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Professor V.M. Starzhinskii
To the 100th Birthday Anniversary

On March 10, 2018, the renowned Russian scientist in the area of mathematics and
mechanics, Viacheslav Mikhailovich Starzhinskii, would have turned 100 years old. To
commemorate Professor Starzhinskii’s valuable contribution to nonlinear dynamics,
the Editorial Board of the Journal presents a short biographical sketch of his life
and academic activities. A detailed review of his scientific and pedagogical activities
is presented in the Section “Personage in Science” in the article “Professor V.M.
Starzhinskii” by A.A. Martynyuk, J.H. Dshalalow, and V.I. Zhukovskii, Nonlinear
Dynamics and Systems Theory, 8(1) (2008) 1–6.

Viacheslav Mikhaylovich Starzhinskii was born on March 10, 1918, in the village of
Lemeshevichi of the Pinsky district, part of the Pinsky region (now the Brest region in
Belarus). In 1935, he was admitted to the Department of Mechanics and Mathematics
of Moscow State University to study mechanics. His graduation from Moscow State
University coincided with the beginning of the Second World War. As a result, from
1941 to 1944, he worked as a constructor engineer at the military plants in Stupino
town of the Moscow region and Verkhnyaya Salda town of the Sverdlov region. Then,
from August 17, 1944 till September 9, 1945, he taught at the Verkhne-Salda Avia-
Metallurgical Technical School of Narkomaviaprom (The Ministry of Aircraft Industry).

In October, 1945, Viacheslav Mikhailovich was accepted to a full-time post-graduate
school at the Scientific Research Institute of Mechanics of Moscow State University. At
that time he got interested in automatic control systems. This influenced the topic of
his upcoming PhD thesis “Some problems in the theory of tracking systems”, which
he successfully defended in June, 1948. That same year (on February 2, 1948) he was

c© 2020 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 1



2 PROFESSOR V.M. STARZHINSKII

appointed as a senior researcher in one of the scientific research institutes of the Ministry
of Industry of Communications.

From September 1, 1950, he became an associate Professor of Mathematics in Calculus
Program at the All-Union Correspondent Institute of Textil and Light Industry (A-
UCITLI). On August 1, 1957, Viacheslav Mikhailovich became an associate Professor
of Theoretical Mechanics Program at the A-UCITLI. In March, 1958, after defending
his habilitation thesis, he became a Professor and then the Chair of the Program of
Theoretical Mechanics.

Forty three years of his work at the A-UCITLI proved to be the most fruitful ones
in the life of Viacheslav Mikhailovich. In 1952, he published his first paper “Sufficient
stability conditions for a mechanical system with one degree of freedom”. For the period
of 1952–1957, he published seven more papers on the problems of stability of periodic
motions. At that time, Viacheslav Mikhailovich entered a post-doctoral program for his
habilitation degree at the Institute of Problems of Mechanics of the Academy of Sciences
(his supervisor was the Corresponding Member of the Ac. of Sci. of the USSR, Professor
N.G. Chetayev), and in 1957, he defended his habilitation thesis.

V.M. Starzhinskii published more than 150 papers and books (including 27 mono-
graphs and textbooks). His work covers the following areas:

1) The second Lyapunov method: first, second, third and fourth order equations;
2) Stability of periodic motions: estimations of characteristic constants in the second

and n-th order systems; the theory of parametric resonance Mathieu and Hill equations;
3) Oscillations of substantially nonlinear systems, combination of the Lyapunov and

Poincare methods, oscillating chains, energy jump, damped oscillating systems, compu-
tation of normal modes; normal modes for third, fourth and sixth order systems;

4) Application of parametric resonance theory to acoustic and electromagnetic waveg-
uides;

5) Dynamics of a solid body: dimensionless form of the Euler-Poisson equations,
oscillations of a heavy body with a fixed point, exclusive cases of Kovalevskaya gyroscope
motion, QP -procedure for Kovalevskaya’s case;

6) Applied problems: calculation of thread tension, elastic shaft, dynamical stability
of rods, problem of three bodies, torsion oscillations of crank-shafts, pendulum on spring,
thread mechanics, servo systems, cyclical accelerators.

Viacheslav Mikhailovich was a skillful lecturer. He conveyed a very complex material
to his students in a clear fashion, without a compromise to the depth. His long-term
teaching experience has also eventuated in the publication of many textbooks on theo-
retical mechanics.

During 1980 to 1988, Professor Starzhinskii delivered a series of lectures on nonlinear
oscillations and parametric resonance for post-graduate students of the Mechanical and
Mathematical Department of Moscow State University. His lectures have always been a
success as they attracted many listeners who were inspired by his teaching. He worked
actively with post-graduates and supervised four doctoral and five habilitation theses.

Professor Starzhinskii was a member of the Scientific-Methodical Council of Theoret-
ical Mechanics of the Ministry of Education, the USSR, and a member of the Editorial
Board of the Publishing House “Mir”. He was among the active contributors to the
Mathematical Encyclopedia.

V.M. Starzhinskii was rewarded with three medals of honor. In 1985, he received the
reward “For Successes in the Field of Higher Education”.

A.A. Martynyuk, N.A. Izobov, A.G. Mazko, V.I. Zhukovskii
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Generalized Monotone Method for Nonlinear Caputo

Fractional Impulsive Differential Equations

Y.Bai and A. S. Vatsala ∗

Department of Mathematics, University of Louisiana at Lafayette, Louisiana – 70504.

Received: September 22, 2019; Revised: January 8, 2020

Abstract: Generalized monotone method is a useful technique to prove the existence
of coupled minimal and maximal solutions when the nonlinear function is the sum of
an increasing and decreasing functions. In this work, we develop generalized monotone
method for Caputo fractional impulsive differential equations with initial conditions,
using coupled lower and upper solutions of Type 1. For that purpose we develop
comparison results for Caputo fractional impulsive differential equation. Further,
under uniqueness assumption, we prove the existence of the unique solution of the
nonlinear Caputo fractional impulsive differential equation with initial conditions.

Keywords: nonlinear Caputo fractional differential equations; impulsive differential
equations; generalized monotone method.

Mathematics Subject Classification (2010): 34A08, 34A37.

1 Introduction

In the past few decades, the impulsive equations have exhibited more advantages in the
mathematical models of physical and biological models. See [2, 3, 6–8, 14, 23] for details.
These equations can describe more naturally and more closed to the real world problems.
See [9,12,15]. In the past four decades, the study of fractional differential equations has
gained lots of importance due to its applications. See [1,4,5,10,11,13,25,26]. In fact, the
dynamic equations with fractional derivative have represented as better and economical
models in various branches of science and engineering. See [12,13,15–17].

In this work, we develop generalized monotone method combined with coupled lower
and upper solutions for nonlinear Caputo fractional impulsive differential equations with
initial conditions. In general, explicit solution for nonlinear problems is rarely possible.

∗ Corresponding author: mailto:vatsala@louisiana.edu

c© 2020 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 3



4 Y. BAI AND A. S. VATSALA

In addition, explicit solution even for linear Caputo fractional differential equations with
variable coefficients with or without impulses and initial conditions is not trivial either.
However, explicit solution of the solution and/or representation form of the solution of
linear Caputo fractional impulsive differential equation with initial condition is possible.
See [22] for more details. In addition, in [22], the uniqueness of the solution of the
linear Caputo fractional impulsive differential equation has been proved by developing a
comparison result.

We apply generalized monotone method, Laplace transform and some properties in
the main result. See [6, 18–21, 24, 27, 28] for more details. In [22], we have obtained
explicit solutions for the linear Caputo fractional impulsive differential equations with
initial condition. In addition, we have also developed a comparison result in [22] relative
to coupled lower and upper solutions.

In the present work, we have also developed linear comparison results as an auxil-
iary result which is useful in our main result. We have developed monotone sequences
{vn} and {wn} which are piece-wise left continuous using the coupled lower and upper
solutions, when the nonlinear function is the sum of non-decreasing and non-increasing
functions. We have established the monotone sequences which converge uniformly and
monotonically to coupled minimal and maximal solutions of the nonlinear problem. Fur-
thermore, under uniqueness assumptions on the nonlinear terms, we prove that the cou-
pled minimal and maximal solutions reduce to the unique solutions of the nonlinear
problem.

2 Preliminary Results

In this section, we introduce some known definitions and results, which are needed for
the main results. First, we recall some basic definitions.

Definition 2.1 The Riemann-Liouville fractional integral of u(t) of order q is defined
by

D−qt u =
1

Γ(q)

∫ t

0

(t− s)q−1u(s)ds, (1)

where 0 < q ≤ 1.

Definition 2.2 The Caputo (left) fractional derivative of u(t) of order q, when 0 <
q < 1, is defined as:

cDq
tu(t) =

1

Γ(1− q)

∫ t

0

(t− s)−qu′(s)ds. (2)

Definition 2.3 The Riemann-Liouville (left-sided) fractional derivative of u(t) of
order q, when 0 < q < 1, is defined as

Dqu(t) =
1

Γ(1− q)
d

dt

∫ t

0

(t− s)−qu(s)ds, t > 0. (3)

The relation between Caputo derivative and Riemann-Liouville derivative of a function
f(t) is given by

cDqu(t) = Dq(u(t)− u(0)).

This relation will be useful for results relative to differential inequalities.
Next we define the Mittag-Leffler function which is useful in computing the solution

of the linear fractional differential equations.
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Definition 2.4 The two parameter Mittag-Leffler function is defined as

Eq,r(λt
q) =

∞∑
k=0

(λtq)k

Γ(qk + r)
. (4)

If r = q, the relation (4) reduces to

Eq,q(λt
q) =

∞∑
k=0

(λtq)k

Γq(k + 1)
. (5)

If r = 1, the Mittag-leffler function is defined as

Eq,1(λtq) =

∞∑
k=0

(λtq)k

Γq(k + 1)
. (6)

See [5, 10, 13, 16] for more details.
In our next definition we assume p = 1−q, when 0 < q < 1, J = (0, T ] and J0 = [0, T ].

Definition 2.5 A function φ(t) ∈ C(J,R) is a Cp continuous function on J if
t1−qφ(t) ∈ C(J0, R). The set of Cp continuous functions is denoted by Cp(J,R). Fur-
ther, given a function φ(t) ∈ Cp(J,R), we call the function t1−qφ(t) the continuous
extension of φ(t).

Next, we introduce some theorems and lemmas which are useful to our main results.

Lemma 2.1 Let J = [0, T ], m ∈ Cp(J,R) be such that for some t0 ∈ J, we have
m(t0) = 0 and m(t) ≤ 0 for t ∈ [0, t0], then (Riemann-Liouville fractional derivative)
Dqm(t0) ≥ 0.

See [4, 5] for the details of the proof.

Lemma 2.2 Let J = [0, T ], such that 0 < t1 < t2 < ... < tN−1 < tN−1 = T, and m
be piece-wise left continuous on each (ti, ti+1]. Suppose there exists a t0 ∈ J, such that
m(t0) = 0 and m(t) ≤ 0 for t ∈ [0, t0], then Dqm(t0) ≥ 0.

See [4, 21] for the details of the proof.
Remark: The above result is also true with Caputo derivative in place of Riemann-

Liouville derivative. The proof can be easily obtained by applying the relation be-
tween the Caputo derivative and the Riemann-Liouville derivative, which is cDqm(t) =
Dq (m(t)−m(0)) .

Consider the linear Caputo fractional differential equation

cDqu = λu+ f(t), u(0) = u0. (7)

Then the solution of (7) is given by

u(t) = u0Eq,1(λtq) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)f(s)ds. (8)
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Consider the nonlinear Caputo fractional impulsive differential equations with initial
condition 

cDqu(t) = λu(t) +
N∑
i=1

ciχ(t− ti)si(t− ti)u(ti)

+
N∑
i=1

biχ(t− ti)ri(t− ti)u(ti) + f(t, u(t)) + g(t, u(t)),

u(o) = u0,

(9)

where t ∈ [0, T ], and 0 < t1 < t2 < · · · < tN = T. Also, χ(t − ti) is the Heaviside unit
step function which is left continuous,

χ(t− ti) =

{
1, if t > ti,
0, if t ≤ ti.

(10)

Furthermore, we assume that λ 6= 0, and for each 1 ≤ i ≤ N, ciχ(t − ti)si(t − ti) ≥ 0
and biχ(t − ti)ri(t − ti) ≤ 0. The function f(t, u) is nondecreasing in u and g(t, u) is
nonincreasing in u. In addition, si(t − ti) and ri(t − ti) are continuous on each interval
[ti, ti+1] for i = 1, . . . , N − 1. Therefore, they are bounded on each interval.

Next we define the coupled lower and upper solutions of natural type as well of Type
1. See [9] for other types of coupled lower and upper solutions.

Definition 2.6 If u : C[0, T ] → R which is piecewise left continuous at ti, i =
1, 2, . . . , N , such that 0 < t1 ≤ t2 ≤ · · · ≤ tN = T, and whose Caputo derivative of order
q exists on [0, T ]. Then we denote f ∈ PCq[[0, T ],R].

Definition 2.7 We say that v, w are PCq[[0, T ],R] piecewise left continuous on
(ti, ti+1) for i = 1, . . . , N − 1. Then we say v and w are coupled lower and upper so-
lutions of natural type of (9) if they satisfy the inequalities:

cDqv(t) ≤ λv(t) +

N∑
i=1

aiχ(t− ti)si(t− ti)v(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)v(ti)

+ f(t, v) + g(t, v),

v(0) ≤ u0,

(11)

cDqw(t) ≥ λw(t) +

N∑
i=1

aiχ(t− ti)si(t− ti)w(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)w(ti)

+ f(t, w) + g(t, w),

w(0) ≥ u0.

(12)

Definition 2.8 We say that v, w are PCq[[0, T ],R] piecewise left continuous on
(ti, ti+1) for i = 1, . . . , N − 1. Then we say v and w are coupled lower and upper so-
lutions of type 1 if they satisfy the inequalities:

cDqv(t) ≤ λv(t) +

N∑
i=1

aiχ(t− ti)si(t− ti)v(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)w(ti)

+ f(t, v) + g(t, w)

v(0) ≤ u0,

(13)
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cDqw(t) ≥ λw(t) +

N∑
i=1

aiχ(t− ti)si(t− ti)w(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)v(ti)

+ f(t, w) + g(t, v),

w(0) ≥ u0.

(14)

Theorem 2.1 If λ 6= 0, v(t) and w(t) are coupled lower and upper solutions of type
1 of the nonlinear Caputo impulsive fractional differential equation (9), where f(t, u) and
g(t, u) satisfy the one-sided Lipschitz condition in u, of the following form with u1 ≥ u2

f(t, u1)− f(t, u2) ≤ L1(u1 − u2), (15)

g(t, u1)− g(t, u2) ≥ −L2(u1 − u2), (16)

where L1 ≥ 0 and L2 ≥ 0. Then v(0) ≤ w(0) implies that v(t) ≤ w(t), ∀t ≥ J = [0.T ].

See [22] for the details of the proof.

3 Auxiliary Results

In this section, we prove a comparison theorem which will be used to prove the generalized
monotone method in the main result.

Theorem 3.1 If the functions P (t) and Q(t) are PCq[[0, T ],R] such that satisfy the
following inequalities:

cDqP ≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti), (17)

cDqQ ≥ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti), (18)

where λ ≥ 0, and for each 1 ≤ i ≤ N, ciχ(t− ti)si(t− ti) ≥ 0 and biχ(t− ti)ri(t− ti) ≤ 0,
then the initial condition P (0) ≤ 0 and Q(0) ≥ 0 implies P (t) ≤ 0 and Q(t) ≥ 0 for all
t ∈ [0, T ].

Proof. We prove by the method of mathematical induction. For t ∈ [0, t1)

cDqP (t) ≤ λP (t), cDqQ(t) ≥ λQ(t). (19)

Then we can get

P (t) ≤ P (0)Eq,1(λtq) ≤ 0, Q(t) ≥ Q(0)Eq,1(λtq) ≥ 0. (20)

For t = t1, we have

P (t1) ≤ P (0)Eq,1(λtq1) ≤ 0, Q(t1) ≥ Q(0)Eq,1(λtq1) ≥ 0. (21)

Assume the result is true for t ∈ [tk−1, tk), for 0 ≤ k ≤ N − 1, which yields P (tk) ≤ 0
and Q(tk) ≥ 0 for all 0 ≤ k ≤ N − 1. Then, for t ∈ [tk, tk+1),

cDqP (t) ≤ λP (t)+

k∑
i=1

ciχ(t−ti)si(tk+1−ti)P (ti)+

k∑
i=1

biχ(t−ti)ri(tk+1−ti)Q(ti). (22)
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With the result of P (tk) ≤ 0 and Q(tk) ≥ 0 for all 0 ≤ k ≤ N−1, we can get cDqP ≤ λP .
Therefore we have P (t) ≤ P (0)Eq,1(λtq) ≤ 0 on [0, tk+1). Then for t = tk+1, we have
P (tk+1) ≤ 0. Similarly, we have the results for Q(t),

Q(t) ≥ Q(0)Eq,1(λtq) ≥ 0.

Then Q(tk+1) ≥ 0. Since it is true for i = 1, therefore, by induction, for all ti, 0 ≤ i ≤ N,
P (ti) ≤ 0 and Q(ti) ≥ 0. Then we have P (t) ≤ 0 and Q(t) ≥ 0 for all 0 ≤ t ≤ tN , which
completes the proof.

Lemma 3.1 If the functions P (t) and Q(t) are PCq[[0, T ],R] such that to satisfy the
following inequalities:

cDqP ≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti), (23)

cDqQ ≥ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti). (24)

where λ 6= 0,
N∑
i=1

ciχ(t−ti)si(t−ti) ≥ 0, then the initial condition P (0) ≤ 0 and Q(0) ≥ 0

implies P (t) ≤ 0 and Q(t) ≥ 0 for all t ∈ [0, T ].

Proof. This is a special case of Theorem 3.1 with bi = 0 for all i = 1, 2, · · · , N.
Therefore the proof is almost the same as the one in Theorem 3.1.

4 Main Result

In this section, we consider the nonlinear Caputo impulsive differential equation of the
form (9), which has application in science and biology. Since it is rarely possible to
compute the solution of the nonlinear problem with or without impulses and with integer
derivatives or fractional derivatives, hence we develop generalized monotone method
together with coupled lower and upper solution. See [9, 18] for more details.

The method yields monotone sequences which converge uniformly and monotonically
to coupled minimal and maximal solutions of (9) on the sector defined by coupled lower
and upper solutions. Furthermore, if the nonlinear functions satisfy uniqueness condition,
then the coupled minimal and maximal solutions coincide to be the unique solution of
(9).

Note that the generalized monotone method is a more appropriate method to prove
the existence of the nonlinear Caputo fractional impulsive differential equations when
the nonlinear function is the sum of nondecreasing and nonincreasing functions.

In order to prove our main results, we need the existence and uniqueness of solution
of two linear systems of Caputo fractional impulsive differential equations with initial
condition. This is precisely the next result.

Theorem 4.1 Let v0, w0 be coupled lower and upper solutions of (9) of type 1, such
that v0(t) ≤ w0(t) on t ∈ [0, T ]. Suppose η and µ are any two functions such that
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v0 ≤ η ≤ µ ≤ w0 on [0, T ], then the solution of the following linear Caputo fractional
impulsive differential equations:cDqp = λp+ f(t, η) + g(t, µ) +

N∑
i=1

ciχ(t−ti)si(t−ti)p(ti)+
N∑
i=1

biχ(t−ti)ri(t−ti)q(ti),

p(0) = u0,

(25)cDqq = λq + f(t, µ) + g(t, η) +
N∑
i=1

ciχ(t−ti)si(t−ti)q(ti)+
N∑
i=1

biχ(t−ti)ri(t−ti)p(ti),

q(0) = u0,

(26)
exists and it is unique.

Proof. Since µ(t) and η(t) are known functions of t, it is easy to see that f(t, µ),
f(t, η), g(t, µ) and g(t, η) become functions of t and let us denote

f(t, η) + g(t, µ) = F (t), f(t, µ) + g(t, η) = G(t). (27)

Then the equations (25) and (26) become linear system of Caputo fractional impulsive
differential equations, namely

cDqp = λp+ F (t) +

N∑
i=1

ciχ(t− ti)si(t− ti)p(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)q(ti),

p(0) = u0,

(28)

cDqq = λq +G(t) +

N∑
i=1

ciχ(t− ti)si(t− ti)q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)p(ti),

q(0) = 0.

(29)

Applying the Laplace transformation, the solution of the p(t) and q(t) are given by

p = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)F (s)ds

+
N∑
i=1

ciχ(t− ti)Si(t− ti)p(ti) +
N∑
i=1

biχ(t− ti)Ri(t− ti)q(ti),

q = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)G(s)ds

+
N∑
i=1

ciχ(t− ti)Si(t− ti)q(ti) +
N∑
i=1

biχ(t− ti)Ri(t− ti)p(ti),

(30)

where Si(t− ti) = L−1
(

L(si)
sq−λ

)
and Ri(t− ti) = L−1

(
L(ri)
sq−λ

)
, for i = 1, 2, · · · , N. L and

L−1 are the Laplace transformation and the inverse Laplace transformation, respectively.
Then for t ∈ [0, t1), the equations (28) and (29) reduce to

cDqp = λp+ F (t), cDqq = λq +G(t). (31)

Use the result of (8). The solution p(t) and q(t) can be given by{
p = u0Eq,1(λtq) +

∫ t
0
(t− s)q−1Eq,q(λ(t− s)q)F (s)ds,

q = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)G(s)ds.

(32)
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For t = t1, we get{
p(t1) = u0Eq,1(λtq1) +

∫ t1
0

(t1 − s)q−1Eq,q(λ(t1 − s)q)F (s)ds,

q(t1) = u0Eq,1(λtq1) +
∫ t1

0
(t1 − s)q−1Eq,q(λ(t1 − s)q)G(s)ds.

(33)

For t ∈ [t1, t2), the equations (28) and (29) reduce to

cDqp = λp+ F (t) + c1s1(t− t1)p(t1) + b1r1(t− t1)q(t1), (34)

cDqq = λq +G(t) + c1s1(t− t1)q(t1) + b1r1(t− t1)p(t1). (35)

The solution can be given as
p = u0Eq,1(λtq) +

∫ t
0
(t− s)q−1Eq,q(λ(t− s)q)F (s)ds

+c1S1(t− t1)p(t1) + b1R1(t− t1)q(t1),

q = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)G(s)ds

+c1S1(t− t1)q(t1) + b1R1(t− t1)p(t1).

(36)

After substituting p(t1) and q(t1), the equation (36) reduces to

p = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)F (s)ds

+c1S1(t− t1)
(
u0Eq,1(λtq1) +

∫ t1
0

(t1 − s)q−1Eq,q(λ(t1 − s)q)F (s)ds
)

+b1R1(t− t1)
(
u0Eq,1(λtq1) +

∫ t1
0

(t1 − s)q−1Eq,q(λ(t1 − s)q)G(s)ds
)
,

q = u0Eq,1(λtq) +
∫ t

0
(t− s)q−1Eq,q(λ(t− s)q)G(s)ds

+c1S1(t− t1)
(
u0Eq,1(λtq1) +

∫ t1
0

(t1 − s)q−1Eq,q(λ(t1 − s)q)G(s)ds
)

+b1R1(t− t1)
(
u0Eq,1(λtq1) +

∫ t1
0

(t1 − s)q−1Eq,q(λ(t1 − s)q)F (s)ds
)
,

(37)

where S1(t − t1) = L−1
(

L(s1)
sq−λ

)
and R1(t − t1) = L−1

(
L(r1)
sq−λ

)
. Then we can find the

value of p(t2) and q(t2) by substituting t2 into the equation (37). Then after another
iteration, we can get the solution for t ∈ [t2, t3). If we continue the above process, we
can obtain a closed form of solution of (25)-(26) for all t ∈ [0, T ].

In order to prove the uniqueness of the solution of the equations (25) and (26), let
(p1, q1) and (p2, q2) be two solutions. Then let m = p1 − p2 and n = q1 − q2. Then,

cDqm = λm+

N∑
i=1

ciχ(t− ti)si(t− ti)m(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)n(ti),

m(0) = 0,

(38)

cDqn = λn+

N∑
i=1

ciχ(t− ti)si(t− ti)n(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)m(ti),

n(0) = 0.

(39)

Then by applying Theorem 3.1, we can get that m ≡ 0 and n ≡ 0 for all t ∈ [0, T ],
which means p1 ≡ p2 and q1 ≡ q2 for all t ∈ [0, T ]. Hence the solution of the system
(25)-(26) is unique. This concludes the proof.
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In the next result, we construct the sequences vn and wn, which are monotonically
increasing and decreasing sequences. The sequences vn and wn are the solution of the
following linear system of Caputo fractional impulsive differential equation. They are
defined as

cDqvn = λvn + f(t, vn−1) + g(t, wn−1)

+

N∑
i=1

ciχ(t− ti)si(t− ti)vn(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)wn(ti),

vn(0) = u0,

(40)

cDqwn = λwn + f(t, wn−1) + g(t, vn−1)

+

N∑
i=1

ciχ(t− ti)si(t− ti)wn(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)vn(ti),

wn(0) = u0.

(41)

Here v0 and w0 are coupled lower and upper solutions of Type 1 of the problem (9).
In order to prove our first next main result, we need the following sector Ω, defined

as
Ω = [(t, u) : v0(t) ≤ u ≤ w0(t), t ∈ [0, T ]], (42)

where v0 and w0 are coupled lower and upper solution of suitable type of equation (9)

Theorem 4.2 Assume
(A1). v0 and w0 are coupled lower and upper solutions of type 1 of the equation (9), such
that v0 ≤ w0 on [0, T ];
(A2). f(t, u) and g(t, u) are nondecreasing and nonincreasing, respectively, on Ω.
Then the sequences {vn} and {wn} defined by (40)-(41) are well defined and satisfy the
following results:
(i). {vn} and {wn} satisfy the inequality

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0, ∀t ∈ [0, T ]. (43)

(ii). If u is any solution of equation (9) such that v0 ≤ u ≤ w0, then the sequences {vn}
and {wn} converge uniformly and monotonically to the coupled minimal and maximal
solutions v(t) and w(t), respectively, such that v(t) ≤ u ≤ w(t).
(iii). Furthermore, if f(t, u) and g(t, u) satisfy the one-sided Lipschitz condition of the
form

f(t, u1)− f(t, u2) ≤ L1(u1 − u2), g(t, u1)− g(t, u2) ≥ L2(u1 − u2), (44)

where u1 ≥ u2, L1 ≥ 0 and L2 ≥ 0, ∀t ∈ [0, T ], then we have v(t) = w(t) = u(t) being
the unique solution of (9) on [0, T ].

Proof. We know that v0 ≤ w0. Then from Theorem 4.1, it is easy to see that v1(t)
and w1(t) exist and are unique as well as vn(t) and wn(t) for each n ≥ 1. In order to
prove that vn and wn are monotonically non-decreasing and non-increasing respectively
and vn ≤ wn for all n ≥ 1, we use the method of mathematical induction. Initially, we
prove v0 ≤ v1 and w1 ≤ w0. Assume P (t) = v0(t)−v1(t) and Q(t) = w0(t)−w1(t). Then
we have

P (0) ≤ u0 − u0 = 0 Q(0) ≥ u0 − u0 = 0, (45)
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and

cDqP = cDq(v0 − v1) = cDqv0 − cDqv1

≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti),

cDqQ = cDq(w0 − w1) = cDqw0 − cDqw1

≥ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti).

(46)

Using Theorem 3.1, we have P (t) ≤ 0 and Q(t) ≥ 0. This proves v0 ≤ v1 and w1 ≤ w0

for all t ∈ [0, T ].

Assume that vn ≤ vn+1 and wn+1 ≤ wn are true for n = k, k ≥ 0. Therefore,
vk ≤ vk+1 and wk+1 ≤ wk for all t ∈ [0, T ]. Then let n = k + 1, let P (t) = vk+1 − vk+2

and Q(t) = wk+1 − wk+2. Therefore P (0) = Q(0) = 0.

With the assumption (A2) on f and g, we can get

cDqP = λP + f(t, vk)− f(t, vk+1) + g(t, wk)− g(t, wk+1)

+

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti)

≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti).

(47)

Similarly, for Q(t) we can get

cDqQ = λQ+ f(t, wk)− f(t, wk+1) + g(t, vk)− g(t, vk+1)

+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti)

≥ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti).

