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Optimal Voltage Controller using T-S Fuzzy Model for

Multimachine Power Systems

A. Abbadi, F. Hamidia, A. Morsli and A. Tlemcani ∗

Electrical Engineering and Automatic Research Laboratory LREA, Electrical Engineering
Department, University of Medea, Algeria

Received: January 10, 2019; Revised: May 15, 2019

Abstract: This paper presents an LMI approach to optimal fuzzy control based on
the quadratic performance function to enhance the transient stability and achieve
voltage regulation for multimachine power systems. First, the dynamic model of the
power system has been modeled by Takagi-Sugeno fuzzy systems using the method
of sum of products of linearly independent functions. The optimal fuzzy controller
proposed is designed by solving the minimization problem that minimizes the up-
per bound of a given quadratic performance function. The stability conditions are
represented in terms of LMIs. The proposed controller is applied to a two-machine
three-bus power system. Simulation results illustrate the performance of the devel-
oped approach regardless of the system operating conditions.

Keywords: multimachine power system; T-S fuzzy model; optimal fuzzy control;
Lyapunov stability; linear matrix inequalities (LMI).

Mathematics Subject Classification (2010): 03B52, 93C42, 94D05.

1 Introduction

System stability is the most important issue for power systems; traditionally, transient
and voltage instability have been the most widespread stability problems. They concern
the maintenance of the synchronism between generators as well as a steady acceptable
voltage under normal operating and disturbed conditions.

Modern power systems are highly complex and nonlinear, and their operating con-
ditions can vary over a wide range, therefore, the nonlinear characteristics of the power
system and, hence, the nonlinear dynamic model of the system should be used in the
analysis of transient stability and voltage regulation.

∗ Corresponding author: mailto:h_tlemcani@yahoo.fr
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One of many design techniques developed for modeling and control of nonlinear sys-
tems is the Takagi-Sugeno (T-S) one [1–7]. The approach mainly consists of three stages.
The first stage is the fuzzy modeling for nonlinear controlled objects. There are two ma-
jor ways in fuzzy modeling. One is the fuzzy model identification [2,3] using input-output
data. The other is the fuzzy model construction (fuzzy IF-THEN rules) based on the idea
of sector nonlinearity. The second stage is the fuzzy control rule derivation that mirrors
the rule structure of a fuzzy model. It is realized by the so-called parallel distributed
compensation (PDC) [4–6]. The third stage is the fuzzy controller design, i.e., the de-
termination of feedback gains stated in terms of linear matrix inequalities (LMI) [5]; the
stability is investigated using the quadratic Lyapunov function. Generally, such a design
focuses on the stability issue only and does not satisfy certain performance criteria and
constraints in an optimal fashion.

In the control design, it is often of interest to synthesize a controller to satisfy, in an
optimal fashion, certain performance criteria and constraints in addition to stability [5].

In the linear case, the optimization problem is resolved by determining an optimal
feedback of a Ricatti equation [8–10] . This type of controller is known under the name
of a linear quadratic regulator problem (LQR). For the nonlinear systems, the problem
requires the resolution of the Hamilton-Jacobi-Bellman (HJB) equation which represents
a partial derivative equation [11,12].

In the field of the power system stability, Kharaajoo in [13] has used an aproxima-
tive solution of the HJB equation to enhance the transient stability and achieve voltage
regulation of a single-machine infinite-bus power system. The global control law is rep-
resented by the average of two control laws weighted by a sensitivity indicator such that
the closed-loop power system is transiently stable when subjected to a fault, and restores
the steady pre-fault voltage value after the disturbance. The analytical solution of this
HJB equation was very difficult to be found, so an approximate method using the Taylor
series expansion is used.

As the Takagi-Sugeno (T-S) fuzzy system is an efficient approach to model the non-
linear systems, Tanaka [5] proposed an alternative approach to nonlinear optimal control
based on fuzzy logic. The optimal fuzzy control methodology presented is designed by
solving a minimization problem that minimizes the upper bound of a given quadratic
performance function. In strict sense, this approach is a suboptimal design. One of the
advantages of this methodology is that the design conditions are represented in terms of
LMIs.

This paper presents an optimal fuzzy controller design via convex optimization tech-
niques based on LMIs to enhance the transient stability and achieve voltage regulation
of multimachine power systems. The DFL technique has been used to linearize and de-
couple a nonlinear n-machine power system to n independent DFL compensated models.
Then these compensated models are described by continuous-time T-S models. The fuzzy
system is stabilized by the PDC fuzzy controller based on the minimization of the upper
bound of a quadratic performance function.

To begin with, in Section 2, the background materials concerning the T-S fuzzy
model and model-based fuzzy controller are introduced. In Section 3, the optimal fuzzy
controller design is presented. The equivalent T-S fuzzy model of the multimachine
power system is developed in Section 4. In Section 5, the control scheme proposed
is implemented in a two-machine three-bus power system and simulation results are
provided to demonstrate the performance of the proposed optimal voltage controller.
Finally, conclusions are drawn in Section 6.
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2 T-S Fuzzy Model and Control

2.1 T-S fuzzy model

A nonlinear system can be approximated by a T-S fuzzy model. The T-S model consists
of a set of IF-THEN rules. Each rule represents the local linear input-output relation of
the nonlinear system and has the following form:

Plant Rule i: {
If z1(t) is Mi,1.... and zp(t) is Mi,p,

then ẋi = Aix(t) +Biu(t), i = 1, 2, ..., r.
(1)

Here z(t) = {z1(t), ..., zp(t)} are known as premise variables, i.e., the nonlinear terms
appeared in the system equations. Those premise variables are usually functions of the
state variables. Also, Mi,j is the fuzzy set, r is the number of model rules, Ai and Bi are
the system and input matrices, respectively. It is assumed that (Ai,Bi) is a controllable
pair. Also, x(t) is the system state vector, and u(t) is the input vector. The overall
system dynamics is then described as

ẋ =

r∑
i=1

hi(z(t))(Aix(t) +Biu(t)). (2)

2.2 T-S model-based fuzzy control

The concept of PDC, following the terminology of [5], is utilized to design fuzzy state-
feedback controllers on the basis of the T-S fuzzy models (1). In the PDC design, each
control rule is designed from the corresponding rule of a T-S fuzzy model. The designed
fuzzy controller shares the same fuzzy sets with the fuzzy model in the premise parts.
For the fuzzy models (1), we construct the following fuzzy controller via the PDC:

Control rule i: {
If z1(t) is Mi,1....... and zp(t) is Mi,p,

then u(t) = −Kix(t), i = 1, 2, ..., r,
(3)

where Ki is a linear state feedback gain for the i-th subsystem. The overall fuzzy con-
troller is represented by

u(t) = −
r∑

i=1

Kix(t), i = 1, 2, ..., r. (4)

Substituting equation(4) into equation (2), the fuzzy control system (FCS) can be
represented by (closed-loop)

u(t) = −
r∑

i=1

r∑
i=j

hi(z(t))hj(z(t))(Ai −BiKj)x(t). (5)

3 Optimal Fuzzy Controller Design

This section presents an optimal fuzzy controller design which consists in the determi-
nation of the control laws that minimize the upper bound of the following quadratic
performance function:
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J =

∫ ∞
0

(xT (t)Wx(t) + uT (t)Ru(t) )dt, (6)

where W and R are assumed to be a semi-positive definite matrix and a positive definite
matrix, respectively [5]. Weighting matrices W and R are important components in
the optimizing process of the fuzzy controller since they have great influences on system
performance. Sufficient optimality conditions derived by Tanaka [5] for ensuring stability
of (5) are given as follows

Theorem 3.1 [5] The feedback gains to minimize the upper bound of the perfor-
mance function can be obtained by solving the following LMIs. From the solution of the
LMIs, the feedback gains are obtained as

Ki = YiQ
−1

for all i. Then, the performance function satisfies J < xT (0)Px(0) < γ,

minimize γ
Q, Y1, ......Yr subject to

Q > 0,

(
1 xT (0)

x(0) Q

)
> 0, (7)

QAT
i +AiQ− Y T

i B
T
i −BiYi Q

√
W (−Y T

i )
√
R√

WQ −I 0√
R(−Yi) 0 −I

 < 0, (8)


T Q

√
W

√
2
2 (−Y T

i )
√
R

√
2
2 (−Y T

j )
√
R√

WQ −I 0 0√
R(−Yi)

√
2
2 0 −I 0√

R(−Yj)
√
2
2 0 0 −I

 < 0, (9)

where T = (
QAT

i +AiQ
2 ) +

QAT
i +AjQ
2 − Y T

i BT
j +BjYi

2 − Y T
j BT

i +BiYj

2 .

4 T-S Fuzzy Model of Power System

4.1 Dynamic model of power system

As the global control objective in this paper is to maintain the transient stability and
achieve proper post-fault voltage of the multimachine power system, the dynamic model
of the i-th generator adopted is given by the following equations:

˙∆Vti(t) = fi1(t)∆ωi(t)−
fi2 (t)

T ′
d0i

∆Pei(t) +
fi2 (t)

Td0i
vfi(t),

˙∆ωi(t) = − Di

2Hi
∆ωi(t)− ω0

2Hi
∆Pei(t),

˙∆Pei(t) = − 1
T ′
d0i

∆Pei(t) + 1
T ′
d0i
vfi(t).

(10)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (2) (2019) 217–226 221

where

ufi(t) =
1

kciIqi(t)
(vfi(t)− T ′d0iE′qiİqi(t) + Pmi) +

1

kci
((xdi − x′di)Idi(t)), (11)

is the direct feedback linearization (DFL)control law and vfi(t) is the feedback control
law

vfi(t) = −kvi∆Vi(t)− kωi
∆ωi(t)− kpei

∆Pei(t) (12)

and 
∆Vti(t) = Vti − Vti0,
∆ωi(t) = ωi − ω0,

∆Pei(t) = Pei(t)− Pmi,

(13)

∆Vti(t) = Vti − Vti0,∆ωi(t) = ωi − ω0,∆Pei(t) = Pei(t)− Pmi, (14)

fi1 = −
(1 + x′diBii)(−E′2qi(t)Bii −Qei(t)Vti(t))

Vti(t)Iaqi(t)
− x′di(1 + x′diBii)Pei(t)

Vti
, (15)

fi2 = − (1 + x′diBii)Vti(t)

VtiIqi(t)
, (16)

where δi(t) is the angle of the i-th generator, in radian; ωi(t) is the relative speed of
the i-th generator, in rad/sec; Pmi is the mechanical input power, in p.u.; Pei (t) is the
electrical power, in p.u.; ω0 is the synchronous machine speed, in rad/sec, ω0 = 2πf0; Di
is the per unit damper constant; Hi is the inertia constant, in sec; E’qi(t) is the transient
EMF in quadrature axis of the i-th generator, in p.u.; Efi(t) is the equivalent EMF in
the excitation coil, in p.u.; Tdoi is the direct axis transient open circuit time constant,
in second; Eqi is the EMF in quadrature axis of the i-th generator, in p.u.; Vti is the
generator terminal voltage, in p.u.; xdi is the direct axis reactance of the ith generator,
in p.u.; x′di is the direct axis transient reactance of the i-th generator, in p.u.; Idi is the
direct axis current, in p.u.; Iqi is the quadrature axis current, in p.u.; kci is the gain of the
excitation amplifier, in p.u.; ufi(t) is the input of the SCR amplifier of the i-th generator;
xadi is the mutual reactance between the excitation coil and the stator coil of the i-th
generator; Yij=Gij+jBij is the i-th row and j-th column element of nodal admittance
matrix, in p.u.; Qei is the reactive power, in p.u.; Ifi is the excitation current; fi1(t) and
fi2(t) are highly nonlinear functions.

The classical third-order single-axis dynamic generator model used in this paper is
referred in [14].

4.2 T-S fuzzy model of power system

Bae et al. in [15] presented a method of constructing the T-S fuzzy model using the sum
of a product of linearly independent functions. The T-S fuzzy model of the power system
adopted is constructed according to the improved Bae method [15]. From (15) and (16),
we can find that fi1(t) andfi2(t) are dependent on the operating conditions but bounded
with a certain operating region. The following bounds of fi1(t) andfi2(t) are considered:

−3.526 ≤ f11 ≤ −0.259,
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0.266 ≤ f12 ≤ 3.794,

−2.832 ≤ f21 ≤ −0.233,

0.241 ≤ f22 ≤ 3.670.

According to [14], the nonlinear state equation (10) is expressed by

ẋi(t) = [Fi0 +

2∑
j=0

fij (z(t))Fij ]ηi(t), (17)

where
xi(t) = [∆Vti(t),∆ωi(t),∆Pei(t)]

T , (18)

ηi(t) = [∆Vti(t),∆ωi(t),∆Pei(t), vfi(t)]
T , (19)

Fi0 =

0 0 0 0
0 − Di

2Hi
− ω0

2Hi
0

0 0 − 1
T ′
doi

1
T ′
doi

 , Fi1 =

0 1 0 0
0 0 0 0
0 0 0 0

 , Fi2 =

0 0 − 1
T ′
d0i

1
T ′
d0i

0 0 0 0
0 0 0 0

 .

(20)
As the number of linearly independent functions is 2 and for each function fi1(t)

andfi2(t) two triangular fuzzy sets are assigned, 4 fuzzy rules are formulated. The T-S
fuzzy model of the nonlinear system (10) is such that

ẋi(t) =

4∑
j=1

hij (z(t))(Aijx(t) +Biju(t)), (21)

where
hi1 = Mi10Mi20 ,hi2 = Mi10Mi21 , hi3 = Mi11Mi20 ,hi4 = Mi11Mi21 ,

Mij0(z(t)) =
(fij1−fij (z(t))
(fij1−fij0 )

,Mij1(z(t)) =
(fij (z(t))−fij0 )

(fij1−fij0 )
,

[Ai1 , Bi1 ] = Fi0 + fi10Fi1 + fi20Fi2 ,[Ai2 , Bi2 ] = Fi0 + fi10Fi1 + fi21Fi2 ,
[Ai3 , Bi3 ] = Fi0 + fi11Fi1 + fi20Fi2 ,[Ai2 , Bi2 ] = Fi0 + fi11Fi1 + fi21Fi2 .

5 Simulation Results

To evaluate the above control scheme for transient stability enhancement and voltage
regulation, the example of two-machine three-bus power system is represented in Figure
2. The generator and the transmission line parameters are listed in Table 1 [14].

The performance of the proposed controller is tested under the following temporary
fault sequence:
. Stage 1: The system is in a pre-fault steady state.
. Stage 2: A fault occurs at t=1s.
. Stage 3: The fault is removed by opening the breakers of the faulted line at t=1.15s.
. Stage 4: A mechanical input power of the generator1 has a 30% step increase at t =
2s.
. Stage 5: The system is in a post-fault state.
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Figure 1: Two-machine infinite bus power system.

Generator 1 2
xd(p.u.) 1.863 2.36
x′d(p.u.) 0.257 0.319
xT (p.u.) 0.129 0.11
xad(p.u.) 1.712 1.7126
T ′do(sec) 6.9 7.96
H(s) 4.0 5.1
D(p.u.) 5.0 3
kc(p.u.) 1.0 1.0
x12(p.u.) 0.55
x13(p.u.) 0.53
x23(p.u.) 0.6
ω0(rad/d) 314.159

Table 1: System parameters.

The following cases are considered.
• Case 1: Different sets of operating points: Two different operating points are
considered:

Operating point 1:

δ10 = 46.00◦;Pm10 = 0.87p.u., Vt10 = 1.0p.u.
δ20 = 44.69◦;Pm20 = 0.86p.u., Vt20 = 1.0p.u.

Operating point 2:
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δ10 = 34.89◦;Pm10 = 0.65p.u., Vt10 = 1.02p.u.
δ20 = 35.75◦;Pm20 = 0.61p.u., Vt20 = 1.09p.u.

The fault location is λ = 0.02. The corresponding closed loop system responses are
shown in Figure 2 and Figure 3, respectively.
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Figure 2: Power system responses for Case 1, operating point 1.
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Figure 3: Power system responses for Case 1, operating point 2.

• Case 2: Fault location.
To test the ability of the proposed controller to achieve the proposed control task, two dif-
ferent fault locations are proposed λ = 0.01 and λ = 0.5. The operating point considered
is

δ10 = 18.51◦;Pm10 = 0.3p.u., Vt10 = 0.95p.u.
δ20 = 23.68◦;Pm20 = 0.4p.u., Vt20 = 0.95p.u.
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The corresponding closed loop system responses are shown in Figure 4 and Figure 5,
respectively.
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Figure 4: Power system responses for Case 2, fault location λ = 0.01.
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Figure 5: Power system responses for Case 2, fault location λ = 0.5.

Figures 2-5 show the system performances when subjected to different faults. It can
be concluded from the simulation results that the proposed optimal voltage controller
exhibits good transient performance: the oscillations are damped out effectively; the
terminals voltages of generators are well regulated to their pre-fault values regardless of
the operating points, change in the mechanical input power and fault locations.

6 Conclusion

In this paper, the design of optimal nonlinear state feedback voltage regulator for power
systems based on the Takagi-Sugeno fuzzy model and parallel distributed compensation
(PDC) scheme was presented. The proposed methodology reformulates the stability as
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convex optimization problems with linear matrix inequality (LMI). To demonstrate the
effectiveness of the proposed controller, a two-machine three-bus power system has been
considered. Simulation results show that both transient stability and voltage quality can
be improved effectively regardless of the system operating conditions.
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Abstract: Our aim in this paper is to establish an existence result in the framework
of Musielak-Orlicz spaces for the following nonlinear Dirichlet problem

A(u) +K(x, u,∇u) = µ, (1)

where A(u) = −div(a(x, u,∇u)) is a Leray-Lions type operator defined on D(A) ⊂
W 1

0Lϕ(Ω) into its dual and the function K is a lower order term which satisfy some
growth condition, and does not satisfy the sign condition. The source data µ is a
bounded nonnegative Radon measure on Ω.

