψ(0, 4) =
1

Γ(1 + 4ϑ)
, Ψ(0, 5) = 0, Ψ(0, 6) =

1

Γ(1 + 6ϑ)
, Ψ(1, 0) = − 1

Γ(1 + ϑ)
,

Ψ(1, 1) = 0, Ψ(1, 2) =
1

Γ(1 + ϑ)

1

Γ(1 + 2ϑ)
, Ψ(1, 3) = 0,

Ψ(1, 4) = − 1

Γ(1 + ϑ)

1

Γ(1 + 4ϑ)
, Ψ(1, 5) = 0, Ψ(1, 6) =

1

Γ(1 + ϑ)

1

Γ(1 + 6ϑ)
,

Ψ(2, 0) = − 1

Γ(1 + 2ϑ)
, Ψ(2, 1) = 0,

Ψ(2, 2) =
1

Γ(1 + 2ϑ)

1

Γ(1 + 2ϑ)
, Ψ(2, 3) = 0, Ψ(2, 4) = − 1

Γ(1 + 2ϑ)

1

Γ(1 + 4ϑ)
,

Ψ(2, 5) = 0, Ψ(2, 6) =
1

Γ(1 + 2ϑ)

1

Γ(1 + 6ϑ)
, Ψ(3, 0) = − 1

Γ(1 + 3ϑ)
, Ψ(3, 1) = 0,

Ψ(3, 2) =
1

Γ(1 + 3ϑ)

1

Γ(1 + 2ϑ)
, Ψ(3, 3) = 0, Ψ(3, 4) = − 1

Γ(1 + 3ϑ)

1

Γ(1 + 4ϑ)
,

Ψ(3, 5) = 0, Ψ(3, 6) =
1

Γ(1 + 3ϑ)

1

Γ(1 + 6ϑ)
, Ψ(4, 0) = − 1

Γ(1 + 4ϑ)
, Ψ(3, 1) = 0,

Ψ(4, 2) =
1

Γ(1 + 4ϑ)

1

Γ(1 + 2ϑ)
, Ψ(4, 3) = 0, Ψ(4, 4) = − 1

Γ(1 + 4ϑ)

1

Γ(1 + 4ϑ)
,

Ψ(4, 5) = 0, Ψ(4, 6) =
1

Γ(1 + 4ϑ)

1

Γ(1 + 6ϑ)
, · · ·

and so on. Hence, ψ(η, κ) is evaluated as follows:

ψ(η, κ) =

∞∑
β=0

∞∑
ε=0

Ψ(β, ε)ηβϑκεϑ (26)

= −
[
1 +

ηϑ

Γ(1 + ϑ)
+

η2ϑ

Γ(1 + 2ϑ)
+ · · ·

] [
1− κ2ϑ

Γ(1 + 2ϑ)
+

κ4ϑ

Γ(1 + 4ϑ)
− · · ·

]
,

which is exactly the same as the solution obtained by the LFFDM [11] and it converges
to the closed form solution:

ψ(η, κ) = −Eϑ(ηϑ) cosϑ(κϑ). (27)

II. As the next step we apply the LFLVIM.
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In view of (19) and (22), we get the following iterative formula:

L̃ϑ {ϕn+1(η, κ)} = L̃ϑ {ϕn(η, κ)} − 1

s2ϑ
L̃ϑ

{
∂2ϑϕn
∂κ2ϑ

+
∂2ϑϕn
∂η2ϑ

}
= L̃ϑ {ϕn(η, κ)} − 1

s2ϑ

[
s2ϑL̃ϑ {ϕn(η, κ)} − sϑϕn(η, 0)− ϕ(ϑ)

n (η, 0)
]

− 1

s2ϑ
L̃ϑ

{
∂2ϑϕn(η, κ)

∂η2ϑ

}
=

1

sϑ
ϕn(η, 0) +

1

s2ϑ
ϕ(ϑ)
n (η, 0)− 1

s2ϑ
L̃ϑ

{
∂2ϑϕn(η, κ)

∂η2ϑ

}
. (28)

From (23), the initial value reads

ϕ0(η, κ) = −Eϑ(ηϑ). (29)

Hence, we get the first approximation, namely,

L̃ϑ {ϕ1(η, κ)} =
1

sϑ
ϕ0(η, 0) +

1

s2ϑ
ϕ

(ϑ)
0 (η, 0)− 1

s2ϑ
L̃ϑ

{
∂2ϑϕ0(η, κ)

∂η2ϑ

}
= − 1

sϑ
Eϑ(ηϑ) +

1

s3ϑ
Eϑ(ηϑ). (30)

The second approximation reads

L̃ϑ {ϕ2(η, κ)} =
1

sϑ
ϕ1(η, 0) +

1

s2ϑ
ϕ

(ϑ)
1 (η, 0)− 1

s2ϑ
L̃ϑ

{
∂2ϑϕ1(η, κ)

∂η2ϑ

}
= − 1

sϑ
Eϑ(ηϑ) +

1

s3ϑ
Eϑ(ηϑ)− 1

s5ϑ
Eϑ(ηϑ). (31)

The other approximations are written as

L̃ϑ {ϕ3(η, κ)} =
1

sϑ
ϕ2(η, 0) +

1

s2ϑ
ϕ

(ϑ)
2 (η, 0)− 1

s2ϑ
L̃ϑ

{
∂2ϑϕ2(η, κ)

∂η2ϑ

}
= − 1

sϑ
Eϑ(ηϑ) +

1

s3ϑ
Eϑ(ηϑ)− 1

s5ϑ
Eϑ(ηϑ) +

1

s7ϑ
Eϑ(ηϑ). (32)

Proceeding in this manner, we can derive the following formula:

L̃ϑ {ϕn(η, κ)} =
1

sϑ
ϕn−1(η, 0) +

1

s2ϑ
ϕ

(ϑ)
n−1(η, 0)− 1

s2ϑ
L̃ϑ

{
∂2ϑϕn−1(η, κ)

∂η2ϑ

}
=

n∑
r=0

(−1)r+1 1

s(2r+1)ϑ
Eϑ(ηϑ). (33)

Consequently, the LF series solution is

ϕ(η, κ) = lim
n→∞

L̃−1
ϑ

(
L̃ϑ {ϕn(η, κ)}

)
= L̃−1

ϑ

[ ∞∑
r=0

(−1)r+1 1

s(2r+1)ϑ
Eϑ(ηϑ)

]

= −Eϑ(ηϑ)

[ ∞∑
r=0

(−1)r
κ2rϑ

Γ(1 + 2rϑ)

]
= −Eϑ(ηϑ) cosϑ(κϑ), (34)

from Eqs. (27) and (34), the approximate solution of the Laplace equation (22) by using
the LFLVIM is the same result as that obtained by the LFDTM and it clearly appears
that the approximate solution remains closed form to the exact solution.
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5 Conclusions

In this work, the LFDTM and LFLVIM have been successfully applied to finding the
approximate analytical solutions for the Laplace equation with LFDOs. The solutions
obtained by the proposed methods are an infinite power series for the appropriate initial
condition, which can, in turn, be expressed in a closed form to the exact solution. The
example shows that the results of the LFDTM are in excellent agreement with the results
given by the LFLVIM and local fractional function decomposition method.
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