(48)

Using Theorem 3.1, we have P (t) ≤ 0 and Q(t) ≥ 0. This proves vk+1 ≤ vk+2 and
wk+2 ≤ wk+1 for all 0 ≤ t ≤ tN . Certainly, it is true for k = 1, hence, by induction, we
have the result

v0 ≤ v1 ≤ · · · ≤ vn−1 ≤ vn, wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0. (49)

Next we prove that vn ≤ wn on t ∈ [0, T ] for all n ≥ 1. We prove it using the method
of mathematical induction.

Let p(t) = v1(t) − w1(t), then p(0) = v1(0) − w1(0) = u0 − u0 = 0. Using the
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assumption (A2) on f and g, we can get

cDqp = λp+ f(t, v0)− f(t, w0) + g(t, w0)− g(t, v0)

+

N∑
i=1

ciχ(t− ti)si(t− ti)p(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)(−p(ti))

≤ λp+

N∑
i=1

ciχ(t− ti)si(t− ti)p(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)(−p(ti))

≤ λp+

N∑
i=1

(
ciχ(t− ti)si(t− ti)− biχ(t− ti)ri(t− ti)

)
p(ti).

(50)

By Lemma 3.1, we have p(t) ≤ 0. Therefore, v1 ≤ w1 for all t ∈ [0, T ].

Assume the result vn ≤ wn is true for n = k, which is vk ≤ wk for all t ∈ [0, T ].
For n = k + 1, we let p(t) = vk+1(t) − wk+1(t), then p(0) = u0 − u0 = 0. With the
assumption (A2), we have

cDqp = λp+ f(t, vk)− f(t, wk) + g(t, wk)− g(t, vk)

+

N∑
i=1

ciχ(t− ti)si(t− ti)p(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)(−p(ti))

≤ λp+

N∑
i=1

ciχ(t− ti)si(t− ti)p(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)(−p(ti))

≤ λp+

N∑
i=1

(
ciχ(t− ti)si(t− ti)− biχ(t− ti)ri(t− ti)

)
p(ti).

(51)

Using the result of Lemma 3.1, we have p(t) ≤ 0. Therefore, vk+1 ≤ wk+1 for all t ∈ [0, T ].
Since it is true for k = 1, therefore, by induction, we have the conclusion vn ≤ wn is
true for every n ≥ 1. Since we have already assumed that v0 ≤ w0, we can obtain the
inequality

v0 ≤ v1 ≤ · · · ≤ vn−1 ≤ vn ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0. (52)

In the next result, we will show that v0 ≤ u ≤ w0 implies vn ≤ u ≤ wn for all n ≥ 1.
We prove by the method of mathematical induction. For n = 1, let

P (t) = v1(t)− u(t), Q(t) = u(t)− w1(t). (53)

The initial condition is P (0) = Q(0) = u0 − u0 = 0.
Then with the assumption (A2), we have

cDqP = λP + f(t, v0)− f(t, u) + g(t, w0)− g(t, u)

+

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti)

≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti).

(54)
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Similarly, for Q(t) we have

cDqQ = λQ+ f(t, u)− f(t, w0) + g(t, u)− g(t, v0)

+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti)

≤ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti).

(55)

Then, by Theorem 3.1, we can get P (t) ≤ 0 and Q(t) ≤ 0. Therefore, v1 ≤ u ≤ w1 for
all t ∈ [0, T ].

Assume the result vn ≤ wn is true for n = k, then we have vk ≤ u ≤ wk. Then for
n = k + 1, let

P (t) = vk+1(t)− u(t), Q(t) = u(t)− wk+1(t). (56)

The initial condition is P (0) = Q(0) = u0 − u0 = 0.
Using the assumption (A2), we can get

cDqP = λP + f(t, vk)− f(t, u) + g(t, wk)− g(t, u)

+

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti)

≤ λP +

N∑
i=1

ciχ(t− ti)si(t− ti)P (ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)Q(ti).

(57)

Similarly, for Q(t) we have

cDqQ = λQ+ f(t, u)− f(t, wk) + g(t, u)− g(t, vk)

+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti)

≤ λQ+

N∑
i=1

ciχ(t− ti)si(t− ti)Q(ti) +

N∑
i=1

biχ(t− ti)ri(t− ti)P (ti).

(58)

Then, by Theorem 3.1, we can get P (t) ≤ 0 and Q(t) ≤ 0. Therefore, vk+1 ≤ u ≤ wk+1

for all t ∈ [0, T ]. Since the result is true for k = 1, then by induction, we have vn(t) ≤
u(t) ≤ wn(t) for all n ≥ 0 and t ∈ [0, T ],

If we consider the result above and the result (i) we proved, we can have

v0 ≤ v1 ≤ · · · ≤ vn ≤ u ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0. (59)

For the next result, we will prove that the sequences {vn} and {wn} are uniformly
bounded and equicontinuous.

Since v0(t) and w0(t) are continuous on each interval [tk, tk+1], we can get they are
bounded on the whole interval [0, T ]. Then assume |v0(t)| ≤Mv and |w0(t)| ≤Mw. Then
for every n and t ∈ [0, T ], by monotonicity we have

0 ≤ vn − v0 ≤ w0 − v0. (60)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (1) (2020) 3–20 15

We take the absolute value to obtain

|vn| ≤ |vn − v0|+ |v0| ≤ |w0 − v0|+ |v0| ≤ |w0|+ |v0|+ |v0| ≤Mw + 2Mv. (61)

Therefore, there exists some positive constant M which is independent of t or N, such
that |vn| ≤M.

Similarly,

|vn| ≤ |wn − w0|+ |w0| ≤ |v0 − w0|+ |w0| ≤ |v0|+ |w0|+ |w0| ≤Mv + 2Mw. (62)

Therefore, there exists some positive constant M ′ which is independent of t or N such
that |wn| ≤ M ′. Furthermore, M and M ′ do not depend on n or t. Then the sequences
{vn(t)} and {wn(t)} are uniformly bounded on the interval [0, T ].

In order to prove the equicontinuity, we use the integral representation of vn(t) ,

vn(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, vn−1(s)) + g(s, wn−1(s)) + λvn(s)

+

k∑
i=1

cisi(t− ti)vn(ti) +

k∑
i=1

biri(t− ti)wn(ti)

)
ds.

(63)

Then for any k = 0, 1, . . . , N − 1, let t1 ∈ [tk, tk+1] , t2 ∈ [tk, tk+1]. Without losing
the generalization, we assume that t1 > t2 and

∣∣t1 − t2∣∣ < δ, where M is some positive
constant. Since si(t− ti) , ri(t− ti) and f(t, u(t)) , g(t, u(t)) are continuous in t on the
interval [ti, ti+1], we can let |cisi(t− ti)| ≤ Cs, |biri(t− ti)| ≤ Cr and |f(t, u(t))| ≤ Mf ,
|g(t, u(t))| ≤ Mg. Based on the uniformly boundedness, we have |vn| ≤ Mv and |wn| ≤
Mw, then we have

∣∣vn(t1)− vn(t2)
∣∣ =

∣∣∣∣ 1

Γ(q)

∫ t1

0

(t1 − s)q−1

(
f(s, vn−1(s)) + g(s, wn−1(s)) + λvn(s)

+

k∑
i=1

cisi(t
1 − ti)vn(ti) +

k∑
i=1

biri(t
1 − ti)wn(ti)

)
ds

− 1

Γ(q)

∫ t2

0

(t2 − s)q−1

(
f(s, vn−1(s)) + g(s, wn−1(s)) + λvn(s)

+

k∑
i=1

cisi(t
2 − ti)vn(ti) +

k∑
i=1

biri(t
2 − ti)wn(ti)

)
ds

∣∣∣∣.

(64)

For any t ∈ [tk, tk+1] we have

∣∣∣∣f(t, vn−1(t)) + g(t, wn−1(t)) + λvn(t) +

k∑
i=1

cisi(t− ti)vn(ti) +

k∑
i=1

biri(t− ti)wn(ti)

∣∣∣∣
≤Mf +Mg +

k∑
i=1

CsMv +

k∑
i=1

biMw.

(65)
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We let M = Mf +Mg +
k∑
i=1

CsMv +
k∑
i=1

biMw, then for any t ∈ [tk, tk+1],

∣∣∣∣f(t, vn−1(t))+g(t, wn−1(t))+λvn(t)+

k∑
i=1

cisi(t− ti)vn(ti)+

k∑
i=1

biri(t− ti)wn(ti)

∣∣∣∣ ≤M.

(66)
Therefore, we have

∣∣vn(t1)− vn(t2)
∣∣ ≤ M

Γ(q)

∫ t2

0

∣∣∣∣(t1 − s)q−1 − (t2 − s)q−1

∣∣∣∣ds+
M

Γ(q)

∫ t1

t2

∣∣(t1 − s)q−1
∣∣ ds

≤ M

Γ(q + 1)
(t1 − t2)q +

M

Γ(q + 1)
(t1 − t2)q =

2M

Γ(q + 1)

∣∣t1 − t2∣∣q < ε.

(67)

Providing
∣∣t1 − t2∣∣ ≤ δ =

(
εΓ(q+1)

2M

) 1
q

, we can have that vn is equicontinuous.

Similarly, for wn we have∣∣∣∣f(t, wn−1(t)) + g(t, vn−1(t)) + λwn(t) +

k∑
i=1

cisi(t− ti)wn(ti) +

k∑
i=1

biri(t− ti)vn(ti)

∣∣∣∣
≤Mf +Mg +

k∑
i=1

CsMw +

k∑
i=1

biMv.

(68)

Let M ′ = Mf +Mg +
k∑
i=1

CsMw +
k∑
i=1

biMv, then for any t ∈ [tk, tk+1],

∣∣∣∣f(t, wn−1(t))+g(t, vn−1(t))+λwn(t)+

k∑
i=1

cisi(t−ti)wn(ti)+

k∑
i=1

biri(t−ti)vn(ti)

∣∣∣∣ ≤M ′.
(69)

Therefore, we have

∣∣wn(t1)− wn(t2)
∣∣ ≤ M ′

Γ(q)

∫ t2

0

∣∣∣∣(t1 − s)q−1 − (t2 − s)q−1

∣∣∣∣ds+
M ′

Γ(q)

∫ t1

t2

∣∣(t1 − s)q−1
∣∣ds

≤ M ′

Γ(q + 1)
(t1 − t2)q +

M ′

Γ(q + 1)
(t1 − t2)q =

2M ′

Γ(q + 1)

∣∣t1 − t2∣∣q < ε.

(70)

We provide
∣∣t1 − t2∣∣ ≤ δ =

(
εΓ(q+1)

2M ′

) 1
q

, then wn is equicontinuous. Therefore,

if we take the minimum of these two, δ = min

((
εΓ(q+1)

2M

) 1
q

,
(
εΓ(q+1)

2M ′

) 1
q

)
, then can

obtain that {vn(t)} and {wn(t)} are equicontinuous on the interval [tk, tk+1]. Since
k = 0, 1, . . . , N − 1 was arbitrary, we proved that {vn(t)} and {wn(t)} are equicon-
tinuous on the interval [0, tN = T ].

Since we have proved that {vn(t)} and {wn(t)} are equicontinuous and uniformly
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bounded on the interval [0, T ], by Ascoli-Arzela’s theorem, there exist subsequences
{vnk

(t)} and {wnk
(t)}, which converge uniformly to v(t) and w(t), respectively, on [0, T ].

Because of the monotonicity of the sequences {vn(t)} and {wn(t)} we have shown, we can
get that the entire sequences {vn(t)} and {wn(t)} converge uniformly and monotonically
to v(t) and w(t), respectively.

For the next step, we will prove that v(t) and w(t) we have above are the minimal
and maximal solutions of the problem (9). Furthermore, we want to show that they are
equivalent to the solution of the equation (9).
We use the integral representation.

vn(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, vn−1(s)) + g(s, wn−1(s)) + λvn(s)

+

k∑
i=1

cisi(t− ti)vn(ti) +

k∑
i=1

biri(t− ti)wn(ti)

)
ds.

(71)

Then, we take the limit of n on both sides. Since {vn} converges uniformly, we have

lim
n→∞

vn = lim
n→∞

(
u0 +

1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, vn−1(s)) + g(s, wn−1(s)) + λvn(s)

+

k∑
i=1

cisi(t− ti)vn(ti) +

k∑
i=1

biri(t− ti)wn(ti)

)
ds.

(72)

Then,

v(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, v(s)) + g(s, w(s)) + λv(s)

+

k∑
i=1

cisi(t− ti)v(ti) +

k∑
i=1

biri(t− ti)w(ti)

)
ds.

(73)

Similarly, for wn we have

wn(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, wn−1(s)) + g(s, vn−1(s)) + λwn(s)

+

k∑
i=1

cisi(t− ti)wn(ti) +

k∑
i=1

biri(t− ti)vn(ti)

)
ds.

(74)

After taking the limits of n on both sides, we can get

lim
n→∞

wn = lim
n→∞

(
u0 +

1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, wn−1(s)) + g(s, vn−1(s)) + λwn(s)

+

k∑
i=1

cisi(t− ti)wn(ti) +

k∑
i=1

biri(t− ti)vn(ti)

)
ds

)
.

(75)

Then,

w(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1

(
f(s, w(s)) + g(s, v(s)) + λw(s)

+

k∑
i=1

cisi(t− ti)w(ti) +

k∑
i=1

biri(t− ti)v(ti)

)
ds.

(76)
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Now we can get that v(t) and w(t) satisfy the equation (9). Therefore, v(t) and
w(t) are coupled minimal and maximal solutions of equation (9). Thus, we have already
shown that vn ≤ u ≤ wn. Taking the limits of n we can get lim

n→∞
vn ≤ lim

n→∞
u ≤ lim

n→∞
wn.

Then we can obtain v ≤ u ≤ w.
In the last result, we will show that if f and g satisfy the one-sided Lipschitz condition,

then the coupled minimal and maximal solutions are equivalent to the solution u of the
equation (9).
Let m(t) = w(t)− v(t), then m(0) = w(0)− v(0) = u0 − u0 = 0, and we can get

cDqm(t) = cDq(w(t)− v(t) = cDqw(t)− cDqv(t)

= λ(w(t)− v(t)) + [f(t, w(t))− f(t, v(t))] + [g(t, v(t))− g(t, w(t))]

+

N∑
i=1

ciχ(t− ti)si(t− ti)(w(ti)− v(ti)) +

N∑
i=1

biχ(t− ti)ri(t− ti)(v(ti)− w(ti)).

(77)

Let Λ = λ+ L1 + L2, we can get

cDqm(t) ≤ Λm(t) +

N∑
i=1

ciχ(t− ti)si(t− ti)m(ti)−
N∑
i=1

biχ(t− ti)ri(t− ti)m(ti). (78)

Then, by using the Laplace transformation, we can get

m(t) ≤ m(0)Eq,1(Λtq) +

N−1∑
i=1

ciSi(t− ti)m(ti)−
N−1∑
i=1

biRi(t− ti)m(ti). (79)

We know that m(0) = 0, then according to the result of Theorem 3.1, we have m(t) ≤ 0,
∀t ∈ [0, tN ]. By definition of m(t) we can get ∀t ∈ [0, T ], w(t) ≤ v(t). Since we have proved
the monotonicity v(t) ≤ u(t) ≤ w(t), we can get that ∀t ∈ [0, T ], v(t) = u(t) = w(t),
which concludes the proof.

Theorem 4.3 Assume
(A1). v0 and w0 are coupled lower and upper solutions of natural type of the equation
(9), such that v0 ≤ u ≤ w0 on [0, T ];
(A2). f(t, u) and g(t, u) are nondecreasing and nonincreasing, respectively, on Ω.
Then the sequences vn and wn defined by (40)-(41) are well defined and satisfy the fol-
lowing results:
(i). For all n ≥ 1, on [0, T ] we have

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0, (80)

provided v0 ≤ v1 and w1 ≤ w0.
(ii). The sequences vn and wn converge uniformly and monotonically to the coupled
minimal and maximal solutions v(t) and w(t), respectively. Furthermore, if u is any
solution of equation (9), then v(t) ≤ u ≤ w(t).
(iii). Furthermore, if f(t, u) and g(t, u) satisfy the one-sided Lipschitz condition, which
is for any u1 ≥ u2, we have

f(t, u1)− f(t, u2) ≤ L1(u1 − u2), g(t, u1)− g(t, u2) ≥ L2(u1 − u2), (81)

where L1 ≥ 0 and L2 ≥ 0, then ∀t ∈ [0, T ], we have v(t) = u(t) = w(t), the uniqueness
of (9) holds on [0, T ].
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Proof. The proof follows the same lines as the proof of Theorem 4.2 except in the
first part, instead of proving v0 ≤ v1 and w1 ≤ w0, we have this result provided. The
rest of the proof is the same.

5 Conclusion

We generalized the monotone method and use the method to prove that for the nonlinear
Caputo fractional impulsive differential equation (9), under certain conditions, the cou-
pled lower and upper solutions of both the natural type and type 1 converge to the exact
solution of the problem. Therefore, in the future work, the monotone method will be
significantly useful to approximate the solution of the problem. In the numerical results,
we will discuss another method which converges faster than this method.
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Abstract: In this paper, we propose a new application of the coefficient diagram
method (CDM) to design a robust controller of non-linear uncertain system, the con-
trol is applied to a distributed collector field of a solar power plant based on cylindrical
parabolic trough concentrators. The non-linear uncertain system is represented by
two PDEs of both the fluid and the metal. To design the control, a linearization of
the non-linear system is made around an equilibrium point to have a transfer func-
tion, this point represents the simulation’s steady state of the real system, then the
controller is obtained using the form of Manabe for the CDM. Comparing the results
of this method with those of the PID controller, it is shown that the CDM design is
an easy and robust control for a non-linear system, that gives enhanced stability with
good settling time with respect to the large rise time.
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1 Introduction

In the last decade, renewable energies have received more and more attention in order to
meet the exponential growth of energy demand. Among renewable energies, the interest
in solar energy has increased, many solar electricity systems were developed, such as
concentrated solar thermal, and more precisely, cylindrical-parabolic trough collectors
(Fig. 1), which are the most used technologies for concentrating solar energy. Today,
some plants are under construction, while others are already operating, such as the
Platform Solar of Almeria (ACUREX) [1].

The main problem in solar energy sources is the independency of the solar radiation
variations, in addition, it can not be adjusted to suit demands that we desire. We note,
for example, cloud cover, humidity and air transparency as atmospheric conditions that
may affect the solar radiation by unpredictable variations [2].

From the perspective of research, many works have been proposed to either model,
control or observe the system [1]. The authors in [3–7] have given different models of the
solar system with different levels of complexity and accuracy, like the bilinear reduced or
the non-linear distributed system [1].

On the other side, many automatic control strategies have been implemented, that is
to make the plant work close to the nominal operating point. In what follows, we cite
well known tests experimented at the plant ACUREX: with a self-tuning PID controller
in [2], in [8] the authors have designed a fuzzy logic controller, the model predictive
control (RMPCT) has been implemented in [9], etc. Additionally, other controller’s
strategies are based on the predictors and the estimators of variables like effective solar
radiation or the system’s temperature as in [10].

It is well known that even with a development in the control side, the PID remains
a very important controller in the industry with a percentage of 95 % among the con-
trollers used in the practice [11]. However, many constraints are imposed in the practical
applications as noted in the previous reference, such as the upper limit of magnitude of
the control signal, the unexpected non-linear effects occurred by the saturation or others.
For these reasons, it is necessary to develop a robust control application to obtain better
control performances of double integrating unstable systems, where the stability is not
ensured by the PID controller which is developed for stable systems [12].

Figure 1: Parabolic distributed solar collector with the schematic diagram of solar ther-
mal hydraulic circuit.

Hence, in this work we propose the use of an algebraic approach that has proved its
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robustness in several works. It is a new robust controller known as a Coefficient Diagram
Method (CDM), developed for uncertain systems and introduced by many researchers
such as Manabe, see [13], [14] and [15] (it is important to note that we will not talk about
the advanced controls applied in other works, because we are interested in controls to
apply in practical and in industrial systems such as PID and RQG).

The CDM is based on a spatial diagram called a coefficient diagram, which is used as
a vehicle to carry the necessary design information and as a criteria of good design. The
method is recently used because of the simplest and robust controller that can be found for
any plant under practical limitations, in addition, this simplicity makes it very powerful
for systems with various uncertainties. In other words, the CDM can give a controller
design which is both stable and robust, and has the desired system response speed, and
also is less sensitive to disturbances and parameter variations, without overshoots and is
obtained for specified settling time [16].

This paper is organized as follows. First, the solar plant is described in Section 2 with
the system modelling, approximations, discretization and linearization. Subsequently, the
CDM structure and its design are presented in Section 3 followed by its application on the
plant in Section 4. Then, numerical tests and simulations to assess the robustness and
stability of the controller are also shown in this section. Finally, Section 5 summarizes
the obtained results.

2 Solar Power Plant Description and Modeling

2.1 Plant description

Most of the thermo-plants in the world use the cylindrical-parabolic collectors because
of their significant energy productivity, and the simplicity of the method. It consists
of linear parabolic mirrors that reflect and concentrate solar energy (irradiations) on
a metal tube which represents the receiver that is positioned along a focal line. This
allows to heat oil, used as a heat-transfer fluid (HTF), to reach temperatures that ensure
evaporation on the level of the turbine (Fig. 1).

Moreover, the Platform ACUREX of ALMERIA is a well-known station in the field
of research. It consists of 10 loops, each one is made up of two lines of 12 modules, and
the length of each loop is 172 m, it also consists of a pump with a limited operation
between the maximum capacity 12 L/s and the safety threshold 2 L/s.

2.2 Plant modeling

The distributed solar collector field can be described by a distributed parameter model
of the temperature while considering general assumptions and hypotheses. The model
is represented by the following system of partial differential equations (PDE) which
describes the energy balance [17]:

∂Tf
∂t

=
δpHt

ρfCfAf
(Tm − Tf )− q

Af

∂Tf
∂l

, (1)

∂Tm
∂t

=
Koptη0G

ρmCmAm
I − GHl

ρmCmAm
(Tm − Ta)− δpHt

ρmCmAm
(Tm − Tf ), (2)

where the subindex m refers to the metal and that of f to the fluid. The parameters of
the system and their values are given in Table 1, where

Hυ = 2.17× 106 − 5.01× 104Tf + 4.53× 10T 2
f − 1.64T 3

f + 2.1× 10−3T 4
f , (3)
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Tin, Tout and Ta are the inlet temperature, the outlet temperature and the ambient
temperature, respectively.

Parameter Description Value Unit
δp Wet perimeter 0.1257 m
ρf Density of f 903 - 0.672.Tf kg.m−3

Cf S.H.C of f 1820 + 3.478.Tf J.kg−1◦C−1

Df & Dm Diameters 0.04 & 0.07 m
Af & Am Sections 0.0013 & 0.0038 m2

Ht C.H.T.C q0.8Hυ W.◦C−1m−2

Hl C.H.T.C 0.00249 ∆T̄ - 0.06133 W.◦C−1m−2

I Irradiation variable W.m−2

q Fluid flow to control m3.s−1

Kopt Optical efficiency ηopt = η0.Kopt = 0.7 —
η0 Collector efficiency —
G Collector aperture = δp.π = 1.83 —
ρm density of m 1100 Kg.m−3

Cm S.H.C of m 840 J.Kg−1.◦C−1

∆T̄ — =
(
Tin+Tout

2 − Ta
) ◦C

Table 1: Parameters description.

Many authors used different simplified models, based on simplified energy balances,
such as neglecting heat losses, or controlling the system using just one equation which
corresponds to the variation of the fluid temperatures. However, the system should be
used under a non-simplified model, as described in equations (1) and (2), to have an
accurate control. Hence, that is the first contribution of this paper.

The aim of our work is to control the outlet temperature of the tube denoted Tout(t) =
Tf (t, L) around a set-point. The incoming energy depends on several parameters such
as the efficiency of the collectors, the mirror reflectivity and on the effective reflecting
surface.

We used this model for control synthesis and simulation. The parameters and the
properties of the fluid used may be considered constant or variable depending on the
variations of the temperature. We also remind that the flow of the fluid is comprised
between

2L.s−1 ≤ q ≤ 12L.s−1, (4)

and the difference between Tout and Tin must be less than 80 ◦C:

Tout − Tin ≤ 80 ◦C. (5)

The first equation of the PDEs obtained from the energy balance, contains two dif-
ferentials depending on space (x) and time (t). For simplification reasons, the first
differential will be eliminated using a discretization on the space as mentioned in Fig. 2,
so we discretize the system on n

2 segments (n2 is just a token, to have a dimension of the
system equal n which will be explained in Section 2.3, and it represents the number of
segments of the tube). In this case, we may introduce a truncation error

∂Tf
∂l

=
Tf (li)− Tf (li−1)

∆l
+ Θ(∆l). (6)
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But, as long as this approximation of the derivative may not be very accurate for the
control synthesis, the truncation error will be added to the general perturbation terms.

Hence, we rewrite the first system as follows :

∂Tf (li)

∂t
=

δpHt

ρfCfAf
(Tm(li)− Tf (li))−

q

Af .∆l
(Tf (li)− Tf (li−1)), (7)

∂Tm(li)

∂t
=

Koptη0G

ρmCmAm
I − GHl

ρmCmAm
(Tm(li)− Ta)− δpHt

ρmCmAm
(Tm(li)− Tf (li)), (8)

where the state vector is as follows:

X = [Tf (l1) Tf (l2) · · ·Tf (ln
2

) Tm(l1) Tm(l2)Tm(l3) · · ·Tm(ln
2

)]T

= [x1 x2 · · ·xn
2−1 xn

2
xn

2 +1 xn
2 +2 · · ·xn−1 xn]T , (9)

and {
x1 = Tout,
xn

2
= Tin.

(10)

Also, we write the system equations in the following state form:{
Ẋ = F (X,u),
Y = h(X) = x1,

(11)

where

u = q(t), (12)

and

dim(Ẋ) = dim(X) = n× 1. (13)

Ẋ is given by

Ẋ = F (X,u) =



δp.Ht(1)
ρf (1).Cf (1).Af

(xn
2 +1 − x1)− u

Af .∆l
(x1 − x2)

δp.Ht(2)
ρf (2).Cf (2).Af

(xn
2 +2 − x2)− u

Af .∆l
(x2 − x3)

...
δp.Ht(

n
2−1)

ρf ( n
2−1).Cf ( n

2−1).Af
(xn−1 − xn

2−1)− u
Af .∆l

(xn
2−1 − xn

2
)

δp.Ht(
n
2 )

ρf ( n
2 ).Cf ( n

2 ).Af
(xn − xn

2
)− u

Af .∆l
(xn

2
− Tin)

Koptη0G
ρmCmAm

I − GHl

ρmCmAm
(xn

2 +1 − Ta)− δpHt(1)
ρmCmAm

(xn
2 +1 − x1)

Koptη0G
ρmCmAm

I − GHl

ρmCmAm
(xn

2 +2 − Ta)− δpHt(2)
ρmCmAm

(xn
2 +2 − x2)

...

...
Koptη0G
ρmCmAm

I − GHl

ρmCmAm
(xn − Ta)− δpHt(n)

ρmCmAm
(xn − xn

2
)
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Figure 2: Diagram of the collector showing parameters and spatial discretization.

2.3 Operating point and control model

In this work we use the three blocks structure of Fig. 3 based on the CDM. This method
requires the transfer function of the system, but knowing that the model is non-linear,
we must have a linearization around an operating point P0(x0, u0).

Besides, to have Ẋ = 0, this point must be an equilibrium point where the state
is steady, we propose to use the results of real simulations of controls applied on the
ACUREX in some works such as [18]. For the linearization we will use Taylor’s series.

Using Taylor’s series we get the system{
Ẋ ' Ẋ0 + ∂F

∂X |(X0,u0) (X −X0) + ∂F
∂u |(X0,u0) (u− u0) + ζ(X,u),

Y ' ∂h
∂X |(X0,u0),

(14)

where  u− u0 = ∆u,
X −X0 = ∆X,
Y − Y0 = ∆Y,

(15)

and
˙(X −X0) = Ẋ − Ẋ0 = Ẋ (Ẋ0 = 0). (16)

Thus
∆̇X = Ẋ. (17)

We take 
AF = ∂F

∂X |(X0,u0),

B = ∂F
∂u |(X0,u0),

C = ∂h
∂X |(X0,u0).

(18)

Finally, the system may be written on state space eliminating the error of second
order as follows : {

∆̇X = AF .∆X +B.∆u,
∆Y = C.∆X.