Keywords: Musielak-Orlicz spaces; nonlinear elliptic problems; measure data; weak
solution.
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1 Introduction

Classical Sobolev spaces do not allow one to solve all problems of the EDP, hence the
need to find other spaces, larger and suitable for the recent problems such as the spaces
Lp(x)(Ω) or, more generally, the Musielak spaces. These spaces are not always reflexive
and separable, adding further difficulties for studying the existence of solutions. Thus all
our work will be in these spaces. We consider the following nonlinear Dirichlet problem:

A(u) +K(x, u,∇u) = f (2)
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on a Lipschitz bounded domain in RN . A(u) = −div(a(x, u,∇u)) is a Leary-Lions opera-
tor defined on D(A) ⊂W 1

0Lϕ(Ω)→W−1Lψ(Ω), where ϕ and ψ are two complementary
Musielak-Orlicz functions and K is a nonlinear lower term which satisfies the growth
condition without the sign condition. In the framework of Sobolev spaces with variable
exponents (the ϕ-function is ϕ(x, t) = |t|p(x)), a series of papers on nonlinear elliptic and
parabolic equations without sign condition in the nonlinearity studied ( see [8], [4]).

On Orlicz spaces, many papers were devoted to the existence of solutions of (2). In
fact, Gossez J.P. [17] solved the problem in the variational case, Elmahi A. et al. [14]
proved the existence results for the unilateral problem of (2), where K satisfies the growth
condition and the right-hand side belongs to L1(Ω). Recently, Dong G. et al. in [13]
have taken the source term as a bounded nonnegative Radon measure on Ω.

On Musielak-Orlicz spaces, Ait Khellou M. et al. in [7] have shown the existence of
solutions for (2) in the case where K satisfies the sign condition and f ∈ L1(Ω).
The study of nonlinear partial differential equations is motivated by numerous phenom-
ena of physics, namely, the electrorheological fluids, the flow thought the porous media
(see the monograph of A. Antsenov [9]).

As an example of operator for which the present result can be applied, we give

−div
(m(x, |∇u|).∇u

|∇u|

)
+ uφ(x, |∇u|) = f,

where m(x, s) is the derivative of φ(x, s) with respect to s.
The aim of this paper is the study of the problem (2) in the setting of Musielak-Orlicz

spaces overcoming two difficulties. Firstly we do not assume the sign condition on the
nonlinearity K, after we prove that there exists at least one solution for approximate
equations. Secondly, we show that solutions belong to the Musielak-Sobolev spaces
W 1

0Lφ(Ω) where φ is in a special class of the Musielak-Orlicz functions of the Aϕ (see
Definition 3.1).

This paper is organized as follows. Section 2 contains some preliminaries in the
Musielak-Sobolev spaces. In Section 3, we give some lemmas and we show that the
solution of the problem (2) belongs to the space W 1

0Lφ(Ω). Section 4 is devoted to
specifying the assumptions on A(u), K and µ. In Section 5, we give and we prove
principal Theorem 5.1.

2 Musielak-Orlicz Spaces – Notations and Properties

2.1 Musielak-Orlicz function

Let Ω be an open subset of RN (N ≥ 2) and let ϕ be a real-valued function defined in
Ω×R+ . The function ϕ is called a Musielak-Orlicz function if

• ϕ(x, .) is an N-function for all x ∈ Ω (i.e. convex, non-decreasing, contin-

uous, ϕ(x, 0) = 0, ϕ(x, 0) > 0 for t > 0, limt→0 supx∈Ω
ϕ(x,t)
t = 0 and

limt→∞ infx∈Ω
ϕ(x,t)
t =∞).

• ϕ(., t) is a measurable function for all t ≥ 0.

We put ϕx(t) = ϕ(x, t) and we associate its non-negative reciprocal function ϕ−1
x with

respect to t, that is, ϕ−1
x (ϕ(x, t)) = ϕ(x, ϕ−1

x (t)) = t.
Let ϕ and γ be two Musielak-Orlicz functions, we say that ϕ dominates γ and we write
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γ ≺ ϕ near infinity (respectively, globally) if there exist two positive constants c and
t0 such that for a.e. x ∈ Ω γ(x, t) ≤ ϕ(x, ct) for all t ≥ t0 (respectively, for all t ≥ 0
). We say that ϕ and γ are equivalents, and we write ϕ ∼ γ if ϕ dominates γ and
γ dominates ϕ. Finally, we say that γ grows essentially less rapidly than ϕ at 0 (re-
spectively, near infinity), and we write γ ≺≺ ϕ, for every positive constant c, we have

limt→0 supx∈Ω
γ(x,ct)
ϕ(x,t) = 0 (respectively, limt→∞ supx∈Ω

γ(x,ct)
ϕ(x,t)

)
= 0).

Remark 2.1 [12] If γ ≺≺ ϕ near infinity, then ∀ε > 0 there exists k(ε) > 0 such
that for almost all x ∈ Ω we have

γ(x, t) ≤ k(ε)ϕ(x, εt) ∀t ≥ 0.

2.2 Musielak-Orlicz space

Let ϕ be a Musielak-Orlicz function and a measurable function u : Ω→ R, we define the
functional

%ϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|)dx.

The set Kϕ(Ω) = {u : Ω→ R measurable : %ϕ,Ω(u) <∞} is called the Musielak-
Orlicz class. The Musielak-Orlicz space Lϕ(Ω) is the vector space generated by Kϕ(Ω),
that is, Lϕ(Ω) is the smallest linear space containing the set Kϕ(Ω). Equivalently,

Lϕ(Ω) = {u : Ω→ R measurable : %ϕ,Ω(
u

λ
) <∞, for some λ > 0}.

On the other hand, we put ψ(x, s) = supt≥0(st− ϕ(x, s)).
ψ is called the Musielak-Orlicz function complementary to ϕ (or conjugate of ϕ)

in the sense of Young with respect to s. We say that a sequence of function un ∈
Lϕ(Ω) is modular convergent to u ∈ Lϕ(Ω) if there exists a constant λ > 0 such that
limn→∞ %ϕ,Ω(un−uλ ) = 0. This implies convergence for σ(

∏
Lϕ,

∏
Lψ) (see [11]).

In the space Lϕ(Ω), we define the following two norms:

‖u‖ϕ = inf
{
λ > 0 :

∫
Ω

ϕ(x,
|u(x)|
λ

)dx ≤ 1
}
,

which is called the Luxemburg norm, and the so-called Orlicz norm

‖|u|‖ϕ,Ω = sup‖v‖ψ≤1

∫
Ω

|u(x)v(x)|dx,

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms are
equivalent [11]. Kϕ(Ω) is a convex subset of Lϕ(Ω). We define Eϕ(Ω) as the subset

of Lϕ(Ω) of all measurable functions u : Ω 7→ R such that

∫
Ω

ϕ(x,
|u(x)|
λ

)dx < ∞ for

all λ > 0. It is a separable space and (Eϕ(Ω))∗ = Lϕ(Ω). We have Eϕ(Ω) = Kϕ(Ω) if
and only if ϕ satisfies the ∆2−condition for the large values of t or for all values of t,
according to whether Ω has finite measure or not. We define

W 1Lϕ(Ω) = {u ∈ Lϕ(Ω) : Dαu ∈ Lϕ(Ω), ∀α ≤ 1},
W 1Eϕ(Ω) = {u ∈ Eϕ(Ω) : Dαu ∈ Eϕ(Ω), ∀α ≤ 1},
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where α = (α1, ..., αN ), |α| = |α1|+ ...+ |αN | and Dαu denote the distributional deriva-
tives. The space W 1Lϕ(Ω) is called the Musielak-Orlicz-Sobolev space. Let
%ϕ,Ω(u) =

∑
|α|≤1 %ϕ,Ω(Dαu) and ‖u‖1ϕ,Ω = inf{λ > 0 : %ϕ,Ω(uλ ) ≤ 1} for u ∈W 1Lϕ(Ω).

These functionals are convex modular and a norm on W 1Lϕ(Ω), respectively. Then
the pair (W 1Lϕ(Ω), ‖u‖1ϕ,Ω) is a Banach space if ϕ satisfies the following condition
(see [19]):

There exists a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) > c.

The space W 1Lϕ(Ω) is identified as a subspace of the product
∏
α≤1 Lϕ(Ω) =

∏
Lϕ. We

denote by D(Ω) the Schwartz space of infinitely smooth functions with compact support
in Ω and by D(Ω) the restriction of D(R) on Ω. The space W 1

0Lϕ(Ω) is defined as
the σ(

∏
Lϕ,

∏
Eψ) closure of D(Ω) in W 1Lϕ(Ω) and the space W 1

0Eϕ(Ω) as the(norm)
closure of the Schwartz space D(Ω) in W 1Lϕ(Ω).

For two complementary Musielak-Orlicz functions ϕ and ψ, we have (see [11])
the Young inequality, st ≤ ϕ(x, s) + ψ(x, t) for all s, t ≥ 0 , x ∈ Ω,

the Hölder inequality,
∣∣ ∫

Ω

u(x)v(x)dx
∣∣ ≤ ‖u‖ϕ,Ω‖|v|‖ψ,Ω; for all u ∈ Lϕ(Ω),v ∈ Lψ(Ω).

We say that a sequence un converges to u for the modular convergence in W 1Lϕ(Ω)
(respectively, in W 1

0Lϕ(Ω)) if, for some λ > 0,

lim
n→∞

%ϕ,Ω
(un − u

λ

)
= 0.

Let us define the following spaces of distributions:

W−1Lψ(Ω) =
{
f ∈ D

′
(Ω) : f =

∑
α≤1

(−1)αDαfα, where fα ∈ Lψ(Ω)
}
,

W−1Eψ(Ω) =
{
f ∈ D

′
(Ω) : f =

∑
α≤1

(−1)αDαfα, where fα ∈ Eψ(Ω)
}
.

Lemma 2.1 ( [5]) (Approximation result) Let Ω be a bounded Lipschitz domain
in RN and let ϕ and ψ be two complementary Musielak-Orlicz functions which satisfy
the following conditions:

• there exists a constant c > 0 such that infx∈Ω ϕ(x, 1) > c,

• there exists a constant A > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1
2 , we have

ϕ(x, t)

ϕ(y, t)
≤ |t|

(
A

log( 1
|x−y| )

)
for all t ≥ 1,

•
∫
K

ϕ(x, λ)dx <∞, for any constant λ > 0 and for every compact K ⊂ Ω.

• there exists a constant C > 0 such that ψ(y, t) ≤ C a.e. in Ω.

Under these assumptions D(Ω) is dense in Lϕ(Ω) with respect to the modular topol-
ogy, D(Ω) is dense in W 1

0Lϕ(Ω) for the modular convergence and D(Ω) is dense in
W 1

0Lϕ(Ω) for the modular convergence. Consequently, the action of a distribution S in
W−1Lψ on an element u of W 1

0Lϕ(Ω) is well defined. It will be denoted by < S, u >.
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Remark 2.2 The second condition in Lemma 2.1 coincides with an alternative log-
Hölder continuity condition for the variable exponent p, namely, there exists A > 0 such
that for x, y close enough and each t ∈ RN

|p(x)− p(y)| ≤ A

log( 1
|x−y| )

.

2.3 Truncation operator

Tk, k > 0, denotes the truncation function at level k defined on R by Tk(r) =
max(−k,min(k, r)). The following abstract lemmas will be applied to the truncation
operators.

Lemma 2.2 ( [12]) Let F : R→ R be uniformly Lipschitzian, with F (0) = 0. Let ϕ
be an Musielak-Orlicz function and let u ∈W 1

0Lϕ(Ω)(respectively, u ∈W 1Eϕ(Ω)). Then
F (u) ∈ W 1Lϕ(Ω) (respectively, u ∈ W 1

0Eϕ(Ω)). Moreover, if the set of discontinuity
points D of F ′ is finite, then

∂

∂xi
F (u) =

{
F ′(x) ∂u∂xi , a.e. in {x ∈ Ω; u(x) 6∈ D},
0, a.e. in {x ∈ Ω; u(x) ∈ D}.

Lemma 2.3 ( [12]) Suppose that Ω satisfies the segment property and let u ∈
W 1

0Lϕ(Ω). Then, there exists a sequence un ∈ D(Ω) such that un → u for modular
convergence in W 1

0Lϕ(Ω). Furthermore, if u ∈ W 1
0Lϕ(Ω) ∩ L∞(Ω), then ‖un‖∞ ≤

(N + 1)‖u‖∞.

Let Ω be an open subset of RN and let ϕ be a Musielak-Orlicz function satisfying the
condition ∫ 1

0

ϕ−1
x (t)

t
N+1
N

dt =∞ a.e. x ∈ Ω,

and the conditions of Lemma 2.1. We may assume, without loss of generality, that∫ 1

0

ϕ−1
x (t)

t
N+1
N

dt <∞ a.e. x ∈ Ω.

Define a function ϕ∗ : Ω× [0,∞) by ϕ∗(x, s) =

∫ s

0

ϕ−1
x (t)

t
N+1
N

dt x ∈ Ω and s ∈ [0,∞).

ϕ∗ is called the Sobolev conjugate function of ϕ (see [1] for the case of the Orlicz function).

Lemma 2.4 ( [15]) Let un, u ∈ Lϕ(Ω). If un → u with respect to the modular
convergence, then un ⇀ u for σ(Lϕ(Ω), Lψ(Ω)).

3 Technical Lemmas

Throughout this paper, we assume also that every Musielak-Orlicz function ϕ(., .) is
decreasing in x in the following sense. For any x ∈ Ω, let Ωx = {s ∈ Ω/‖x‖ ≤ ‖s‖},{

ϕ(s, t) ≤ ϕ(x, t) if s ∈ Ωx,
ϕ(s, t) ≥ ϕ(x, t) if s /∈ Ωx

(3)

for any t ∈ R.
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Lemma 3.1 ( [6]) Under the assumptions of Lemma2.1, and by assuming that ϕ(x, t)
depends only on N − 1 coordinate of x, there exists a constant C1 > 0 which depends
only on Ω such that ∫

Ω

ϕ(x, |u|)dx ≤
∫

Ω

ϕ(x,C1|∇u|)dx. (4)

Definition 3.1 Let ϕ be a Musielak-Orlicz function. We define the following set:

Aϕ =


φ : Ω×R+ → R+ is a Musielak-Orlicz function such that

φ ≺≺ ϕ and

∫ 1

0

φ(x, βH−1(x,
1

r1− 1
N

))dr <∞ a.e. in Ω


for all constant β ≥ 1, where H(x, r) =

ϕ(x, r)

r
.

The following lemma generalizes Lemma 2 in [20].

Lemma 3.2 Let Ω be an open subset of RN with finite measure. Let ϕ be a Musielak-
Orlicz function under assumption (3) and the assumptions of Lemma 2.1.

For any u ∈W 1
0Lϕ(Ω) such that

∫
Ω

ϕ(x, |∇u|)dx <∞, we have for all x ∈ Ω,

− µ
′
(t) ≥ NC

1
N

N µ(t)1− 1
N C
(
x,

−1

C
1
N

N µ(t)1− 1
N

d

dt

∫
{|u|>t}

ϕ(s, |∇u|)ds
)

(5)

for a.e. t > 0. Here µ is the distribution function of u, and the function C(., .) is defined

by C(x, t) = 1
H−1
x (x,t)

with H(x, t) = ϕ(x,t)
t , CN is the measure of the unit ball of RN ,

and µ(t) = meas{|u| > t}.

Proof. By definition of the Musielak-Orlicz function, ϕ is an increasing convex
function in t, then H is an increasing convex function in t, and C(., .) is a decreasing
convex function in t.
Fix x ∈ Ω. Jensen’s inequality for a convex function gives

C

(
x,

∫
{t<|u|≤t+h}

ϕ(s, |∇u|) ds∫
{t<|u|≤t+h}

|∇u| ds

)
= C

(
x,

∫
{t<|u|≤t+h}

H(s, |∇u|)|∇u| ds∫
{t<|u|≤t+h}

|∇u| ds

)

≤

∫
{t<|u|≤t+h}

C
(
x,H(s, |∇u|)

)
|∇u|ds∫

{t<|u|≤t+h}
|∇u| ds

≤

∫
{t<|u|≤t+h}∩Ωx

C
(
x,H(s, |∇u|)

)
|∇u|ds∫

{t<|u|≤t+h}
|∇u| ds

+

∫
{t<|u|≤t+h}∩(Ω\Ωx)

C
(
x,H(s, |∇u|)

)
|∇u| ds∫

{t<|u|≤t+h}
|∇u|ds

.
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By (3) and for all t > 0 we have
for s ∈ Ωx, H(s, |∇u|) ≤ H(x, |∇u|) and C(x,H(s, |∇u|)) ≤ C(x,H(x, |∇u|)) = 1

|∇u| ,

for s ∈ Ω\Ωx, H(x, |∇u|) ≤ H(s, |∇u|) and |∇u| ≤ H−1
x (H(s, |∇u|)),

then C(x,H(s, |∇u|)) = 1
H−1
x (H(s,|∇u|)) ≤

1
|∇u| . Hence

C

(
x,

∫
{t<|u|≤t+h}

ϕ(s, |∇u|) ds∫
{t<|u|≤t+h}

|∇u| ds

)
≤ −µ(t+ h) + µ(t)∫

{t<|u|≤t+h}
|∇u| ds

,

letting h→ 0, we have

C

(
x,

(
d

dt
)

∫
{|u|>t}

ϕ(s, |∇u|) ds

(
d

dt
)

∫
{|u|>t}

|∇u| ds

)
≤ µ

′
(t)

(
d

dt
)

∫
{|u|>t}

|∇u| ds
(6)

for all t > 0.
On the other hand we can follow [16] to prove that

− d

dt

∫
{|u|>t}

|∇u| dx ≥ NC
1
N

N µ(t)1− 1
N (7)

for a.e. t > 0. Finally, combining (6), (7) and the monotony of C(., .) we get (5).

Lemma 3.3 Let ϕ be a Musielak-Orlicz function under assumption (3) and the as-
sumptions of Lemma 2.1 and φ ∈ Aϕ with φ ∼ ϕ, there exists a constant β ≥ 1 such
that

d

dt

∫
{|u|>t}

φ(s, |∇u|) ds ≤ −µ
′
(t)φ

(
x, βH−1

x

( 1

NC
1
N

N µ(t)1− 1
N

d

dt

∫
{|u|>t}

ϕ(s, |∇u|) ds
))

for each x ∈ Ω and for any u ∈W 1
0Lϕ(Ω) such that

∫
Ω

ϕ(x, |∇u|)dx <∞.

Proof. For x ∈ Ω, let C(x, t) =
1

H−1
x (x, t)

, then C(x, t) =
t

ϕ ◦H−1
x (x, t)

.