(19)

After the deduction of system matrices in state space, we conclude the transfer func-
tion G(s):

G(s) =
∆Y (s)

∆U(s)
= C.(sI −AF )−1.B. (20)
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For the simulation, the number of the discretization segments is taken as desired, for
example, 15. If so doing, the denominator of the transfer function calculated has, in
general, dim = n = 30.

3 Recall on CDM Control Design

The CDM is a novel robust controller which uses an algebraic approach and is developed
for uncertain non-linear systems. It is based on a spatial digram called a coefficient
diagram [14,19].

The design of the CDM controller is composed of three blocks (Fig. 3), A(s) is the
forward denominator polynomial, F (s) and B(s) are two numerators polynomials, the
first for the reference and the second for feedback. These polynomials in this structure
are designed to have better performance on tracking the desired reference signal and
rejection disturbances, in addition to that, it helps to avoid the cancellation of unstable
pole-zero. [14]

For the controller synthesis, we must have a transfer function, let it be G(s), formed
by the numerator N(s) and the denominator D(s).

The characteristic polynomial of the closed loop P(s) is as follows [20] :

P (s) = D(s)A(s) +N(s)B(s) =

n∑
i=0

ais
i. (21)

To make the design of the CDM, we must also know three parameters on which
the design is based, the equivalent time constant (τ), the stability indices (γi) and the
stability limits (γ∗i ), they are defined in function of the coefficients of the characteristic
polynomial [20,21]:

γi =
a2
i

ai+1ai−1
, i = 1, ..., n− 1, (22)

γ0 = γn =∞, (23)

τ =
a1

a0
, (24)

γ∗i =
1

γi−1
+

1

γi+1
. (25)

Using these relations between the parameters and the coefficients, the characteristic
polynomial P (s) (also called the target characteristic polynomial) can be formulated in
terms of (τ) and (γi) as follows [15]:

P (s) = a0

[{
n∑

i=2

(
i−1∏
j=1

1

γi
i−j

)
(τs)i

}
+ τs+ 1

]
. (26)

Note that we can give the expression of the equivalent time function of the settling
time ts as follows [15]:

τ = α.ts, α ∈ [0.33, 0.4]. (27)

Many authors recommend the standard Manabe form to be used for the CDM design
[14]. This form has been found after many studies, and stability indices have been chosen
as [22]

γi = {2.5, 2, 2, ..., 2} for i = 1 ∼ (n− 1). (28)
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Figure 3: The block diagram of the CDM applied on the non-linear plant.

The procedure to design a controller using the CDM is given in [13]. Following this
procedure step by step, we apply the method on our system.

Thus, the transfer function in polynomial form is given by

N(s)

D(s)
=
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

dnsn + dn−1sn−1 + · · ·+ d1s+ d0
, (29)

where N(s) and D(s) are the numerator polynomial of degree m and the denominator
polynomial of degree n, respectively, with m ≤ n.

The controller structure shown in Fig. 3 is based on two polynomials, namely, A(s)
and B(s), that are given by

A(s) =

p∑
i=0

lis
i, B(s) =

q∑
i=0

kis
i. (30)

Many criteria are considered to choose the degree of the controller polynomials, where
the perturbations are one of these criteria.

To define the degrees for the different cases of the disturbances, a table is given by [14],
where n is given as a degree of the denominator’s polynomial of the transfer function
G(s), and the pre-controller defined by the polynomial F (s) is chosen to be

F (s) =

(
P (s)

N(s)

)
|s=0

. (31)

The coefficients of the controller polynomials are computed using the Diophantine
equation given by

A(s)D(s) +B(s)N(s) = P (s). (32)

We note that P (s) is determined by substituting values of the parameters γi, a0 and
τ in the equation (26). γi, i=∼(n−1) are chosen from the Manabe form. a0 and τ are
replaced by different values until we obtain the desired results.

D(s) and N(s) are given from the polynomial form of the transfer function of the
system. It remains to find li and ki being the parameters of A(s) and B(s), respectively,
using the linear relation of coefficients [19].
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For instance, with m = 2, n = 3 and taking the model of step disturbances, we have
deg(P(s)) = 6, deg(B(s)) = 3 and deg(A(s)) = 3 with l0 = 0. We can write

d3 0 0 0 0 0 0
d2 d3 0 b2 0 0 0
d1 d2 d3 b1 b2 0 0
d0 d1 d2 b0 b1 b2 0
0 d0 d1 0 b0 b1 b2
0 0 d0 0 0 b0 b1
0 0 0 0 0 0 b0





l3
l2
l1
k3
k2
k1
k0


=



a6
a5
a4
a3
a2
a1
a0


, (33)

which is also called the Sylvester form that can be shortened as follows:

[C]7×7

[
li
ki

]
7×1

= [ai]7×1. (34)

Parameters are simply calculated by solving the linear equation, then F (s) can be
computed by the equation (31): [

li
ki

]
= [C]−1[ai]. (35)

Generally, after using the standard Manabe form, no adjustments in the parameters
are needed, except when dealing with systems that require accurate control. In this case,
we may need some adjustments after doing the first design of the controller, modifying
the design parameters and repeating the process until getting the best response and
desired results.

For instance, if the system reaches saturation, we may increase τ sufficiently and
repeat the process. While decreasing τ can accelerate the response as desired.

4 Solar Plant Controller with CDM

The block diagram of CDM applied on the solar plant is shown on Fig. 3.
First, we choose an equilibrium point, and we linearize the system around this point.

Taking P0(Tout = 250 ◦C, Tin = 180 ◦C, I = 750 W/m2, u = 7.3 L/s (0.0073 m3.s−1 )),
the linear system around P0 is represented by the following transfer function :

G(s) =
−54.03s29 − 157.9s28 − ...− 1.945 × 10−31s

s30 + 2.764s29 + ...+ 3.868 × 10−36s

−3.27 × 10−34

+3.846 × 10−39
, (36)

where G(s) is obtained from the formula in (20).
Model reduction: As we see, the denominator ofG(s) has dim = n = 30. Hence, the

synthesis of the regulator is difficult because of the high order of the transfer function. In
this case, we must reduce the order of our system, using a Matlab function that calculates
the Gramians, it reduces the order from dim = n to 2 or 3 as desired (modred function
with balreal) to obtain a reduced function denoted Gr(s).

The transfer function Gr(s) will be used only in synthesizing the regulator. Then,
this regulator will be applied on the non-linear system.

Using the model reduction function we obtain

Gr(s) =
N(s)

D(s)
=
−3610s2 − 41.55s− 1.287

s2 + 0.00667s+ 1.513× 10−5
. (37)
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Figure 4: Comparison of the Bode diagram of G(s) model (in green) versus its approxi-
mated second-order model Gr(s) (in blue).

The comparison of the Bode diagram of G(s) model versus its approximated second-
order model Gr(s) is given in Fig. 4.

It is seen that the reduced system magnitude and phase are the same as those of the
original system in frequency less than 10−2Hz, for our case it does not impose a problem,
because the study will be made in low frequencies.

Simulation will be done using Matlab and Simulink programs, where in Simulink we
control the non-linear system with CDM and PID controllers in the structure shown
before, this system is represented by two partial differential equations written in file of
Matlab (file.m) and introduced to Simulink by s-function.

In this simulation, we will consider models related to step disturbances taking the
A(s) and B(s) degrees according to the rules mentioned in the table given in [14] to get
the correct polynomials.

For the CDM controller synthesis, we give values of τ and a0 to find the polynomials
using the Sylvester form. As mentioned in the method description in Section 3, we vary
the value of τ until obtaining the best response.

In this case, we have
τ = 278.5 [s], a0 = 0.4. (38)

Thus, the controller polynomials are found as follows:

A(s) = 5836s2 + 201900s, (39)

B(s) = −5331s2 − 74.17s− 0.3109, (40)

and the pre-controller is given by

F (s) =

(
P (s)

N(s)

)
|(s=0)

=
0.4

−1.287
= −0.3109. (41)
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Controller Response IAE ISE ITAE Rise Settling Peak Disturbance’s
time time time overshoot peak

CDM 278.5 s 2472 15640 2.525.107 432 s 612 s 0 ( 0 % ) 0 ( 0 % )
PID 270 s 5828 8156 5.441.107 108 s 1260 s 0.5 (5 % ) 2.5 (25 % )

Table 2: Performance of CDM and PID controllers applied on the solar plant A.

Parameters of PID controller have been chosen using the block of PID controller in
Simulink containing the PID tuning tool, knowing that a transfer function of a conven-
tional PID controller is written as

Gc(s) = Kp(1 +
Ki

s
+ sKd), (42)

where Kp is the proportional gain, KI is the integral constant and KD is the derivative
constant.

We took PID parameters that ensure the best system’s response according to stability,
robustness and response time. These parameters correspond to the PID controller, where

Kp = −8.274.10−3, KI = −6.412.10−4, KD = 8.913.10−3 (43)

(small values because the output of the controller is ∆u with the unit m3.s−1).

4.1 Performances tests

The comparison between the two controllers is based on the following performance cri-
teria. These criteria are based on the integral error, they are used as a good measure for
evaluating the precision of the set point tracking and disturbances rejection [23].

IAE is the integral of the absolute tracking error which penalizes small errors [24]:

IAE =

∫ ∞
0

|e(t)|dt. (44)

ITAE is the integral of the time-weighted absolute error which penalizes the errors
that persist for a long time:

ITAE =

∫ ∞
0

te(t)dt, (45)

and ISE is the integral of the tracking error squared which penalizes large errors:

ISE =

∫ ∞
0

e2(t)dt. (46)

For simulation, we propose a profile of variant inlet temperature, ambient temperature
and solar irradiance that are shown in Fig. 5, Fig. 6 and Fig. 7, respectively (the profiles
have been taken approximately to real values as used in other papers).
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Figure 5: Inlet temperature.
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Figure 6: Ambient temperature.
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Figure 7: Solar irradiations. Figure 8: Response to a step reference
for CDM and PID controllers.

Fig. 8 and Fig. 9 illustrate responses of CDM and PID controllers for a step reference
with the corresponding fluid flow.

Figure 9: Fluid flow.

As we see in Table 2, the PID controller has better rise time. Nevertheless, the CDM
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controller presents better performance indexes in comparison with the PID controller,
with a better settling time with no peak overshoots or disturbance’s peak. Except that,
ISE is little wide because of the large rise time in the case of CDM controller response.

To make more tests to the CDM controller, we did another simulation for the 5 hours
and half (between 11:00 and 16:30). The controllers were evaluated with reference vari-
ations (between 235◦C and 265 ◦C), using the same profiles of variant solar irradiation,
inlet temperature and ambient temperature.
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Figure 10: Reference temperature and average outlet temperature for the CDM (impulse-
sinusoidal type disturbances) and PID controller.

From Fig. 10 and Table 3, it appears that the CDM exhibits better performance
than the PID control, even with a large rise time compared to the first type, especially in
the case of the supposed brutal change in the solar irradiance as an effect of the passing
clouds (at 14,8 h) or the brutal change in the inlet temperature (at 13,5 h).

We also note that the pump’s performance is better and widely admissible with in-
stantaneous small impulses, which may give a considerable lifetime to this pump. Which
is not the case in the PID controller with a huge impulses in case of reference variation.

Fig. 11 and Fig. 12 describe the temperature evolution inside the pipe in 2D and
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Controller IAE ISE ITAE
CDM 1.087×104 4.937×104 9.838×107

PID 1.375×104 2.747×104 1.299×108

Table 3: Performance of CDM and PID controllers applied on the solar plant B.

3D, respectively. The performance of CDM controller in terms of time response (settling
time, even with a small rise time in comparison with the PID), reference tracking and
disturbances rejection clearly appears in Fig. 11 where the outlet temperature tracks the
reference even with disturbed inlet temperature with an admissible pump control.
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Figure 11: Inlet, outlet and segments
temperatures of fluid in 2-D for the tube
with the flow.

Figure 12: Internal dynamics showing
the temperature distribution in 3D.

4.2 Robustness tests

In this part, some robustness tests are given to show the difference between the two
controllers. This robustness will be supposed against both the modelling errors and the
system parameters variations over time, such as fluid density and thermal capacity.

The first test will correspond to the increase in fluid density by 15 % (ρf1 = 1.15 ρf0).
see Fig. 13, and the second will correspond to the decrease in fluid thermal capacity by
15 % (Cf1 = 0.85 Cf0), see Fig. 14.

As seen in the two figures, the CDM controller is more robust against the parameters
variations.
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Figure 13: Responses in case of fluid
density increase.

Figure 14: Responses in case of thermal
capacity decrease.

5 Conclusion

In this work, a control system for the cylindrical-parabolic collector of a solar plant is
designed employing the coefficient diagram method (CDM), which is an algebraic method.
The cylindrical-parabolic solar collector is considered as an uncertain non-linear system,
represented by two partial differential equations (PDEs), that usually complicates the
control.

The performance and robustness of the CDM-controller has been tested with digital
simulations using Matlab functions and Simulink programs. The CDM results have been
compared with those of the PID-controller. It is shown by the comparative design exam-
ples in Section 4, that the controlled system using the CDM exhibits better performance
than the PID-control with the external disturbances. The designed controller is simple,
easy, robust against parameter variations, capable of decreasing the steady state error
to zero and reducing the settling time (even with a large rise time), while supervising an
admissible pump control signal applied to the actual plant, which may give a significant
life to the pump.

Therefore, the CDM is flexible and can be used perfectly for the precise control in
different conditions, replacing the traditional PID and LQG controllers and others (it
is important to note that the PID controller may assume the control object as seen in
different works, also the LQG controller has the same form as the CDM one, but the
CDM controller synthesis is easier and have better performance and more robustness).

We also remind that it is still necessary to make a system of CDM controllers combined
with fuzzy logic to ensure the control with all parameter variations such as solar radiation,
inlet temperature and reference temperature, as done in [25]
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Abstract: In this paper, a new 3D chaotic system with three nonlinearities is in-
troduced. Basic dynamical properties of this new chaotic system are studied such
as equilibrium points and their stability, dissipativity and Lyapunov exponent, Lya-
punov exponent spectrum, Kaplan-Yorke dimension. Also, an adaptive integral slid-
ing mode control scheme is proposed for synchronization of the new chaotic system
with unknown system parameters based on the Lyapunov stability theory and adap-
tive control theory of this new chaotic system with unknown system parameters.
Finally, numerical simulations are presented to show the effectiveness of the proposed
chaos synchronization scheme using Matlab.
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1 Introduction

Chaos as an important nonlinear phenomenon has been studied in mathematics, engi-
neering and in many other disciplines. Synchronization of chaotic systems has become an
active research area because of its potential applications in different industrial areas [1, 2,
3]. For the first time chaotic synchronization was illustrated by Fujiska and Yamada [2] in
1983, then, Pecora and Carroll [3] in 1990, reported a new and very effective method for
the synchronization of two chaotic systems with different initial conditions. The control
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scheme has been applied in the recent decade for the synchronization of chaotic or hyper-
chaotic system, for example, the OYG method [4], adaptive control [5, 13, 14, 15, 19, 20],
backstepping design method [6], sliding mode control [7, 20], PC synchronization method
[3], passive control [8], fuzzy control [9], nonlinear active control [10], etc. The adaptive
control scheme is used when parameters are unknown or initially uncertain. The sliding
mode control method is often used because of its inherent advantages of easy realization,
fast response and good transient performance, as well as its insensitivity to parameter
uncertainties and external disturbances. Also, in the adaptive method, the control law
and parameter update law are designed in such a way that the chaotic response system to
behave like chaotic drive systems. As a result, the adaptive scheme maintains consistent
performance of a system in the presence of uncertainty as well as variations in plant pa-
rameters. The adaptive control technique is different from other control methods since it
does not need a priori information about the bounds on these uncertain or time varying
parameters because this method of control is concerned with the control law changing
themselves. Recently, many papers are available on synchronization of chaotic systems
using this method of control.

In this paper a new chaotic system is considered for synchronization using the sliding
mode control method and adaptive sliding mode control method when system parame-
ters are unknown. Stabilization and convergence of error dynamics are achieved using
the Lyapunov stability theory [11, 12]. This paper is organized as follows. The first
section deals with the description and some properties of the novel chaotic system. The
next two sections deal with the synchronization problem for globally and exponentially
synchronizing the identical 3-D novel chaotic systems using the integral sliding mode
control and adaptive integral sliding mode control law with unknown system parame-
ters, respectively. Finally, numerical simulations using MATLAB have been shown to
illustrate our results for the new chaotic system with unknown parameters.

1.1 Description of the novel chaotic system

A novel 3D autonomous chaotic system is expressed as follows:
dx
dt = a(y − x),
dy
dt = cx− y − xz − ex,
dz
dt = exy − dy − bz,

(1)

where x, y, z are the state variables and a, b, c are positive real parameters.
There are nine terms on the right-hand side but it mainly relies on three nonlinearities,

namely, exy, exand xz , respectively.
System (1) can generate a new strange attractor for the parameters a = 15, b = 3, c =

300, d = 1 with the initial conditions (x(0), y(0), z(0)) = (1, 1, 1). The chaotic attractor is
displayed in Figure 1. It appears that the new attractor exhibits the interesting complex
and abundant chaotic dynamics behavior, which is similar to the Lorenz chaotic attractor,
but is different from that of the Lorenz system or any existing systems.

1.2 Basic properties

In this section, some basic properties of the system (1) are given. We start with the
equilibrium points of the system and check their stability at the initial values of the
parameters a, b, c.
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1.3 Equilibrium points

Putting equations of the system (1) equal to zero, i.e., a(y − x) = 0,
cx− y − xz − ex = 0,
exy − dy − bz = 0,

(2)

gives numerically the only equilibrium point

p∗ =
(
3. 359 5× 10−3, 3. 359 5× 10−3, 0.332 22

)
.

1.4 Stability

In order to check the stability of the equilibrium points we derive the Jacobian matrix
at a point p (x, y, z) of the system (1)

J(p) =

 −a a 0
c− z − ex −1 −x
yexy −d+ xexy −b

 . (3)

For p∗, we obtain three eigenvalues

λ1 = 59. 297, λ2 = −3.0, λ3 = −75. 297. (4)

Since all the eigenvalues are real, Hartman-Grobman theorem implies that p is a
saddle point which is unstable according to the Lyapunov theorem of stability.

1.4.1 Dissipativity

In vector notation, we may express the system (1) as

.

X = f (X) =

 f1(x, y, z)
f2(x, y, z)
f3(x, y, z)

 .

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = φt(Ω), where
φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t). By Liouville’s
theorem, we have

V̇ (t) =

∫
Ω(t)

(∇.f) dxdydz (5)

with

∇.f =
∂ḟ1

∂x
+
∂ḟ2

∂y
+
∂ḟ3

∂z
= −(a+ b+ 1) < 0 (6)

and therefore

V̇ (t) =

∫
Ω(t)

(−19) dxdydz = −19V (t).

By integration, we get
V (t) = e−19tV (0), (7)

then, V (t)→ 0 as t→∞. This shows that the novel chaotic system (1) is dissipative.
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1.4.2 Lyapunov exponents and Kaplan-Yorke dimension

Lyapunov exponents are used to measure the exponential rates of divergence and con-
vergence of nearby trajectories, which is an important characteristic to judge the system
whether it is chaotic or not. The existence of at least one positive Lyapunov exponent
implies that the system is chaotic.

For the chosen parameter values of a, b, c, d, the Lyapunov exponents of the
novel chaotic system (1) are obtained using Matlab with the initial conditions
(x(0), y(0), z(0)) = (1, 1, 1)

L1 = 6.6231, L2 = −0.00206431, L3 = −20.621. (8)

The Lyapunov exponents spectrum is shown in Fig. 1.
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Figure 1: Lyapunov exponents spectrum.

Since the spectrum of Lyapunov exponents (8) has a maximal positive value L1, it
follows that the 3-D novel system (1) is a highly chaotic . The Kaplan-Yorke dimension
of system (1) is calculated as

DKL = 2 +
L1 + L2

|L3|
= 2.3211. (9)

In Figs. 2-6, the 2-D projections of the strange chaotic attractor of the novel chaotic
system (1) on the (x; y), (x; z), (y; z), (z; x), (z; y) planes are shown, respectively.

1.5 Synchronizing of the identical 3-D novel chaotic systems using integral
sliding mode control

In this section, an integral sliding mode controller will be designed for globally and
exponentially synchronizing the identical 3-D novel chaotic systems.

Thus, the master system is given by the novel chaotic system dynamics
dx1

dt = a(x2 − x1),

dx2

dt = cx1 − x2 − x1x3 − ex1 ,

dx3

dt = ex1x2 − dx2 − bx3.

(10)
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Figure 2: Projection on the x− y plane of the chaotic attractor of system (1).
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Figure 3: Projection on the x− z plane of the chaotic attractor of system (1).
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Figure 4: Projection on the y − z plane of the chaotic attractor of system (1).

Also, the slave system is given by the novel chaotic system dynamics
dy1

dt = a(y2 − y1) + u1,

dy2

dt = cy1 − y2 − y1y3 − ey1 + u2,

dy3

dt = ey1y2 − dy2 − by3 + u3.

(11)
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Figure 5: Projection on the z − y plane of the chaotic attractor of system (1).
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Figure 6: Projection on the z − x plane of the chaotic attractor of system (1).

In (10) and (11), the system parameters a, b, c, d are a = 15, b = 3, c = 300, d = 1 and
the main objective here is to design the controllers u1, u2, u3 to synchronize two of the
identical 3-D novel chaotic systems in equation (11) with equation (10), respectively.

The synchronization error between the novel chaotic systems (10) and (11) is defined
as  e1 = y1 − x1,

e2 = y2 − x2,
e3 = y3 − x3,

(12)

(12) implies  ė1 = ẏ1 − ẋ1,
ė2 = ẏ2 − ẋ2,
ė3 = ẏ3 − ẋ3.

(13)

The sliding surface of the integral sliding mode controller is defined as

si =

(
d

dt
+ λi

) t∫
0

ei (τ) dτ

 = ei + λi

t∫
0

ei (τ) dτ (14)
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and the reaching law is given by

.
si = −ηisgn(si)− kisi, i = 1, 2, 3, (15)

where ηi > 0, which indicates that the rate of the system reaching the switching surface
si = 0, and the exponential reaching term, −kisi, can guarantee that the system state
can tend to the sliding mode with a large rate when si is bigger.

The derivative of equation in equation (14) results

.
si = ėi + λiei. (16)

The Hurwitz condition is realized if λi > 0 for i = 1, 2, 3.
Equation (16) by considering the exponential reaching law presented by equation (15)

gives 
.
e1 + λ1e1 = −η1sgn(s1)− k1s1,
.
e2 + λ2e2 = −η2sgn(s2)− k2s2,
.
e3 + λ3e3 = −η3sgn(s3)− k3s3.

(17)

Writing equation (17) with the provision of equations (12) and (13) yields a(e2 − e1) + u1 + λ1e1 = −η1sgn(s1)− k1s1,
ce1 − e2 − y1y3 + x1x3 − ey1 + ex1 + u2 + λ2e2 = −η2sgn(s2)− k2s2,
−de2 − be3 + ey1y2 − ex1x2 + u3 + λ3e3 = −η3sgn(s3)− k3s3.

(18)

Then, the following control laws result in u1 = −a(e2 − e1)− λ1e1 − η1sgn(s1)− k1s1,
u2 = −ce1 + e2 + y1y3 − x1x3 + ey1 − ex1 − λ2e2 − η2sgn(s2)− k2s2,
u3 = de2 + be3 − ey1y2 + ex1x2 − λ3e3 − η3sgn(s3)− k3s3.

(19)

Theorem 1.1 The response of the system in equation (11) with the arbitrary initial
condition y(0) ∈ R3, using the control laws in equation (19) and with ηi, λi and ki > 0,
is same as the response of the system in equation (10). This means equation (12) is
globally asymptotically stable.

Proof. We consider the quadratic Lyapunov function given by

V (s1, s2, s3) =
1

2

(
s2

1 + s2
2 + s2

3

)
, (20)

where si, i = 1, 2, 3., are the same as the ones in equation (14). Then, the derivative of
equation (20) gives

V̇ = s1
.
s1 + s2

.
s2 + s3

.
s3. (21)

By substituting equation (15) into equation (21) we get

V̇ = s1 (−η1sgn(s1)− k1s1) + s2 (−η2sgn(s2)− k2s2) + s3 (−η3sgn(s3)− k3s3) (22)

= −η1 |s1| − k1s
2
1 − η2 |s2| − k2s

2
2 − η3 |s3| − k3s

2
3,

which is a negative definite function on R3 for ηi, ki > 0, i = 1, 2, 3. Hence, by the
Lyapunov stability theory [11, 12], it follows that ei(t) −→ 0 as t −→ ∞ for i = 1, 2, 3.
Hence, the proof is complete.
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2 Adaptive Synchronization of the Identical 3-D Novel Chaotic Systems

In this section, we derive an adaptive integral sliding mode control law for globally and
exponentially synchronizing the identical 3-D novel chaotic systems with unknown system
parameters.

Thus, the master system is given by the novel chaotic system dynamics
dx1

dt = a(x2 − x1),

dx2

dt = cx1 − x2 − x1x3 − ex1 ,

dx3

dt = ex1x2 − dx2 − bx3.

(23)

Also, the slave system is given by the novel chaotic system dynamics
dy1

dt = a(y2 − y1) + u1,

dy2

dt = cy1 − y2 − y1y3 − ey1 + u2,

dy3

dt = ey1y2 − dy2 − by3 + u3.

(24)

In (23) and (24), the system parameters a, b, c, d are unknown and the design goal is
to find the adaptive feedback controls u1, u2, u3 using the states x1, x2, x3, y1, y2, y3 and
the estimates a1 (t) , b1 (t) , c1 (t) , d1 (t) of the unknown parameters a, b, c, d, respectively.

The synchronization error between the novel chaotic systems (23) and (24) is defined
as  e1 = y1 − x1,

e2 = y2 − x2,
e3 = y3 − x3,

(25)

(25) implies  ė1 = ẏ1 − ẋ1,
ė2 = ẏ2 − ẋ2,
ė3 = ẏ3 − ẋ3.

(26)

Thus, the synchronization error dynamics is obtained as ė1 = a(e2 − e1) + u1,
ė2 = ce1 − e2 − y1y3 + x1x3 − ey1 + ex1 + u2,
ė3 = −de2 − be3 + ey1y2 − ex1x2 + u3.

(27)

We take the adaptive control law defined by u1 = −a1(e2 − e1)− λ1e1 − η1sgn(s1)− k1s1,
u2 = −c1e1 + e2 + y1y3 − x1x3 + ey1 − ex1 − λ2e2 − η2sgn(s2)− k2s2,
u3 = d1e2 + b1e3 − ey1y2 + ex1x2 − λ3e3 − η3sgn(s3)− k3s3,

(28)

where k1, k2, k3 are positive gain constants.
Substituting (28) into (27), we obtain the closed-loop error dynamics as ė1 = (a− a1)(e2 − e1)− λ1e1 − η1sgn(s1)− k1s1,

ė2 = (c− c1)e1 − λ2e2 − η2sgn(s2)− k2s2,
ė3 = (d1 − d) e2 − (b− b1)e3 − λ3e3 − η3sgn(s3)− k3s3.

(29)
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The parameter estimation errors are defined as
ea (t) = a− a1 (t) ,
ec (t) = c− c1 (t) ,
eb (t) = b− b1 (t) ,
ed (t) = d− d1 (t) .

(30)

Differentiating (30) with respect to t, we obtain

dea(t)
dt = −da1(t)

dt ,

dec(t)
dt = −dc1(t)

dt ,

deb(t)
dt = −db1(t)

dt ,

ded(t)
dt = −dd1(t)

dt .

(31)

By using (31), we rewrite the closed-loop system (29) as ė1 = ea(e2 − e1)− λ1e1 − η1sgn(s1)− k1s1,
ė2 = ece1 − λ2e2 − η2sgn(s2)− k2s2,
ė3 = −ede2 − ebe3 − λ3e3 − η3sgn(s3)− k3s3.

(32)

We consider the quadratic Lyapunov function given by

V (s1, s2, s3, ea, eb, ec, ed) =
1

2

(
s2

1 + s2
2 + s2

3 + e2
a + e2

b + e2
c + e2

d

)
, (33)

which is a positive definite function on R6.
Differentiating V along the trajectories of the systems (31) and (32), we obtain the

following: V̇ = −
∑3

i=1 kis
2
i − (η1 |s1|+ η2 |s2|+ η3 |s3|) + ea

(
s1(e2 − e1)− da1(t)

dt

)
,

−eb
(
s3e3 + db1(t)

dt

)
+ ec

(
s2e1 − dc1(t)

dt

)
− ed

(
s3e2 + dd1(t)

dt

)
.

(34)

In view of (34), we take the parameter update law as follows:

da1(t)
dt = s1(e2 − e1),

db1(t)
dt = −s3e3,

dc1(t)
dt = s2e1,

dd1(t)
dt = −s3e2.

(35)

Substituting (35) into (34), we obtain

V̇ = −
3∑

i=1

kis
2
i ,

which is a negative definite function on R3 . Hence, by the Lyapunov stability theory
[11, 12], it follows that ei(t) −→ 0 as t −→ ∞ for i = 1, 2, 3. Hence, we have proved the
following theorem.

Theorem 2.1 The 3-D novel chaotic systems (23) and (24) with unknown parame-
ters are globally and exponentially synchronized for all initial conditions by the adaptive
feedback control law (28) and the parameter update law (35), where k1, k2, k3 are positive
constants.
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2.1 Numerical simulations

We used the classical fourth-order Runge-Kutta method with step size h = 10−8 to solve
the system of differential equations (23), (24) and (35) when the adaptive control law
(28) is applied.

The parameter values of the novel 3-D chaotic system (23) are chosen as in the chaotic
case, i.e., a = 15, b = 3, c = 300, d = 1. The positive gain constants are taken as ki = 5,
for i = 1, 2, 3.

The initial conditions of the drive system (23) are chosen as: x1(0) = 2, x2(0) =
−5, x3(0) = 7 and y1(0) = 12, y2(0) = 6, y3(0) = 10 for the slave system (24). Further-
more, as initial conditions of the parameter estimates of the unknown parameters, we
have chosen a1 (0) = 20, b1 (t) = 5, c1 (t) = 25, d1 (t) = 3.

In Figs. 7-9, the synchronization of the states of the master system (23) and slave
system (24) is depicted, when the adaptive control law (28) and parameter update law
(35) are implemented.
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Figure 7: Synchronization of the states x1(t) and y1(t).

3 Conclusion

In this paper, a new chaotic system is introduced. Basic properties of this system are
studied such as equilibrium points and their stability and the Lyapunov exponent and
Kaplan-Yorke dimension. Moreover, the synchronization problem for globally and expo-
nentially synchronizing the identical 3-D novel chaotic systems is solved using the integral
sliding mode control and adaptive integral sliding mode control law with unknown sys-
tem parameter, respectively. Numerical simulations using MATLAB have been shown to
illustrate our results for the new chaotic system with unknown parameters. The results
of this work are very important and have many applications in many fields such as se-
curity and communication. Therefore, further research on the system is still important
and insightful and will be taken into consideration in a future work.



48 F. HANNACHI

0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

x
2
 a

n
d

 y
2

 

 

x2

y2

Figure 8: Synchronization of the states x2(t) and y2(t).
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Abstract: An unmanned submarine commonly called an Autonomous Underwater
Vehicle (AUV) is one type of underwater robots used for underwater mapping. The
AUV is an underwater vehicle capable of automatically moving in the water, con-
trolled by humans on a vessel. Building an AUV is not easy as many components
play important roles in the operation of the AUV. One of them is the motion control
system. This paper develops the motion control system of the UNUSAITS AUV by
applying a Sliding PID (SPID) control to a linear model with 6-DOF. The linear
model is obtained through linearization of the nonlinear model with 6-DOF. The
SPID is a combination of the Sliding Mode Control (SMC) and PID. The results of
the study indicate that the SPID method can be effectively used as the motion control
system of the linear model with an error of 0.2% - 4.2%.
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1 Introduction

Underwater vehicle technology plays an important role for archipelago nations such as
Indonesia. Since its water area is much larger than its land area, underwater technology is
required to explore and keep or maintain its natural resources. So, an underwater vehicle
is needed [1]. Underwater rides widely developed by many researchers and practitioners
today are unmanned underwater robots. This robot is known as the Autonomous Un-
derwater Vehicle (AUV). The AUV is one type of underwater robots that have attracted
a lot of researchers in recent years [2]. The AUV is a vehicle driven through water with
a propulsion system, controlled and driven by an onboard computer with six degrees
of freedom (DOF) maneuver, so that it can carry out its determined tasks entirely by
itself. The benefits of the AUV are not only for exploring marine resources, but also for
underwater mapping and underwater defense system equipment [3, 4].

Several studies on the AUV control system that have been conducted within the pe-
riod of 1990s up to now can be described as follows. Guo, Chiu and Huang examined
the AUV motion control by using a Fuzzy Sliding Mode Control for 6-DOF [5]. Then,
Mc Gann et al. used an adaptive control for 6-DOF underwater vehicles [6]. Petric dan
Stilwell applied PID to the Virginia Tech 475 AUV model with 2-DOF [7]. Oktafianto
et al. developed a Sliding Mode Control (SMC) method for a 6-DOF linear model [8].
Herlambang et al. proposed a Particle Swarm Optimization (PSO) and Ant Colony Op-
timization (ACO) for controlling an AUV system [9].

This study was carried out in the following stages. First, the equation of motion for
the 6-DOF nonlinear model was formulated. Then, the model was linearized using the
Jacobi matrix to obtain the 6-DOF linear model. Next, the Sliding PID (SPID) method
was employed to control the motion of the 6-DOF model to reach the desired set point
in the disturbance-free case (when the AUV is moving).

2 Autonomous Underwater Vehicle

Two important things are considered essential to analyze an AUV, that is, the axis
system consisting of the Earth Fixed Frame (EFF) and Body Fixed Frame (BFF) as
seen in Figure 1 (left) [10]. The EFF is used to show the position and orientation of the
AUV, of which the x-axis position leads northward, the y-axis goes to the east, and the
z-axis heads toward the center of the earth. The BFF defines the positive x-axis leading
to the prowess of the vehicle, the positive y-axis leads to the right side of the vehicle,
and the positive z-axis points downward [10]. The BFF system is used to show the speed
and acceleration of the AUV with the starting point at the center of gravity. The profile
of the UNUSAITS AUV is shown in Figure 1 (right). Figure 1 (left) and Table 1 show
that the AUV has six degrees of freedom (6-DOF), that is, surge, sway, heave, roll, pitch
and yaw. The equation of AUV motion is influenced by the outer force as follows:

τ = τhydrostatic + τaddedmass + τdrag + τlift + τcontrol .

The movement of the UNUSAITS AUV has 6 degrees of freedom, that is, 3 (three)
degrees of freedom for the direction of translational motion on the x-axis (surge), y-
axis (sway), and z-axis (heave) and the other 3 (three) degrees of freedom for rotational
motion on the x-axis (roll), y-axis (yaw), and z-axis (pitch). The UNUSAITS AUV
specifications include, among others, weight of 16 kg, length of 1.5 m, and a diameter
of 20 cm [12]. The general description of the AUV with 6 DOF can be expressed in the
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Figure 1: AUV motion with six degrees of freedom [11] and profile of UNUSAITS AUV [12].

Weight 16 Kg
Length 1500 mm

Diameter 200 mm
Controller Ardupilot Mega 2.0

Communication Wireless Xbee 2.4 GHz
Camera TTL Camera
Battery Li-Pro 11.8 V

Propulsion 12 V DC motor
Propeller 3 Blades OD : 50 mm

Speed 3.1 knots (1.5 m/s)
Maximum depth 8 m

Table 1: Specification of UNUSAITS AUV.

equations [10]:

η = [ηT1 , η
T
2 ]T , η1 = [x, y, z]T , η2 = [φ, θ, ψ]T ;

v = [vT1 , v
T
2 ]T , v1 = [u, v, w]T , v2 = [p, q, r]T ;

τ = [τT1 , τ
T
2 ]T , v1 = [X,Y, Z]T , v2 = [K,M,N ]T ;

In the equations above, η shows the vector position and orientation on the EFF. Then,
τ denotes the force vector and moment working on the AUV on the BFF, namely, surge
(u), sway (v), heave (w), roll (p), pitch (q) and yaw (r). The total force and moment
working on the AUV can be obtained by combining hydrostatic forces, hydrodynamic
forces and thrust forces. In this case, it is assumed that the diagonal inertia tensor (Io)
is zero, to obtain the total force and moment of the whole nonlinear AUV model [2].
The following equations represent the surge, sway, heave, roll, pitch and yaw motions,
respectively:

m[u̇− vr + wq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] = Xres +X|u|uu|u|+Xu̇u̇

+Xwqwq +Xqqqq +Xvrvr +Xrrrr +Xprop , (1)

m[v̇ − wp+ ur − yG(r2 + p2) + zG(qr − ṗ) + xG(pq + ṙ)] = Yres + Y|v|vv|v|+ Yr|r|r|r|
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+ Yv̇ v̇ + Yṙ ṙ + Yurur + Ywpwp+ Ypqpq + Yuvuv + Yuuδr1u
2δr1, (2)

m[ẇ − uq + vp− zG(p2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] = Zres + Z|w|ww|w|
+ Zq|q|q|q|+ Zẇẇ + Zq̇ q̇ + Zuquq + Zvpvp+ Zrprp+ Zuwuw + Zuuδs1u

2δs1, (3)

Ixṗ+ (Iz − Iy)qr +m[yG(ẇ − uq + vp)− zG(v̇ − wp+ ur)] = Kres +Kp|p|p|p|+Kṗṗ

+Kprop , (4)

Iy q̇ + (Ix − Iz)rp+m[zG(u̇− vr + wq)− xG(ẇ − uq + vp)] = Mres +Mw|w|w|w|
+Mq|q|q|q|+Mẇẇ +Mq̇ q̇ +Muquq +Mvpvp+Mrprp+Muwuw +Muuδs2u

2δs2,
(5)

Iz ṙ + (Iy − Iz)pq +m[xG(v̇ − wp+ ur)− yG(u̇− vr + wq)] = Nres +Nv|v|v|v|
+Nr|r|r|r|+Nv̇ v̇ +Nṙ ṙ +Nurur +Nwpwp+Npqpq +Nuvuv +Nuuδr2u

2δr2. (6)

The state variables of the model in (1)-(6) are u (surge), v (sway), w (heave), p (roll),
q (pitch) and r (yaw), i.e., x = [u, v, w, p, q, r]T . In this work, we assume that all state
variables are measured, i.e., y = x. The input variables are Xprop , δr1, δs1, Kprop , δs2
and δr2, i.e., u = [Xprop , δr1, δs1,Kprop , δs2, δr2]T . It follows that the model in (1)-(6)
can be formulated in the following state-space form:

ẋ(t) = f(x(t), u(t), t), (7)

y(t) = x(t), (8)

where

f1(x, u) = (−m[−vr + wq − xG(q2 + r2) + pqyG + przG] +Xres +X|u|uu|u|+Xwqwq

+Xqqqq +Xvrvr +Xrrrr +Xprop)/(m−Xu̇), (9)

f2(x, u) = (−m[−wp+ ur − yG(r2 + p2) + qrzG + pqxG] + Yres + Y|v|vv|v|+ Yr|r|r|r|
+ Yṙ ṙ + Yurur + Ywpwp+ Ypqpq + Yuvuv + Yuuδr1u

2δr1)/(m− Yv̇), (10)

f3(x, u) = (−m[−uq + vp− zG(p2 + q2) + rpxG + rqyG] + Zres + Z|w|ww|w|+ Zq|q|q|q|
+ Zq̇ q̇ + Zuquq + Zvpvp+ Zrprp+ Zuwuw + Zuuδs1u

2δs1)/(m− Zẇ), (11)

f4(x, u) = (−(Iz − Iy)qr −m[yG(−uq + vp)− zG(−wp+ ur)] +Kres +Kp|p|p|p|
+Kprop)/(Ix −Kṗ), (12)

f5(x, u) = (−(Ix − Iz)rp−m[zG(−vr + wq)− xG(−uq + vp)] +Mres +Mw|w|w|w|
+Mq|q|q|q|+Mẇẇ +Muquq +Mvpvp+Mrprp+Muwuw +Muuδs2u

2δs2)

/(Iy −Mq̇), (13)

f6(x, u) = (−(Iy − Iz)pq −m[xG(−wp+ ur)− yG(−vr + wq)] +Nres +Nv|v|v|v|
+Nr|r|r|r|+Nv̇ v̇ +Nurur +Nwpwp+Npqpq +Nuvuv +Nuuδr2u

2δr2)

/(Iz −Nṙ). (14)

Notice that the nonlinear AUV model in (7)-(8) is quite complicated. Thus, it is diffi-
cult to design a controller for the nonlinear model. Therefore, we linearize the nonlinear
AUV model (7)-(8) around a solution by using the Jacobi matrix. The linearized AUV
model is given by

ẋ(t) = Ax(t) +Bu(t), (15)
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y(t) = Cx(t) +Du(t), (16)

where

A =



1 0 0 0 mzG
m−Xu̇

−myG
m−Xu̇

0 1 0 − mzG
m−Yv̇

0 mxG−Yṙ

m−Yv̇

0 0 1 myG
m−Zẇ

(mxG+Zq̇)
m−Zẇ

0

0 − mzG
Ix−Kṗ

myG
Ix−Kṗ

1 0 0

mzG
Iy−Mq̇

0 − (mxG+Mẇ)
Iy−Mq̇

0 1 0

− myG
Iz−Nṙ

mxG−Nv̇

Iz−Nṙ
0 0 0 1



−1


a1 b1 c1 d1 e1 g1
a2 b2 c2 d2 e2 g2
a3 b3 c3 d3 e3 g3
a4 b4 c4 d4 e4 g4
a5 b5 c5 d5 e5 g5
a6 b6 c6 d6 e6 g6

 , (17)

B =



1 0 0 0 mzG
m−Xu̇

−myG
m−Xu̇

0 1 0 − mzG
m−Yv̇

0 mxG−Yṙ

m−Yv̇

0 0 1 myG
m−Zẇ

(mxG+Zq̇)
m−Zẇ

0

0 − mzG
Ix−Kṗ

myG
Ix−Kṗ

1 0 0

mzG
Iy−Mq̇

0 − (mxG+Mẇ)
Iy−Mq̇

0 1 0

− myG
Iz−Nṙ

mxG−Nv̇

Iz−Nṙ
0 0 0 1



−1


A1 B1 C1 D1 E1 G1

A2 B2 C2 D2 E2 G2

A3 B3 C3 D3 E3 G3

A4 B4 C4 D4 E4 G4

A5 B5 C5 D5 E5 G5

A6 B6 C6 D6 E6 G6

 , (18)

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , D =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (19)

3 Sliding PID

The Sliding-PID control system design is a combination of the SMC and PID. In the
first stage, the error signal (the difference between the set point and the output) is used
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as an input to the SMC. The SMC produces a signal that will guarantee that the error
becomes zero in finite time. Then, the signal generated by the SMC is used as an input
to the PID. Finally, the PID generates a signal that will be sent to the model as the
input signal. The above process can be compactly displayed as a block diagram of the
Sliding PID in Figure 2.

Figure 2: The block diagram of SPID.

Next, we design the SMC control system of the 6-DOF linear model for surge, sway,
heave, roll, pitch and yaw. The SMC algorithm is used to compute the control input for
those motions. Without going into the details, the control law produced by the SMC for
each motion is as follows:

Xprop = −
(
aa1u+ bb1v + cc1w + dd1p+ ee1q + gg1r +BB1δr1 + CC1δs1

AA1

)
−
(
DD1Kprop + EE1δs2 +GG1δr2

AA1

)
−
∣∣∣∣max

η

AA1

∣∣∣∣ sat

(
S

φ

)
, (20)

δr1 = −
(
aa2u+ bb2v + cc2w + dd2p+ ee2q + gg2r +AA2Xprop + CC2δs1

BB2

)
− DD2Kprop + EE2δs2 +GG2δr2

BB2
−
∣∣∣∣max

η

BB2

∣∣∣∣ sat

(
S

φ

)
, (21)
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δs1 = −
(
aa3u+ bb3v + cc3w + dd3p+ ee3q + gg3r +AA3Xprop +BB3δr1

CC3

)
−
(
DD3Kprop + EE3δs2 +GG3δr2

CC3

)
−
∣∣∣∣max

η

CC3

∣∣∣∣ sat

(
S

φ

)
, (22)

Kprop = −
(
aa4u+ bb4v + cc4w + dd4p+ ee4q + gg4r +AA4Xprop +BB4δr1

DD4

)
−
(
CC4δs1 + EE4δs2 +GG4δr2

DD4

)
−
∣∣∣∣max

η

AA1

∣∣∣∣ sat

(
S

φ

)
, (23)

δs2 = −
(
aa5u+ bb5v + cc5w + dd5p+ ee5q + gg5r +AA3Xprop +BB5δr1 + CC5δs1

EE5

)
−
(
DD5Kprop +GG5δr2

EE5

)
−
∣∣∣∣max

η

CC3

∣∣∣∣ sat

(
S

φ

)
, (24)

δr2 = −
(
aa6u+ bb6v + cc6w + dd6p+ ee6q + gg6r +AA6Xprop +BB6δr1 + CC6δs1

GG6

)
−
(
DD6Kprop + EE6δs2

GG6

)
−
∣∣∣∣max

η

BB2

∣∣∣∣ sat

(
S

φ

)
. (25)

As shown in Figure 2, the signals generated by the SMC (20)-(25) are fed to the
PID controller. In the PID controller, the coefficients for the proportional, integral and
derivative terms are shown in Table 2.

Kp Ki Kd

Surge 3.1 0 0
Sway 2.5 0 0
Heave 2.5 0 0
Roll 2.04 0 0
Pitch 2.2 0 0
Yaw 2.2 0 0

Table 2: The coefficients of the proportional, integral and derivative terms.

The designing the SPID control system on the 6-DOF linear model first passes the
SMC control system equation then optimized by the PID controller, of which the pro-
portional, integral and derivative values are shown in Table 2. Once the control system
equations are obtained, then they are connected to the 6-DOF linear model on the block
diagram shown by Figure 2.

4 Computational Results

In this section, we present the simulation results of the closed-loop system by using the
SPID controller designed in the previous section. First of all, we define the set point for
surge, sway, heave, roll, pitch and yaw. The set point of surge, sway and heave is 1 m/s.
The set point for roll rotation motion is 1 rad/s, whereas those of pitch and yaw are
−1 rad/s. For each simulation result, we compare the time delay, rise time, peak time
and settling time. The simulation results by using SPID control systems are as shown in
Figure 3.
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Figure 3: The results of the simulation by using the Sliding PID control system for surge and
sway.

Figure 3 shows that the surge responses by the SPID were more stable at a set point
of 1 m/s, reaching a settling time in 6 seconds with a maximum overshoot of 3.5 m/s, and
had an error of 3.2%. The sway response is stable at the set point of −1 m/s, reaching
the settling time in 0.1 of a second, and having an error of 0.1%. The heave response is
also stable at the set point of −1 m/s, reaching a settling time in approximately 0.2 of a
second, and having an error of 0.2%. These results show that the responses generated by
the SPID in surge, sway, and heave motion were stable for surge, sway and heave motions.
In this case, the overshoot was not the main consideration for the autonomous platform
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performance. The prioritized ones were the settling time and the resulting error.
The results of simulation for rotational motion are shown in Figure 3. For the roll

response, the result of simulation with the SPID shows that the roll responses were stable
at the set point of 1 rad/s, reached a settling time in 0.15 of a second with a maximum
overshoot of 1.2 rad/s, and had an error of 0.5%. The pitch responses by the SPID were
also stable at set point of −1 rad/s, reached a settling time in 1.5 of a second with a
maximum overshoot of −4.8 rad/s, and had an error of 4.1%. Finally, the yaw responses
by the SPID were stable at the set point of −1 rad/s, reached a settling time in 0.25 of a
second with a maximum overshoot of −5.6 rad/s, and had an error of 4.2%. In summary,
the responses by the SPID in roll, pitch, and yaw were stable. The complete results of
the transient responses are shown in Table 3, which shows that the error is very small.

Surge Sway Heave Roll Pitch Yaw
Delay time 0.04 s 0.042 s 0.043 s 0.045 s 0.09 s 0.003 s
Rise time 0.06 s 0.07 s 0.3 s 0.18 s 1.4 s 0.09 s
Peak time 0.1 s 0.01 s 0 s 0 s 0.3 s 0.1 s

Maximum peak 3.5 m/s -1.08 m/s 0 m/s 0 m/s -4.8 m/s -5.6 m/s
Settling time 6 s 0.1 s 0.2 s 0.15 s 1.5 s 0.25 s

Error 3.2 % 0.1 % 0.2 % 0.5 % 4.1 % 4.2 %

Table 3: Specification of the transient responses in surge, sway, heave, roll, pitch, and yaw
motions.

5 Conclusion

Based on the results of simulation and discussion about designing the Sliding Propor-
tional, Integral, and Derivative (SPID) control system, regarding the linear model of
6-DOF, it could be concluded that the SPID method could be used as a motion control
system of the 6-DOF linear model with a significant accuracy and an error of about
0.2%− 4.2%.
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1 Introduction

In recent years, fractional calculus and differential equations have found enormous ap-
plications in mathematics, physics, chemistry and engineering because of the fact that
a realistic modeling of a physical phenomenon having dependence not only on the time
instant but also on the previous time history can be successfully achieved by using frac-
tional calculus. The developed analytical solutions are very few and are restricted to
the solution of simple fractional Volterra integro-differential equations, therefore the de-
velopment of effective and easy to use numerical schemes for solving such equations has
acquired an increasing interest in recent years. Some fundamental works on various
aspects of the fractional calculus are given by [2, 3, 9, 12,15–20,22].

Several numerical schemes have been presented for solving these problems, for exam-
ple,
Mittal and Nigam [21] used the Adomian decomposition method for solving

Dαu(x) = f(x)u(x) + g(x) +

∫ x

0

k(x, s)G(u(s))ds, 0 < α < 1.

∗ Corresponding author: mailto:khawlah.hussain@stu.edu.iq
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u(0) = Υ.

In [24] a computational method was employed for the numerical solution of the following
equation:

Dαu(x) = f(x) + λ

∫ x

0

k(x, s)G(u(s))ds, n− 1 < α ≤ n,

u(i)(0) = Υi, i = 0, 1, · · · , n− 1.

Hamoud and Ghadle [3] used the Adomian decomposition method and modified Laplace
Adomian decomposition method for the following equation:

Dαu(x) = f(x)u(x) + g(x) +

∫ x

0

k1(x, s)G1(u(s))ds+

∫ 1

0

k2(x, s)G2(u(s))ds,

u(i)(0) = Υi, n− 1 < α ≤ n, i = 0, 1, · · · , n− 1.

Motivated by the above works, in this paper we discuss a new set of functions called
the fractional alternative Legendre functions for solving the nonlinear Fredholm integro-
differential equations of fractional order of the form

Dαu(x) = F
(
x, u(x) +

∫ 1

0

K(x, s)G(s, u(s))ds
)
, n− 1 < α ≤ n, (1)

with the initial conditions

u(i)(x) = Υi, i = 0, 1, · · · , n− 1. (2)

During the last decades, several methods have been used for solving fractional differ-
ential equations, fractional integro-differential equations, fractional partial differential
equations and dynamic systems containing fractional derivatives such as: the homotopy
analysis method [2], Chebyshev wavelets [15], Sinc functions [17], Legendre wavelets [19],
shifted second kind Chebyshev polynomials [20], Legendre collocation method [23].
For considering existence and uniqueness of the solutions of fractional integro-differential
equations we refer the reader to [1, 4–8,14].

The main objective of the present paper is to study the new fractional-order func-
tions based on the alternative Legendre polynomials for solving the nonlinear fractional
Fredholm integro-differential equations (FFIDEs). This method is accurate and easy
to implement in solving the FVIDEs. First, the fractional derivative of the unknown
function in the underlying FFIDE is approximated by finite linear combinations of the
fractional-order alternative Legendre functions (FALFs). Then, we obtain the FALFs
operational matrix of fractional integration. Finally, the problem is converted to a sys-
tem of algebraic equations by using the FALFs operational matrix together with the
collocation method.

2 Basic Definitions

The mathematical definitions of fractional derivative and fractional integration are the
subject of several different approaches. The most frequently used definitions of the frac-
tional calculus involve the Riemann-Liouville fractional derivative and Caputo deriva-
tive [3, 9–11,13,15].
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Definition 2.1 [3] (Riemann-Liouville fractional integral). The Riemann-
Liouville fractional integral of order α > 0 of a function f is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, x > 0, α ∈ R+,

J0f(x) = f(x), (3)

where R+ is the set of positive real numbers.

Definition 2.2 [3] (Caputo fractional derivative). The fractional derivative of
f(x) in the Caputo sense is defined by

cDα
xf(x) = Jm−αDmf(x)

=


1

Γ(m−α)

∫ x
0

(x− t)m−α−1 d
mf(t)
dtm dt, m− 1 < α < m,

dmf(x)
dxm , α = m, m ∈ N,

(4)

where the parameter α is the order of the derivative and is allowed to be real or even
complex. In this paper, only real and positive α will be considered. Hence, we have the
following properties:

1. JαJvf = Jα+vf, α, v > 0.

2. Jαxβ = Γ(β+1)
Γ(β+α+1)x

β+α.

3. Dαxβ = Γ(β+1)
Γ(β−α+1)x

β−α, α > 0, β > −1, x > 0.

4. JαDαf(x) = f(x)−
∑m−1
k=0 f (k)(0+)x

k

k! , x > 0, m− 1 < α ≤ m.

Definition 2.3 [3] (Riemann-Liouville fractional derivative). The Riemann-
Liouville fractional derivative of order α > 0 is normally defined as

Dαf(x) = DmJm−αf(x), m− 1 < α ≤ m, m ∈ N. (5)

3 Fractional Alternative Legendre Polynomials

Let m be a fixed non-negative integer. The set Pm = {pm,i(t)}mi=0 of alternative Legendre
polynomials is

pm,i(t) =

m−i∑
r=0

(−1)r
(
m− i
r

)(
m+ i+ r + 1

m− i

)
ti+r

=

m∑
r=i

(−1)r−i
(
m− i
r − i

)(
m+ r + 1
m− i

)
tr, i = 0, 1, · · · ,m. (6)

These polynomials are orthogonal on the interval [0, 1] with respect to the weight function
w(t) = 1, and satisfy the orthogonality relationships∫ 1

0

pm,k(t)pm,l(t)dt =
1

k + l + 1
δk,l, k, l = 0, 1, · · · ,m. (7)
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Here δk,l denotes the Kronecker delta [23]. It should be noted that, in contrast to common
sets of orthogonal polynomials, every member in Pm has degree m. For example, when
m = 3, we have

p3,0(t) = 4− 30t+ 60t2 − 35t3,

p3,1(t) = 10t− 30t2 + 21t3,

p3,2(t) = 6t2 − 7t3,

p3,3(t) = t3. (8)

Eq. (6) obtains Rodrigues’s type representation

pm,i(t) =
1

(m− i)!
1

ti+1

dm−i

dtm−i
(tm+i+1(1− t)m−i), i = 0, 1, · · · ,m. (9)

It follows from (9) that∫ 1

0

pm,i(t)dt =

∫ 1

0

tmdt =
1

m+ 1
, i = 0, 1, 2, · · · ,m. (10)

Now, we define a new set of fractional functions based on the alternative Legendre poly-
nomials to obtain the solution of NVIDEs. The FALFs are obtained by a change of
variable t to xα(α > 0), on the alternative Legendre polynomials. We denote pm,i(x

α)
by pαm,i(x). Therefore we have

pαm,i(x) =

m−i∑
r=0

(−1)r
(
m− i
r

)(
m+ i+ r + 1

m− i

)
x(i+r)α

=

m∑
r=i

(−1)r−i
(
m− i
r − i

)(
m+ r + 1
m− i

)
xrα, i = 0, 1, · · · ,m. (11)

The set of FALFs is orthogonal with respect to the weight function w(x) = xα−1 on the
interval [0, 1] with the orthogonality property∫ 1

0

pαm,k(x)pαm,l(x)xα−1dx =
1

(k + l + 1)α
δk,l, k, l = 0, 1, · · · ,m. (12)

For example, when m = 3, we have

pα3,0(x) = 4− 30xα + 60x2α − 35x3α,

pα3,1(x) = 10xα − 30x2α + 21x3α,

pα3,2(x) = 6x2α − 7x3α,

pα3,3(x) = x3α. (13)

Any f ∈ L2[0, 1] may be expanded in terms of the fractional-order alternative Legendre
functions as

f(x) =

∞∑
i=0

cip
α
m,i(x), (14)
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where the coefficients ci are given by

ci =< f, pαm,i >= (2i+ 1)α
∫ 1

0

f(x)pαm,i(x)xα−1dx,

where <,> denotes the inner product in L2[0, 1]. If the infinite series in Eq. (14) is
truncated, then it can be written as

f(x) '
m∑
i=0

cip
α
m,i(x) = CTΦα(x), (15)

where T indicates transposition, C and Φα(x) are (m+ 1)× 1 vectors given by

C = [c0, c1, c2, · · · , cm]T , (16)

and
Φα(x) = [pαm,0(x), pαm,1(x), pαm,2(x), · · · , pαm,m(x)]T . (17)

Now we will derive the fractional-order alternative Legendre functions operational
matrix of the fractional integration. The Riemann-Liouville fractional integration of the
vector Φα(x) given in equation (17) is obtained by

IνΦα(x) = F (ν,α)Φα(x), (18)

where F (ν,α) is the (m+ 1)× (m+ 1) operational matrix of the fractional integration of
order α in the Riemann-Liouville sense.