By (5), we have

−µ
′
(t) ≥ NC

1
N

N µ(t)1− 1
N C

(
x,

−1

NC
1
N

N µ(t)1− 1
N

d

dt

∫
{|u|>t}

ϕ(s, |∇u|) ds

)
,

then

−µ
′
(t)ϕ ◦H−1

x

(
−1

NC
1
N

N µ(t)1− 1
N

d

dt

∫
{|u|>t}

ϕ(s, |∇u|) ds

)

≥ NC
1
N

N µ(t)1− 1
N

(
− 1

NC
1
N

N µ(t)1− 1
N

d

dt

∫
{|u|>t}

ϕ(s, |∇u|) ds
)
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−µ
′
(t)ϕ ◦H−1

x

( −1

NC
1
N

N µ(t)1− 1
N

d

dt

∫
{|u|>t}

ϕ(s, |∇u|)ds
)
≥ − d

dt

∫
{|u|>t}

ϕ(s, |∇u|) ds,

and also
1

µ′(t)

d

dt

∫
{|u|>t}

ϕ(s, |∇u|) ds ≤ ϕ ◦H−1
x

(
−1

NC
1
N

N µ(t)1− 1
N

d

dt

∫
{|u|>t}

ϕ(s, |∇u|) ds

)
,

using the monotony of the function ϕ−1
x , we obtain

ϕ−1
x

(
1

µ′ (t)
d
dt

∫
{|u|>t}

ϕ(s, |∇u|) ds
)
≤ H−1

x

(
−1

NC
1
N
N µ(t)1−

1
N

d
dt

∫
{|u|>t}

ϕ(s, |∇u|) ds
)
.

Let φ ∈ Aϕ and let D(x, t) = ϕ(x, φ−1
x (t)), then D is convex and by Jensen’s inequality

we have

D
(
x,

∫
{t<|u|<t+h}

φ(s, |∇u|) ds

−µ(t+ h) + µ(t)

)
≤

∫
{t<|u|<t+h}

D
(
x, φ(s, |∇u|)

)
ds

−µ(t+ h) + µ(t)
.

Since φ ∼ ϕ, there exists a constant λ > 0 such that ϕ(x, t) ≤ λφ(x, t). Then for every
φ ∈ Aϕ with λ ≤ 1 and by the monotony of the functions ϕx and φ−1

x for any x and s in
Ω, we have

D

(
x, φ(s, |∇u|)

)
= ϕ

(
x, φ−1

x (φ(s, |∇u|))
)
≤ φ(s, |∇u|),

and by Remark 2.1, there exists β > 0 such that D
(
x, φ(s, |∇u|)

)
≤ βϕ(s, |∇u|), then

D

(
x,

∫
{t<|u|<t+h}

φ(s, |∇u|) ds

−µ(t+ h) + µ(t)

)
≤
β

∫
{t<|u|<t+h}

ϕ
(
s, |∇u|)

)
ds

−µ(t+ h) + µ(t)
,

using the definition of D(.,.) and the monotony of ϕ−1
x we have

phi−1
x

(
x,

1

µ′(t)

d

dt

∫
{|u|>t}

φ(s, |∇u|) ds

)
≤βϕ−1

x

(
x,

1

µ′(t)

d

dt

∫
{|u|>t}

ϕ(s, |∇u|) ds

)
,

≤ βH−1
x

(
−1

C
1
N

N µ(t)1− 1
N

d

dt

∫
{|u|>t}

ϕ(s, |∇u|) ds

)
,

which gives our result.

4 Essential Assumptions

Let ϕ and γ be two Musielak-Orlicz functions such that ϕ and its complementary ψ
satisfy the previous conditions and γ ≺≺ ϕ.

A : D(A) ⊂ W 1
0Lϕ(Ω) → W−1Lψ(Ω) is defined by A(u) = −div(a(x, u,∇u)), where

a : Ω × R × RN → RN is a Carathéodory function such that for a.e. x ∈ Ω and for all
s ∈ R, ξ, ξ∗ ∈ RN , ξ 6= ξ∗.

|a(x, s, ξ)| ≤ β(c(x) + ψ−1
x (γ(x, ν1|s|)) + ψ−1

x (ϕ(x, ν2|ξ|))), β > 0, c(x) ∈ Eψ(Ω), (8)

(a(x, s, ξ)− a(x, s, ξ∗))(ξ − ξ∗) > 0, (9)
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a(x, s, ξ).ξ ≥ αϕ(x, |ξ|), (10)

K : Ω×R×RN → RN is a Carathéodory function such that

|K(x, s, ξ)| ≤ b(x) + ρ(s)ϕ(x, |ξ|), (11)

ρ : R → R+ is a continuous positive function which belongs to L1(R) and b(x) belongs
to L1(Ω).

µ ∈Mb(Ω), (12)

assume that there exists φ ∈ Aϕ such that

φ ◦H−1 is a Musielak-Orlicz function. (13)

5 Main Results

Let Ω be an open bounded subset of RN (N ≥ 2), and let ϕ and ψ be two complementary
Musielak-Orlicz functions.
Define the set T 1,ϕ

0 (Ω) =
{
u : Ω 7→ R is measurable and Tk(u) ∈ D(A)

}
.

Theorem 5.1 Assume that (8) − (12) hold true with Aϕ 6= ∅ . Then there exists at
least one solution of the following problem: u ∈ T 1,ϕ

0 (Ω) ∩W 1
0Lφ(Ω), ∀φ ∈ Aϕ,

< A(u), v > +

∫
Ω

K(x, u,∇u)vdx =< µ, v >, ∀v ∈ D(Ω).
(14)

Example 5.1 We give an example of equations to which the present result can be
applied.

1. We give an example of the Musielak-Orlicz-functions ϕ for which the set Aϕ is not
empty. Let a(.), b(.) be two functions in L∞(Ω) such that a(.), b(.) are decreasing

strict positive and there exist two constants λ1 > 0, λ2 > 0 such that λ1 ≤ a(x)
b(x) ≤

λ2. Take now ϕ(x, t) = a(x)|t|p and φ(x, t) = b(x)|t|p such that p > N , then
φ ∈ Aϕ.

2. Let us take the functions mentioned above and consider the following problem:{
div(a(x)|∇u|p−2∇u) + b(x) + ρ(u)ϕ(x, |∇u|) = µ, in Ω,
u = 0, on ∂Ω.

Here a(x, u,∇u) = a(x)|∇u|p−2∇u satifies the hypotheses (8)-(10), K(x, u,∇u) =
b(x) + ρ(u)ϕ(x, |∇u|), where ρ : R → R+ is a continuous positive function which
belongs to L1(R) and µ ∈Mb(Ω).

Proof of Theorem 5.1. The proof is divided into four steps.
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Step 1: Existence of weak solutions for approximate problems.
We consider the following approximate equation for any n ∈ N:∫

Ω

[a(x, u,∇u)∇v +Kn(x, u,∇u)v]dx =

∫
Ω

µnv dx, ∀v ∈W 1
0Lϕ(Ω), (15)

where Kn(x, u,∇u) =
K(x, u,∇u)

1 + 1
n |K(x, u,∇u)|

, and (µn)n ∈ D(Ω) is a sequence such that

µn → µ in the sense of the distributions. (16)

We will prove that, for every n, there exists at least one bounded solution un of (15)
with un ∈W 1

0Eϕ(Ω).

Proposition 5.1 (See [13]) Let ϕ and ψ be two complementary Musielak-Orlicz func-
tions satisfying the conditions of Lemma 2.1, assume that (8)-(12) hold, then, for any
n ∈ N∗, there exists at least one solution un ∈W 1

0Eϕ(Ω) of (15).

Step 2: Consider the following approximate problems: un ∈ T 1,ϕ
0 (Ω) ∩W 1

0Eϕ(Ω)

< A(un), v > +

∫
Ω

Kn(x, un,∇un)vdx =< µn, v >, ∀v ∈W 1
0Lϕ(Ω).

(17)

By proposition, there exists at least one solution un of (17).

Lemma 5.1 Let un be a solution of the approximate problem (15), then

1. for all k > 0, there exists a constant C (which does not depend on n and k) such
that ∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)dx ≤ C2k, (18)

and ∫
Ω

ϕ(x, |∇Tk(un)|)dx ≤ C3k. (19)

2. There exists a measurable function u such that

un → u a.e. in Ω. (20)

3.
a(x, Tk(un),∇Tk(un)) ⇀ $k weakly in

(
Lψ(Ω)

)N
for σ(ΠLψ,ΠEϕ). (21)

Proof of Lemma 5.1. (1) Let v0 ∈W 1
0Lϕ(Ω) ∩ L∞(Ω) with v0 ≥ 0.

On the one hand, taking exp(G(un))v0 as a test function in (15), where

G(s) =

∫ s

0

1

α
ρ(r)dr, we obtain∫

Ω

a(x, un,∇un) exp(G(un))
ρ(un)

α
∇unv0 dx+

∫
Ω

a(x, un,∇un) exp(G(un))∇v0dx
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+

∫
Ω

Kn(x, un,∇un) exp(G(un))v0dx =

∫
Ω

µn exp(G(un))v0dx,

by (10) and (11) we simplify by the term

∫
Ω

ρ(un)ϕ(x, |∇un|)v0 dx and we have∫
Ω

a(x, un,∇un) exp(G(un))∇v0 dx ≤
∫

Ω

µn exp(G(un))v0dx+

∫
Ω

b(x) exp(G(un))v0 dx.

(22)
On the other hand, taking exp(−G(un))v0 as a test function in (15), we deduce also∫

Ω

a(x, un,∇un) exp(−G(un))∇v0dx+

∫
Ω

b(x) exp(−G(un))v0 dx≥
∫

Ω

µn exp(−G(un))v0dx.

(23)
By choosing v0 = Tk(un)+ in (22), we otain∫

Ω

a(x, un,∇un) exp(G(un)))∇Tk(un)+dx

≤
∫

Ω

µn exp(G(un)))Tk(un)+dx+

∫
Ω

b(x) exp(G(un)))Tk(un)+ dx.

Since ρ ∈ L1(R), we see that G(−∞) ≤ G(s) ≤ G(+∞) and |G(±∞)| ≤ 1
α‖ρ‖L1(R), then

we have∫
Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)+ dx ≤ exp
(‖ρ‖L1(R)

α

)
k[‖µ‖Mb(Ω) + ‖b‖L1(Ω)] = kC4,

and using (10) we get ∫
Ω

ϕ(x, |∇Tk(un)+|)dx ≤ kC5.

Choosing again v0 = Tk(un)− in (23) we get

−
∫
{−k≤un≤0}

a(x, un,∇un) exp(−G(un)))∇un dx+

∫
Ω

b(x) exp(−G(un)))Tk(un)−dx

≥
∫

Ω

µn exp(−G(un)))Tk(un)−dx.

Similarly we obtain∫
{−k≤un≤0}

a(x, Tk(un),∇Tk(un))∇un dx ≤ exp
(‖ρ‖L1(R)

α

)
k[‖µ‖Mb(Ω) + ‖b‖L1(Ω)]

= kC4.

and by (10) we have ∫
Ω

ϕ(x, |∇Tk(un)−|)dx ≤ kC6.

We deduce respectively the results (19) and (18).
(2) Using (4) we have

inf
x∈Ω

ϕ(x,
k

C1
)meas{|un| > k} ≤

∫
{|un|>k}

ϕ(x,
|Tk(un)|
C1

) dx

≤
∫

Ω

ϕ(x, |∇Tk(un)|)dx ≤ kC7.
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Then

meas{|un| > k} ≤ kC7

infx∈Ω ϕ(x, k
C1

)
,

for all n and for all k.
Assume that there exists a positive function M such that limt→∞

M(t)
t = +∞ and

M(t) ≤ ess infx∈Ω ϕ(x, t), ∀t ≥ 0. Thus, we get

lim
k→∞

meas{|un| > k} = 0.

By the property (1) of Lemma 5.1, we deduce that Tk(un) is bounded in W 1
0Lϕ(Ω) and

then there exists some τk ∈W 1
0Lϕ(Ω) such that

Tk(un) ⇀ τk weakly in W 1
0Lϕ(Ω) for σ(ΠLϕ,ΠEψ),

strongly in Eϕ(Ω) and a.e. in Ω,

and by (2) of Lemma 5.1, the sequence (un)n converges almost everywhere to some mea-
surable function u. Then we have Tk(un) ⇀ Tk(u) weakly in W 1

0Lϕ(Ω) for σ(ΠLϕ,ΠEψ),
strongly in Eϕ(Ω) and a.e. in Ω.

(3) We shall prove that {a(x, Tk(un),∇Tk(un))}n is bounded in
(
Lψ(Ω)

)N
for all k > 0.

Let w ∈ (Eϕ(Ω))N be arbitrary. By (9) we have

(a(x, un,∇un)− a(x, un, w))(∇un − w) ≥ 0.

Then∫
{|un|≤k}

a(x, un,∇un)wdx≤
∫
{|un|≤k}

a(x, un,∇un)∇undx+
∫
{|un|≤k}

a(x, un, w)(w−∇un)dx.

By (8) and according to Remark 2.1 there exists k
′
> 0 such that γ(x, ν1k) ≤ k

′
ϕ(x, 1)

and for λ > 0 is large enough∫
{|un|≤k}

ψ(
a(x, un,

w
ν2

)

3β
)dx ≤ 1

3
[

∫
Ω

ψ(c(x))dx+

∫
Ω

k
′
ϕ(x, 1)dx+

∫
Ω

ϕ(x,w)dx] ≤ C7.

(24)
Thus {a(x, Tk(un), wν2 )} is bounded in (Lψ(Ω))N , by (24),(18) and in view of the Banach-

Steinhaus theorem, the sequence {a(x, Tk(un),∇Tk(un))} remains bounded in (Lψ(Ω))N

and for a subsequence

a(x, Tk(un),∇Tk(un)) ⇀ $k weakly in
(
Lψ(Ω)

)N
for σ(ΠLψ,ΠEϕ).

Step 3: Almost everywhere convergence of the gradients.
To have that the gradient converges almost everywhere, we need to prove the following
proposition.

Proposition 5.2 Let {un}n be a solution of the approximate problem(15), then

1.

lim
m→∞

lim sup
n→∞

∫
{−(m+1)≤un≤−m}

a(x, un,∇un)∇un dx = 0; (25)
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2. for a subsequence as n→∞

∇un → ∇u a.e. in Ω. (26)

Proof. (1) Take the function v0 = T1(un− Tm(un))− in (23), this function is admis-
sible since v0 ∈W 1

0Lϕ(Ω) ∩ L∞(Ω), and v0 ≥ 0, then we have

−
∫

Ω

a(x, un,∇un) exp(−G(un))∇T1(un − Tm(un))− dx

≤
∫

Ω

b(x) exp(−G(un))T1(un − Tm(un))−dx.

Since µ is nonnegative, we get∫
{−(m+1)≤un≤−m}

a(x, un,∇un) exp(−G(un)))∇un dx

≤
∫

Ω

b(x) exp(−G(un)))T1(un − Tm(un))−dx

≤ exp(
‖ρ‖L1

R

α
)

∫
Ω

|b(x)|T1(un − Tm(un))− dx.

By Lebesgue’s theorem, we conclude the result (25).
(2) To show that ∇un → ∇u a.e. in Ω is true, simply adapt the proof from [3] and

follow the same steps by taking Φ = 0.

Step 4: Equi-integrability of the nonlinearity sequence.
We shall prove that

Kn(x, un,∇un)→ K(x, u,∇u) strongly in L1(Ω). (27)

Consider v0 =

∫ un

0

ρ(s)χ{s>h}dx in (22), we get∫
Ω

a(x, un,∇un) exp(G(un))∇v0dx ≤
∫

Ω

µn exp(G(un))v0dx+

∫
Ω

b(x) exp(G(un))v0dx.

Then using (10) and (11) we have

α

∫
{un>h}

ρ(un)ϕ(x,∇un)dx ≤ (

∫ +∞

h

ρ(s)dx) exp
(‖ρ‖L1(R)

α

)
[‖µ‖Mb(Ω) + ‖b‖L1(Ω)]

∫
{un>h}

ρ(un)ϕ(x,∇un)dx ≤ C4

α
(

∫ +∞

h

ρ(s)dx).

Since ρ ∈ L1(R), we get

lim
h→+∞

sup
n∈N

∫
{un>h}

ρ(un)ϕ(x,∇un)dx = 0.

Similarly, let v0 =

∫ 0

un

ρ(s)χ{s<−h}dx in (23), we have also

lim
h→+∞

sup
n∈N

∫
{un<−h}

ρ(un)ϕ(x,∇un)dx = 0.
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We conclude that

lim
h→+∞

sup
n∈N

∫
{|un|>h}

ρ(un)ϕ(x,∇un)dx = 0. (28)

Let D ⊂ Ω, then∫
D

ρ(un)ϕ(x,∇un)dx ≤ max
{|un|≤h}

(ρ(x))

∫
D∩{|un|≤h}

ϕ(x,∇un)dx

+

∫
D∩{|un|>h}

ρ(un)ϕ(x,∇un)dx.

Consequently, ρ(un)ϕ(x,∇un) is equi-integrable, and since ρ(un)ϕ(x,∇un) converges to
ρ(u)ϕ(x,∇u) strongly in L1(R), we get our result.

Step 5: We show that u satisfies (14).

• {un} is bounded W 1
0Lφ(Ω) and converges to u strongly in Lφ(Ω), where φ ∈ Aϕ.

Firstly, we can take Tε(un−Tt(un)), ε > 0, t > 0 as a test function in (17), from (11) and
(28) we have ∫

{t≤|un|≤t+ε}
a(x, un,∇un)∇undx ≤ εC10.

The constant C10 is independent of n, ε and t, then

1

ε

∫
{t≤|un|≤t+ε}

ϕ(x,∇un)dx ≤ C10

α
.

Let now ε→ 0, we have

− d

dt

∫
{t≤|un|}

ϕ(x,∇un)dx ≤ C10

α
. (29)

Secondly, let φ ∈ Aϕ and φ ∼ ϕ. Using Lemma 3.2, Lemma3.3, the equation (29)
and the same techniques as in [10], we deduce that ∇un is bounded in Lφ(Ω) for each
φ ∈ Aϕ, then un is bounded in W 1

0Lφ(Ω) for each φ ∈ Aϕ.

• a(x, un,∇un) ⇀ a(x, u,∇u) weakly for σ(ΠLφ◦H−1 ,ΠE$),
where $ and φ ◦H−1 are two complementary Musielak-Orlicz functions.
The first time, using (8) and Remark 2.1, we have∫

Ω

φ ◦H−1
x

( |a(x, un,∇un)|
6β

)
dx ≤

∫
Ω

φ ◦H−1
x

(1

6
[c(x) + k(ν1)ψ−1

x (ϕ(x, |un|))

+ψ−1
x (ϕ(x, ν2|∇un|))])dx.

Since φ ◦H−1
x is a Musielak-Orlicz function, we get∫

Ω

φ ◦H−1
x

( |a(x, un,∇un)|
6β

)
dx ≤ 1

3

∫
Ω

[φ ◦H−1
x

(1

2
(c(x))

+ φ ◦H−1
x

(1

2
(k(ν1)ψ−1

x (ϕ(x, |un|))) + φ ◦H−1
x

(1

2
ψ−1
x (ϕ(x, ν2|∇un|)))]dx. (30)
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On the other hand, due to the definition of Musielak-Orlicz function, we can easily
deduce

1

2
ψ−1
x (ϕ(x, t)) ≤ ϕ(x, t)

t
,

by definition of H we have

ϕ(x,H−1
x (

t

2
)) ≤ ψ(x, t),

and hence, by Remark 2.1,

φ ◦H−1
x

(1

2
c(x)) ≤ k1ϕ(x,H−1

x (
c(x)

2
)) ≤ k1ψ(x, c(x)), (31)

also we have

φ ◦H−1
(1

2
ψ−1
x (k(ν1)ϕ(x, |un|))) ≤ φ ◦H−1

x

(1

2
ψ−1
x ϕ(x, k2|un|))

≤ φ ◦H−1
x

(ϕ(x, k2|∇un|)
k2|∇un|

)
,

where k2 = max(1, k(ν1)), then

φ ◦H−1
(1

2
ψ−1
x (k(ν1)ϕ(x, |un|))) ≤ k3ϕ(x, |un|), (32)

and

φ ◦H−1
x

(
ψ−1
x (

1

2
ϕ(x, ν2|∇un|))) ≤ φ ◦H−1

x

(ϕ(x, ν2|∇un|)
ν2|∇un|)

).

= φ(x, ν2|∇un|).

Using Remark 2.1 we get

φ ◦H−1
x

(
ψ−1
x (

1

2
ϕ(x, ν2|∇un|))) ≤ k4ϕ(x, |∇un|), (33)

applying (31), (32) and (33) in (30) we obtain∫
Ω

1

3
φ ◦H−1

x

( |a(x, un,∇un)|
6β

)
dx

≤
∫

Ω

[k1ψ(x, c(x))dx+ k3ϕ(x, |un|) + k4ϕ(x, |∇un|)]dx < C11.

Consequently, a(x, un,∇un) ⇀ a(x, u,∇u) weakly for σ(ΠLφ◦H−1 ,ΠE$).

• Take now v ∈ D(Ω) as a test function in approximate equation (15), one has∫
Ω

a(x, un,∇un)vdx+

∫
Ω

K(x, un,∇un)vdx =

∫
Ω

µnvdx,

since we have un → u strongly in (Eκ(Ω))N , for every κ ≺≺ φ, ∀φ ∈ Aϕ.

Using (27) and (16) we can pass to the limit as n → +∞ to end the proof of
Theorem 5.1.



242 A. ABERQI, J. BENNOUNA AND M. ELMASSOUDI

References

[1] R.A. Adams. Sobolev Spaces. New York, Academic Press, 1975.

[2] A. Aberqi, J. Bennouna and M. Hammoumi. Existence Result for Nonlinear Degenerated
Parabolic Systems. Nonlinear Dynamics and Systems Theory. 17(3) (2017) 217–229.

[3] A. Aberqi, J. Bennouna and M. Elmassoudi. Nonlinear elliptic equations with measure data
in Musielak-Orlicz spaces. Gulf Journal of Mathematics. 6 (4) (2018) 79–100.

[4] T. Ahmedatt, A. Aberqi, A. Touzani and C. Yazough. On some nonlinear hyperbolic p(x, t)-
Laplacian equations. J. Appl. Anal. 24(1) (2018) 55–69.

[5] M. Ait Khellou and A. Benkirane. Elliptic inequalities with L1 data in Musielak-Orlicz
spaces. Monatsh Math. 183 (1) (2017) 1–33.

[6] M. Ait Khellou, A. Benkirane and S. M. Douiri. Strongly non-linear elliptic problems in
Musielak spaces with L1 data. Nonlinear Studies. 23 (3) (2016) 491–510.

[7] M. Ait Kellou, A. Benkirane and S. M. Douiri. An inequality of type Poincaré in Musielak
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1 Introduction

The differential equations have played a fundamental role in every aspect of applied
mathematics for a very long time [1,5–8,10,15,19,20]. Integral transform methods have
been modified to solve several dynamic equations with initial or boundary conditions in
many ways the Laplace, Sumudu and Elzaki transforms are such typical tools [4, 5, 9,
11–15]. In this paper we introduce a new integral transform and then some relationship
between this transform and the Laplace, Sumudu, Elzaki and natural transforms; further,
for the comparison purpose, we apply all transforms to solve differential equations to see
the differences and similarities. Finally, we provide some examples relating to the second
order differential equations with non-constant coefficients as a special case. For the
function f(t) that is piecewise continuously differentiable in every finite interval and is
absolutely integrable on the whole real line the following integral equations hold true in
the domain −∞ < t < +∞ :

F {f (t)} = F (k) =
1√
2

∫ +∞

−∞
e−iktf (t) dt, t 6= 0. (1)
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This transform is called the Fourier transform of f(t). The natural transform of f(t) for
t∈ (0,+∞), obtained from the Fourier transform, is defined as.

N {f (t)} =

∫ +∞

0

e−stf (ut)dt; s > 0, u > 0. (2)

If we assign u = 1 in (2), then it is called the Laplace transform and written as

L{f (t)} =

∫ +∞

0

e−stf (t)dt; s > 0. (3)

If we assign s = 1 in (2), then it is called Sumudu transform and written as

G {f (t)} =

∫ +∞

0

e−tf (ut)dt; u > 0. (4)

Finally, we assign u = 1 and s = 1
λ in (2) and multiply it by λ, then it is called the

Elzaki transform and written as

T {f (t)} = λ

∫ +∞

0

e−
1
λ tf (t)dt. (5)

The above mentioned integral transforms has been applied to solve higher order linear
ordinary differential equation (ODEs), partial differential equations (PDEs), a system of
ordinary and partial differential equations and integral equations.

In this paper, we introduced a new integral transform. We have compared the new
transform with other exiting transforms. We solve ODEs with variable and constant co-
efficients using the new transform. Moreover, we obtain the solution of integral equations
using this transform. The new transform is very effective for the solution of the response
of linear and nonlinear differential equations.

2 A New Integral Transform and Its Properties

Definition 2.1 The HY integral transform is defined by

P (ν) = HY {f (t)} = ν

∫ +∞

0

e−ν
2tf (t) dt. (6)

The HY integral transform states that, if f (t) is piecewise continuous on every finite
interval in t ∈ [0,+∞) satisfying

|f (t)| ≤Meat, ∃M > 0 (7)

for all t ∈ [0, ∞), then HY {f (t)} (ν) exists for all ν > a.
If we assign u = 1 and s = v2 in (2) and multiply it by v, then we obtain our

defined new integral transform which is (6).

Theorem 2.1 (Criteria for convergence)
The HY integral transform of f (t) exists, if it has exponential order and the integral∫ b

0
|f (t)| dt
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exists for any b>0.

Proof: Since we only need to show convergence for sufficiently large ν, assume ν>
√
c

and ν>0.

ν

∫ ∞
0

∣∣∣f (t) e−ν
2t
∣∣∣ dt = ν

∫ n

0

∣∣∣f (t) e−ν
2t
∣∣∣ dt+ ν

∫ ∞
n

∣∣∣f (t) e−ν
2t
∣∣∣ dt

≤ ν

∫ n

0

|f (t)| dt+ ν

∫ ∞
n

e−ν
2t |f (t)| dt, 0 ≤ e−ν

2t ≤ 1

≤ ν

∫ n

0

|f (t)| dt+ ν

∫ ∞
n

e−ν
2tMect dt

≤ ν

∫ n

0

|f (t)| dt+ νM

[
e(c−ν

2)t

c− ν2

]∞
n

, ν >
√
c

≤ ν

∫ n

0

|f (t)| dt+ νM

[
e(c−ν

2)n

c− ν2

]
, ν >

√
c.

The first integral exists by assumption, and the second term is finite for ν2 > c, so the

integral ν
+∞∫
0

e−ν
2tf (t) dt is convergent absolutely and the HY transform of f (t) exist.

2

Theorem 2.2 (Linear property of HY transform)
Let P (v) and Q(v) be HY transforms of f (t) and g (t), respectivly, for each constants of
c1 and c2, Then

HY {c1f (t) + c2g (t)} = c1HY {f (t)}+ c2HY {g (t)} = c1P (v) + c2Q(v).

Proof: Beacuase of the linear property of the Integrals, the proof is obvious. 2

Theorem 2.3 Let P (v) be the HY transform of f(t). Then

HY
{
f
′
(t)
}

= ν2P (ν)− νf (0) , (8)

HY
{
f
′′

(t)
}

= ν4P (ν)− ν3f (0)− νf
′
(0), (9)

HY
{
f (n) (t)

}
= ν2nP (ν)−

n−1∑
k=0

ν2(n−k)−1f (k) (0) , n ≥ 1. (10)

Proof: Replacing f (t) with f
′
(t) in (6) gives HY

{
f
′
(t)
}

= ν
∞∫
0

e−ν
2tf
′
(t)dt. Inte-

grate by parts to find that HY
{
f
′
(t)
}

= ν2P (ν)− νf (0).

Let g(t)= f
′
(t), then g

′
(t) = f

′′
(t), thus by using (9), we get HY

{
f
′′

(t)
}

=

ν4P (ν)− ν3f (0)− νf
′
(0). (10) can be provided by mathematical induction. 2

In the following table, we showed the HY transform of some important functions,
where δ (t) is the unit impulse function.
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Function (f(t)) HY Transform HY−1 Transform
δ (t) ν δ (t)
1 1

ν 1

atn a.n!
ν2n+1 , a constant atn

ta Γ(a+1)
ν2n+1 , a>-1 ta

e±αt ν
ν2 ±α e±αt

sinat αν
ν4 +a2 sinat

cosat ν3

ν4 +a2 cosat

sinhat αν
ν4 −a2 sinhat

coshat ν3

ν4 −a2 coshat

Table 1: HY transforms for some basic functions.

3 Application

3.1 Solving higher order ODEs with constant coefficient using new integral
transform

In this section we use new the integral transform for solving higher order ODEs with
constant and variable coefficients and integral equations. At first, we solve the linear
equation of order n with constant coefficients as

L (D) [y (t)] = Dny(t) + a1D
n−1y (t) + a2D

n−2y (t) + · · ·+ any (t) = φ (t) (11)

with the initial conditions

y (t0) = y0, Dy (t1) = y1, D
2y (t2) = y2, · · · , Dn−1y (tn−1) = yn−1,

where D = d
dt is a differential operator. y0, y1, · · · , yn−1 and a1, a2, · · · , an are

constants. We apply the new integral transform on both side of (11)

HY(D
n
y (t) + a1D

n−1y (t) + a2D
n−2y (t) + · · ·+ any (t)) = HY(φ (t)).

By using the linear property of this transform we have

HY(D
n
y (t)) + a1HY

(
Dn−1y (t)

)
+ a2HY

(
Dn−2y (t)

)
+ · · ·+ anHY (y (t))

= HY (φ (t)) = φ(ν){
ν2nP(ν)−

∑n−1
k=0 ν

2(n−k)−1f (k)(0)
}

+ a1

{
ν2(n−1)P(ν)−

∑n−2
k=0 ν

2(n−k)−2f (k)(0)
}

+ · · ·+ anP (ν) = φ (ν) , (12)

where φ (ν) is the HY transform of φ (t). (10) can be writen in the following form:[
ν2n + a1ν

2(n−1) + · · ·+ an

]
︸ ︷︷ ︸

f(ν)

P (ν) = φ (ν) + ψ (ν),

P (ν) = φ(ν)+ ψ(ν)
f(v) , P (ν) = HY (y (t)) = φ(ν)

f(v) + ψ(ν)
f(ν) .
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Inversion yields:

y (t) = HY −1
(
φ (ν)

f (ν)

)
+HY −1

(
ψ (ν)

f (ν)

)
. (13)

The inverse operation on the right hand can be carried out by a partial fraction or any
method.

Example 3.1 Solve the following initial value problem:

y
′′′

(t) + 2y
′′

(t) + 2 y
′
(t) + 3y (t) = sin t+ cos t, (14)

y (0) = y
′
(0) = y

′′
(0) = 0.

Taking the HY transform on both sides (14) , we get

HY
{
y
′′′

(t)
}

+2HY
{
y
′′

(t)
}

+2HY
{
y
′
(t)
}

+3 HY {y (t)} = HY {sin (t)}+HY {cos (t)} ,

ν6P (ν) + 2ν4P (ν) + 2ν2P (ν) + 3P (v) = ν
ν4+1 + ν3

ν4+1 + v3 + 2v,
P (ν) = ν

ν4+1 . Take the inverse HY transform y (t) = sin (t) , which is an exact solution
of (14).

3.2 Solving higher order ODEs with variable coefficient using new integral
transform

Now we want to apply the new integral transform to solve ODE with variable coefficient.
Before doing this, process we present few theorems which are useful in our work.

Theorem 3.1 Let P (v) be the HY of function f (t) , then

HY {tf (t)} =

(
−1

2

)
d

dν

(
p (ν)

ν

)
, (15)

HY
{
t2f (t)

}
=

(
−1

2

)2
d

dν

(
1

ν

d

dν

(
p (ν)

ν

))
, (16)

HY {tnf (t)} =

(
−1

2

)n
d

dν

 1

ν
· · · d

dν︸ ︷︷ ︸
n times

(
p (ν)

ν

)
· · ·

 , n ≥ 1. (17)

Proof: Since p (ν) = HY {f(t)} = ν
∞∫
0

e−ν
2tf (t) dt,

d
dν

(
p(ν)
ν

)
= −2ν

∫ ∞
0

e−ν
2ttf (t) dt︸ ︷︷ ︸

HY{tf(t)}

. First, divide both sides of the above equation by

ν and take the derivative with respect to ν , we get

HY {tf (t)} =

(
−1

2

)1
d

dν

(
p (ν)

ν

)
.
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From (15). we have HY {tf (t)} =
(−1

2

)1 d
dν

(
p(ν)
ν

)
,

ν
∞∫
0

e−ν
2ttf (t) dt =

(−1
2

)1 d
dν

(
p(ν)
ν

)
divide both sides of this equation by ν and taking

derivative with respect to ν again, result in

HY
{
t2f (t)

}
=

(
−1

2

)2
d

dν

(
1

ν

d

dν

(
p (ν)

ν

))
.

(17) can be provided by mathematical induction. 2

Theorem 3.2 Let P (v) be the HY of function f (t) , then

HY
{
tf
′
(t)
}

=

(
−1

2

)1 [
d

dν

[
1

ν

[
HY

{
f
′
(t)
}]]]

, (18)

HY
{
tf
′′

(t)
}

=

(
−1

2

)1 [
d

dν

[
1

ν

[
HY

{
f
′′

(t)
}]]]

, (19)

HY
{
t2f

′
(t)
}

=

(
−1

2

)2
d

dν

[
1

ν

d

dν

[
1

ν

[
HY

{
f
′
(t)
}]]]

, (20)

HY
{
t2f

′′
(t)
}

=

(
−1

2

)2
d

dν

[
1

ν

d

dν

[
1

ν

[
HY

{
f
′′

(t)
}]]]

, (21)

HY
{
tnf (m) (t)

}
=

(
−1

2

)n
d

dν

[
1

ν

d

dν

[
· · ·
[

1

ν

d

dν

[
1

ν

[
HY

{
f (m) (t)

}]]]
· · ·
]]
,(22)

where n,m ≥ 1.

Proof: As we know HY
{

f
′
(t)
}

= ν
∫∞
0

e−ν
2tf
′
(t) dt, 1

νHY
{

f
′
(t)
}

=∫∞
0

e−ν
2tf
′
(t) dt. First, divide both sides of this equation by ν and take the deriva-

tive with respect to ν , we get

HY
{
tf
′
(t)
}

=
(−1

2

)1 [ d
dν

[
1
ν

[
HY

{
f
′
(t)
}]]]

is (18),

replacing f
′′

(t) with f
′
(t) in (18) results in

HY
{
tf
′′

(t)
}

=
(−1

2

)1 [ d
dν

[
1
ν

[
HY

{
f
′′

(t)
}]]]

is (19).

Rewrite formula (18) and divide both sides of this equation by ν and take the
derivative with respect to ν again, we get

HY
{
t2f

′
(t)
}

=
(−1

2

)2 d
dν

[
1
ν

d
dν

[
1
ν

[
HY

{
f
′
(t)
}]]]

is (20),

replacing f
′′

(t) with f
′
(t) in (20) results in

HY
{
t2f

′′
(t)
}

=
(−1

2

)2 d
dν

[
1
ν

d
dν

[
1
ν

[
HY

{
f
′′

(t)
}]]]

is (21).

(22) can be provided by mathematical induction. 2

Example 3.2 Solve the following equation with initial values:

y
′′

(t) + 3ty
′
(t)− 6y (t) = 2, y (0) = y

′
(0) = 0. (23)

Taking the HY transform on both sides of (23), we get
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HY
{
y
′′

(t)
}

+ 3tHY
{
y
′
(t)
}
− 6 HY {y (t)} = HY {2} ,

ν4P (ν)− ν3y
′
(0)− νy (0) + 3

((−1
2

) [
d
dν

[
1
ν

[
ν2P (ν)− νy (0)

]]])
− 6P (ν) = 2

ν ,

− 3
2ν P

′
(ν)− 15

2 P(ν) + ν4P (ν) = 2
v .

This equation is written as follows:

P
′
(ν) +

(
15ν − 2ν5

)
3ν2

P (ν) =
4

−3ν2
.