By using Eq. (11) and linearity of the Riemann-Liouville fractional integral, for
i = 0, 1, · · · ,m, we get

Iνpαm,i(x) =

m∑
r=i

(−1)r−i
(
m− i
r − i

)(
m+ r + 1
m− i

)
Iαxrα

=

m∑
r=i

(−1)r−i
(
m− i
r − i

)(
m+ r + 1
m− i

)
Γ(rα+ 1)

Γ(rα+ ν + 1)
xrα+ν

=

m∑
r=i

γ
(ν,α)
mi,r x

rα+ν , (19)

where

γ
(ν,α)
mi,r = (−1)r−i

(
m− i
r − i

)(
m+ r + 1
m− i

)
Γ(rα+ 1)

Γ(rα+ ν + 1)
.

Now, approximating xrα+ν by m + 1 terms of the fractional-order alternative Legendre
functions, we get

xrα+ν '
m∑
j=0

δ
(ν,α)
r,j pαm,j(x). (20)

Substituting Eq. (20) into Eq. (19) for i = 0, 1, · · · ,m, we obtain

Iνpαm,i(x) '
m∑
r=i

γ
(ν,α)
mi,r

m∑
j=0

δ
(ν,α)
r,j pαm,j(x) =

m∑
j=0

( m∑
r=i

ω
(ν,α)
mi,j,r

)
pαm,j(x), (21)
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where

ω
(ν,α)
mi,j,r = γ

(ν,α)
mi,r δ

(ν,α)
r,j .

Eq. (21) can be rewritten as

Iνpαm,i(x) ' [

m∑
r=i

ω
(ν,α)
mi,0,r,

m∑
r=i

ω
(ν,α)
mi,1,r, · · · ,

m∑
r=i

ω
(ν,α)
mi,m,r]Φ

α(x).

Finally, we get

F (ν,α) =


∑m
r=0 ω

(ν,α)
m0,0,r

∑m
r=0 ω

(ν,α)
m0,1,r · · ·

∑m
r=0 ω

(ν,α)
mi,m,r∑m

r=1 ω
(ν,α)
m1,0,r

∑m
r=1 ω

(ν,α)
m1,1,r · · ·

∑m
r=1 ω

(ν,α)
m1,m,r

...
... · · ·

...

ω
(ν,α)
mm,0,r ω

(ν,α)
mm,1,r · · · ω

(ν,α)
mm,m,r

 .

4 Description of the Method

In this section, we present a numerical method for solving the fractional Fredholm integro-
differential equation (1)-(2). To solve this equation, we first expand Dαu(x) by the
fractional-order alternative Legendre functions as

Dνu(x) ' Dνum(x) = CTΦα(x), (22)

with C and Φα(x) defined in the previous section. By applying Iα on both sides of (22),
we obtain

u(x) ' um(x) = CTF (ν,α)Φα(x) +

n−1∑
k=0

xk

k!
Υk, (23)

where F (ν,α) is the operational matrix of fractional integration of order α of the fractional-
order alternative Legendre functions. Now, by substituting Eqs.(22)-(23) into (1), we
have

CTΦα(x) = F
(
x,CTF (ν,α)Φα(x) +

n−1∑
k=0

xk

k!
Υk,

∫ 1

0

K(x, s)G(s, CTF (ν,α)Φα(s) +

n−1∑
k=0

xk

k!
Υk)ds

)
+Resm(x), (24)

where Resm(x), x ∈ [0, 1], is a residual error; that is, the error made when substituting
the approximate solution into the governing equation. By using the Gauss-Legendre
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numerical integration for evaluating the integral in Eq. (24), we get

CTΦα(x) = F
(
x,CTF (ν,α)Φα(x) +

n−1∑
k=0

xk

k!
Υk,

1

2

m̃∑
j=1

ωjK(x,
1 + ζj

2
)G(

1 + ζj
2

, CTF (ν,α)Φα(
1 + ζj

2
)

+

n−1∑
k=0

(
1+ζj

2 )k

k!
Υk)

)
+Em̃ +Resm(x), (25)

where ζj , j = 1, 2, · · · , m̃ are zeros of the Legendre polynomial Pm̃(x) and ωj =
−2

(m̃+1)Pm̃(ζj)Pm̃+1(ζj) and Em̃ is the error between the Gauss-Legendre rule and the ex-

act integral given in [24]. By collocating Eq. (25) at the zeros of the shifted Legendre
polynomials Lm+1(x); (xi, i = 0, 1, · · · ,m) we have

CTΦα(xi) = F
(
xi, C

TF (ν,α)Φα(xi) +

n−1∑
k=0

xki
k!

Υk,

1

2

m̃∑
j=1

ωjK(xi,
1 + ζj

2
)G(

1 + ζj
2

, CTF (ν,α)Φα(
1 + ζj

2
)

+

n−1∑
k=0

(
1+ζj

2 )k

k!
Υk)

)
. (26)

Eqs. (26) are nonlinear equations which can be solved for the unknown C using Newton’s
iterative method. By determining C, the values of u(x) can be obtained from Eq. (23).

5 Convergence Analysis

In this section we investigate the convergence of the proposed method for solving FFIDEs.
Before starting and proving the main results, we introduce the following hypotheses:

(H1) There exists a constant K1 such that K1 = max |K(x, s)|; (x, s) ∈ [0, 1]× [0, 1].

(H2) u is a bounded function for all x in [0, 1].

(H3) F and G satisfy the Lipschitz conditions with the Lipschitz constants η and η1,
respectively.

Theorem 5.1 Assume that (H1)–(H3) hold, and let u and um be the exact and
approximate solution of (1)-(2), respectively. If Γ(α)−η−K1ηη1 6= 0, then ‖u−um‖ −→
0.

Proof. Let em denote the error function as

em(x) = u(x)− um(x),



68 KHAWLAH H. HUSSAIN

so from (1) we can write

Dαem(x) = F
(
x, u(x),

∫ 1

0

K(x, s)G(s, u(s))ds
)

(27)

−F
(
x, um(x),

∫ 1

0

K(x, s)G(s, um(s))ds
)
− Em̃ −Resm(x).

Using the definitions of the fractional derivative and integral, it is suitable to rewrite
(27) in the integral form

em(x) = Iα
(
F
(
x, u(x),

∫ 1

0

K(x, s)G(s, u(s))ds
)

(28)

−F
(
x, um(x),

∫ 1

0

K(x, s)G(s, um(s))ds
))
− IαEm̃ − IαResm(x).

It follows from (28) that

em(x) = Λ1(x)− Λ2(x)− Λ3(x), (29)

where

Λ1(x) = Iα
(
F
(
x, u(x),

∫ 1

0

K(x, s)G(s, u(s))ds
)

−F
(
x, um(x),

∫ 1

0

K(x, s)G(s, um(s))ds
))
, (30)

Λ2(x) = IαEm̃, (31)

Λ3(x) = IαResm(x). (32)

We now estimate the three terms one by one. For Λ1, we have∣∣∣Λ1(x)
∣∣∣ =

∣∣∣ 1

Γ(α)

∫ x

0

(x− t)α−1
(
F
(
t, u(t),

∫ 1

0

K(t, s)G(s, u(s))ds
)

−F
(
t, um(t),

∫ 1

0

K(t, s)G(s, um(s))ds
))
dt
∣∣∣

≤ 1

Γ(α)

∫ x

0

|x− t|α−1
∣∣∣(F(t, u(t),

∫ 1

0

K(t, s)G(s, u(s))ds
)

−F
(
t, um(t),

∫ 1

0

K(t, s)G(s, um(s))ds
))∣∣∣dt. (33)

Since |x− t| ≤ 1 and F and G satisfy the Lipschitz conditions, we obtain∣∣∣Λ1(x)
∣∣∣ =

1

Γ(α)

∫ 1

0

(η +K1ηη1)|u(t)− um(t)|dt. (34)

Using 0 ≤ t ≤ x ≤ 1 leads to∣∣∣Λ1(x)
∣∣∣ =

1

Γ(α)

∫ 1

0

(η +K1ηη1)|em(t)|dt. (35)
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So, we have

‖Λ1‖ ≤
1

Γ(α)
(η +K1ηη1)‖em‖. (36)

For Λ2 and Λ3, we have

‖Λ2‖ ≤
1

Γ(α)
‖Em̃‖, ‖Λ3‖ ≤

1

Γ(α)
‖Resm‖. (37)

Then,

‖em‖ ≤
1

Γ(α)
(η +K1ηη1)‖em‖+

1

Γ(α)
‖Em̃‖+

1

Γ(α)
‖Resm‖. (38)

Consequently,

‖em‖ ≤
‖Em̃‖+ ‖Resm‖

Γ(α)− η −K1ηη1
. (39)

If we choose m̃ sufficiently large, then by [24], Em̃ tends to 0. So, if Resm tends to 0,
then ‖em‖ = ‖u− um‖ −→ 0. The numerical results reveal that Resm tends to 0.

6 Numerical Example

In this section, we give a numerical example and apply the technique for solving it.

Example 1. Consider the following nonlinear FFIDE:

Dαu(x) = f(x) +

∫ 1

0

(x+ s)2u3(s)ds (40)

with the initial conditions u(0) = u′(0) = 0, where f(x) = 6x
1
3

Γ( 1
3 )
− x2

7 −
x
4 −

1
9 , and the

exact solution is u(x) = x2 when α = 5
3 .

Table 1: The absolute errors with m = 6 for Example 1.

x α = 1 α = 1
2 α = 1

3 α = 5
3

0.1 2.96× 10−4 5.13× 10−5 1.12× 10−14 5.54× 10−5

0.2 4.73× 10−4 8.40× 10−5 2.11× 10−14 1.25× 10−3

0.3 6.61× 10−4 1.16× 10−4 3.23× 10−14 1.25× 10−3

0.4 8.60× 10−4 1.51× 10−4 4.53× 10−14 7.17× 10−4

0.5 1.07× 10−3 1.88× 10−4 6.03× 10−14 1.68× 10−4

0.6 1.28× 10−3 2.29× 10−4 7.75× 10−14 4.72× 10−4

0.7 1.53× 10−3 2.74× 10−4 9.74× 10−14 2.16× 10−3

0.8 1.82× 10−3 3.24× 10−4 1.20× 10−13 3.37× 10−3

0.9 2.15× 10−3 3.80× 10−4 1.45× 10−13 8.49× 10−4

1.0 2.46× 10−3 4.44× 10−4 1.74× 10−13 5.70× 10−3

Table 1 shows the absolute errors between the exact and approximate solutions |u(x)−
um(x)| for m = 6 and various choices of α.
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7 Conclusion

In this paper, we derive a general formulation for the fractional alternative Legendre
functions and obtain their operational matrix of fractional integration F (ν, α). Then, a
numerical method based on the FALFs expansions together with this matrix and the col-
location method is proposed to obtain the numerical solution of the nonlinear fractional
Fredholm integro-differential equations. Several examples are given to demonstrate the
validity and applicability of the proposed method for solving the fractional Fredholm
integro-differential equations. Some of the advantages of the present approach are sum-
marized as follows. It is shown that only a small value of the fractional alternative
Legendre functions is needed to achieve high accuracy and satisfactory results.

References

[1] K. Al-Khaled and M. Yousef. Sumudu decomposition method for solving higher-order non-
linear Volterra-Fredholm fractional integro-differential equations. Nonlinear Dynamics and
Systems Theory 19 (3) (2019) 348–361.

[2] M. Dehghan, J. Manafian and A. Saadatmandi. Solving nonlinear fractional partial differ-
ential equations using the homotopy analysis method. Numer. Methods Partial Differential
Equations 26 (2) (2010) 448–479.

[3] A. Hamoud and K. Ghadle. Modified Laplace decomposition method for fractional Volterra-
Fredholm integro-differential equations. J. Math. Model. 6 (1) (2018) 91–104.

[4] A. Hamoud and K. Ghadle. Some new existence, uniqueness and convergence results for
fractional Volterra-Fredholm integro-differential equations. J. Appl. Comput. Mech. 5 (1)
(2019) 58–69.

[5] A. Hamoud and K. Ghadle. Existence and uniqueness of solutions for fractional mixed
Volterra-Fredholm integro-differential equations. Indian J. Math. 60 (3) (2018) 375–395.

[6] A. Hamoud and K. Ghadle. The approximate solutions of fractional Volterra-Fredholm
integro-differential equations by using analytical techniques. Probl. Anal. Issues Anal. 7
(25) (2018) 41–58.

[7] A. Hamoud and K. Ghadle. Existence and uniqueness of the solution for Volterra- Fred-
holm integro-differential equations, Journal of Siberian Federal University. Mathematics &
Physics 11 (6) (2018) 692–701.

[8] A. Hamoud, A. Azeez and K. Ghadle. A study of some iterative methods for solving fuzzy
Volterra-Fredholm integral equations. Indonesian J. Elec. Eng. & Comp. Sci. 11 (3) (2018)
1228–1235.

[9] A. Hamoud and K. Ghadle. Usage of the homotopy analysis method for solving fractional
Volterra-Fredholm integro-differential equation of the second kind. Tamkang Journal of
Mathematics 49 (4) (2018) 301–315.

[10] A. Hamoud, K. Ghadle and P. Pathade. An existence and convergence results for Ca-
puto fractional Volterra integro-differential equations. Jordan Journal of Mathematics and
Statistics 12 (3) (2019) 307–327.

[11] A. Hamoud, K. Hussain, N. Mohammed and K. Ghadle. Solving Fredholm integro-
differential equations by using numerical techniques. Nonlinear Functional Analysis and
Applications 24 (3) (2019) 533–542.

[12] A. Hamoud, N. Mohammed and K. Ghadle. A study of some effective techniques for solving
Volterra-Fredholm integral equations. Dynamics of Continuous, Discrete and Impulsive
Systems Series A: Mathematical Analysis 26 (2019) 389–406.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (1) (2020) 61–71 71

[13] A. Hamoud, K. Ghadle and S. Atshan. The approximate solutions of fractional integro-
differential equations by using modified Adomian decomposition method. Advances in Op-
erator Theory 5 (2019) 21–39.

[14] K. Hussain, A. Hamoud and N. Mohammed. Some new uniqueness results for fractional
integro-differential equations. Nonlinear Functional Analysis and Applications 24 (4) (2019)
827–836.

[15] M. Heydari, M. Hooshmandasl, F. Mohammadi and C. Cattani. Wavelets method for solv-
ing systems of nonlinear singular fractional Volterra integro-differential equations. Com-
mun. Nonl. Sci. Numer. Simulat. 19 (2014) 37–48.

[16] I. Horng and J. Chou. Shifted Chebyshev direct method for solving variational problems.
Int. J. Sys. Sci. 16 (1985) 855–861.

[17] Y. Jalilian and M. Ghasemi. On the solutions of a nonlinear fractional integro-differential
equation of pantograph type. Mediterr. J. Math. 14 (2017).

[18] M. Khader and N. Sweilam. On the approximate solutions for system of fractional integro-
differential equations using Chebyshev pseudo-spectral method. Appl. Math. Model. 37
(2013) 9819–9828.

[19] M. Lakestani, B. Nemati Saray and M. Dehghan. Numerical solution for the weakly singular
Fredholm integro-differential equations using Legendre multi wavelets. J. Comput. Appl.
Math. 235 (11) (2011) 3291–3303.

[20] K. Maleknejad, K. Nouri and L. Torkzadeh. Operational matrix of fractional integration
based on the shifted second kind Chebyshev polynomials for solving fractional differential
equations. Mediterr. J. Math. 13 (3) (2016) 1377–1390.

[21] R. Mittal and R. Nigam. Solution of fractional integro-differential equations by Adomian
decomposition method. Int. J. Appl. Math. Mech. 4 (2008) 87–94.

[22] P. Pathade, K. Ghadle and A. Hamoud. Optimal solution solved by triangular intuitionistic
fuzzy transportation problem. Advances in Intelligent Systems and Computing 1025 (2020)
379–385.

[23] A. Saadatmandi and M. Dehghan. A Legendre collocation method for fractional integro-
differential equations. J. Vib. Control 17 (13) (2011) 2050–2058.

[24] H. Saeedi and M. Mohseni Moghadam. Numerical solution of nonlinear Volterra integro-
differential equations of arbitrary order by CAS wavelets. Commun. Nonl. Sci. Numer.
Simul. 16 (2011) 1216–1226.



Nonlinear Dynamics and Systems Theory, 20 (1) (2020) 72–77

On the Boundedness of a Novel Four-Dimensional

Hyperchaotic System

S. Rezzag ∗

Department of Mathematics and Informatics,
University of Larbi Ben M’hidi, 04000, Oum-El-Bouaghi, Algeria

Received: June 24, 2019; Revised: January 10, 2020

Abstract: To estimate the ultimate bound and positively invariant set for a dy-
namical system is an important but quite challenging task in general. This paper
attempts to investigate the bounds of a novel four-dimensional hyperchaotic system
using a technique combining the generalized Lyapunov function theory and the La-
grange multiplier method. Finally, a numerical example is provided to illustrate the
main result.
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1 Introduction

Hyperchaos characterized by more than one positive Lyapunov exponent has attracted an
increasing attention of various scientific and engineering communities. It is very impor-
tant to generate hyperchaos with more complicated dynamics as a model for theoretical
research and practical implication. Hyperchaos was firstly reported by Rossler [18] in
1979, and the first circuit implementation of hyperchaos was realized by Matsumoto et
al. [10]. Since then, some other hyperchaos generators have also been found. Typical ex-
amples are the hyperchaotic Lorenz–Haken system [11], hyperchaotic Chua’s circuit [6],
hyperchaotic modified Chua’s circuit [20], these examples in themselves indicate that
hyperchaos has a board range of applications in such fields as nonlinear circuit [2], secure
communications [21], lasers [22], neural network [1], control [4], synchronization [5] and
so on. In fact, the study of hyperchaos has recently become a central topic of the research
in nonlinear sciences.
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In particular, the ultimate boundedness is very important for the study of the qual-
itative behavior of a chaotic system. If one can show that a chaotic or a hyperchaotic
system under consideration has a globally attractive set, one knows that the system can-
not have the equilibrium points, periodic or quasi-periodic solutions, or other chaotic or
hyperchaotic attractors existing outside the attractive set. This greatly simplifies the
analysis of dynamics of a chaotic or hyperchaotic system [9]. The boundedness of a
chaotic system also plays an important role in chaos control and chaos synchronization.

Such an estimation is quite difficult to achieve technically, however, several works on
this topic were realized for some 3D and 4D dynamical systems [3], [7], [8], [12], [13],
[14], [15], [16], [17], [19], [23], [25].

Furthermore, there are no unified methods for constructing the Lyapunov functions
to study the boundedness of the chaotic systems. Therefore, it is necessary to study the
boundedness of the hyperchaotic systems.

In the present paper, we study the bounds of solutions of a new of hyperchaotic
system based on a technique combining the generalized Lyapunov function theory and
optimization. The paper is organized as follows : the problem formulation and main
result are presented in Section 2. A numerical example is given in Section 3 to illustrate
the main result. Finally, conclusion is made in Section 4.

2 Problem Formulation and Main Result

A novel four-dimensional hyperchaotic system with four nonlinearity terms presented
in [24] by Wenjuan, Zengqiang and Zhuzhi can be described by the following system:

x
′

= ay − ax+ eyz − kw,
y′ = cx− xz − dy,
z′ = xy − bz,
w′ = ry + fyz,

(1)

where a, b, c, d, e, f , k and r are all real constant parameters. For the chosen a = 56,
b = 16, c = 49, d = 9, k = 8, e = 30, f = 40 and r = 48 system (1) exhibits complex
hyperchaotic dynamical behaviors. The corresponding three-dimensional phase diagrams
in (x− y − w), (y − z − w) spaces are shown in Figure 1.

Fig. 1. Phase portrait of the system (1) in the x− y − z space with
parameters α = 5, β = 0.7, γ = 26.
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Some basic dynamical properties of the novel four-dimensional hyperchaotic system
(1) were studied in [24]. But many properties of the system (1) remain to be uncovered.
In the following, we will discuss the boundedness of the novel hyperchaotic system (1).

Lemma 2.1 Define a set

Γ =

{
(y, z) /

y2

b2
+

(z − c)2

c2
= 1, b > 0, c > 0

}
(2)

and G = y2 + z2, H = y2 + (z − 2c)
2
, (y, z) ∈ Γ. Then we have

max
(y,z)∈Γ

G = max
(xy,z)∈Γ

H =

 b4

b2 − c2
, b ≥

√
2c,

4c2, b <
√

2c.
(3)

Proof. It can be easily calculated by the Lagrange multiplier method.

Theorem 2.1 When a > 0, b > 0, c > 0, d > 0, k > 0, e > 0, f > 0, r > 0, the
following set defined by

Ω =

{
(x, y, z, w) /y2 + (z − c)2 ≤ R2, (ax+ kw)

2 ≤
(
aB + kA

a

)2
}

(2)

is the bound for system (1), where

R2 =


b2c2

4d (b− d)
, if b ≥ 2d,

c2 , if b < 2d,
(3)

A = R [r + f (R+ c)] , B = aR+ eR (R+ c) . (4)

Proof. Define the following Lyapunov function

V1 (y, z) = y2 + (z − c)2
. (5)

Then, its time derivative along the orbits of system (1) is

.

V1 = 2yy′ + 2 (z − c) z′

= −2dy2 − 2bz2 + 2cbz

= −2dy2 − 2b
(
z − c

2

)2

+
bc2

2
. (6)

That is to say, for a > 0, b > 0, c > 0, d > 0, k > 0, e > 0, f > 0, r > 0, the equation
.

V1 = 0 holds, that means the surface

Γ =

(y, z) /
y2

bc2

4d

+

(
z − c

2

)2

c2

4

= 1

 (7)

is an ellipsoid in 2D space for certain values of a, b, c, d, k, e, f and r. Outside Γ, we

have
.

V1 < 0, while inside Γ, we have
.

V1 > 0. Since the function V1 = y2 + (z − c)2
is
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continuous on the closed set Γ, V1can reach its maximum on the surface Γ. Denote the
maximum value of V as R2, that is, R2 = maxV1(y,z)∈Γ.

By Lemma 1, we can easily get

V1 (y, z) ≤ R2 =


b2c2

4d (b− d)
, if b ≥ 2d,

c2 , if b < 2d.
(8)

From the formula (8), we obtain

|y| ≤ R, |z| ≤ R+ c. (9)

At the same time, the first equation of formula (1) and (9) yield

x
′

= ay − ax+ eyz − kw
≤ a |y|+ e |y| |z| − ax− kw
≤ aR+ eR (R+ c)− ax− kw
= B − ax− kw,

where

B = aR+ eR (R+ c) .

Also, the fourth equation of formula (1) and (9) yield

w′ = ry + fyz ≤ r |y|+ f |y| |z|
≤ rR+ fR (R+ c) = A.

Let

V2 = ax+ kw.

Then

V ′2 = ax′ + kw′ ≤ aB + kA− aV2. (10)

Integrating both sides of formula (10), we have

V2 (t) ≤ aB + kA

a
+

(
V2 (t0)− aB + kA

a

)
e−a(t−t0). (11)

So, we get

lim
t→+∞

V2 (t) ≤ aB + kA

a
. (12)

That is to say, the inequality (ax+ kw)
2 ≤

(
aB + kA

a

)2

holds as t → +∞.Therefore,

we have the conclusion that

Ω =

{
(x, y, z, w) /y2 + (z − c)2 ≤ R2, (ax+ kw)

2 ≤
(
aB + kA

a

)2
}

(13)

is the bound for the hyperchaotic systems (1). This completes the proof.
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3 Example

Consider the system (1), when a = 56, b = 16, c = 49, d = 9, k = 8, e = 30, f = 40 and
r = 48, we have

Ω =

{
(x, y, z, w) /y2 + (z − 49)

2 ≤ 492, (56x+ 8w)
2 ≤

(
56B + 8A

56

)2
}

is the bound for the hyperchaotic system (1).
Consequently, we have  (56x+ 8w)

2 ≤ 1745802,
|y| ≤ 49,

0 ≤ z ≤ 98.

It is obvious that the orbits of system (1) locate in the section where z ≥ 0.

4 Conclusion

In this paper, we have investigated the boundedness for a novel four-dimensional hyper-
chaotic system using a combination of the Lyapunov stability theory with optimization.
Finally, a numerical example is provided to illustrate the main result.

References

[1] P. Arena, S. Baglio, L. Fortuna and G. Manganaro. Hyperchaos from cellular networks.
Electron. Lett. 31 (1995) 250–251.

[2] A. Cenys, A. Tamaservicius, A. Baziliauskas, R. Krivickas and E. Lindberg. Hyperchaos in
coupled Colpitts oscillators. Chaos, Solitons & Fract. 17 (2-3) (2003) 349–353.

[3] Z. Elhadj and J. C. Sprott. About the boundedness of 3D continuous time quadratic sys-
tems. Nonlinear Oscil. 13 (2-3) (2010) 515–521.

[4] J. Y. Hsieh, C. C. Hwang, A. P. Li and W. J. Li. Controlling hyper-chaos of the Rossler
system. Int. J. Control 72 (1999) 882–886.

[5] P. Q. Jiang, B. H. Wang, S. L. Bu, Q. H. Xia and X. S. Luo. Hyperchaotic synchronizationin
deterministic small-world dynamical networks. Int. J. Modern Phys. B 18 (2004) 2674–2679.

[6] T. Kapitaniak and L. O. Chua. Hyper-chaotic attractor of unidirectionally-coupled Chua’s
circuit. Int. J. Bifurcation Chaos 4 (1994) 477–482.

[7] D. Li, J. A. Lu, X. Wu and G. Chen. Estimating the bounds for the Lorenz family of chaotic
systems. Chaos, Solitons & Fract. 23 (2005) 529–534.

[8] D. Li, X. Wu and J. Lu. Estimating the ultimating bound and positively invariant set for
the hyperchaotic Lorenz-Haken system. Chaos, Solitons & Fract. 39 (2009) 1290–1296.

[9] X. Liao, Y. Fu, S. Xie and P. Yu. Globally exponentially attractive sets of the family of
Lorenz systems. Sci. China, Ser. F 51 (2008) 283–292.

[10] T. Matsumoto, L. O. Chua and K. Kobayashi. Hyperchaos: laboratory exper-iment and
numerical confirmation. IEEE Trans. Circ. Syst. 33 (1986) 1143–1147.

[11] C. Z. Ning and H. Haken. Detuned lasers and the complex Lorenz equations:subcitical and
super-critical Hopf bifurcations. Phys. Rev. A 41 (1990) 3826–3837.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (1) (2020) 72–77 77

[12] A. Y. Pogromsky, G. Santoboni and H. Nijmeijer. An ultimate bound on the trajectories
of the Lorenz systems and its applications. Non-linearity 16 (2003) 1597–1605.

[13] S. Rezzag. Solution bounds of the hyper-chaotic Rabinovich system. Nonlinear studies 24(4)
(2017) 903–909.

[14] S. Rezzag. Boundedness of the new modified hyperchaotic Pan System. Nonlinear Dyn.
Syst. Theory 17 (3) (2017) 402–408.

[15] S. Rezzag, O. Zehrour and A. Aliouche. Estimating the bounds for the general 4-D hyper-
chaotic system. Nonlinear studies 22 (1) (2015) 41–48.

[16] S. Rezzag, O. Zehrour and A. Aliouche. Estimating the Bounds for the General 4-D
Continuous-Time Autonomous System. Nonlinear Dyn. Syst. Theory 15 (3) (2015) 313–
320.

[17] S. Rezzag. Boundedness Results for a New Hyperchaotic System and Their Application in
Chaos Synchronization. Nonlinear Dyn. Syst. Theory 18 (4) (2018) 409–417.