Thus, we get a linear first order differential equation that must be solved in order to

get transform for the solution. In this equation f (ν) = 15ν− 2ν5

3ν2 and g (ν) = 4
−3ν2.

Thus the general solution of this equation is

P (ν) = e−
∫
f(ν)dν

(∫
g (ν) e

∫
f(ν)dνdν

)

= e−
∫ (15ν− 2ν5)

3ν2 dν

(∫
4

−3ν2
e
∫ (15ν− 2ν5)

3ν2 dνdν

)
= 2ν−5e

1
6 ν4

e−
1
6 ν4

= 2ν−5,

HY{y (t)} = 2ν−5.

Take the inverse HY transform y (t) = t2, which is an exact solution of (23).

Example 3.3 Solve the following initial value problem:

2t2y
′′′

(t) + 9ty
′′

(t) + 9y
′
(t) = 60t2, y (0) = y

′
(0) = y

′′
(0) = 0. (24)

Apply the HY transform to equation (24), and make use of the initial conditions and the
above mentioned theorems, then we get

2HY
{
t2y
′′′

(t)
}

+ 9HY
{
ty
′′

(t)
}

+ 9HY
{
y
′
(t)
}

= HY
{

60u2
}
,

15
2 ν2 P (ν) + 9

2ν
3P
′
(ν) + 1

2ν
4P
′′

(ν)− 27
2 ν2P (ν)− 9

2ν
3P
′
(ν) + 6ν2P (ν) = 60×2!

ν5 ,

P
′′

(ν) = 240
ν7 , P (ν) = 30

7
1
ν7 , y (t) = 5

7 t3, which is an exact solution of (24).

Theorem 3.3 Let P (v) be the HY of function f (t) , then the solution of the Euler-
Cauchy equation

t2y
′′

(t) + aty
′
(t) + by (t) = 0 (25)

can be represented by y = HY−1(νm), where m = (a− 2) ±
√

(a− 1)
2 − 4b for

y(t) = νm.

Proof : Taking the HY transform on both sides, we have

HY
{
t2y
′′

(t)
}

+ aHY
{
ty
′
(t)
}

+ bHY {y (t)} = 0,(−1
2

)2 d
dν

[
1
ν

d
dν

[
1
ν

[
ν4P (ν)− ν3f (0)− νf

′
(0)
]]]

+a
(−1

2

) [
d
dν

[
1
ν

[
ν2P (ν)− νf (0)

]]]
+

bP (ν) = 0,
ν2P

′′
(ν) + (5− 2a)νP

′
(ν) + (3− 2a+ 4b) = 0.

For Y = HY {f (t)} = P (ν). Since Y is a function of ν, let us put Y = P (ν) = νm

as m is constant. Then we have P
′
(ν) = mνm−1 and P

′′
(ν) = m(m− 1)νm−2, and the

given equation becomes
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m(m− 1)νm + (5− 2a)mνm + (3− 2a+ 4b)νm = 0.
As we know νm 6= 0, then m(m− 1) + (5− 2a)m+ (3− 2a+ 4b) = 0.

Organizing this equality, we have m2 + (4− 2a)m+ (3− 2a+ 4b) = 0.

Hence, m = logνY = (a− 2)±
√

(a− 1)
2 − 4b and the solution is y(t) = HY −1 (Y ) =

HY −1
(
ν(a−2)±

√
(a−1)2−4b

)
.

Example 3.4 Solve the following Euler-Cauchy equation:

t2y
′′

(t)− 3ty
′
(t) + 3y (t) = 0. (26)

According to (25), we have a = −3, b = 3 and m = (a− 2)±
√

(a− 1)
2 − 4b, so

m = (−3− 2)±
√

(−3− 1)
2 − 4(3), then first, m = −3 and second, m = −7,

y1 = HY −1
(
v−3

)
= t, y2 = HY −1

(
v−7

)
= t3. Then

the solution is y = c1t+ c2t
3 , Which is an exact solution of (26).

Example 3.5 Solve the following Euler-Cauchy equation:

t2y
′′

(t) +
3

2
ty
′
(t)− 1

2
y (t) = 0. (27)

According to (25), we have a = 3
2 , b = − 1

2 , m = (a− 2)±
√

(a− 1)
2 − 4b, so

m =
(
3
2 − 2

)
±
√(

3
2 − 1

)2 − 4(− 1
2 ), then first, m = 1 and second, m = −2,

y1 = HY −1
(
v+1
)

= 1
t , y2 = HY −1

(
v−2

)
=
√

t
π . Then

the solution is y = c1
1
t + c2

√
t
π which is an exact solution of (27).

3.3 Application of new integral transform for integral equations

The integral equations can be solved by our new transform. Before the application of
convolution of two functions f(x) and g(x), a theorem should be proved.

Theorem 3.4 Let P (ν) and Q(ν) be the HY {f (x)} and HY {g (x)} transforms of
function f(x) and g(x). Then the HY transform of the convolution of f (x) and g (x) , (f∗
g) (t) =

∫∞
0

f (t) g (t− τ) dτ is given by

HY {(f ∗ g)(t)} =
1

ν
P (ν)Q(ν). (28)

Proof : The HY transform of (f ∗ g) (t) is defined by

HY {(f ∗ g)(t)}

= ν

∫ ∞
0

e−ν
2t

∫ ∞
0

f (t) .g (t− τ) dτ dt = ν

∫ ∞
0

f (τ) dτ

∫ ∞
0

e−ν
2t.g (t− τ) dt.

Now setting t− τ = u results in:

ν0
∞∫
e−ν

2τf (τ) dτ.
∞∫
0

e−ν
2t.g (t) dt = ν[ 1ν ν

∫ ∞
0

e−ν
2τf (τ) dτ︸ ︷︷ ︸

P (ν)

1
ν ν

∫ ∞
0

e−ν
2τg (t) dt︸ ︷︷ ︸

Q(ν)

].

then HY {(f ∗ g)(t)} = 1
νP (ν)Q(ν). 2
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Transform Natural Laplace Sumudu Elzaki HY

Natural R (s, u) R (1, u) R (s, 1) vR( 1
v , 1) vR(v2, 1)

Laplace 1
uF ( s

u ) F(s) 1
uF ( 1

u ) vF ( 1
v ) vF (v2)

Sumudu 1
sG( u

s ) 1
sG( 1

s ) G(u) v2G(v) 1
vG( 1

v2 )

Elzaki s
v2T ( v

s ) sT ( 1
s ) 1

vT ( v ) T (v ) 1√
V
T (v )

HY 1√
sv
P (
√

s
v ) 1√

s
P (
√
s )

√
1
vP (

√
1
v ) 1

v3P ( v
s ) P ( v )

Table 2: Relation between mentioned transforms.

Example 3.6 Solve the following Volterra integral equation:

u (x) = 1− sinhx+

∫ x

0

(x− t+ 2)u (t) dt. (29)

Upon taking the HY transforms of (29) we get

HY {u (x)} = HY {1} −HY {sinhx}+ HY

{∫ x

0

(x− t+ 2)u (t) dt

}
.

Let HY {u (x)} = P (u) , P (u) = 1
ν −

ν
ν4−1 + 1

ν

(
1
ν3 + 2

ν

)
P (u), HY {u (x)} =

P (u) = ν3

ν4−1 . Then u (x) = cosh(x), which is an exact solution of (29).

In Table 2, we adjust the relationship between the mentioned transform with the
Laplace, Elzaki, Sumudu and natural transforms.

4 Conclusion

In this paper, we have introduced a new integral transform. Namely, an HY transform
for solving some of differential and integral equations with constant and non-constant
coefficients which were not solved by other transforms like the Sumudu and Laplace once.
Some of differential equations like the Euler-Cauchy equations that were solved by the
power series only, are solved by this new transform. In a large domain we will discuss
the HY transform for solving some of well known differential equations like the Legendre
and Bessel equations.
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Abstract: In this paper, we show that for a wide range of parameter values,
the Gray-Scott model of families of traveling wave solutions posses two degenerate
Bogdanov-Takens points. Furthermore, we explicitly define a unique compact form
for the critical normal form coefficients of order 3 and 4. This is guaranteed by apply-
ing suitable solvability conditions to singular linear systems coming from the center
manifold reduction combined with a normalization technique.
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1 Introduction

One of the most important contributions to the bifurcation theory has been developed
independently and simultaneously by Bogdanov [3,4] and Takens [19], where the topolog-
ical normal form of the so-called “Bogdanov-Takens (BT) bifurcation” is derived. This
bifurcation plays an important role in the analysis of dynamical systems because it gives
the appearance of local bifurcations (Saddle-node bifurcation and Hopf bifurcation) and
global bifurcations (homoclinic orbits to saddle equilibria) near the critical parameter
values [12].

The exact bifurcation scenario near a BT point is determined by an unfolding of the
critical ODE on the 2D center manifold, with as many unfolding parameters as the co-
dimension of the bifurcation. More precisely, the bifurcation diagram of the unfolding
depends on the coefficients of the critical normal form on the center manifold. The
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restriction of a system of ODEs to any center manifold at the critical parameter values
can be transformed by formal smooth coordinate changes to the form [2,13]

ẇ0 = w1,

ẇ1 =
∑
k≥2

akw
k
0 + bkw

k−1
0 wk1 ,

(1)

where w = (w0, w1) ∈ R2 are the center manifold coordinates and ak, bk are the critical
normal form coefficients.

The Gray-Scott model consists of the following coupled pair of reaction-diffusion
equations: 

∂U

∂t
= Du∇2U − UV 2 + α1(1− U),

∂V

∂t
= Dv∇2V + UV 2 − α2V,

(2)

where α1 and α2 are the rate constants, Du and Dv are the diffusivities, U = U(x, t)
and V = V (x, t) are the concentration of the chemical species U (the inhibitor of the
reaction) and V (the catalyst or the activator). A standard notation, ∇2 is the Laplacian
operator. Equation (1) was proposed by P. Gray and S. K. Scott in 1983 [8]; that’s why
it’s called the Gray-Scott model. We refer the interested reader to [9, 10] more physical
and chemical backgrounds of the model. Motivated by the experiments and simulations
of Pearson [17] (see also [16,21]), attention is primarily focused on the case in which the
diffusivity of the inhibitor U is greater than that of the activator V . In this case, U
is able to rapidly reach the localized regions of high V concentration and hence sustain
the reaction, while the relatively slow diffusion of V makes it possible for these localized
regions to persist. We thus set Du = 1 and introduce the small parameter ε by setting
Dv = ε, with 0 < ε << 1. This choice of the diffusion coefficient Dv will enable us to
explore a wide region of the parameter space. The existence of the saddle-node, Hopf, and
nondegenrate BT bifurcations in (1) was studied by many authors, see [6, 14–16, 18, 20].
They pointed out that the homoclinic bifurcation occurs.

The purpose of this study is to derive conditions for the appearance of degenerate
BT bifurcation (where the nondegeneracy condition a2b2 6= 0 is no longer satisfied). For
a range of parameter values, we show that the Gray-Scott model of families of traveling
wave solutions posses two degenerate BT points. Under certain conditions, we explicitly
define a unique formula from the critical normal form coefficients, namely {ak, bk} for
k = 3, 4. This is guaranteed by defining a unique compact form explicitly for the Taylor
expansion of the center manifold near the critical parameter values under reasonable
conditions. To this end, we apply suitable solvability conditions to singular linear systems
coming from the center manifold reduction combined with the normalization technique.

The paper is organized as follows. In Section 2, we describe the model to be studied
in the paper and its equilibria. A traveling wave ansatz will be introduced, such that
one variable will describe both the spatial and the temporal behavior. This reduces
the system of PDEs to a system of ODEs. Also, we provide explicit formulas for the
equilibrium points. In Section 3, a unique explicit formula for the Taylor expansion of
the 2D center manifold up to order 4 and the critical normal form coefficients of order
3 and 4 will then be derived for not only the Gray-Scott model, but also for any n-
dimensional ODEs using the combined reduction-normalization technique. Numerical
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examples and discussions are given in Section 4. All the computations shown in this
paper have been performed using the symbolic algebra system MAPLE.

2 The Model under Study

Consider the traveling wave ansatz U = u(x− ct), V = v(x− ct) [6],

∂U

∂t
= −cu′, ∇2U = ∂2

∂x2 (u(x− ct)) = u′′,

∂V

∂t
= −cv′, ∇2V = ∂2

∂x2 (v(x− ct)) = v′′,

where c ∈ R is the wave speed and c = 0 corresponds to stationary states, ′ is the
derivative with respect to the independent variable x − ct. Substituting this traveling
wave ansatz in (2) and by assuming that u′ = p and εv′ = q, we obtain the following
wave system: 

u′ = p,

p′ = −cp+ uv2 − α1(1− u),

εv′ = q,

εq′ = −c
ε p− uv

2 + α2v.

(3)

This system possesses fast-slow time scales. As ε→ 0, the system (3) reduces into a fast
subsystem {

u′ = p,

p′ = −cp+ uv2 − α1(1− u).

On the other hand, introducing γ by γ = c
ε and rescaling the independent variable

x− ct = εη yield 
u̇ = εp,

ṗ = ε
(
−εγp+ uv2 − α1(1− u)

)
,

v̇ = q,

q̇ = −γq − uv2 + α2v,

(4)

where ˙ denotes the derivative with respect to the new independent variable η. Hence, as
ε→ 0, the systems (4) reduces into a slow subsystem{

v̇ = q,

q̇ = −γq − uv2 + α2v.

Any bounded orbit of (3) corresponds to a traveling wave solution of the model (2) at
the parameter value (α1, α2, ε) propagating with wave velocity c. For c ≥ 0, the system
(3) has equilibrium points (ue, 0, ve, 0) with the solution sets of

uev
2
e − α1 (1− ue) = 0, −uev2e + α2ve = 0.

Therefore, the system (3) has the following equilibria E1 = (1, 0, 0, 0) for all (α1, α2, ε, c),
and

E2 =

(
α1 ± τ

2α1
, 0,

α1

α2

(
1− α1 ± τ

2α1

)
, 0

)
, τ =

√
α2
1 − 4α1α2

2,
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for all α1 ≥ 4α2
2. The Jacobian matrix of the system (3) is given by

A =


0 1 0 0

v2e + α1 −c 2ueve 0

0 0 0 1
ε

1
ε (−v2e) −c

ε2
1
ε (−2ueve + α2) 0

 . (5)

The eigenvalues of the Jacobian matrix corresponding to the equilibrium E1 are given

by λ =
{
±
√
α2

ε , 1
2

(
−1±

√
c2 + 4α1

)}
. It is clear that for the case α2 = 0, the Jacobian

matrix (5) has a double zero eigenvalue. On the other hand, at the equilibrium point
E2, the characteristic polynomial is

P (λ) := λ4 + cλ3 −
(
α1(α1∓k)

2α2
2
− α2

ε2

)
λ2 + cα2(ε+2)

ε3 λ− (α1∓k)k
2ε2α2

,

where k =
√
α2
1 − 4α1α2

2. If we consider the case when α1 = 4α2
2 and c = 0, then

P (λ) = λ4 −
α2

(
8α2ε

2 − 1
)

ε2
λ2,

which has a double-zero root given by λ = 0, 0,

√
8α2

2ε
2−α2

ε , −
√

8α2
2ε

2−α2

ε .

3 Center Manifold Reduction Combined with Normalization

In this section, we discuss the computation of normal form coefficients ak and bk of the
critical normal form (1). First, suppose that at x0 = 0, the Jacobian matrix A = fx(x0)
of a generic smooth family of autonomous ODEs

ẋ = f(x), f : Rn → Rn, (6)

has a double (and not semi-simple) zero eigenvalue, i.e. x0 is a BT point. Then, there
exist two real linearly independent (generalized) eigenvectors q0,1 ∈ Rn, of A, and two
adjoint eigenvectors p0,1 ∈ Rn, of AT, such that(

A 0

−In A

)(
q0

q1

)
= 0,

(
AT 0

−In AT

)(
p1

p0

)
= 0. (7)

Assume that the vectors {q0, q1, p0, p1} satisfy

pT0 q0 = pT1 q1 = 1, pT0 q1 = pT1 q0 = 0. (8)

If we impose the conditions (see [13])

qT0 q0 = 1, qT1 q0 = 0, (9)

then the vectors {q0, q1, p0, p1} are uniquely defined up to a ± sign. We can parametrize
the critical center manifold for (6) with respect to w = (w0, w1) ∈ R2 as

x = H(w), H : R2 → Rn. (10)
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The invariance of the center manifold implies the homological equation [5, 7, 11]

∂H

∂w0
ẇ0 +

∂H

∂w1
ẇ1 = f(H(w)). (11)

We write the Taylor expansions of H and f as

f(x) = Ax+
1

2
B(x, x) +

1

6
C(x, x, x) +

1

24
D(x, x, x, x) +O

(
||x||5

)
, (12a)

H(w) = q0w0 + q1w1 +
∑

2≤j+k≤4

1

j!k!
Hjkw

j
0w

k
1 +O(||w||5), (12b)

where B, C, D, and E are vector-valued functions with n-components. The ith compo-
nent of these functions are defined by

Bi(x, y) =

n∑
j,k=1

∂2fi(ξ)

∂ξj∂ξk

∣∣∣
ξ=0

xjyk, Ci(x, y, z) =

n∑
j,k,l=1

∂3fi(ξ)

∂ξj∂ξk∂ξl

∣∣∣
ξ=0

xjykzl,

Di(x, y, z, w) =

n∑
j,k,l,m=1

∂4fi(ξ)

∂ξj∂ξk∂ξl∂ξm

∣∣∣
ξ=0

xjykzlwm.

We insert the expansions (12a) and (12a) into (11) together with (ẇ0, ẇ1) as we defined
in (1). Then, collecting the terms with equal components in wj+k at the homological
equation gives a linear systems that can be solved for the coefficients Hjk ∈ Rn by a
recursive procedure based on Fredholm’s solvability condition.

The quadratic w-terms in the homological equation (11) lead to (see [1, 11,13]):

a2 =
1

2
pT1B(q0, q0), (13)

b2 = pT0B(q0, q0) + pT1B(q0, q1), (14)

H20 = −AINV (B(q0, q0)− 2a2q1) + γ0q0, (15)

H11 = −AINV (B(q0, q1)−H20 − b2q1) , (16)

H02 = −AINV (B(q1, q1)− 2H11) , (17)

where γ0 := 1
2p

T
1B(q1, q1) + pT0 (B(q0, q1)−H20). Note that γ0q0 is added to H20 to

ensure that the right-hand side of the system for H02 is in the range of A (see Section
8.7 in [12] for more details).

Collecting the terms with equal components in w of order three at the homological
equation gives the following equations.

w3
0: AH30 + C(q0, q0, q0) + 3B(q0, H20)− 6a2H11 − 6a3q1 = 0, (18)

w2
0w1: AH21 + C(q0, q0, q1) + 2B(q0, H11) +B(q1, H20)− 2a2H02

− 2b2H11 −H30 − 2b3q1 = 0, (19)

w0w
2
1: AH12 + C(q0, q1, q1) + 2B(q1, H11) +B(q0, H02)− 2b2H02 − 2H21 = 0, (20)

w1
1: AH03 + C(q1, q1, q1) + 3B(q1, H02)− 3H12 = 0. (21)



258 B. AL-HDAIBAT, M.F.M. NASER AND M.A. SAFI

The solvability condition implies the following expressions for the cubic coefficients (see
[13]):

a3 =
1

6
pT1 (C(q0, q0, q0) + 3B(q0, H20)− 6a2H11) , (22)

H30 = −AINV (C(q0, q0, q0) + 3B(q0, H20)− 6a2H11 − 6a3q1) , (23)

b3 =
1

2
pT1 (C(q0, q0, q1) + 2B(q0, H11) +B(q1, H20)− 2a2H02 − 2b2H11 −H30) ,

(24)

H21 = −AINV(C(q0, q0, q1) + 2B(q0, H11) +B(q1, H20)− 2a2H02

− 2b2H11 −H30 − 2b3q1), (25)

H12 = −AINV (C(q0, q1, q1) + 2B(q1, H11) +B(q0, H02)− 2b2H02 − 2H21) , (26)

H03 = −AINV (C(q1, q1, q1) + 3B(q1, H02)− 3H12) . (27)

However, given a3 and b3, the solutions to the singular linear system (23), (25)-(27) are
not unique. The uniqueness of the solutions can be guaranteed by requiring that (20)
and (21) are solvable for H12 and H03, respectively, i.e. H12 and H03 are in the range
of A. Multiply the equations (20) and (21) by pT1 , then the solvability condition requires
that

pT1H21 −
1

2
pT1 (C(q0, q1, q1) + 2B(q1, H11) +B(q0, H02)− 2b2H02) = 0, (28)

pT1H12 −
1

3
pT1 (C(q1, q1, q1) + 3B(q1, H02)) = 0. (29)

Multiply the equation (19) by pT0 , Then using the substitution

H30 7→ H30 + γ1q0 (30)

gives

pT1H21 = −pT0 (C(q0, q0, q1) + 2B(q0, H11) +B(q1, H20)− 2a2H02 − 2b2H11 −H30) + γ1.

Substituting this into (28) with

γ1 := pT0 (C(q0, q0, q1) + 2B(q0, H11) +B(q1, H20)− 2a2H02 − 2b2H11 −H30)

+
1

2
pT1 (C(q0, q1, q1) + 2B(q1, H11) +B(q0, H02)− 2b2H02)

(31)

makes the left-hand side of (28) equal to zero. So, the substitution for H30 implies that
(20) is solvable for H12. Note that adding a scalar multiple of q0 to H30 does not affect
the coefficient b3 given by (24), since 〈p1, q0〉 = 0. On the other hand, to ensure that
(21) is solvable for H03, one can use the substitution

H21 7→ H21 + γ2q0, (32)

then multiplying the equation (20) by pT0 gives

pT1H12 = −pT0 (C(q0, q1, q1) + 2B(q1, H11) +B(q0, H02)− 2b2H02 − 2H21) + 2γ2.
(33)
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Substitute this into (29) with

γ2 :=
1

6
pT1 (C(q1, q1, q1) + 3B(q1, H02)) +

1

2
pT0 (C(q0, q1, q1)

+ 2B(q1, H11) +B(q0, H02)− 2b2H02 − 2H21);
(34)

makes the left-hand side of (29) is equal to zero. So, this substitution implies that (21)
is solvable for H03. Note that the substitution for H21 does not affect the coefficients a4
and b4, as we will see in equations (35) and (37).

Finally, the homological equation implies the following expressions for the coefficients
of the w4-terms [13]:

a4 =
1

24
pT1 (D(q0, q0, q0, q0) + 6C(q0, q0, H20) + 4B(q0, H30) + 3B(H20, H20)

− 12a2H21 − 24a3H11), (35)

H40 = −AINV (D(q0, q0, q0, q0) + 6C(q0, q0, H20) + 4B(q0, H30)

+3B(H20, H20)− 12a2H21 − 24a3H11 − 24a4q1) , (36)

b4 =
1

6
pT1 (D(q0, q0, q0, q1) + 3C(q0, q1, H20) + 3C(q0, q0, H11)

+3B(q0, H21) + 3B(H20, H11) +B(q1, H30)−H40 − 3b2H21

−6a2H12 − 6a3H02 − 6b3H11) . (37)

In systems (15)-(17), (23), (25), (26), (27) and (36), the expression x = AINVy is defined
by using the non-singular bordered system(

A p1

qT0 0

)(
x

s

)
=

(
y
0

)
,

where y is in the range of A.

4 Degenerate Bogdanov-Takens Bifurcation in the Gray-Scott Model

In this section, we will use the analytical results obtained in Section 3 to prove that the
Gray-Scott model has two degenerate BT points at its equilibria E1 and E2. Recall that
the Gray-Scott model (3) exhibits a BT bifurcation of the equilibrium E2 occurring at the
parameter values (α1, α2, ε, c) = (4α2

2, α2, ε, 0). First, we apply the change of variables
(u, p, v, q) = E2 + (x1, x2, x3, x4), which brings the equilibrium point E2 to the origin
(0, 0, 0, 0). Then the Jacobian matrix evaluated at (0, 0, 0, 0) is

A =



0 1 0 0

8α2
2 0 2α2 0

0 0 0
1

δ

−4α2
2

δ
0 −α2

δ
0


.
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The following vectors

q0 = m1 (−1, 0, 4|α2|, 0)
T
, q1 = m1 (0, − 1, 0, 4|α2|ε)T ,

p1 = n1
(
1, 0, 2ε2, 0

)T
, p0 = n1 (0, 1, 0, 2ε)

T
,

with m1 =

α2

|α2|√
16α2

2 + 1
, n1 =

1

m1

(
1

8ε2α2 − 1

)
, satisfy (7)-(9). The vector-valued

function B : R4 × R4 → R4 can be defined for arbitrary vectors z, r ∈ R4 as follows:

B(z, r) =
4α2

ε
(0, − z1r3 − z1r3 − z3r3, 0, z1r3 + z1r3 + z3r3)

T
.

Therefore, the vectors B(q0, q0) and B(q0, q1) can be expressed as

B(q0, q0) =
16α2

2m
2
1

ε
(0, − ε, 0, 1)

T
, B(q0, q1) = (0, 0, , 0, 0)

T
.

Thus, the formulas (13) and (14) give the values of the critical normal form coefficients

a2 =
8α2

2

8δ2α2 − 1
and b2 = 0.

These values confirm that the Gray-Scott model has a degenerate BT point of codimen-
sion ≥ 3. Similarly, one can compute the normal form coefficients at the BT of the

equilibrium E1 occurring at the parameter values α2 = 0, and satisfy a2 = − 1

ε2
and

b2 =
2c
(
ε4 + c2ε+ c2

)
ε3 (ε4 + c2)α1

. Therefore, the case c = 0 indicates a degenerate BT point for

the parameter values (α1, α2, ε, c) = (α1, 0, ε, 0).

5 Example

Based on the analysis carried out in Section 2, we are going to perform numerical studies
of the degenerate BT bifurcation of the equilibrium E2

(1) which occurs at (α1, α2, ε, c) =
(4α2

2, α2, ε, 0). To simplify, we fix the variables α2 = 1 and ε = 0.1. At the bifurcation

parameter, we compute the following expressions for (13)-(17): a2 =
14356

6807
, b2 = 0 and

H20 =

(
21151

990682
, 0,

−9600

8993
, 0

)T

, H11 =

(
0,

21151

990682
, 0,

−960

8993

)T

,

H02 =

(
5423

1079523
, 0,

5807

4623854
, 0

)T

It is clear that the system (17) is solvable for H02; this can be easily shown by multiplying
both sides of (17) by pT1 which is indeed

pT1 (2H11 −B(q1, q1)) = 0.

(1) Similar results can be derived for the BT point of the equilibrium point E1.
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Later, we compute the value of the system (22)-(27): a3 =
−6441

5329
, b3 = 0 and

H30 =

(
−4608

88283
, 0,

73432

36131
, 0

)T

, H21 =

(
0,
−4358

140551
, 0,

12276

60245

)T

,

H12 =

(
−1266

253087
, 0,

−633

506174
, 0

)T

, H03 =

(
0,
−3798

253087
, 0,

−2539

6767645

)T

.

The systems H21, H12 and H03 are uniquely defined such that the solvability conditions
(28) and (28) are satisfied. Finally, (35)-(37) is given by

a4 =
100212

120473
, H40 =

(
−31070

25263
, 0,

−15535

50526
, 0

)T

, b4 = 0.

Thus, our unique normal form for the Gray-Scott model is
ẇ0 = w1,

ẇ1 =
14356

6807
w2

0 −
6441

5329
w3

0 +
100212

120473
w4

0.

6 Conclusion

In the present paper, we consider the Gray-Scott model (2), where a travel wave ansatz is
introduced for which one variable describes both the spatial and the temporal behavior.
This reduces the system of PDEs (2) into a system of ODEs (3). For a wide range of
parameter values, the Gray-Scott model (3) possesses two degenerate BT points. The
main aim of this paper is to define a unique explicit formula for the Taylor expansion of
the 2D center manifold up to a term of order 4. The uniqueness of the Taylor expansion
is guaranteed by applying the variables transformations (30) and (32) with the suitable
choice for γ1 and γ2 as shown in (31) and (34), respectively. The results of this paper
can be applied also for any n-dimensional system of ODEs. The theoretical results of the
paper are illustrated by an example in Section 5. Natural directions for future research
include developing a robust predictor for the homoclinic orbits bifurcating from a BT
point in generic n-dimensional ODEs. Such a predictor needs a unique expression for the
vectors Hjk in the Taylor expansion (12b).
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1 Introduction

Processed food diet is characterized by a high consumption of proteins (especially meats),
sugar, salt and fat comparatively to a healthy diet comprising of an intake of fruit and
vegetables [1–3]. This diet is quite common around the world and contributes heavily in
the development of fatal diseases. Pre-clinical experiments indicate that a high fructose
and protein diet causes cancer, insulin resistance, impaired control and damages the
immune system [4–6].

A protein is one of the main macronutrients essential for immunity and general health
if taken in proper quantities. The studies found mortality rate in younger people who
consume more than 20% calories from protein increased to 75% whereas the percentage
of people dying by cancer had increased fourfold as compared to people who imbibe less
than 10% calories from proteins [7]. Other studies observed the increase in death rate
associated with a diet based on animal products and a high intake of carbohydrates;
contrarily, a vegetable-based diet and a low carbohydrate intake reduced the mortality
rate. Furthermore, malnutrition debilitates the immune system and increases mortality
rate as well as elevates the risk of contacting lethal diseases [8].

Vitro studies have revealed that simple sugars reduce the white blood cells (phago-
cytes) and may elevate the inflammatory cytokines in the blood [9,10]. Whereas a salty
diet is associated with a risk of gastric cancer [11]. The salt in the diet causes a sodium
and potassium imbalance, which can further cause a detrimental effect on the kidneys [12].
Retaining salt in the body also predominates risks of weight gain [13]. A fatty diet alters
the lipids of the immune cells membranes and disrupts their function [14,15].

In addition, the intake of a high fiber diet is associated with a lower risk of not
only cardiovascular diseases but also cancer and respiratory diseases as well as infectious
diseases. Nutritionists recommend an intake of 25-38g of fiber per day. This average
is reduced further along the societal chair [16]. It is also noted that the Africans in
rural areas consume more fiber than Western people [1]. Notably, Western people have
a higher chance of obesity which is directly proportional to their diet which is mainly
characterized by a heavy intake of processed foods, fatty foods and a reduced intake of
nutrient rich foods as fruit and vegetables [17].

The immune system plays a huge role in the defence against carcinomas. Mathemati-
cal models are used to describe how the immune system defends by inhibiting cancer cells.
Researchers propose that the interaction between immune cells and the target population
such as viruses, bacteria, antigens and malignant cells is a dynamic process. Marey and
others succeeded to formulate a model by using ordinary differential equations to portray
this process [18]. Other researchers showed that the chance of developing fatal diseases
is reduced for a person who follows a healthy diet which is related to food pyramid and
vice versa [19].

Mathematical models are also used for prognosis and treatment plans for cancer
[20,21]. Tumor growth is a constant population in any mathematical model where cancer
is studied. Several mathematical models use differential equations to prepare tumor-
immune model interaction with radiation and chemotherapy [22–25]. Others focus on
lifestyle and estrogen as culprit for developing cancer, especially malignant cancer in
women [26–28]. Since normal cells can divide 50-60 times before dying ones, it can
sometimes lead to the development of abnormal cells and cancer can occur in such a
case. Thus, the mathematical model in this paper is formulated to understand the
response of the immune system to prevent the growth of abnormal cells.
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In this busy modern era, people are highly dependent on the Western-style diet con-
sisting of fast food, cans and even frozen products which are readily available anytime
and everywhere. One of the transparent reasons for this paper is to highlight the disad-
vantages of the Western-style diet to the function of the immune system. It also discusses
one of the possibilities to increase the response of the immune system by modifying the
diet pattern along with the intervention of vitamins within the first thirty days.

2 Materials and Methodology

Ordinary differential equations are used to describe the interaction between two popu-
lations: normal cells which begin to divide as abnormal cells and immune cells which
respond to this action. The first model is formulated as

dN

dt
= rN(1 − βN) − ηIN,

dI

dt
= σ +

ρIN

m+N
− δI − µIN, (1)

where N [0] = 1 [28] and I[0] = 1.22 [29] are initial values. The first equation reveals
the change of normal cell population such that N is a normal cell. The parameter r
represents the growth rate, and the rate of change from normal cells to abnormal cells
during division is given by the parameter β. One of the functions of the immune system is
to engulf and eliminate pathogens to prevent the body from developing cancer, which is
represented by η. The second equation expresses the immune efficiency, where I denotes
the immune cells. The fixed value of the immune system is represented by σ. The
parameter δ is the rate of natural death of the immune cells, where the immune cells
usually die off after thirty days. The term ρIN

ω+N exhibits the Michaelis-Menten model
of the immune cells, where ρ presents the growth of the immune cells stimulated by
abnormal cells and m is the threshold rate of the immune cells. Finally, the reaction
between abnormal cells and immune cells leads to a reduction in the number of immune
cells, and this decrease is given by µ. All values of these parameters are identified in the
literature, see Table 1.

Furthermore, the modification of the model, given the intervention of vitamins in
thirty days as an external factor affecting both normal and immune cells and its im-
provement, is given by

dN

dt
= rN(1 − βN) − ηIN + c1V N,

dI

dt
= σ +

ρIN

m+N
− δI − µIN + c2V I, (2)

dV

dt
= k1 + k2V,

where the initial conditions are N [0] = 1 [28], I[0] = 1.22 [29] and V [0] = 2, the interven-
tion of vitamins is denoted by V. The positive constants c1 and c2 show the interaction
between vitamins, normal cells and immune cells, respectively. The constant rate of vi-
tamins is represented by k1 and the constant k2 denotes the decreased rate of vitamins
due to the reactivity between cells.
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Parameter Value Definition and reference
r 0.431201 Rate of growth of normal cells [31]
β 2.99 ∗ 10−6 Rate of turn of normal cells to abnormal cells [32]
η 0.2 Rate of repaired abnormal cells [25]
σ 0.7 Fixed of immune source [33]
δ 0.57 Rate of natural death of immune cells[evaluate]
ρ 0.003 Response rate of immune cells [34]
m 0.427 Threshold rate of immune cells [33]
µ 0.82 Rate of decreasing of immune cells as a result

of interaction with abnormal cells [31]
a 0.7 Amplitude of immune alteration [33]

Table 1: Parameters of the model and references.

3 Parameters Values

These models examine the ability of the immune system in preventing the body from
pathogens without treatment. In order to achieve the aim of this paper, the values of the
parameters should be selected under special conditions. The behaviour of these models
has a significant relation to the parameters which demonstrate the result of an active
immune system when the pathogens attack the body in the presence of abnormal cells
where these parameters are represented by µ and η.

Firstly, there are no conditions for normal cells selection, where normal cells can
choose any value. For example, the initial value of normal cells in [28,30] used N(0) = 1
and [31] used N(0) = 105. Whereas the immune cells are especially selected in the case of
a weakened immune system without any medication. For that reason, the initial value of
the immune cells is selected from [29], where the main problem with a HIV patient is a
weakened immune system. Then, the value which is published in [29] is close to the case
study of this model. In view of the fact that the initial values of vitamins can be used
for intervention, their parameters and their effect on response of the immune system and
growth of normal cells are based on the hypotheses of the model (1).

Secondly, the evaluation of the rate of growth of normal cells is by reference to the
results of the experiment which is illustrated in [31] where the number of cells is examined
for one week. During the process of the division and growth of normal cells there is a
chance for abnormal division, then the rate of turn of the normal cells to abnormal cells is
given in [32]. Whereas it is difficult to find a similar study which relates to the immune
cells but it can also be assumed that the rate of growth of the immune cells follows
the immune efficiency which is published in [33]. The growth of immune cells in this
study should be close to the immune efficiency to satisfy the hypothesis of models which
describes the effect of a change in dietary pattern to be close to a Western-style diet
which causes a weakened immune system. Then, it is easy to evaluate the rate of death
of the immune cells as in reference [28]. The response of immune cells also should reduce
as given in [34] and the threshold rate of the immune system is evaluated by using the
following function m = (σ − ρt)a, where t=30 years.