[18] O. E. Rosssler. An equation for hyperchaos. Phys. Lett. A 71 (1979) 155–157.

[19] Y. J. Sun. Solution bounds of generalized Lorenz chaotic system. Chaos, Solitons & Fract.
40 (2009) 691–696.

[20] K. Thamilmaran, M. Lakshmanan and A. Venkatesan. Hyperchaos in a modified Canonical
Chua’s circuit. Int. J. Bifurcation Chaos 14 (2004) 221–243.

[21] V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J. B. Cuenot, P. Levy, J. B. Cuenot, P. Levy
and W. T. Rhodes. Communicating with hyperchaos: the dynamics of a DNLFemitter and
recovery of transmitted information. Opt. Spectrosc. 95 (2003) 114–118.

[22] R. Vicente, J. Dauden, P. Colet and R. Toral. Analysis and characterization of thehy-
perchaos generated by a semiconductor laser subject to delayed feedbackloop. IEEE J.
Quantum Electron. 41 (2005) 541–548.

[23] P. Wang, D. Li and Q. Hu. Bounds of the hyper-chaotic Lorenz-Stenflo system. Commun.
Nonlinear Sci. Numer. Simul. 15 (2010) 2514–2520.

[24] W. Wenjuan, C. Zengqiang and Y. Zhuzhi. The evolution of a novel four-dimensional au-
tonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos. Chaos,
Solitons & Fract. 39 (2009) 2340–2356.

[25] F. Zhang, Y. Li and C. Mu. Bounds of Solutions of a Kind of Hyper-Chaotic Systems and
Application. Journal of Mathematical Research with Applications 33 (3) (2013) 345–352.



Nonlinear Dynamics and Systems Theory, 20 (1) (2020) 78–91

Periodic Solutions in Non-Homogeneous Hill Equation

A. Rodriguez ∗ and J. Collado

Automatic Control Department, CINVESTAV–IPN,
Av. IPN 2508, Zacatenco, Mexico City, 07360, Mexico.

Received: December 15, 2017; Revised: January 13, 2020

Abstract: Properties of T and 2T periodic solutions in the homogeneous Hill equa-
tion have been entirely determined, but there is hardly any information about the
existence of periodic solutions with different period. In this work, kT periodic solu-
tions in the Hill equation will be explicitly characterized, here k is a natural number.
Moreover, it will be shown that those kT periodic solutions become unstable when
the system is forced with a function having the same period (or an integer multiple
of it) of any of those solutions. As a consequence, two types of instability will be
presented for the first time on the Ince-Strutt diagram: the well-known parametric
resonance and the linear resonance due to the forcing signal.

Keywords: non-homogeneous Hill equation; kT -periodic solutions; linear and para-
metric resonance; Ince-Strutt diagram; Floquet multipliers.
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1 Introduction

1.1 Hill equation

The general class of homogeneous second order linear differential equations with real
periodic coefficients can be characterized by the Hill equation (1), it describes dynamical
systems with intrinsic periodicity and parametric behaviour such as the modulation of
radio carrier waves, transverse vibrations of a tense elastic member, the stability of a
periodic motion in a non-linear system (linearization in a neighbourhood of a periodic
motion) and the focus and defocus of particle beams in particle accelerators. Also, this
equation can be seen as a particular case of the Schrödinger equation with periodic
potential.
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Figure 1: Stability-chart of the Mathieu equation: ẍ+ [α+ β cos(t)]x = 0.

The Hill equation name arose after the transcendent publication ”of the memoir on the
motion of the lunar perigee” by G. W. Hill [1], in which he established the mathematical
foundations of the stability theory of parametric systems.

The Hill equation is denoted by

ẍ+ [α+ βf(t)]x = 0, f(t) = f(t+ T ),

∫ T

0

f(t)dt = 0, (1)

where α and β are two independent parameters.
√
α is the natural frequency of the

system of free oscillation in the absence of excitation, β is the amplitude of the parametric
excitation (in most cases it is small). T > 0 is the minimum period.

There are two particular forms of equation (1): the Mathieu equation [2]

ẍ+ [α+ β cos(ωt)]x = 0, (2)

when the function f(t) is purely sinusoidal and the Meissner equation, in its implest
form: ẍ+ [α+ β sgn(cos(t))]x.

Stability of the solutions in the Hill equation can be seen in a two-parameter bifur-
cation chart known as the Ince-Strutt diagram [3], see Fig. 1. The white areas represent
the values of parameters at which the solution is stable and the gray regions are the
Arnold tongues or parametric resonance tongues [4], they depict unstable solutions.

Equation (2) admits at least one non-trivial periodic solution on the tongue bound-
aries. The tongues that born at α = n2,β = 0, for n = 1, 2, .., have one T -periodic solu-
tion, and the instability that occurs upon crossing such a tongue boundary is referred to
as a harmonic instability. The other boundaries whose tongues arise at α = (2n+ 1)2/4
have one 2T -periodic solution, see Fig. 1.

1.2 Parametric and linear resonance

Parametric resonance is a topic well studied and inherent to the homogeneous Hill equa-
tion. However, as we will see later, linear resonance can also be linked to the Hill type
systems.
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With a few exceptions, [5–8], the forced Hill equation has not been widely studied
in the literature; in this work the kT -periodically forced system will be analysed, with
k ∈ Z+ \ {1, 2}.

Parametric excitation of a system differs from direct forcing in that the fluctuations
appear as a temporal modulation (usually periodic) of a parameter rather than as a
direct additive term. The time dependence is explicit, which implies an external energy
source and the possibility of unstable behaviour known as parametric resonance which is
dependent upon the frequency of the parameter variation and the natural frequency of
the system.

The rate of increase in amplitude of the response of a linear system with parametric
resonance is exponential [9], whereas the typical resonance is characterized by a linear
growth rate. Examples of parametric and linear resonance can be found in [10] and [11]
respectively.

Through the Ince-Strutt diagram, only T or 2T -periodic solutions appear, however
the system (1) admits other kT -periodic solutions (k ∈ Z+ \ {1, 2}), as it was specified
in [12].

Such kT -periodic solutions come out as very slim lines on the stable zones in the
stability diagram. The lines become unstable if the system (1) is forced by a periodic
function containing at least one spectral line in its Fourier series with the same period
as any of these kT -periodic lines, see Figures 5a and 5b. Further details will be provided
in Section 3.

Even though, the existence of periodic solutions inside the stable regions was already
known, the first one in obtaining (numerically) the values of parameters α, β for which
these periodic solutions arise was Jazar [13], he called them splitting lines. However, in
this text they will be termed as resonance lines for the reasons that will be clear later.

It is important to highlight that before this work, the above-mentioned kT -periodic
solutions were not studied in the context of stability for the Hill equation.

So far, we have only remarked the properties of the homogeneous Hill equation.
Nevertheless, the study of the forced equation (3) also leads to interesting features.

ẍ+ δẋ+ [α+ βf(t)]x = g(t), g(t) = g(t+ T ),

∫ T

0

g(t)dt = 0, (3)

Few studies have been developed around the non-homogeneous case, among them,
one can find the results of Slane and Tragesser [8] who modified the Floquet theory so as
to analytically examine the transitory and steady-state behaviour of a non-autonomous
inhomogeneous system, but only for g(t+T ) = g(t). Younesian et al. [7] used the strained
parameter technique to seek the asymptotic periodic solutions in the forced Mathieu
equation, Shadman and Mehri [5] worked with fixed point theorems to investigate the
existence of periodic solutions of the non-homogeneous Hill equation, Kwong and Wong
[6] applied the Floquet theory to prove the conjecture that all solutions of a second order
forced linear differential equation of Hill type are oscillatory on [0,∞). In addition, the
damped forcing Hill equation can be obtained, after some light modifications, from the
more general equation analyzed in [14].

Notice that in these previous contributions no damping effect was examined. Herein,
the stability of a specific type of the non-homogeneous Hill equation with a linear dissi-
pative term (δ) will be studied.
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Finally, the results will be illustrated through the forced Kapitza pendulum which mo-
tivates the work. The behaviour of the pendulum is illustrated by numerical simulations
for some specific values of α, β and δ.

2 Preliminaries

2.1 Floquet theory

A state-space representation of (1) is

ẋ = A(t)x x ∈ R2 and A(t) = A(t+ T ) ∈ R2×2, (4)

where A(t) is a piecewise continuous matrix and T is the fundamental period.
For any initial condition, the general solutions of (4) can be written in terms of the

state-transition matrix Φ(t, t0), with Φ(t0, t0) = I2. Thus,

x(t) = Φ(t, t0)x(t0). (5)

The state-transition matrix evaluated at the end of a period, M = Φ(T + t0, t0),
is known as monodromy matrix. Its eigenvalues, known as the Floquet multipliers or
characteristic multipliers, determine the stability of the system (1), see [12] and [15].
They are independent of t0 [16], then it is possible and convenient to write M = Φ(T, 0).

Theorem 2.1 ( Floquet [15] ) The state-transition matrix Φ(t, t0) of the system
(4) can be written as the product of two n× n-matrices,

Φ(t, 0) = P (t)eRt, (6)

where P (t) is a T -periodic n × n-matrix function and R = ln[Φ(T )]/T is a constant
n× n-matrix, not necessarily real [17].

Any solution x(t) of (4) can be expressed as x(t) = Φ(t, 0)x(0). Then, for all t ≥ 0,
t = kT + τ , k ∈ Z+ , {m ∈ Z : m ≥ 0} and τ ∈ [0, T ),

x(t) = Φ(kT + τ, kT )Φ(kT, (k− 1)T ) · Φ((k− 1)T, (k− 2)T ) . . .Φ(T, 0)x(0)

= Φ(kT + τ, kT )M kx(0),
(7)

it follows that the boundedness of ‖ x(t) ‖ depends exclusively on the boundedness of
Mk.

In other words, let x(0) be the bounded initial conditions and σ(M) = {λ1, λ2, . . . , λn}
are the spectrum of M (the set of all its eigenvalues), then

1. x(t)→ 0⇔ σ(M) ⊂
◦
D1 , {z ∈ C: |z| < 1}.

2. x(t) is bounded ⇔ σ(M) ⊂ D̄1 and ∀ λ ⊂ ∂D1 being simple roots of the minimal
polynomial of M . ∂D1 is the boundary of the set D1.

3. x(t)→∞⇔ ∃ λ ∈ σ(M): |λ| > 1 or σ(M) ⊂ D̄1 & ∃ |λ| = 1: is a multiple root of
the minimal polynomial of M .

An equivalent stability analysis can be carried out using the eigenvalues of matrix R
in (6) known as the Floquet characteristic exponents and defined by µ = ln(λ)/T . In
this version the position of the eigenvalues about the imaginary axis is examined. The
imaginary parts of the characteristic exponents are not determined uniquely, we can add
2πi/T to each of them [15]. Nevertheless, the real part is unique.
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2.2 Symplectic and ε-symplectic matrices

Definition 2.1 ( [18]) The matrix Q ∈ R2n×2n, n ∈ N, is said to be symplectic if

Q>JQ = J, J ,

[
0 In
−In 0

]
, J> = −J = J−1. (8)

Theorem 2.2 Let Q ∈ R2n×2n be a symplectic matrix, then it follows that

λ ∈ σ(Q)⇒ 1

λ
∈ σ(Q) and λ̄ ∈ σ(Q)⇒ 1

λ̄
∈ σ(Q). (9)

In words, the eigenvalues of Q are symmetric with respect to the unit circle.

Lemma 2.1 A matrix Q ∈ R2×2 is symplectic if and only if its determinant is 1.

Definition 2.2 A matrix Q ∈ R2n×2n is called symplectic with a multiplier ε (or
ε-symplectic) if

Q>JQ = εJ, ε > 0. (10)

Lemma 2.2 For ε > 0, Q ∈ R2×2 is ε-symplectic if and only if det[Q] = ε.

The eigenvalues of a ε-symplectic matrix Q ∈ R2n×2n are symmetric with respect to
the circle of radius 2n

√
ε.

3 Stability Analysis

3.1 Unstable periodic solutions in the non-homogeneous Hill equation

According to the Floquet theory, the state-transition matrix satisfies Φ(t + T ) =
Φ(t)Φ(T ). Therefore, for every solution x(t) of (1) with the initial condition x(0) = v
(v is an eigenvector of Φ(T ) associated to λ), the relation x(t + T ) = λx(t) holds. By
iteration

x(t+ T ) = λx(t),

x(t+ 2T ) = λ2x(t),

...

x(t+ kT ) = λkx(t).

(11)

It is easy to see that the kT -periodic solutions are obtained when λk = 1.
Then, from the last element of (11) and using the Euler formula,

x(t+ kT ) = λkx(t) = rkejkθx(t). (12)

Recalling that there are coordinates in which the Hill equation is Hamiltonian [15] and
the state-transition matrix of a linear Hamiltonian system is symplectic [18], it follows
that rk = 1 provided that λk ≡ 1 for any k ∈ N.

Then |ejkθ| = | cos(kθ) + j sin(kθ)| = 1 and it is true when kθ = ±2nπ (n ∈ Z), hence

θ = ±2π

k
, (13)
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Figure 2: The unit circle shows the eigenvalues’ positions for several kT -periodic solu-
tions corresponding to the curves shown on the Ince-Strutt diagram of the forced Mathieu
equation.

n is neglected because it only represents full rotations, i.e. spins of 2π radians. The angle
condition (13) determines for certain values of α and β, the kT -periodic solutions (see
Fig. 2). Thereby, the values of λ associated to the kT -periodic solutions are concluded
as follows

k = 1, θ = 2π ⇒ λ1,2 = {1, 1},
k = 2, θ = π ⇒ λ1,2 = {−1,−1},

k = 3, θ =
2π

3
⇒ λ1,2 =

{
− 1

2
± j
√

3

2
,

}
,

k = 4, θ =
π

2
⇒ λ1,2 = {j,−j}.

...

Remark 3.1 As k is increased, the kT -periodic solutions come close to the T -
periodic solutions. This can be appreciated principally in Fig. 2, but also in Fig. 5.

Now, consider the non-homogeneous Mathieu equation

ẍ+ [α+ β cos(ω0t)]x =

r∑
i=1

γi cos(ωit), ωi = 2π/Ti, (14)

Ti = 2π/ωi, T0 , T and ωi are the frequencies of the forcing component.
The systems represented by (14) exhibit typical resonance in the same sense as the

linear constant parameter systems.

Proposition 3.1 Linear resonance in the system (14) will arise when any forcing
term in the summation satisfies Ti = kiT0 for some ki ∈ Z+.
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The condition (13) and the relation ki = ω0/ωi allow to deduce

θi = 2π
ωi
ω0
, (15)

which establishes the Ti-periodic curves for the non-homogeneous system.
Two very important considerations arise from the previous analysis. First, the non-

homogeneous Hill equation has two sources of instability: a) the parametric resonance
which arises regardless of whether or not there is an input, and b) the linear resonance
that appears when condition (15) is satisfied and, the parameters (α0, β0) must be such
that they generate solutions of period Ti. Secondly, for every system, equivalently for
every stable point (α, β) on the Ince-Strutt diagram, there is only one frequency for the
system to come into resonance.

Notice that the parametric resonance appears when the system is evaluated at some
coordinate (α, β) on the dark regions of the stability diagram. The growth rate of the
response of a system that undergoes parametric resonance is exponential unlike the linear
resonance.

If the forcing signal has a T0-periodic term, the boundaries corresponding to the T -
periodic Arnold tongues become unstable [8]. Similarly, 2T0-periodic terms make the
boundaries of the 2T -periodic Arnold tongues unstable.

3.2 Non-homogeneous Mathieu equation with damping term

In this section, the dissipative effect on the inhomogeneous Mathieu equation is evaluated.
Consider the forced Mathieu equation and its state-space representation

ẍ+ δẋ+ [α+ β cos(ω0t)]x =

r∑
i=1

γi cos(ωit), δ > 0, (16)

[
ẋ1
ẋ2

]
=

[
0 1

−[α+ β cos(t)] −δ

] [
x1
x2

]
+

[
0
1

] r∑
i=1

γi cos(ωit). (17)

The results achieved in [8] suggest that the behaviour of the non-homogeneous Math-
ieu equation is practically the same as the homogeneous version, except when the char-
acteristic multipliers equal to 1 are simple roots of the minimal polynomial of M . This
justifies that the analysis is focused on system

ẋh = A(t)xh, A(t) =

[
0 1

−α− β cos(t) −δ

]
(18)

whose monodromy matrix is

M = M(T ) =

[
X1h(T ) X2h(T )

Ẋ1h(T ) Ẋ2h(T )

]
, M(0) =

[
1 0
0 1

]
. (19)

Using the Jacobi-Liouville formula [15], det[M(T )] = det[M(0)]e
∫ T
0
tr[A(u)]du, we get

det[M(T )] = e−δT < 1, δ > 0,

since det[M(0)] = 1 and tr[A(t)] = −δ.
To estimate the Floquet multipliers and determine the stability of (18) we compute

PM (λ) = λ2 − tr(M)λ + det[M ] = λ2 − [X1h(T ) + Ẋ2h(T )]λ + e−δT , the characteristic
polynomial of M .
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Figure 3: Eigenvalues of the ρ1-monodromy matrix on the circle of radius ρ (inside
the unitary circle), when they are complex {λ1, λ2} or on real-axis when they are real
{λ̄1, λ̄2}.

Proposition 3.2 Let 0 < ρ < 1, then the monodromy matrix M ∈ R2×2 is ρ2-
sympletic ⇔ det[M ] = ρ2.

Remark 3.2 All the complex eigenvalues of M ∈ R2×2 are on the circle of radius ρ.

Proof. If λ1 ∈ C ⇒ λ2 = λ̄1, thus λ1λ̄1 = ‖λ1‖2 = ρ2 ⇒ ‖λ1‖ = ρ.
From previous analysis and Fig. 3, we can see that the characteristic multipliers

{λ1, λ2} ∈ C (on the ρ-radius circle) and the pair {λ̄1, λ̄2} ∈ C (on real axis) are within
the stable region, i.e., inside the unit circle.

The Arnold tongues of the direct forced Mathieu equation affected by distinct damp-
ing coefficients are displayed in Fig. 7. Notice that the resonance lines disappeared, this
is owing to the Floquet multipliers that were on the unitary circle in Fig. 2 (which caused
the resonance) were translated to the circle of radius ρ in Fig. 3. That is, the damping
effect causes the characteristic multipliers move from the boundary of the unit circle to
the circle with radius ρ.

The damping effect reduces the Arnold tongues by an order of 1/e−δT , see Fig. 7.

4 The Kapitza Pendulum

The Kapitza pendulum is an inverted pendulum whose suspension point is changed peri-
odically in the vertical direction. The objective from the point of view of control theory
is the dynamic stabilization of the inverted position, usually when the suspension point
is constrained to vibrate with a high frequency along the vertical axis. Its name is due
to Pjotr Kapitza who explained in detail the particular behaviour of the system [19].

4.1 General equation of the Kapitza pendulum

Fig. 4 shows a simple diagram of the inverted pendulum, where l is the length of a
massless rigid rod with a small bob of mass m at the end, g is the gravitational constant,
q(t) is the harmonic excitation function and (x, y) are the coordinates of the system.
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Figure 4: The Kapitza pendulum.

From Fig. 4, it can be deduced that

x = l cos(ϕ), ẋ = −l sin(ϕ)ϕ̇; y = l sin(ϕ)− q, ẏ = l cos(ϕ)ϕ̇− q̇.

Recalling the kinetic and potential energy: K = 1/2m(ẋ2 + ẏ2), U = mgl(l sin(ϕ) − p),
applying the Euler-Lagrange equation d/dt · ∂L/∂ϕ̇ − ∂L/∂ϕ = 0, where L = K − U .
Linearizing the system around the upper equilibrium position, we obtain

ϕ̈+ (−g/l + q̈/l)ϕ = 0.

This is the general equation of motion. However, it is useful to make some variable
changes in order to recover the system (1). Hence, the Hill equation describes the Kapitza
pendulum linearized around its upper equilibrium position.

4.2 Numerical results of the forced Kapitza pendulum

Since the Hill equation features the inverted pendulum, the system (3) describes its
corresponding forced case.

The expressions

ẍ+ δẋ+ [α+ β cos(t)]x =
∑

k∈{3,5,9,14}

cos (t/k) , (20)

ẍ+ δẋ+ [α+ β sgn (sin(t))]x =
∑

k∈{3,5,9,14}

cos (t/k) , (21)

are tested to investigate the dynamics of the Kapitza pendulum.
Figures 5a and 5b show the stability diagram for the forced pendulum represented

by systems (20) and (21), respectively. The kT -periodic solutions in the homogeneous
system being forced by any kT -periodic external function become unstable leading to the
resonance lines represented by very slim dashed curves in Figures 5a and 5b. Each line
has a corresponding pair of eigenvalues on the unit circle, see Figure 2.

Fig. 6a exhibits the periodic behaviour of the homogeneous Kapitza pendulum at
the point (α, β) = (3, 2) on the Ince-Strutt diagram, notice that this point is intercepted
by a 3T -periodic solution. Whereas Figures 6b and 6c show the response of the forced
system, with the same (α, β)-coordinates. The first graph illustrates the linear resonance
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(a) The forced Kapitza pendulum described by
the Mathieu equation.

(b) The forced Kapitza pendulum described by
the Meissner equation.

Figure 5: The Ince-Strutt diagrams of: (a) ẍ + δẋ + [α+ β cos(t)]x =
∑7
k=3 cos (t/k)

and (b) ẍ+ δẋ+ [α+ β sgn (sin t)]x =
∑
k∈{3,5,9,14} cos (t/k), δ = 0.
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(a) ẍ+ (α+ β cos t)x = 0.
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(b) ẍ+ (α+ β cos t)x = cos (t/3).
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(c) ẍ+ (α+ β cos t)x = cos (t/3.2).

Figure 6: Response of the Kapitza pendulum: (a) homogeneous system, α and β belong
to a 3T -periodic solution, (b) non-homogeneous system, the forced term is 3T -periodic,
hence linear resonance arises and (c) non-homogeneous system, the forced term is 3.2T -
periodic, in this case there can be no resonance. α = 3, β = 2 in all the cases.
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Figure 7: Stability diagram of the forced Kapitza pendulum: ẍ+ δẋ+ [α+ β cos(t)]x =∑7
i=3 cos (t/i) for different values of damping.

which arises due to the coincidence of the 3T -periodic solution (in the non-homogeneous
system) and the forcing signal (cosine) with the same period. In the second graph we
see that the coincidence between the periods is lost (because the period of the cosine is
T = 3.2), consequently, the linear instability disappears.

Damping effect plays an essential role in the stability of the inverted pendulum, this
reduces the area of parametric resonance in relation to the δ-value (the greater dissipation
means the less area of parametric instability). Regarding the linear resonance, it vanishes
even with a relatively small value of dissipation, hence, the resonance lines disappear from
the stability diagram, see Fig. 7. This fact is a direct consequence of Remark 3.2.

Remark 4.1 A diagram similar to that of Fig. 5a for the forced Mathieu equation
(20), for α ∈ [−0.8, 0.6] and β ∈ [0, 1.5], was obtained in [20], but no analysis was shown.

5 Further Results

In this section, we will analyze the system ẍ+[α+ βf(t)]x = g(t), where f(t) = f(t+T )
and g(t) = g(t+T ) with T and T non-commensurable. More specifically, we will evaluate

ẍ+ [α+ β cos(t)]x = sin(πt), T1 = 2, (22)

ẍ+ [α+ β cos(t)]x = sin(et), T2 = 2π/e, (23)

where e ≈ 2, 7182818 is the Euler number and π ≈ 3.1415926, both are irrational num-
bers, and T1 and T2 are the fundamental periods of the forcing signals in (22) and (23)
respectively. Since the minimal period of the parametric excitation term is T = 2π, it
can be seen in a straight way that neither T and T1 nor T and T2 are commensurable.
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(a) Positions of the eigenvalues for eT ,
3T and πT -periodic solutions.

(b) Resonance lines generated by the external signals:
sin(et), sin(3t), sin(πt).

Figure 8: (a) Multipliers on the unitary disk representing eT , 3T and πT -periodic so-
lutions of the homogeneous Kapitza pendulum. (b) stability diagram of the inverted
pendulum forced with signals whose period is not commensurable with the parametric
excitation term.

Use the condition θ = 2π/k to obtain π and e-periodic solutions

k = π, θ =
2π

π
⇒ λ1,2 ≈ {−0.4161± j0.9092},

k = e, θ =
2π

e
⇒ λ1,2 ≈ {−0.6747± j0.7380}.

Fig. 8a shows the Floquet multipliers positions associated with πT , 3T and eT -periodic
signals. The multipliers of 3T -periodic signals are plotted as a reference.

Notice that the behavior referring to the periodic solutions (in the homogeneous Hill
equation) or the linear resonance (in the non-homogeneous Hill equation) is preserved
in spite of the forcing signals and the parametric excitations are incommensurable, i.e.,
the kT -periodic solutions can appear with k not necessary integer provided that the
eigenvalues of the monodromy matrix are on the unit circle. These solutions will resonate
if a forcing term, with the same (or multiple) period, is applied to the system.

Fig. 9 traces the trajectories x(t) of the solutions of (22) when α = 2 and β = 1.8,
which is a point located on one of πT -periodic lines on the stability diagram, see Fig.
8b, clearly these trajectories describe the linear resonance or instability caused by the
forcing signal.

6 Conclusion

The present note covers the non-homogeneous Hill equation, this particular case presents
new features in the stability diagram providing that the periodicity condition between the
parametric and forcing signal is fulfilled, when this occurs, very thin curves (here called
resonance lines) will appear inside the stable areas, such lines depict the linear resonance
and emerge independently whether or not there is a commensurable relation between
the forcing term and the parametric excitation signal. Then, it can be concluded that
there are two types of instability associated with the forced Hill equation: the parametric
resonance (well-known) and the linear resonance introduced in this paper.
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Figure 9: Response of the forced Kapitza pendulum: ẍ + [α+ β cos(t)]x = cos(πt),
α = 2 and β = 1.8.

This work also generalizes the results presented by Slane and Tragesser [8], about the
inhomogeneous Hill equation, they described the changes operated only in the T and 2T
periodic solutions (the boundaries of the Arnold tongues).

Additionally, it was shown that the multipliers lying on the unit circle were shifted
inside the circle when the damping effect was introduced in the non-homogeneous Hill
equation. Consequently, the resonance lines disappeared.

A challenging problem appears when we try to characterize the periodic solutions and
the resonance lines in the higher order Hill equation. Due to the fact that these systems
experience a phenomena that does not occur in the two degree of freedom systems.
Therefore, a greater effort is required.
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Abstract: The paper deals with the singularly perturbed Benjamin-Bona-Mahony
equation with variable coefficients. It plays an important role in various applica-
tions, in particular, for the description of waves in liquid. The equation appears in
mathematical modeling of the wave processes in the media with small dispersion and
variable characteristics. In the case of constant coefficients, this equation is known
as the regularized long-wave equation or the regularized Korteweg-de Vries equation.
We study the problem of estimating the difference between the exact solution and
asymptotic soliton-like solution to the Cauchy problem for the singularly perturbed
Benjamin-Bona-Mahony equation with variable coefficients. The initial data for the
Cauchy problem are defined according to the concept of asymptotic soliton-like solu-
tion. It means that the approximate solutions are deformations of the soliton solutions
to the Benjamin-Bona-Mahony equation with corresponding constant coefficients.
Asymptotic estimates for the difference between the exact solution to the Benjamin-
Bona-Mahony equation and the N-th approximation for the asymptotic soliton-like
solution are obtained. In particular, the case of the main term of the solution is
considered in detail. Similarly to the case of the singularly perturbed Korteweg-de
Vries equation with variable coefficients these estimates are local. Nevertheless, they
show that the asymptotic soliton-like solutions constructed through the nonlinear
WKB method for the singularly perturbed Benjamin-Bona-Mahony equation with
variable coefficients are sufficiently suitable as approximate solutions.
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1 Introduction

The paper deals with asymptotic estimates for the difference between the exact solution
and asymptotic soliton-like solution to the singularly perturbed Benjamin-Bona-Mahony
equation with variable coefficients

a(x, t, ε)ut + b(x, t, ε)ux + c(x, t, ε)uux − ε2uxxt = 0, (x, t) ∈ R× (0;T ), (1)

where a(x, t, ε), b(x, t, ε), c(x, t, ε) are some functions described below, and ε > 0 is a
small parameter. At ε = 1 and constant coefficients, equation (1) coincides with the
following one:

ut + ux + uux − uxxt = 0, (2)

that has been deduced in [1], where it was studied through the numerical methods for
the case of the wave form initial data.