Finally, the parameters η and µ describe the behaviour of both normal cells, abnor-
mal cells and immune cells when a pathogen attacks the body. The first parameter η
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associates with the ability of immune cells in engulfing and attacking the abnormal cells.
This process occurs automatically if the immune cells are absolutely healthy and its ac-
tivity diminishes if the body has a weakened immune system. That means the function
of immune system stimulates when the abnormal cell appearance, and the rate of this
stimulation is illustrated in [25]. As a result of this process, the number of immune cells
will decreased. Thus, by reference to [31], it can use the same parameter of reapplication
of normal and precancerous cells where the difference is between definitions relating to
the building of models. Furthermore, in this paper, the parameter of µ should be greater
than η where the model formulates assuming immune efficiency.

4 Numerical Simulation

The immune system can engulf and inhabit the pathogens as well if and only if the body
has a strong immune system. Then, to modify the response of the immune system in the
model (1) the parameters η and µ should satisfy the following inequality:

The rate of parameter η ≥ The rate of parameter µ.

The diet pattern and lifestyle (as physical activity and irregular sleep) are risk factors
of the immune system. This paper is focusing on the effect of switching back to a
healthy diet from the Western-style diet by consumption a regular rate of vitamins on
modifying the response of the immune system in the model (1). Thus, we are simulating
the parameters c1, c2, k1, k2 that are related to the effect of vitamins intervention. These
parameters should satisfy the following inequalities:

The rate of parameter k2 > The rate of parameter k1,

The rate of parameter c1 + The rate of parameter c2 ≤ The rate of parameter k2.

Hence, the correlation between the vitamins intake and the behaviour of the immune system
and normal cells is indicated by the model (2). Here, we are simulating the specified parameters
as follows

η = 0.733, µ = 0.312, c1 = 0.261, c2 = 0.231, k1 = 0.164, k2 = 0.960.

Hence, the numerical result of the modification of model (1) showed that the intervention of
vitamins can boost the immune system and control the division of normal cells. Thus, it prevents
the development of the pathogens.
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Figure 1: The behaviour of the im-
mune system with unhealthy diet pattern
within 10 days.
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Figure 2: The behaviour of immune sys-
tem with unhealthy diet pattern within
30 days.
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Figure 3: The behaviour of the normal
cells with unhealthy diet pattern within
10 days.
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Figure 4: The behaviour of the normal
cells with unhealthy diet pattern within
30 days.
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Figure 5: The behaviour of the model
with unhealthy diet pattern within 30
days.
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Figure 6: The behaviour of the immune
system with modification of diet within
10 days.
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system with modification of diet within
30 days.

5 Results and Discussion

This paper used Mathematica 10.0 software to solve the nonlinear ordinary differential equations
which described the behaviour of a weakened immune system and of that normal cells when a
body is attacked by pathogens and abnormal division of cells took place. This type of division
could lead to an emergence of carcinoma cells.

The numerical solution of an unhealthy model (an unhealthy diet as the Western-style diet)
demonstrated the decrease in immune cells to zero within the first ten days from the appearance
of abnormal cells, Figures 1, 2. This means that the immune system had a negative response and
the immune cells (T cells and natural killer cells NK cells) were untenable to engulf and fight the
abnormal cells. Furthermore, it may encourage the normal cells to divide and become cancerous
cells. The result of previous studies such as [5, 6] support our idea that the Western-style diet
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Figure 8: The behaviour of the normal
cells with modification of diet within 10
days.

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Days

P
op
ul
at
io
n

Normal cells

Figure 9: The behaviour of normal cells
with modification of diet within 30 days.
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Figure 10: The behaviour of the model
with modification of diet pattern within
30 days.

leads to an increase in the rate of glucose and insulin in the blood, thus causing abnormal cells
to divide and grow as tumor cells.

Not only this, but the unhealthy diet has a significant impact on the behaviour of normal
cells in the presence of abnormal cells in the body and the function of immune system may
further weaken. The numerical solution showed that the population of normal cells elevated to
46 cells within the first ten days (Figure 3) and reached to 145000 cells approximately at the
end of twenty days, Figure 4 indicated that the normal cells started to divide and grow without
control. Sometimes, this way of division may cause cancer, where the growth and division of cells
play an important role in protecting a human from cancer [30,35]. The model of the unhealthy
diet is illustrated in Figure 5.

Modification in the diet pattern reduces or delays the growth of tumor cells [36, 37]. In the
unhealthy model, improvement was seen when intervened by vitamins. The numerical solution
revealed that the intervention by vitamins affected both immune cells and normal cells. In this
case, the vitamins stimulated the immune cells to increase and reach to 1.26 cells in the first
day and the population of cells decreased dramatically to 1.9 cells on the fourth day. Following
that, immune cells increased gradually until reaching 1.26 cells on the tenth day, Figure 6. The
population of immune cells became stable at 1.32 cells, Figure 7 during the last twenty days.
This result is identical to the findings of nutritionists that vitamins play an important role in
boosting the immune system and supporting its functions [38,39].

Moreover, a significant impact was observed on normal cells under the influence of vitamins.
They were stable within the first twelve hours of the vitamins intake, then started to dramatically
decrease to 0.1 cells in the first ten days, Figure 8. After that, the population of normal cells
gradually decreases to zero within the last twenty days, Figure 9. This modification of unhealthy
model is shown in Figure 10. So, an increased level of glucose, insulin resistance, obesity and
cancer are disadvantages of the Western-style diet consumption. Previous studies found that
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supplementation with vitamins D and C can improve glucose control and decrease serum insulin
[40–43]. Other benefits of vitamin C are adipocyte lipolysis, which reduces the inflammatory
response, preventing glucose metabolism, and secretion of leptin can isolate adipocyte [44–46].
Thus, consumption of vitamins can help to inhibit active abnormal cells into turning tumor cells
indirectly.

Eventually, there is a complex relationship between dietary patterns and functions of the
immune system which needs to be studied extensively. Our findings in this paper revealed nu-
merically that there is a strong association between modification of the dietary pattern, boosting
of the immune system and the division and growth of cells.

6 Conclusion

This paper illustrated that a modern diet (a Western-style diet) had an impact on the immune
system function and the division of the normal cells when the pathogen had begun to attack the
body. Consumption of a supplementary diet enabled a boost in the immune system and increased
recognition of abnormal cells as foreign cells and helped eliminate them as well. Furthermore,
an intake of vitamins played a huge role in getting the division of normal cells under control.
Thus, an awareness must be put in motion of the concept of a healthy diet for all, especially
the youth, for protecting against diseases and reducing the mortality rate due to common lethal
diseases, particularly cancer.
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School - EPT, University of Carthage, BP 743, 2078 La Marsa, Tunisia.

Received: December 21, 2018; Revised: April 11, 2019

Abstract: This paper introduces a numerical technique for solving minimum time
control problems. These problems are addressed to linear time invariant systems in
feedforward and feedback control. The mathematical formulation of the control prob-
lem is expanded in several piecewise orthogonal bases, namely, the Walsh, block-pulse
and Haar wavelets. Operational matrices are used to transform the integration pro-
cedure into a product. A numerical optimization problem is formulated to determine
the final time and the control sequence (switching times) necessary to steer the sys-
tem from an initial to a target position. The used numerical method shows that the
employed piecewise orthogonal function generates better results than other functions.

Keywords: orthogonal functions; operational matrices; minimum time control; lin-
ear systems; closed loop scheme.
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1 Introduction

After the introduction of human operated machines, there was a need to enhance further
the productivity and reduce costs. Therefore, automatic machines (i.e. robots) were
designed and introduced. Today, many engineering systems, from manufacturing ma-
chines to vehicles and airplanes, require optimal control algorithms in order to operate
efficiently. Pontryagin [1] developed the theoretical background needed to formulate and
then solve these problems. Nevertheless, due to the nature of these engineering systems,
finding a solution to these control problems remains a challenging task and requires
multidisciplinary knowledge, from ordinary differential equation (ODE) discretization to
optimisation so that to obtain a numerical solution. The control problems can be derived
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in two categories: linear and nonlinear. The nonlinear problems feature nonlinear ODEs
and are not the scope of this paper. This paper focuses on solving an optimal control
problem for linear systems(i.e. the ODE is linear in states and control, even though the
problem formulation is non-linear), and particularly, on the determination of a minimum
time optimal control.

Finding a solution to the minimum time control problem is a difficult task. The
intent of these problems is to steer a system from a given initial state to a target state in
minimum time. Often, and due to the complexity of the mathematical formulation, it is
difficult to find an analytical solution even for linear systems. In fact, very few examples
have an analytical solution obtained through the Pontryagin maximum principle, it is well
known that when constrains over system inputs are considered, the obtained minimum
time control is necessarily of a bang-bang form [2].

Nevertheless, the minimum control problem could be undertaken with numerical ap-
proaches based on nonlinear optimization techniques like the shooting method [3]. Other
approaches in literature are typically based on geometric or graphical resolution [4], how-
ever, despite of accuracy, these techniques are of limited usage to low order LTI systems.

The orthogonal functions constitue a considerable tool to solve various optimal control
problems [5]. Generally, when orthogonal polynomials are used, it is called a pseudo-
parametrization technique. In fact, that issue could be an interesting alternative to the
securitization technique and could save considerably computational effort since it reduces
unknown parameters in the nonlinear optimization problem.

There are different types of orthogonal functions:

• Piecewise functions (block-pulse, Walsh and Haar wavelets) [6, 7];

• Polynomials (Legendre, Chebyshev,...) [8];

• Trigonometric functions (sine, cosine,...) [9].

Researchers have tried to solve the minimum time control problem using the Chebyshev
orthogonal functions for open loop linear systems [8], multivariable systems [10] and PID
control [11].

Since the type of control is known a priori (i.e. the bang-bang control), it is suitable
to use piecewise orthogonal functions thus allowing the capture of discontinuities in the
inputs. This method is simpler compared to the methods proposed in [8] and [10] where
the Chebyshev orthogonal polynomials had been used. In fact, in those works a set
of equalities are derived where each one contains two unknown variables. Then, the
authors [11] formulated a parameter optimisation problem to find the final time tf and
using the latter variables they determine the control sequence also.

In this effort, we use a simpler method that exploits the operational matrix of inte-
gration [6], and thus, there is no need to find the coefficient in [8,10] making the problem
formulation easier. Furthermore, in addition to the open loop optimization, a closed loop
algorithm is formulated.

This paper is organized as follows. The second section is reserved to the formulation
of the minimum time control problem. In the third section, a description of the orthog-
onal functions used and their algebraic properties are provided. The formulation of the
proposed method and simulation results are presented in the fourth section. Finally,
conclusions and future works are given in the last section.
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2 Time-Optimal Constrained Feedforward Control Problem

We consider an LTI system described by the following state space model:{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

(1)

where y ∈ Rp is the output, u ∈ Rm is the input control signal and x ∈ Rn is the state
vector. In general, if the final state is not zero, we define a new system state X given in
equation (2) such that the system becomes normalized and the target remains the origin
of state space. Then the system (1) can be written as

X = x− xf ,
Ẋ = AX +Bu+Axf ,
X0 = x0 − xf ,

(2)

where x0 is the initial position of the system and xf is the target position to reach.
To minimize the final time, the cost function is taken as [12]

J = tf − t0 =

∫ tf

t0

dt. (3)

Applying the Pontryagin maximum principle (PMP) [1], we define the Hamiltonian [13]
for (1)

H(.) = −1 + λT (AX +Axf +Bu). (4)

The canonical equation of Hamilton is given by

Ẋ = Hλ = AX +Axf +Bu, (5a)

λ̇ = −Hx = −ATλ. (5b)

The target state being the origin is

X(tf ) = 0. (6)

Minimizing the Hamiltonian we obtain the following control signal:

u(t) = sign(λTB). (7)

This can be written as follows:

u(t) =

{
umin, if λTB < 0,
umax, if λTB > 0.

(8)

Thus, the obtained control is bang-bang.

3 Orthogonal Functions and Algebraic Properties

Using orthogonal functions to construct operational matrices was firstly proposed in the
study of dynamic systems for modeling [14], identification [15] and control purposes [16].
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3.1 Principle

Let φi(t) be a set of orthogonal polynomials, piecewise functions. Any analytical function
absolutely integrable on the time interval [0, T ] can be approximated as follows:

f(t) =

∞∑
i=0

fiφi(t), (9)

where the coefficients fi are evaluated by the following scalar product:

fi =

∫ T

0

f(t)φi(t)dt. (10)

For numerical purposes, a truncation of equation (9) until a convenient number of ele-
mentary functions is considered in practice.

f(t) ∼=
N−1∑
i=0

fiφi(t) = FTNΦN (t), (11)

where ΦTN = [ϕ0(t)ϕ1 · · ·ϕN−1(t)] is the orthogonal basis and FTN = [f0f1 · · · fN−1] is
the coefficient vector.

Integrating equation (11), we obtain:∫
f(t) ∼= FTNPNΦN (t), (12)

where PN ∈ Rn×n is the operational matrix of integration depending on the considered
orthogonal basis. As a result, the differential equations describing dynamic processes can
be reduced into algebraic relations allowing important simplifications in the synthesis
problems.

In this paper, we focus on three types of piecewise orthogonal functions, which are
block-pulse, Walsh and Haar wavelets. They present different characteristics. The main
difference and properties of each one will be detailed in the next section.

3.2 Block-pulse functions

Block-pulse functions constitute a complete set of orthogonal functions and are defined
as follows [7, 17]:

bi(t) =

 1, if t ∈ [iT , (i+ 1)T ],
i = 0, ..., N − 1,

0, otherwise.
(13)

A function f(t) can be approximated by

f(t) '
N−1∑
i=0

fibi(t) = FTNB(t), (14)

with: FN = [f0, f1, ..., fN−1]T is the coefficient vector, B(t) = [b0(t), b1(t), ..., bN−1(t)]T

is the block-pulse basis vector and fi are given by

fi = N

∫ iT

(i−1)T
f(t)bi(t)dt, (15)
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where N is the order of block-pulse functions.

The operational matrix for the block-pulse functions denoted PN,bp is given by [5]

PN,bp =
T

N



1
2 1 1 . . . 1
0 1

2 1 . . . 1
...

. . . 1
2 . . . 1

...
. . .

. . .
...

0 . . . . . . 0 1
2

 . (16)

The representation of this basis for N = 8 can be described in Figure 1.
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Figure 1: A set of block-pulse functions.

3.3 Walsh functions

Walsh functions belong to the family of piecewise orthogonal functions [18]. They can
have only two values +1 or -1 over the interval of interest.

A function f(t), absolutely integrable in [0, 1], may be expanded into the Walsh series
as

f(t) '
N−1∑
i=0

fiwi(t) = FTNW (t). (17)

The Walsh functions w0(t), w1(t), · · · , wN−1(t) are orthonormal square waves.

To determine the operational matrix, i.e. PN,w, of integration, the equation (18) is
used:

PN,w =

[
PN

2 ×
N
2

−1
2N IN

2 ×
N
2

1
2N IN

2 ×
N
2

0

]
, (18)

Where I is the identity matrix. Then the same state space transformation for the block-
pulse function is used.

In fact there is a matrical relation between block-pulse and Walsh operational matrix
of integration [17]:

PN,w = WN×N × PN,bp ×W−1N×N , (19)
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where W denotes the transition matrix from block-pulse to Walsh basis. For N = 4 the
Walsh transformation is

W4×4 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 . (20)

This basis can be described in Figure 2 with N=8.
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Figure 2: A set of Walsh functions.

3.4 Haar wavelets

The orthogonal set of Haar functions defined in [19] is a group of square waves with
magnitude of ±1 in some intervals and zeros elsewhere. The first function is h0 = 1
∀x ∈ [0, 1]. It is commonly referred to as the scaling function. The second is the
fundamental square or the mother wavelet which spans the hole interval [0, 1], for N=4,
for example,

h1(t) = [1 1 − 1 − 1]φ4(t). (21)

All the other subsequent curves are generated from h1(t) with two operations: translation
and dilation. h2(t) is obtained from h1(t) with dilation, namely, h1(t) is compressed from
the whole interval [0, 1] to the half interval [0, 1/2] to generate h2(t). h3(t) is the same as
h2(t) but shifted to the right by 1/2. Similarly, h2(t) is compressed from the half interval
to the quarter interval to generate h4(t). h4(t) is translated to the right by 1/4, 1/2 and
3/4 to generate h5(t), h6(t) and h7(t), respectively.

The general description of the square waves is given as follows:

h0(t) = 1,

hi(t) =


2j/2, k−12j ≤ t <

k−1/2
2j ,

−2j/2, k−12j ≤ t <
k−1/2

2j ,

0, otherwise in[0, 1).

(22)
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The index i = 1, 2, . . . , N −1, j and k represent the integer decomposition of i as follows:
i = 2j + k − 1.

The description of the Haar wavelets can be seen in Figure 3 for N=8.

Figure 3: A set of Haar functions.

The operational matrix of integration for the Haar wavelets denoted PN,h is given as
follows:

PN,h =
1

2N

[
2NPN

2 ×
N
2
−HN

2 ×
N
2

H−1N
2 ×

N
2

0

]
, (23)

where
HN×N ,

[
hN (t0) hN (t1) · · · hN (tN−1)

]
.

As the Walsh function, the operational matrix of the Haar wavelets can be expressed by
the block-pulse operational matrix [17]

PN,h = HN×N × PN,bp ×H−1N×N . (24)

For N=4, HN×N is as follows:

H4×4 =


1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2

 . (25)

4 Orthogonal Function Based Minimum Time Control Problem Formulation

4.1 The original open loop problem

Minimum time control is an open loop control problem. It is described by Figure 4, where
X(0) is the known initial system state and u(t) is the control vector. This framework
is dedicated to the class of systems described by equation (1). Here x(t) is the system
state trajectory that is needed to search for a prefixed target state in a minimum time
tf to be calculated.

In this work, we intent to develop a numerical method that is able to return the final
time tf and the control sequence (or precisely the control coefficient over an orthogonal
function basis), while the initial X(0) (i.e. its coefficients over the same basis) should be
provided to the algorithm.
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Figure 4: An open loop control structure.

4.2 Main developement

Finding the solution of (5b) means solving multiple differential equations, which is math-
ematically delicate. To overcome this difficulty we will make use of the set of orthogonal
functions described in the last section.

In order to derive the final time, a variable change is introduced:

t = τtf . (26)

This change of variable allows a transformation of the time domain from t ∈ [0, tf ] to
τ ∈ [0, 1], then system states becomes

X(t) = X̃(τ). (27)

Notice that the latter variable change leads to a constant time interval [0,1] for the used
series since the final time tf is unknown.