In the sequel, Benjamin T.B., Bona J.L., and Mahony J.J. [2] studied the initial
value problem for equation (2) whose solution was supposed to be a real smooth non-
periodic function. In particular, they pointed the following: “We shall refer to (2) as the
regularized long wave equation, reflecting in this term our view that the Korteweg-de Vries
equation is an unsuitably posed model for long waves”. Therefore, at present, equation
(2) is known as the regularized long wave equation or the regularized Korteweg-de Vries
equation. It is also called the Benjamin-Bona-Mahony equation [3], abbreviated to the
BBM equation.

The different properties of equation (2), as well as those of its generalizations, were
studied by Eilbeck J.C., and McGruire G.R. [4], [5], Wang B. [6], Wazwaz A.M. [7, 8],
Arora R., and Kumar A. [9], Seadway A.R., and Sayed A. [10], El G.A., Hoefer M.A.,
and Shearer M. [11], and other authors. It was found that the BBM equation possesses
soliton solutions [7]

u(x, t) = 3(a− 1) cosh−2

(
1

2

√
a− 1

a
(x− at) + C

)
, (3)

where a, C are some real constants, and the inelastic collision of two solitary waves of the
BBM equation was discovered [12], but it has neither two- nor multi-soliton solutions [13].

Equation (2), as well as the Korteweg-de Vries equation, describes propagation of
soliton waves and cnoidal waves in different media, in particular, in shallow water. Similar
waves have also appeared in many areas of science such as solid physics, biology [14],
telecommunications [15], etc. Therefore, in the case of the medium with variable characte-
ristics [16] and small dispersion [17,18] the equation of type (1) should be studied.

One of the most effective methods of constructing approximate solutions to the singu-
larly perturbed equations is the asymptotic analysis [19,20]. Asymptotic soliton-like so-
lutions to equation (1) were constructed in paper [21] through the approach based on the
nonlinear WKB method that has been successfully applied for constructing asymptotic
soliton-like solutions to many different problems (see, for example, [22], [23], [24], [25]).
In the sequel, the nonlinear WKB technique was used for constructing the asymptotic
soliton-like solutions to a number of partial differential equations of integrable type with
singular perturbation [23].

Elaboration of algorithms for finding asymptotic expansions of different kinds and
their justification consisting of determining asymptotic accuracy with which the solu-
tions satisfy the equation under consideration are the main tasks of the perturbation
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theory. This traditionally completes the asymptotic analysis of equations with small
perturbations.

On the other hand, in many cases it is necessary to examine the question of how much
the constructed approximate solution differs from the exact solution to the equation.
This problem is usually given much less attention than the previous one [26] since it
is necessary to study the equation under additional conditions, for example, under the
initial data. Thus, a problem on studying asymptotic solutions to the Cauchy problem
for equations with small perturbations appears.

For the case of the asymptotic soliton-like solutions we need to take into account the
properties of soliton solutions to the corresponding equation with constant coefficients
[21]. Therefore, the initial conditions for the appropriate Cauchy problem should be
selected in a special way. In particular, the initial functions must belong to certain
functional spaces, for example, the space of quickly decreasing functions.

The problem on estimation of the difference between the exact solution and asymp-
totic approximation under the same initial condition appears naturally. Namely, this
task is considered in the present paper.

The paper is organized as follows. Firstly, the problem under consideration is formu-
lated, then necessary definitions and notations are given. In the sequel, the algorithm
of constructing the asymptotic soliton-like solutions to equation (1) is briefly described,
and statements on asymptotic estimates for the norm of difference between the exact
solution and its constructed asymptotic approximation are finally proved. There is con-
sidered the case of the main term of the asymptotic solution as well as the case of the
N -th asymptotic approximation.

2 Formulation of the Problem, Preliminary Notes and Definitions

We are facing a problem of constructing the asymptotic soliton-like solution to the Cauchy
problem for the singularly perturbed BBM equation with variable coefficients (1) under
the initial condition

u(x, t, ε)
∣∣
t=0

= f(x, ε), x ∈ R. (4)

It should be noted that the choice of the initial condition essentially influences the
asymptotic estimate between the exact solution to the Cauchy problem [27] in question
and its constructed asymptotic approximation. We consider the problem with the initial
function f(x, ε) obtained from the formulae for asymptotic soliton-like solution [21] to
equation (1). The coefficients a(x, t, ε), b(x, t, ε), c(x, t, ε) of equation (1) are supposed
to be represented as

a(x, t, ε) =

N∑
k=0

εkak(x, t) +O(εN+1), b(x, t, ε) =

N∑
k=0

εkbk(x, t) +O(εN+1),

c(x, t, ε) =

N∑
k=0

εkck(x, t) +O(εN+1), (5)

where the functions a0(x, t), b0(x, t), c0(x, t) do not equal zero for all (x, t) ∈ R× [0;T ].

Now we recall some notions and definitions.
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Let S = S(R) be a space of quickly decreasing functions, i.e., the space of infinitely
differentiable on R functions satisfying, for any integers m,n ≥ 0, the condition

sup
x∈R

∣∣∣∣xm dn

dxn
u(x)

∣∣∣∣ < +∞.

By C∞(R×(0;T );S) we denote a space of infinitely differentiable functions of (x, t) ∈
R× (0;T ) such that, for any integers k, m, n ≥ 0, the following inequality

sup
t∈[0;T ]

 +∞∫
−∞

(
∂ n+ku

∂xn∂tk

)2

dx +

+∞∫
−∞

(1 + x2)m
(
∂ ku

∂tk

)2

dx

 < +∞

holds.
Let G1 = G1(R × [0;T ] × R) be a space of infinitely differentiable functions f =

f(x, t, τ), (x, t, τ) ∈ R× [0;T ]×R, for which the following conditions are fulfilled [23]:
10. the relation

lim
τ→+∞

τn
∂ p

∂xp
∂ q

∂ tq
∂ r

∂τ r
f(x, t, τ) = 0, (x, t) ∈ K,

takes place;
20. there exists a differentiable function f−(x, t) such that the condition

lim
τ→−∞

τn
∂ p

∂ xp
∂ q

∂ tq
∂ r

∂ τ r
(
f(x, t, τ)− f−(x, t)

)
= 0, (x, t) ∈ K,

is satisfied uniformly in (x, t) ∈ K for any non-negative integers n, p, q, r and every
compact set K ⊂ R× [0;T ].

Let G0
1 = G0

1(R × [0;T ] × R) ⊂ G1 be a space of functions f = f(x, t, τ) ∈ G1,
(x, t, τ) ∈ R × [0;T ] × R, for which the following condition lim

τ→−∞
f(x, t, τ) = 0 takes

place uniformly in (x, t) on every compact K ⊂ R× [0;T ].

Definition 2.1 A function u = u(x, t, ε), where ε is a small parameter, is called an
asymptotic soliton-like function [23] if for any integer N ≥ 0, it can be represented in
the form

u(x, t, ε) =

N∑
j=0

εj [uj(x, t) + Vj(x, t, τ)] +O(εN+1), τ =
x− ϕ(t)

ε
, (6)

where ϕ(t) ∈ C∞([0;T ]) is a scalar real function; uj(x, t) ∈ C∞(R× [0;T ]), j = 0, N ;
V0(x, t, τ) ∈ G0

1; Vj(x, t, τ) ∈ G1, j = 1 , N .

The function x− ϕ(t) is called a phase of the soliton-like function u(x, t, ε), and the
curve Γ = {(x, t) : x = ϕ(t), t ∈ [0;T ]} is called a discontinuity curve.

Here and below we use the notation Ψ(x, t, ε) = O(εN ). It means that |Ψ(x, t, ε)| ≤
CNε

N for all ε ∈ (0; ε0), where CN , ε0 are some positive values, (x, t) ∈ K ⊂ R× [0;T ]
and K is a compact set.

The constant CN depends only on the number N and the set K.
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Remark 2.1 The term “soliton-like solution” reflects the following property of the
asymptotic solution to the equations with constant coefficients having soliton solutions.
In the case of such a partial differential equation in the presence of variable coefficients,
it is expected that its solutions are certain deformations of the soliton-type solutions.
Therefore, it is natural to look for asymptotic solutions to the singularly perturbed
Benjamin-Bona-Mahony equation with variable coefficients in the form that is similar to
the representation of soliton solutions. Moreover, in the case of constant coefficients, the
singular part of the asymptotic solution constructed through the nonlinear WKB method
coincides with soliton solution (3) to the singularly perturbed Benjamin-Bona-Mahony
equation with account of calibrate transformations.

2.1 Scheme of constructing the asymptotic solution

Now we briefly describe the algorithm of constructing the asymptotic soliton-like solution
to the BBM equation (1). The asymptotic solution is represented as [21]

u(x, t, ε) =

N∑
j=0

εj [uj(x, t) + Vj(x, t, τ)] +O(εN+1), τ =
x− ϕ(t)

ε
. (7)

Here the function UN (x, t, ε) =

N∑
j=0

εjuj(x, t) is called a regular part of asymptotic

solution (7) and the function VN (x, t, τ, ε) =

N∑
j=0

εjVj(x, t, τ) gives a singular part of

asymptotic solution (7). The terms of the regular part solve the equations

a0(x, t)
∂u0

∂t
+ b0(x, t)

∂u0

∂x
+ c0(x, t)u0

∂u0

∂x
= 0, (8)

a0(x, t)
∂uj
∂t

+ b0(x, t)
∂uj
∂x

+ c0(x, t)

(
uj
∂u0

∂x
+ u0

∂uj
∂x

)
= (9)

= fj(x, t, u0, u1, . . . , uj−1), j = 1, N,

and the terms of the singular part satisfy the equations

ϕ ′
∂3V0

∂τ3
+ [b0(x, t)− a0(x, t)ϕ ′(t)]

∂V0

∂τ
+ c0(x, t) [u0 + V0]

∂V0

∂τ
= 0, (10)

ϕ ′
∂3Vj
∂τ3

+ (b0(x, t)− a0(x, t)ϕ ′(t))
∂Vj
∂τ

+ c0(x, t)

(
u0
∂Vj
∂τ

+
∂

∂τ
(V0Vj)

)
= Fj(x, t, τ),

(11)
where the functions fj(x, t, u0, u1, . . . , uj−1), j = 1, N , are obtained recurrently through
the terms u0(x, t), u1(x, t), . . ., uj−1(x, t), j = 1, N , and the functions Fj(x, t, τ) =
Fj(t, V0(x, t, τ), . . . , Vj−1(x, t, τ), u0(x, t), . . . , uj(x, t)), are determined recurrently
through the terms u0(x, t), u1(x, t), . . ., uj(x, t), V0(x, t, τ), V1(x, t, τ), . . ., Vj−1(x, t, τ),
j = 1, N .

Solutions to equations (8), (9) can be found through the method of characteristics.
The singular part of asymptotic solution (7) is constructed in a special way [21]. Firstly,
equations (10), (11) are studied on the discontinuity curve Γ that is determined through
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the solution ϕ = ϕ(t), t ∈ [0;T ], of certain second order ordinary differential equation
(see equation (29) ). The functions vj = vj(t, τ) = Vj(x, t, τ)

∣∣
Γ

, j = 0, N , solve the
following partial differential equations:

ϕ ′(t)
∂3v0

∂τ3
+ (b0(ϕ, t)− a0(ϕ, t)ϕ ′(t) + c0(ϕ, t)u0(ϕ, t))

∂v0

∂τ
+ c0(ϕ, t) v0

∂v0

∂τ
= 0, (12)

ϕ ′(t)
∂3vj
∂τ3

+(b0(ϕ, t)− a0(ϕ, t)ϕ ′(t) + c0(ϕ, t)u0(ϕ, t))
∂vj
∂τ

+c0(ϕ, t)
∂

∂τ
(v0vj) = Fj(t, τ),

(13)
where Fj(t, τ) = Fj(x, t, τ)

∣∣
Γ

. In particular,

F1(t, τ) = −a0(ϕ, t)v0 t − c0(ϕ, t)u0 x(ϕ, t) v0− (14)

− [c0xu0(ϕ, t) + c0(ϕ, t)u0 x(ϕ, t)− a0x(ϕ, t)ϕ ′(t) + b0x(ϕ, t)] τ v0 τ−
− [c0x(ϕ, t)τ + c1(ϕ, t)] v0v0 τ − [c0(ϕ, t)u1(ϕ, t) + c1(ϕ, t)u0(ϕ, t)−

−a1(ϕ, t)ϕ ′(t) + b1(ϕ, t)] v0 τ + v0 ττt.

Later, an extension of the functions vj(t, τ), j = 0, N, is constructed from the curve
Γ into its neighborhood.

All details of the algorithm can be found in [21].

3 Principal Results

3.1 Main term of the asymptotic solution (7)

At first, we consider a main term of asymptotic expansion (7). The term is determined
through the solution to equation (12) and is given by the formula

V0(x, t, τ) = V0(t, τ) = v0(t, τ) = 3
A(ϕ, t)

c0(ϕ, t)
cosh−2

(√
A(ϕ, t)

ϕ ′(t)

τ − τ0
2

)
, (15)

where A(ϕ, t) = a0(ϕ, t)ϕ ′ − b0(ϕ, t) − c0(ϕ, t)u0(ϕ, t), τ0 is a constant of integration,
and function u0(x, t) is found through the method of characteristics from the Hopf type
equation (8). Here the following condition

A(ϕ, t)ϕ ′(t) > 0, t ∈ [0;T ], (16)

is supposed to be satisfied.

Remark 3.1 The function V0(t, τ) is an exact solution to equation (12) in the space
G0

1. Its partial derivative V0 τ (t, τ) satisfies equation (13) as the right side function
Fj(t, τ) = 0. The last property can be easily verified by direct calculations.

Now we define the initial data of problem (1), (4) more exactly. Let us put

f0(x, ε) = 3
A(ϕ0, 0)

c0(ϕ0, 0)
cosh−2

(√
A(ϕ0, 0)

ϕ ′0

(
x− ϕ0

2 ε
− τ0

2

))
, (17)

where ϕ0 = ϕ(0), ϕ ′0 = ϕ ′(0) 6= 0, τ0 ∈ R are parameters, and let us denote the set of
functions (17) by M0(ε).

The following statements are true.
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Theorem 3.1 Let us suppose the following propositions are fulfilled:

1 0. the functions a0(x, t), b0(x, t), c0(x, t) ∈ C∞(R× [0;T ]) and they do not equal zero
for all (x, t) ∈ R× [0;T ];

2 0. the function f(x, ε) in initial condition (4) can be represented as f(x, ε) = g0(x) +
f0(x, ε), where g0(x) ∈ C∞(R), f0(x, ε) ∈M0(ε);

3 0. the Cauchy problem for equation (8) with the initial condition
u0(x, 0) = g0(x) has the solution u0(x, t) ∈ C∞(R× [0;T ]);

4 0. there exists a function ϕ(t) ∈ C∞([0;T ]) satisfying (16) and ϕ(0) = ϕ0, ϕ ′(0) =
ϕ ′0 6= 0.

Then the main term of the asymptotic soliton-like solution to the Cauchy problem
(1), (4) is given by the formula

Y0(x, t, ε) = u0(x, t) + V0(t, τ), (18)

where u0(x, t) is a solution to equation (8) with the initial condition u(x, 0) = g0(x) and
V0(t, τ) is defined through formula (15).

Function (18) satisfies the Cauchy problem (1), (4) with accuracy O(1) on the set
R× [0;T ]. Moreover, as τ → ±∞, it satisfies the Cauchy problem (1), (4) with accuracy
O(ε) on the set R× [0;T ].

Proof. It is clear that function (18) satisfies initial condition (4). The other statement
of Theorem 3.1 is proved according to the scheme of proof for Theorem 1 in [21]. That
is why we omit the details here.

Theorem 3.2 Let the following propositions hold:

1 0. the functions a(x, t, ε), b(x, t, ε), c(x, t, ε) satisfy the assumptions
a(x, t, ε) = a(x, ε) ∈ C∞(R), b(x, t, ε) ∈ C∞(R × [0;T ]),
c(x, t, ε) = c(t, ε) ∈ C∞([0;T ]);

2 0. the inequalities r1 ≤ a(x, ε) ≤ r2, |b(x, t, ε)| < l1,
|bx(x, t, ε)| < l2 take place for all x ∈ R, t ∈ [0;T ], where r1, r2, l1, l2 are
some positive constants;

3 0. the Cauchy problem (1), (4) has a solution u(x, t, ε) ∈ C∞(0, T ;S);

4 0. the functions a0(x) ∈ C∞(R), b0(x, t) ∈ C∞(R× [0;T ]), c0(t) ∈ C∞([0;T ]) do not
equal zero for all x ∈ R, t ∈ [0;T ] and a0(x), b0(x, t) are absolutely bounded for all
x ∈ R, t ∈ [0;T ];

5 0. the function f(x, ε) in initial condition (4) can be represented as f(x, ε) = g0(x) +
f0(x, ε), where g0(x) ∈ S(R), f0(x, ε) ∈M0(ε);

6 0. the Cauchy problem for equation (8) with the initial condition
u0(x, 0) = g0(x), x ∈ R, has a solution in the space C∞(0, T ;S);

7 0. there exists a function ϕ(t) ∈ C∞([0;T ]) satisfying (16) and ϕ(0) = ϕ0, ϕ ′(0) =
ϕ ′0 6= 0.
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Then for the exact solution and the asymptotic soliton-like solution to the Cauchy
problem (1), (4) the following estimate

|||u(x, t, ε)− Y0(x, t, ε)||| ≤ Cε, t ∈ [0; εΘ], (19)

is true, where C is a constat not depending on the parameter ε, Θ > 0 is a real number,
and

|||f |||2 = ||
√
a(x, ε) f ||2 + ε2||fx||2, ||f ||2 =

∫
R

|f(x, t, ε)|2dx.

Proof. For proving the theorem let us consider the function

ω(x, t, ε) = u(x, t, ε)− Y0(x, t, ε), (20)

where u(x, t, ε) is an exact solution to the Cauchy problem (1), (4) and Y0(x, t, ε) is given
by formula (18). Substituting u(x, t, ε) = ω(x, t, ε)+Y0(x, t, ε) into (1), multiplying both
sides by ω(x, t, ε) and integrating the obtained expression in x from −∞ to +∞, we get

− ε2

2

d

dt

+∞∫
−∞

ω2
x(x, t, ε) dx =

1

2

d

dt

+∞∫
−∞

a(x, ε)ω2(x, t, ε)dx− (21)

−1

2

+∞∫
−∞

bx(x, t, ε)ω2(x, t, ε)dx−
+∞∫
−∞

c(t, ε)Y0(x, t, ε)ω(x, t, ε)ωx(x, t, ε)dx+

+

+∞∫
−∞

g(x, t, ε)ω(x, t, ε)dx,

where

g(x, t, ε) = −ε2Y0xxt(x, t, ε) + a(x, ε)Y0t(x, t, ε)+

+ b(x, t, ε)Y0x(x, t, ε) + c(t, ε)Y0(x, t, ε)Y0x(x, t, ε).

Taking into account the conditions of Theorem 3.2 and the technique of constructing
the asymptotic soliton-like solution to the Cauchy problem (1), (4) we conclude that the
function g(x, t, ε) belongs to the space C∞(0, T ;S). Moreover, it satisfies the asymptotic
relation g(x, t, ε) = O(1) as ε→ 0.

From equality (21) we find

1

2

d

dt
E 2 ≤ pE 2 + qE, (22)

where
E 2 = |||ω(x, t, ε)|||2 = ||

√
a(x, ε)ω(x, t, ε)||2 + ε2||ωx(x, t, ε)||2, (23)

p =
1

2
max

(x,t)∈R×[0;T ]

∣∣∣∣ bx(x, t, ε)

a(x, ε)

∣∣∣∣+ max
(x,t)∈R×[0;T ]

∣∣∣∣ c(t, ε) Y0(x, t, ε)

a(x, ε)

∣∣∣∣+ (24)

+
1

ε
max

(x,t)∈R×[0;T ]
| c(t, ε)Y0(x, t, ε) | ,
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q = max
t∈[0;T ]

 +∞∫
−∞

∣∣∣∣∣ g(x, t, ε)√
a(x, ε)

∣∣∣∣∣
2

dx

1/2

.

According to the algorithm of constructing the main term of the asymptotic solution
(7) the values p, q satisfy the following asymptotic relations:

p = O

(
1

ε

)
, q = O(1) as ε→ 0.

To estimate the value y = E(t, ε) we consider the differential inequality

dy

dt
≤ p y + q

under the initial condition y(0) = 0 according to notations (20) and (23).
Similarly to the proof of the Gronwall-Bellman lemma we find the relation

y(t) ≤ q

p

(
e p t − 1

)
.

As a result, we obtain estimate (19).

3.2 Higher terms of the asymptotic soliton-like solution

Let us describe the initial data of the Cauchy problem (1), (4) corresponding to the higher
terms of asymptotic soliton-like solutions (7). As in the previous case, the initial data is a
sum of two functions. One of these functions is a sufficiently smooth one connected with
the regular part of asymptotic solution (7). The other function belongs to the defined
above space G1 and is associated with the singular part of asymptotic solution (7).

To clarify the type of the last element of the initial data we go back to the algorithm
of constructing the singular part of asymptotic solution (7) and recall some results of
paper [21]. The terms of the singular part are represented as follows:

Vj(x, t, τ) = u−j (x, t)ηj(t, τ) + ψj(t, τ), j = 1, N, (25)

where u−j (x, t), j = 1, N , is a solution to the Cauchy problem

Λu−j (x, t) = f−j (x, t), (26)

u−j (x, t)
∣∣
Γ

= νj(t), j = 1, N. (27)

Here the differential operator Λ is written as

Λ = a0(x, t)
∂

∂t
+ [b0(x, t) + c0(x, t)u0(x, t)]

∂

∂x
+ c0(x, t)u0x(x, t),

the right side functions f−j (x, t), j = 1, N , are recursively determined, and, for example,

f−1 (x, t) = 0,

f−2 (x, t) = −a1(x, t)
∂u−1
∂t
− b1(x, t)

∂u−1
∂x
− c1(x, t)u−1

∂u0

∂x
− (28)
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−c0(x, t)u−1
∂u1

∂x
− c0(x, t)u1

∂u−1
∂x
− c0(x, t)u−1

∂u−1
∂x
− c1(x, t)u0

∂u−1
∂x

;

νj(t) = [−a0(ϕ, t)ϕ′(t) + b0(ϕ, t) + c0(ϕ, t)u0(ϕ, t) ]
−1

lim
τ→−∞

Φj(t, τ),

Φj(t, τ) = −
+∞∫
τ

Fj(t, ξ)dξ, j = 1, N ;

ηj(t, τ) ∈ G1 is a function such that lim
τ→−∞

ηj(t, τ) = 1; the function ψj(t, τ) belongs to

the space G0
1, and u0(x, t) is the main term of the regular part of asymptotic solution

(7).
Besides, the function ϕ = ϕ(t), t ∈ [0;T ], is a solution to the second order ordinary

differential equation of the following form:[
A1ϕ

′ 2 +A2ϕ
′ +A3

]
ϕ ′′ +A4 ϕ

′ 4 +A5 ϕ
′ 3 +A6 ϕ

′ 2 +A7 ϕ
′ = 0, (29)

where the coefficients Ak = Ak(ϕ, t), k = 1, 7, are given as follows:

A1 = 24 a2
0 c0, A2 = −8 a0 c0 α, A3 = − c0 α2, A4 = −40 c0x a

2
0 + 30a0 a0x c0,

A5 = 60 a0 c0x α+ 20 a0 a0t c0 − 24 a2
0 c0t − 30 a0 c0 αx − 15 a0x c0 α+ 20a0 c

2
0 u0x,

A6 = −20 a0 c0 αt − 5 a0t c0α+ 15 c0 ααx + 28 a0 c0t α− 20 c20u0x α− 20 c0x α
2,

A7 = 5 c0 ααt − 20 c0t α
2,

where α = b0 + c0u0, a0 = a0(ϕ, t), b0 = b0(ϕ, t), c0 = c0(ϕ, t), u0 = u0(ϕ, t).
Ordinary differential equation (29) is nonlinear and, in general, it possesses a solution

on the finite time interval denoted by [0;T ].
We suppose that the Cauchy problem (26), (27) has a solution in the domain {(x, t) :

x < ϕ(t), t ∈ [0;T ]}. In the case, asymptotic solution (7) to the Cauchy problem (1), (4)
is written as

YN (x, t, ε) =

=



N∑
j=0

εj [uj(x, t) + Vj(x, t, τ)] , (x, t) ∈ Ωµ(Γ),

u0(x, t) +
N∑
j=1

εj
[
uj(x, t) + u−j (x, t)

]
, (x, t) ∈ D−\Ωµ(Γ),

N∑
j=0

εjuj(x, t), (x, t) ∈ D+\Ωµ(Γ),

(30)

where
Ωµ(Γ) = {(x, t) ∈ R× [0;T ] : |x− ϕ(t)| < µ},

D− = {(x, t) ∈ R× [0;T ] : x < ϕ(t)},

D+ = {(x, t) ∈ R× [0;T ] : x > ϕ(t)},

µ is a positive number.
Taking into account Remark 3.1 we find the representation of the initial values in (4).

So, by substituting τ = (x− ϕ(t))/ε and putting t = 0, we get

fj(x, ε) := Vj(x, t, τ)
∣∣∣
t=0, τ=

x−ϕ0
ε

= u−j (x, 0)ηj

(
0,
x− ϕ0

ε

)
+ (31)
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+ψj

(
0,
x− ϕ0

ε

)
+ ρjV0τ (t, τ)

∣∣∣
t=0,τ=

x−ϕ0
ε

, j = 1, N,

where ρj , j = 1, N , are real parameters.
The set of values fj(x, ε) is denoted by Mj(ε) for any j = 1, N .
So, the following theorem is true.

Theorem 3.3 Let the following propositions be fulfilled:

10. the functions ak(x, t), bk(x, t), ck(x, t) ∈ C∞(R × [0;T ]), k = 0, N , and the in-
equality a0(x, t) b0(x, t) c0(x, t) 6= 0 holds for all (x, t) ∈ R× [0;T ];

20. the function f(x, ε) in initial condition (4) can be represented as

f(x, ε) =

N∑
j=0

εj [gj(x) + fj(x, ε) ],

where gj(x) ∈ C∞(R) and fj(x, ε) ∈Mj(ε), j = 0, N ;

30. equation (8) with the initial condition u0(x, 0) = g0(x), x ∈ R, as well as equation
(9) with the initial condition uj(x, 0) = gj(x), x ∈ R, has the solution uj(x, t) ∈
C∞(R× [0;T ]), j = 0, N ;

40. the function Fj(t, τ) ∈ G 0
1 , j = 1, N, and the orthogonality condition

+∞∫
−∞

Fj(t, τ)v0(t, τ)dτ = 0, j = 1, N ; (32)

is satisfied;

50. the function Fj(t, τ), j = 1, N, is such that the property

lim
τ→−∞

Φj(t, τ) = 0, j = 1, N, (33)

takes place;

60. equation (29) has a solution ϕ(t) ∈ C∞([0;T ]) such that inequality (16) is true and
ϕ(0) = ϕ0, ϕ ′(0) = ϕ0

′ 6= 0 hold.

Then the asymptotic soliton-like solution to the Cauchy problem (1), (4) can be written
as

YN (x, t, ε) =

N∑
j=0

εj [uj(x, t) + Vj(x, t, τ)] . (34)

It satisfies the Cauchy problem with accuracy O(εN ) for all (x, t) ∈ R × [0;T ].
Moreover, as τ → ±∞, function (34) satisfies the Cauchy problem (1), (4) with accuracy
O(εN+1), N ∈ N.

Proof. It is clear that function (34) satisfies initial condition (4). The other part of
Theorem 3.3 is proved according to the scheme of proof for Theorem 1 in [21].
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Remark 3.2 Condition 50 of Theorem 3.3 provides solution (7), singular part of
which belongs to the space G0

1. Therefore, we can put Vj(x, t, τ) = Vj(x, t, τ)
∣∣
Γ

= vj(t, τ),

j = 0, N .
In the opposite case, the asymptotic soliton-like solution to the Cauchy problem (1),

(4) can be written as (30).

Theorem 3.4 Suppose the following propositions are fulfilled:

10. conditions 10 – 40, 60 of Theorem 3.3 are true;

20. the Cauchy problem (26), (27) has a solution in the domain D−.

Then the asymptotic soliton-like solution to problem (1), (4) is written as (30) and
satisfies the Cauchy problem with accuracy O(εN ), N ∈ N, for all (x, t) ∈ R × [0;T ].
Moreover, as τ → ±∞, function (30) satisfies the Cauchy problem (1), (4) with accuracy
O(εN+1), N ∈ N.

Proof. It is obvious that function (30) satisfies initial condition (4). The last part
of Theorem 3.4 is proved according to the scheme of proof for Theorem 2 in [21].

Now let us consider the estimate for the difference between the exact solution and
asymptotic soliton-like solution to the Cauchy problem (1), (4).

The following theorem is true.

Theorem 3.5 Suppose the following propositions are satisfied:

1 0. the functions a(x, t, ε), b(x, t, ε), c(x, t, ε) satisfy the assumptions
a(x, t, ε) = a(x, ε) ∈ C∞(R), b(x, t, ε) ∈ C∞(R × [0;T ]),
c(x, t, ε) = c(t, ε) ∈ C∞([0;T ]);

2 0. the inequalities r1 ≤ a(x, ε) ≤ r2, |b(x, t, ε)| < l1, |bx(x, t, ε)| < l2 take place for
all x ∈ R, t ∈ [0;T ], where r1, r2, l1, l2 are some positive constants;

3 0. the Cauchy problem (1), (4) has a solution u(x, t, ε)
∈ C∞(0, T ;S);

4 0. the functions ak(x) ∈ C∞(R), bk(x, t) ∈ C∞(R × [0;T ]), ck(t) ∈ C∞([0;T ]),
k = 0, N , are absolutely bounded for all x ∈ R, t ∈ [0;T ], and the inequality
a0(x) b0(x, t) c0(t) 6= 0 holds for all x ∈ R, t ∈ [0;T ];

50. the function f(x, ε) in initial condition (4) can be represented as

f(x, ε) =

N∑
j=0

εj [gj(x) + fj(x, ε) ],

where gj(x) ∈ S(R), fj(x, ε) ∈Mj(ε), j = 0, N ;

60. equation (8) with the initial condition u0(x, 0) = g0(x), x ∈ R, as well as equation
(9) with the initial condition uj(x, 0) = gj(x), x ∈ R, j = 1, N , has the solution
uj(x, t) ∈ C∞(0, T ;S), j = 0, N ;

70. the conditions 40 – 60 of Theorem 3.3 are true.



104 V.H. SAMOILENKO, YU. I. SAMOILENKO AND L.V. VOVK

Then for the exact solution u(x, t, ε) and asymptotic solution (34) to the Cauchy
problem (1), (4) the following asymptotic estimate

|||u(x, t, ε)− YN (x, t, ε)||| ≤ CεN+1, t ∈ [0; εΘ], (35)

is true, where C is a constant not depending on the parameter ε, and Θ is a positive
number.

Proof. Similarly to the proof of Theorem 3.2 let us consider the difference
ωN (x, t, ε) = u(x, t, ε)− YN (x, t, ε). As above, we obtain

− ε2

2

d

dt

+∞∫
−∞

|ωN x(x, t, ε) |2 dx =
1

2

d

dt

+∞∫
−∞

a(x, ε)ω2
N (x, t, ε)dx− (36)

−1

2

+∞∫
−∞

bx(x, t, ε)ω2
N (x, t, ε)dx−

+∞∫
−∞

c(t, ε)YN (x, t, ε)ωN (x, t, ε)ωN x(x, t, ε)dx+

+

+∞∫
−∞

gN (x, t, ε)ωN (x, t, ε)dx,

where
gN (x, t, ε) = −ε2YNxxt(x, t, ε) + a(x, ε)YNt(x, t, ε)+

+b(x, t, ε)YNx(x, t, ε) + c(t, ε)YN (x, t, ε)YNx(x, t, ε).

According to Theorem 3.3 and the technique of constructing the asymptotic soliton-
like solution to problem (1), (4), the function gN (x, t, ε) belongs to the space C∞(0, T ;S).
Moreover, it satisfies the asymptotic relation gN (x, t, ε) = O(εN ) as ε→ 0.

From (36) we find
1

2

d

dt
E 2
N ≤ pE 2

N + q EN , (37)

where

E 2
N = |||ωN (x, t, ε)|||2 = ||

√
a(x, ε)ωN (x, t, ε)||2 + ε2||ωN x(x, t, ε)||2, (38)

p =
1

2
max

(x,t)∈R×[0;T ]

∣∣∣∣bx(x, t, ε)

a(x, ε)

∣∣∣∣+ max
(x,t)∈R×[0;T ]

∣∣∣∣c(t, ε)YN (x, t, ε)

a(x, ε)

∣∣∣∣+ (39)

+
1

ε
max

(x,t)∈R×[0;T ]
|c(t, ε)YN (x, t, ε)| ,

q = max
t∈[0;T ]

 +∞∫
−∞

∣∣∣∣∣ gN (x, t, ε)√
a(x, ε)

∣∣∣∣∣
2

dx

1/2

. (40)

It is easy to see that the values p, q satisfy the asymptotic equalities

p = O

(
1

ε

)
, q = O

(
εN
)

as ε→ 0.
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Inequality (37) is equivalent to the relation

dy

dt
≤ py + q, y(0) = 0, (41)

where y = y(t) = EN (x, t, ε).
It now follows that

y(t) ≤ q

p

(
e p t − 1

)
providing asymptotic estimate (35).

4 Conclusions

The problem of estimating the difference between the exact solution and asymptotic
soliton-like solution to the Cauchy problem for the singularly perturbed BBM equation
with variable coefficients is considered. The initial data for the Cauchy problem are
defined according to the concept of asymptotic soliton-like solution. In other words, it is
taken into account that the asymptotic soliton-like solution is a certain deformation of
the soliton solution for the corresponding BBM equation with constant coefficients.

We present asymptotic estimates for the difference between the exact solution to the
BBM equation and the N-th approximation for the constructed asymptotic soliton-like so-
lution. Similarly to the singularly perturbed Korteweg-de Vries equation, these estimates
are local [27,28]. Nevertheless, they show that the asymptotic soliton-like solutions con-
structed through the nonlinear WKB method for the singularly perturbed BBM equation
with variable coefficients are sufficiently suitable as the approximate solutions.
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Abstract: Consider the first-order linear differential equation with several retarded
arguments x′ (t) +

∑m
i=1 pi (t)x (τi (t)) = 0, t ≥ t0, where the functions pi, τi ∈

C
(
[t0,∞) ,R+

)
, for every i = 1, 2, . . . ,m, τi (t) ≤ t for t ≥ t0 and limt→∞ τi (t) =∞.

In this paper we review the most interesting sufficient conditions under which all
solutions oscillate. An example illustrating the results is given.

Keywords: oscillation; retarded; differential equations; non-monotone arguments.
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1 Introduction

Consider the first-order linear differential equation with several non-monotone retarded
arguments

x′ (t) +

m∑
i=1

pi (t)x (τi (t)) = 0, t ≥ t0, (1.1)

where the functions pi, τi ∈ C ([t0,∞) ,R+) , for every i = 1, 2, . . . ,m, (here R+ =
[0,∞)), τi (t) ≤ t for t ≥ t0 and limt→∞ τi (t) =∞.

Let T0 ∈ [t0,+∞) , τ (t) = min {τi (t) : i = 1, . . . ,m} and τ−1 (t) = sup {s : τ (s) ≤ t}.
By a solution of the equation (1.1) we understand a function x ∈ C ([T0,+∞) ,R),
continuously differentiable on [τ−1 (T0) ,+∞] and that satisfies (1.1) for t ≥ τ−1 (T0).
Such a solution is called oscillatory if it has arbitrarily large zeros, and otherwise it is
called non-oscillatory.

For the general theory the reader is referred to [9, 11,12,17].
The oscillatory behavior of functional differential equations has been the subject of

many investigations. See, for example, [1–20] and the references cited therein.

∗ Corresponding author: mailto:ipstav@uoi.gr

c© 2020 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua107
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2 Oscillation Conditions for Eq. (1.1)

Concerning the differential equation (1.1) with several non-monotone arguments the fol-
lowing related oscillation results have been recently published.

Assume that there exist non-decreasing functions σi ∈ C ([t0,∞) ,R+) such that

τi (t) ≤ σi (t) ≤ t, i = 1, 2, . . . ,m. (2.1)

In 2015, Infante, Kopladatze and Stavroulakis [14] proved that if

lim sup
t→∞

m∏
j=1

 m∏
i=1

t∫
σj(t)

pi (s) exp

 σi(t)∫
τi(s)

m∑
i=1

pi (ξ) exp

 ξ∫
τi(ξ)

m∑
i=1

pi (u) du

 dξ

 ds


1/m

>
1

mm
,

(2.2)
then all solutions of Eq. (1.1) oscillate.

Also, in 2015, Kopladatze [15] improved the above condition as follows. Let there
exist some k ∈ N such that

lim sup
t→∞

m∏
j=1

 m∏
i=1

t∫
σj(t)

pi (s) exp

m σi(t)∫
τi(s)

(
m∏
`=1

p` (ξ)

) 1
m

ψk (ξ) dξ

 ds


1
m

>
1

mm

[
1−

m∏
i=1

ci (αi)

]
, (2.3)

where

ψ1 (t) = 0, ψi (t) = exp

 m∑
j=1

t∫
τj(t)

(
m∏
`=1

p` (s)

) 1
m

ψi−1 (s) ds

 , i = 2, 3, . . . ,

0 < αi := lim inf
t→∞

t∫
σi(t)

pi (s) ds <
1

e
, i = 1, 2, . . . ,m, (2.4)

and

ci (αi) =
1− αi −

√
1− 2αi − α2

i

2
, i = 1, 2, . . . ,m, (2.5)

then all solutions of Eq. (1.1) oscillate.

In 2016, Bravermen, Chatzarakis and Stavroulakis [7] obtained the following iterative
sufficient oscillation conditions

lim sup
t→∞

t∫
h(t)

m∑
i=1

pi (u) ar (h (t) , τi (u)) du > 1, (2.6)
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or

lim sup
t→∞

‘

t∫
h(t)

m∑
i=1

pi (u) ar (h (t) , τi (u)) du > 1− 1− α−
√

1− 2α− α2

2
, (2.7)

or

lim inf
t→∞

t∫
h(t)

m∑
i=1

pi (u) ar (h (t) , τi (u)) du >
1

e
, (2.8)

where
h (t) = max

1≤i≤m
hi (t) and hi (t) = sup

t0≤s≤t
τi (s) , i = 1, 2, . . . ,m,

0 < α := lim inf
t→∞

t∫
h(t)

m∑
i=1

pi (s) ds ≤ 1

e
(2.9)

and a1 (t, s) = exp

(
t∫
s

m∑
i=1

pi(u)du

)
, ar+1 (t, s) = exp

(
t∫
s

m∑
i=1

pi(u)ar(u,τi(u))du

)
, r ∈ N.

Also, in 2016, Akca, Chatzarakis and Stavroulakis [1] improved that result replacing
condition (2.6) by the iterative condition

lim sup
t→∞

t∫
h(t)

m∑
i=1

pi (u) ar (h (u) , τi (u)) du >
1 + lnλ0

λ0
, (2.10)

where λ0 is the smaller root of the equation λ = eαλ, 0 < α :=

lim inft→∞
t∫

τ(t)

m∑
i=1

pi (s) ds ≤ 1
e and τ (t) = max

1≤i≤m
τi (t) .

In 2018, Attia et al. [3] established the following oscillation conditions.

Assume that 0 < ρ := lim inft→∞
∫ t
g(t)

∑n
k=1 pk(s)ds ≤ 1

e , and

lim sup
t→∞

(∫ t

g(t)

Q(v)dv + c(ρ)e
∫ t
g(t)

∑n
i=1 pi(s)ds

)
> 1,

where

Q(t) =

n∑
k=1

n∑
i=1

pi(t)

∫ t

τi(t)

pk(s)e
∫ t
gk(t)

∑n
i=1 pi(s)ds+(λ(ρ)−ε)

∫ gk(t)

τk(s)

∑n
`=1 p`(u)duds,

ε ∈ (0, λ(ρ)), or

lim sup
t→∞

(∫ t

g(t)

Q1(v)dv + c(ρ)e
∫ t
g(t)

∑n
i=1 pi(s)ds

)
> 1,

where

Q1(t) =

n∑
k=1

n∑
i=1

pi(t)

∫ t

τi(t)

pk(s)e
∫ t
gk(t)

∑n
i=1 pi(s)ds+

∫ gk(t)

τk(s)

∑n
`=1(λ(q`)−ε`)p`(u)duds,
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ε` ∈ (0, λ(q`)), and q` = lim inft→∞
∫ t
τ`(t)

p`(s)ds, ` = 1, 2, ...,m, or

lim sup
t→∞

 n∏
j=1

(
n∏
k=1

∫ t

gj(t)

Rk(s)ds

) 1
n

+

∏n
k=1 c(βk)

nn
e
∑n
k=1

∫ t
gk(t)

∑n
`=1 p`(s)ds

 >
1

nn
,

where

Rk(s) = e
∫ s
gk(s)

∑n
i=1 pi(u)du

n∑
i=1

pi(s)

∫ s

τi(s)

pk(u)e
(λ(ρ)−ε)

∫ gk(s)

τk(u)

∑n
`=1 p`(v)dvdu,

ε ∈ (0, λ(ρ)), and 0 < βk := lim inft→∞
∫ t
σi(t)

pi(s)ds ≤ 1
e . Then Eq. (1.1) is oscillatory.

Recently Bereketoglu et al. [4] established the following conditions.

Assume that there exist non-decreasing functions σi ∈ C ([t0,∞) ,R+) such that (2.1)
is satisfied and for some k ∈ N

lim sup
t→∞

m∏
j=1

 m∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τi(s)

Pk (u) du

 ds



1/m

>
1

mm
, (2.11)

or

lim sup
t→∞

m∏
j=1

 m∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τi(s)

Pk (u) du

 ds



1/m

>
1

mm

[
1−

m∏
i=1

ci (αi)

]
,

(2.12)
where

Pk (t) =

m∑
j=1

pj (t)

1 +m

 m∏
i=1

t∫
σj(t)

pi (s) exp

 t∫
τi(s)

Pk−1 (u) du

 ds


1/m
 ,

with P0 (t) = m

[
m∏
`=1

p` (t)

]1/m
, αi is given by (2.4) and ci (αi) by (2.5). Then all

solutions of Eq.(1.1) oscillate.

Very recently Moremedi, Jafari and Stavroulakis [19] further improved the above
conditions as follows.

Assume that there exist non-decreasing functions σi ∈ C ([t0,∞) ,R+) such that (2.1)
is satisfied and for some k ∈ N

lim sup
t→∞

m∏
j=1

 m∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τi(s)

Pk (u) du

 ds



1/m

>
1

mm
, (2.13)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (1) (2020) 107–118 111

or

lim sup
t→∞

m∏
j=1

 m∏
i=1

 t∫
σj(t)

pi (s) exp

 σi(t)∫
τi(s)

Pk (u) du

 ds



1/m

>
1

mm

[
1−

m∏
i=1

ci (αi)

]
,

(2.14)
where

Pk (t) = P (t)

1 +

t∫
σi(t)

P (s) exp

 t∫
τi(s)

P (u) exp

 u∫
τi(u)

Pk−1 (ξ) dξ

 du

 ds

 (2.15)

with P0 (t) = P (t) =
∑m
i=1 pi (t), αi is given by (2.4) and ci (αi) by (2.5). Then all

solutions of Eq.(1.1) oscillate.

Remark 2.1 It is clear that the left-hand sides of both conditions (2.11), (2.12) and
(2.13), (2.14) are identically the same and also the right-hand side of (2.12) and (2.14)
reduces to (2.11) and (2.13) when ci (αi) = 0. Thus, it seems that the above conditions
(2.14) and (2.12) are exactly the same as conditions (2.13) and (2.11), when ci (αi) = 0.
One may notice, however, that the condition (2.4) is required in (2.14) and (2.12) but
not in (2.13) and (2.11).

In the case of monotone arguments we have the following.

Let τi be non-decreasing functions and for some k ∈ N

lim sup
t→∞

m∏
j=1

 m∏
i=1

t∫
τj(t)

pi (s) exp

 τi(t)∫
τi(s)

Pk (u) du

 ds



1/m

>
1

mm
(2.16)

or

lim sup
t→∞

m∏
j=1

 m∏
i=1

t∫
τj(t)

pi (s) exp

 τi(t)∫
τi(s)

Pk (u) du

 ds



1/m

>
1

mm

[
1−

m∏
i=1

ci (αi)

]
,

(2.17)
where

Pk (t) = P (t)

1 +

t∫
τi(t)

P (s) exp

 t∫
τi(s)

P (u) exp

 u∫
τi(u)

Pk−1(ξ)dξ

 du

 ds

 (2.18)

with P0 (t) = P (t) =
∑m
j=1 pj (t) , αi is given by (2.4), and ci (αi) by (2.5). Then all

solutions of (1.1) oscillate.

At this point it should be mentioned that in the case of monotone arguments several
oscillation conditions involving the liminf were established.

In 1982, Ladas and Stavroulakis [16] considered the differential equation with several
constant delays of the form

x′(t) +

m∑
i=1

pi(t)x(t− τi) = 0, (2.19)
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where τi, i = 1, 2, ...,m are positive constants and pi(t), i = 1, 2, ...,m are positive and
continuous functions, and established the following oscillation conditions involving liminf.
(See also [1, 2]). Consider the differential equations (2.19) and assume that

lim inf
t→∞

∫ t

t−(τi/2)
p(s)ds > 0, i = 1, 2, ...,m. (2.20)

Then each one of the following conditions

lim inf
t→∞

∫ t

t−τi
pi(s)ds >

1

e
, for some i, i = 1, 2, ...,m, (2.21)

lim inf
t→∞

∫ t

t−τ

m∑
i=1

pi(s)ds >
1

e
,where τ = min[τ1, ..., τm}, (2.22)

 m∏
i=1

 m∑
j=1

lim inf
t→∞

∫ t

t−τj
pi(s)ds

 1
n

>
1

e
(2.23)

or

1
m

∑m
i=1

(
lim inft→∞

∫ t
t−τi pi(s)ds

)
+

2
m

∑m
i<j,i,j=1

[(
lim inft→∞

∫ t
t−τj pi(s)ds

)
×
(

lim inft→∞
∫ t
t−τi pj(s)ds

)]1/2
> 1

e

(2.24)
implies that every solution of (2.19) oscillates.

Later in 1996, Li [18] proved that the same conclusion holds if

lim inf
t→∞

m∑
i=1

∫ t

t−τi
pi(s)ds >

1

e
. (2.25)

In 1984, Hunt and Yorke [13] considered the differential equation with variable delays
of the form

x′(t) +

m∑
i=1

pi(t)x(t− τi(t)) = 0, (2.26)

where τi are continuous and positive valued on [0,∞) and proved the following. If there
is a uniform upper bound τ0 on the τ ,i s and

lim inf
t→∞

m∑
i=1

pi(t)τi(t) >
1

e
, (2.27)

then all solutions of Eq. (2.26) oscillate.

In 2003, Grammatikopoulos, Koplatadze and Stavroulakis [10] also studied Eq.(1.1)
in the case that τi(t) (i = 1, 2, ...,m) are nondecreasing, and established the following
result. Assume that ∫ ∞

0

| pi(t)− pj(t) | dt <∞ (i, j = 1, 2, ...,m) (2.28)
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lim inf
t→∞

∫ t

τi(t)

pi(s)ds > 0 (i = 1, 2, ...,m) (2.29)

and
m∑
i=1

(
lim inf
t→∞

∫ t

τi(t)

pi(s)ds

)
>

1

e
. (2.30)

Then all solutions of Eq. (1.1) oscillate.

3 Corollaries and Examples

In the case m = 1, Eq.(1.1) reduces to the equation

x′ (t) + p (t)x (τ (t)) = 0. (3.1)

In 2012, Braverman and Karpuz [6] derived the following sufficient oscillation condi-
tion for Eq.(3.1):

lim sup
t→∞

∫ t

σ(t)

p(s) exp

{∫ σ(t)

τ(s)

p(ξ)dξ

}
ds > 1, (3.2)

while in 2014, Stavroulakis [20] improved the above condition as follows:

lim sup
t→∞

∫ t

σ(t)

p(s) exp

{∫ σ(t)

τ(s)

p(ξ)dξ

}
ds > 1− 1

2

(
1− a−

√
1− 2a− a2

)
, (3.3)

where σ(t) := sups≤t τ(s).

From the above conditions (2.13) and (2.14) the following corollary is immediate. It
is clear that the conditions in this corollary essentially improve the conditions (3.2) and
(3.3).

Corollary 3.1 Assume that there exists a non-decreasing function σ (t) such that
τ (t) ≤ σ (t) ≤ t and for some k ∈ N

lim sup
t→∞

t∫
σ(t)

p (s) exp

 σ(t)∫
τ(s)

Pk (u) du

 ds > 1 (3.4)

or

lim sup
t→∞

t∫
σ(t)

p (s) exp

 σ(t)∫
τ(s)

Pk (u) du

 ds > 1− c (α) , (3.5)

where

Pk (t) = p(t)

1 +

t∫
σ(t)

p (s) exp

 t∫
τ(s)

p (u) exp

 u∫
τ(u)

Pk−1 (ξ) dξ

 du

 ds

 , P0(t) = p(t),

0 < α := lim inf
t→∞

t∫
σ(t)

p (s) ds ≤ 1

e
, (3.6)
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and c (α) =
1− α−

√
1− 2α− α2

2
. Then all solutions of Eq.(3.1) oscillate.

The following example is given to illustrate the results. Note that in this example (cf.
[4, 6, 14,19]) the interval of the values that p can take is increased.

Example 3.1 Consider the equation

x′ (t) + px (τ (t)) = 0, t ≥ 0, p > 0, (3.7)

with the retarded argument

τ (t) =

 t− 1, t ∈ [3n, 3n+ 1],
−3t+ (12n+ 3) , t ∈ [3n+ 1, 3n+ 2],
5t− (12n+ 13) , t ∈ [3n+ 2, 3n+ 3].

For this equation, as in [6, 14], one may choose the function

σ (t) =

 t− 1, t ∈ [3n, 3n+ 1],
−3n, t ∈ [3n+ 1, 3n+ 2.6],
5t− (12n+ 13) , t ∈ [3n+ 2.6, 3n+ 3].

If we choose tn = 3n+ 3, (cf. [ [6], Example 1] and [ [14], Example 4.2]), then for k = 1,
the condition (3.4) of Corollary 1 reduces to

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

P1 (u) du

 ds ≥ lim
n→∞

3n+3∫
3n+2

p exp

 3n+2∫
5s−(12n+13)

P1 (u) du

 ds,

where

P1(t) = p

1 +

t∫
σ(t)

p exp

 t∫
τ(s)

p exp

 u∫
τ(u)

pdξ

 du

 ds


≥ p

1 +

3n+3∫
3n+2

p exp

 3n+3∫
5s−(12n+13)

p exp(p)du

 ds


= p

[
1 +

(
e6pe

p − epep

5

)
e−p
]
.

Therefore

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

P1 (u) du

 ds ≥ p

5P1

(
e5P1 − 1

)
,

where P1 = p
[
1 +

(
e6pe

p
−epe

p

5

)
e−p
]
. For p = 0.251, P1 ≈ 0.4676, and so

p
5P1

(
e5P1 − 1

)
≈ 1.0052 > 1. Therefore all solutions of Eq.(3.7) oscillate.
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Observe, however, that when we consider the conditions stated in [1, 6, 7, 14, 15, 20]
and [4] for the above equation (3.7), we obtain the following.

1. Observe that, for tn = 3n+ 3,∫ 3n+3

σ(3n+3)

p exp

{∫ σ(3n+3)

τ(s)

pdξ

}
ds =

∫ 3n+3

3n+2

p exp

{∫ 3n+2

5s−(12n+13))

pdξ

}
ds =

e5p − 1

5

and condition (3.2) reduces to e5p−1
5 > 1. But, for p = 0.251 e5p−1

5 ≈ 0.50157 < 1,
therefore the condition (3.2) is not satisfied.

2. Similarly, in the condition (3.3), a = lim inft→∞
t∫

τ(t)

p (s) ds = limn→∞
3n+3∫
3n+2

pds =

p and c (a) = c (p) =
1− p−

√
1− 2p− p2
2

. And, as before, (3.3) reduces to e5p−1
5 >

1−1− p−
√

1− 2p− p2
2

. Taking p = 0.251, the left-hand side of (3.3) is equal to 0.50157,

while the right-hand side is 0.95527. Therefore this condition is not satisfied.

3. The condition (2.2) reduces to

lim sup
t→+∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

p exp

 ξ∫
τ(ξ)

pdu

 dξ

 ds > 1, (3.8)

and, as in [ [14], Example 4.2], the choice of tn = 3n+ 3 leads to the inequality(
e5pe

p − 1
)

5ep
> 1. (3.9)

Observe, however, that for p = 0.251,(
e5pe

p − 1
)

5ep
≈ 0.62524 < 1.

Therefore the condition (3.9) is not satisfied.

4. The condition (2.3), for k = 2, reduces to

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

p ψ2 (ξ) dξ

 ds > 1− c (α) , (3.10)

where ψ2 (ξ) = 1, and for tn = 3n+ 3, as before, it leads to

e5p − 1

5
> 1− 1− p−

√
1− 2p− p2
2

.

For p = 0.251, we have
e5p − 1

5
≈ 0.50157,
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while the right-hand side
1− c (p) ≈ 0.95527.

Therefore the condition (3.10) is not satisfied.

5. The condition (2.6) for r = 1 reduces to

lim sup
t→∞

t∫
h(t)

pa1 (h (t) , τ (s)) ds > 1, (3.11)

where

h (t) = σ (t) and a1 (t, s) = exp

 t∫
s

pdu

 .

That is, to the condition

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

pdξ

 ds > 1, (3.12)

and, as before, for tn = 3n+ 3 and p = 0.251, we have

e5p − 1

5
≈ 0.50157 < 1. (3.10)

Therefore the condition (3.11) is not satisfied.

6. Similarly, condition (2.10) for r = 1 reduces to

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

pdξ

 ds >
1 + lnλ0

λ0
, (3.14)

where λ0 is the smaller root of the equation λ = epλ. As before, for tn = 3n + 3 and
p = 0.251, we have

e5p − 1

5
≈ 0.50157,

while
1 + lnλ0

λ0
≈ 0.94893.

Therefore the condition (3.14) is not satisfied.

7. For k = 1, condition (2.11) reduces to

lim sup
t→∞

t∫
σ(t)

p exp

 σ(t)∫
τ(s)

P1 (u) du

 ds > 1. (3.15)
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If we choose tn = 3n+ 3,

P1(t) = p

1 +

t∫
σ(t)

p exp

 t∫
τ(s)

pdu

 ds

 = p

1 +

3n+3∫
3n+2

p exp

 3n+3∫
5s−(12n+13)

pdu

 ds


= p

(
1 +

e6p − ep

5

)
.

And, as before, (3.15) reduces to

p

5P1

(
e5P1 − 1

)
> 1.

For p = 0.251 we find P1 ≈ 0.412812 and so

p

5P1

(
e5P1 − 1

)
≈ 0.836386 < 1.

Therefore the condition (3.15) is not satisfied.
We conclude, therefore, that for p = 0.251 no one of the conditions (3.2), (3.3), (2.2),

(2.3) for k = 2, (2.6) and (2.10) for r = 1, and (2.11) is satisfied.
It should be also pointed out that not only for this value of p = 0.251 but for all

values of p > 0.251, especially for all values of p ∈ [0.251, 0.358], (cf. [ [14], Example
4.2]),

p

5P1

(
e5P1 − 1

)
> 1

and therefore all solutions of (3.7) oscillate. Observe, however, that for p = 0.358

e5p − 1

5
≈ 0.99789 < 1,

also for p = 0.3 (
e5pe

p − 1
)

5ep
≈ 0.974101 < 1,

e5p − 1

5
≈ 0.696337 < 0.912993 ≈ 1 + lnλ0

λ0
,

and for p = 0.263, P1 ≈ 0.44944 and so

p

5P1

(
e5P1 − 1

)
≈ 0.99024 < 1.

Therefore for all values of p ∈ [0.251, 0.358] the conditions of Corollary 1 are satisfied
and so all solutions to Eq.(3.7) oscillate, while no one of the above mentioned conditions
is satisfied for these values of p ∈ [0.251, 0.358].
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