Consequently, we deduce

Ẋ(t) =
dX̃(τ)

dτ
.
dτ

dt
=

1

tf

˙̃X(τ). (28)

The original state equation of system (1) is now equivalent to

1

tf

˙̃X(τ) = AX̃(τ) +Bũ(τ). (29)

Using orthogonal functions consists in developing both, the system states and the input
over that basis:

X̃(τ) = X̃T
N · φN (τ), ũ(τ) = ũTN · φN (τ), (30)

where φN (τ) ∈ B(τ),W (τ), H(τ). Furthermore, integrating equation (29) leads to

1

tf
(X̃(τ)− X̃(0)) = A

∫ 1

0

(X̃(τ))dτ +B

∫ 1

0

ũ(τ)dτ. (31)

Introducing coefficients of X̃(τ), ũ(τ) and the operational matrix of integration we obtain∫ 1

0

X̃(τ)dτ = X̃N

∫ 1

0

φN (τ)dτ = X̃T
NPNφN (τ), x (32)

then we can write

(X̃T
N − X̃T

N0
)φN = tf (AX̃T

NPN +BŨTNPN )φN , (33)

thus
X̃T
N − X̃T

N0 = tf (AX̃T
NPN +BŨTNPN ), (34)

where X̃N0 is a projection of the initial state over orthogonal functions and depends on
the chosen set of functions.
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4.3 OFs Optimization problem formulation

To find the transition time from the initial to the target position, we need to solve the
following nonlinear problem:

Original optimization problem

min (tf ) (35)

subject to:
ẋ(t) = Ax(t) +Bu(t), 0 ≤ t ≤ tf ,
u ∈ [umin, umax],
x(0) = x0, x(tf ) = xf .

(36)

This problem is reported to the domain [0, τ ]. The optimization algorithm in the
orthogonal basis has the following form:

Orthogonal function optimization problem

min (tf ) (37)

subject to linear constraints: initial state expansion:

• for the block-pulse function

X̃N0,bp =
[
X̃(0) X̃(0) · · · X̃(0)

]
,

• for the Walsh functions and Haar wavelets

X̃N0,w = X̃N0,h =
[
X̃(0) 0 · · · 0

]
final state expansion:

• For the block-pulse functions:
ŨNmin ≤ ŨN ≤ ŨNmax,
X̃Nf,bp =

[
0 0 · · · X̃f

]
.

• For the Walsh functions:
ŨNmin ≤ ŨN φN,w ≤ ŨNmax,

X̃Nf,w =
[

0 0 · · · X̃f

]
WN×N .

• For the Haar functions:
ŨNmin ≤ ŨN φN,h ≤ ŨNmax,

X̃Nf,h =
[

0 0 · · · X̃f

]
HN×N ,

where X̃N,f denotes the projection of the final sate over orthogonal functions. WN×N
and HN×N are, respectively, the Walsh and Haar transition matrices,

nonlinear constraints:

X̃N − X̃N0 = tf (AX̃NPN +BŨNPN ). (38)

To solve this optimization problem, an interior point method the same as the one
implemented in the function ”fmincon” of Matlab is used.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (2) (2019) 274–288 283

Figure 5: Example 1.

0 1 2 3 4 5 6 7 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

control sequence

(a) Control sequence for Example 1.

0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

4

5

6

7

first state
second state

(b) System trajectory for Example 1.

4.4 Simulation and validation

In this subsection, a comparison between our results and some other results available in
the literature is presented.

4.4.1 Example 1

We consider a simple double integrator system in which its analytic solution using the
PMP is well known. Its state space representation is given in equation (39):

A =

[
0 1
0 0

]
, B =

[
0
1

]
. (39)

The system needs to be shifted from an initial state x(0) = [5, 2]T to the origin of state
space with the input constraint u ∈ [−1, 1]. The analytical solution for this system is as
follows: the system has one switching point at tc = 4.64 and the final time is tf = 7.29.
Determining the solution of the double integrator system using optimization algorithm for
a base of dimension N = 64, we obtain comparable results with the analytical solution.
From Figure 5(a) and Figure5(b), it is clear that the system has only one switching point
at tc = 4.594 which is almost the same one found by the analytical solution.

We can also see that the control sequence is bang-bang and that the final time tf =
7.3508 is also the same as the analytical solution.

4.4.2 Example 2

Take the example given in [10] which is a fourth order MIMO system with two real double
poles λ1 = 5, 2833 and λ2 = −0.0833. The state space representation of the system is
given as follows:

A =


− 1

10 0 0 0
0 − 1

15 0 0
0 0 − 1

15 0
0 0 0 − 1

10

 , B =


1
2 0
1
2 0
0 1

2
0 1

2

 , C =

[
3
5 0 8

15 0
0 2

3 0 3
5

]
.
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Figure 6: Example 2.
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(b) System trajectory for Example 2.

This system needs to be shifted from y = [0, 0]T to yf = [1, 1]T , the input constraints
are u1, u2 ∈ [−1, 1]T .

Computing the MIMO system including its constraints we obtain the control sequence
described in Figure 6(a).

We can see from Figure 6(a) that the control sequence is bang-bang, that u1 does not
contain any switching time and that u2 contains only one at tc = 2.5.

This proves that our method is also effective for MIMO constrained systems. By
comparing this result to the result obtained in [10] where tf = 54.1 we can see from
Figure 6(b) that the target is reached before at tf = 4.47.

It is clear that the obtained results through the orthogonal piecewise functions using
operational matrices are far better than the one obtained using the Chebyshev technique
[10].

5 Closed Loop Online Suboptimal Minimum Time Control Algorithm

In the past section we have elaborated an algorithm to compute the minimum time
control for open loop systems. Such solution can not recover from perturbations, so we
determined an offline suboptimal control structure. In this part, we introduce an online
suboptimal minimum time control.

5.1 Principle

The control problem is now described by Figure 7. Z is a perturbation that may affect
the system states, XT

N (kh) = [x0(kh) x1(kh) · · · xN−1(kh)] is the output state vector
at t = kh which represents the discrete time. Besides, h is chosen as small as possible in
order to take into account correctly an eventual disturbance over the system states.

The optimization problem formulation in the closed loop is similar to that in the open
loop case. However, it is computed k times. The initial state is continuously actualized
to the final state of the previous optimization step.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (2) (2019) 274–288 285

Figure 7: Feedback control scheme.

5.2 Algorithm description

Algorithm 5.1 Minimum time closed-loop algorithm

begin
initialization
k ←− 0
h←− 10−2

X̃N0,bp = [X̃(0) X̃(0) · · · X̃(0)]
While x̃ 6= xf do

Find min(tf )
Subject to:
Linear constraints:
ŨNmin ≤ ŨN × φN ≤ ŨNmax
X̃N0 = [x̃0(kh) x̃1(kh) x̃N−1(kh)]
X̃N0,f = [0 0 · · · x̃f ]
Nonlinear constraints:
X̃N − X̃N0 = tf (AX̃NPN +BŨNPN )
k ←− k + 1

end
end

5.3 Simulation and comparison results

We consider the same system: a simple double integrator described previously.

In this section we intent to apply the closed loop optimization procedure to the
system using the orthogonal block-pulse, Walsh or Haar wavelets for N = 64. This will be
considered for various cases, namely, the system without disturbance (here the closed loop
performance should meet the open loop one to prove the correctness of the algorithm),
and after that the presence of perturbation case is examined. That disturbance is seen
as an exterior event that discards the system state from its trajectory at time instant
denoted tp.

From Figure 8(a), it is clear that the system has only one switching point at tc = 4.594
which is almost the same one found by the analytical solution.

We can also see that the control sequence is bang-bang in the closed loop and that
the final time tf = 7.323 is also the same as the analytical solution. It is clear from
Figure 8(b) that the system without perturbations in the closed loop reaches the target
at the same time of the open loop.
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Figure 8: Example 1 without perturbation.
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(b) System trajectory for the example 1 without
perturbation.

Figure 9: Example 1 with perturbation.
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(a) System trajectory for the example 1 with
perturbation on the first state.
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(b) Control sequence for the example 1 with per-
turbation on the first state.

5.4 Example for perturbed system

In this part, the system is perturbed at tp = 4s. We can see from Figure 9(b) that the
control sequence is still bang-bang but there is a change of the switching time.

It is clear from Figure 9(a) that the system is able to recover from the perturbation
and reaches the target faster for the case of this perturbation. In fact, the perturbation
signal on the first state has brought it closer to the target. This explains why tf < tfol .

Another simulation context could be verified. In fact, the system described by the
state space form in (39) is perturbed at tp = 4s, where x = [x1 − 2;x2 − 3].

We can see from Figure 10(b) that the control sequence is still bang-bang but the
system needs two switches to steer the system to the origin.

It is clear from Figure 10(a) that the system is able to recover from the perturbation
and reaches the target. In fact, the perturbation signal on the two states has made the
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Figure 10: Example 1 with perturbation on two states.
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final time tf bigger than the one without perturbation. Then the perturbation signal has
a direct effect on the final time tf .

6 Conclusion

In this paper, we focused on the problem of a minimum time control determination for
linear systems in both cases of control structures: an open loop and a closed loop con-
trol. The key of the developed method is the approximation of the dynamic equation of
the system under consideration using a complete basis of orthogonal functions and its
operational properties. We have opted for the use of the piecewise orthogonal functions:
block-pulse, Walsh and Haar wavelets. The results suggest that the proposed develop-
ment yields a new formulation of the optimization problem which is simpler than those
developed in the literature.

Other advantages of the proposed method include a better final time estimate and
fewer switches for high order systems. The developed algorithm was also tested for a
number of examples (i.e. SISO and MIMO systems), the results showed perfect agreement
with the exact analytic results, which ensures the availability of the proposed technique.
In the closed loop case, two algorithms were introduced to take into account the effects
of perturbations on the system. They are: an offline algorithm which, compared to open
loop results, has a great deterioration of results, and an online one which has a slight
deterioration of performances even with perturbations.

In future work, we expect to generalize the proposed approach to the synthesis of
minimum time control laws for nonlinear and fuzzy systems using state variable obser-
vation [20].
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Abstract: By using the theory of Moore-Penrose pseudoinverse operators, the nec-
essary and sufficient conditions for the solvability of a weakly nonlinear integral equa-
tion with a nondegenerate kernel are obtained. Equations for generating constants
are constructed. A connection between the necessary and sufficient conditions has
been established. The iterative procedure for finding a solution is proposed.
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1 Introduction

A lot of works are devoted to the investigation of different aspects of the theory of
linear and nonlinear integral, differential and integro-differential equations [1,2,8–10,12,
18, 19, 21]. A large part of such equations, in particular integral equations, belong to
the equations with not everywhere invertible operator and arise in different areas of the
natural science such as electrodynamics, mathematical physics, biology, economics and
others [11,22,24]. The application of the theory of pseudoinverse operators enabled us to
establish the conditions for the existence and the structure of solutions of such equations
in the case where the kernel of integral equation is degenerate [5–7,23,25]. In the present
paper, continuing the research mentioned above, we use one of possible approaches to
finding the necessary and sufficient conditions for the solvability of weakly nonlinear
integral equations with non-degenerate kernels and propose an algorithm for finding a
solution. The obtained theoretical results can be used to study mathematical models and
to create effective computational algorithms frequently encountered in applied research.
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2 Statement of the Problem.

We consider the weakly nonlinear integral equation

x(t)−
b∫
a

K(t, s)x(s)ds = f(t) + ε

b∫
a

K1(t, s)Z(x(s, ε), s, ε)ds. (1)

Our aim is to establish conditions for the existence of solution x = x(t, ε): x(·, ε) ∈
L2[a, b], x(t, ·) ∈ C[0, ε0], of equation (1), which turns into one of solutions x0(t, cr) of
the generating equation

x(t)−
b∫
a

K(t, s)x(s)ds = f(t) (2)

for ε = 0. In what follows, the solution x0(t, cr) is called a generating solution of the
nonlinear equation (1).

Here, K(t, s), K1(t, s) are square-summable kernels in [a, b] × [a, b], f ∈ L2[a, b],
x ∈ L2[a, b], Z(x(t, ε), t, ε) is the function nonlinear with respect to the first component
and such that

Z(·, t, ε) ∈ C1[‖x− x0‖ ≤ q], Z(x(·, ε), ·, ε) ∈ L2[a, b], Z(x(t, ·), t, ·) ∈ C[0, ε0], (3)

where q, ε0 are sufficiently small constants, ε << 1 is a small parameter.
As in [17], equation (1) can be reduced to a countably dimensional system of weakly

nonlinear algebraic equations. Let {ϕi(t)}∞i=1 be a complete orthonormal system of func-
tions in space L2[a, b]. Let us introduce into consideration the following notations:

xi(ε) =

b∫
a

x(t, ε)ϕi(t)dt, fi =

b∫
a

f(t)ϕi(t)dt, (4)

aij =

b∫
a

b∫
a

K(t, s)ϕi(t)ϕj(s)dtds, ãij =

b∫
a

b∫
a

K1(t, s)ϕi(t)ϕj(s)dtds, (5)

mi(ε) = mi(x1(ε), x2(ε), . . . , xi(ε), . . . , ε) =

b∫
a

Z(x(t, ε), t, ε)ϕi(t)dt. (6)

Then we pass from equation (1) to the countably dimensional system of weakly non-
linear algebraic equations

xi(ε)−
∞∑
j=1

aijxj(ε) = fi + ε

∞∑
j=1

ãijmj(ε), i = 1,∞, (7)

∞∑
j=1

|xj(ε)|2 < +∞,
∞∑
j=1

|mj(ε)|2 < +∞, ∀ε ∈ [0, ε0].

We rewrite system (7) in the following vector form:

Λz = g + εΛ1V (z(ε), ε), (8)
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where
z(ε) = col

(
x1(ε), x2(ε), . . . , xi(ε), . . .

)
∈ `2,

g = col
(
f1, f2, . . . , fi, . . .

)
∈ `2,

Λ =


1− a11 −a12 . . . −a1i . . .
−a21 1− a22 . . . −a2i . . .
. . . . . . . . . . . . . . .
−ai1 −ai2 . . . 1− aii . . .
. . . . . . . . . . . . . . .

 , Λ1 =


ã11 ã12 . . . ã1i . . .
ã21 ã22 . . . ã2i . . .
. . . . . . . . . . . . . . .
ãi1 ãi2 . . . ãii . . .
. . . . . . . . . . . . . . .

 ,

V (z(ε), ε) = col
(
m1(ε), m2(ε), . . . , mi(ε), . . .

)
∈ `2,

V (·, ε) ∈ C1[‖z − z0‖ ≤ q], V (z(·), ·) ∈ C[0, ε0].

The generating operator system for system (8) has the form

Λz = g. (9)

The following solvability condition is valid for system (9) [7, p. 57].

Theorem 2.1 The homogeneous system (9) (g = 0) possesses an r-parameter family
of solutions z ∈ `2

z(cr) = PΛr
cr, ∀cr ∈ Rr.

The inhomogeneous system (9) is solvable if and only if r linearly independent con-
ditions

PΛ∗
r
g = 0 (10)

are satisfied. In this case, the inhomogeneous system (9) possesses an r-parameter family
of solutions z ∈ `2

z(cr) = PΛrcr + Λ+g, ∀cr ∈ Rr. (11)

Here, PΛr
is a matrix composed of a complete system of r linearly independent

columns of the matrix orthoprojector PΛ, PΛ∗
r

is the matrix composed of a complete
system of r linearly independent rows of the matrix orthoprojector PΛ∗ and Λ+ is the
Moore–Penrose pseudoinverse matrix for the matrix Λ.

3 Necessary Condition for the Existence of Solution.

We now establish a necessary condition for the existence of solution z(ε) of system (8),
which turns into one of the generating solutions z(cr) of system (9) for ε = 0. The
solvability condition of system (8) has the form

PΛ∗
r
(g + εΛ1V (z(ε), ε)) = 0.

Taking into account (10), we obtain

PΛ∗
r
Λ1V (z(ε), ε) = 0. (12)

Since z(ε)→ z(cr) as ε→ 0, by using the conditions imposed on the nonlinear function
V (z(ε), ε), we pass to the limit as ε→ 0 in (12) and obtain a necessary condition for the
existence of solution of system (8)

PΛ∗
r
Λ1V (z(cr), 0) = 0. (13)



292 A.A BOICHUK, N.A. KOZLOVA AND V.A. FERUK

Thus, if system (13) has the root cr = c0r ∈ Rr, then c0r specifies the generating
solution z(c0r), which may correspond to the solution z(ε) of system (8). If system (13)
has no solutions, then system (8) also does not have the required solution. Here, we
speak about real solutions of system (13). We say that equation (13) is the equation for
generating constants c0r of the nonlinear system (8) [7]. The conditions of type (13) first
emerged in the theory of periodic boundary-value problems for the systems of ordinary
differential equations. In this case, the constants cr have physical meaning: they are
amplitudes of periodic solutions. Therefore, these equations are called the equations for
generating amplitudes [3, 13,20].

Theorem 3.1 Assume that the weakly nonlinear system (8) possesses a solution z(ε):

z(ε) ∈ `2, z(·) ∈ C[0, ε0],

which turns into the generating solution (11) with constant cr = c0r ∈ Rr for ε = 0.
Then the vector of constants c0r is necessarily a real root of the equation for generating
constants (13).

4 Sufficient Condition for the Existence of Solution

To establish sufficient conditions for the existence of solution, we perform the following
change of variables in system (8):

z(ε) = z(c0r) + y(ε),

where z(c0r) is the generating solution, c0r ∈ Rr is a real root of equation (13).
We seek the conditions for the existence of a solution y(ε),

y(ε) ∈ `2, y(·) ∈ C[0, ε0], y(0) = 0,

of the following system
Λy(ε) = εΛ1V (z(c0r) + y(ε), ε). (14)

By using the continuous differentiability of function V (z, ε) with respect to z in the
neighborhood of the generating solution, we separate the linear part in y and the zero-
order terms with respect to ε of function V (z(c0r) + y(ε), ε):

V (z(c0r) + y(ε), ε) = V (z0(c0r), 0) +A1y(ε) +R(y(ε), ε), (15)

where

V (z0(c0r), 0) ∈ `2, A1 = A1(c0r) =
∂V (z, 0)

∂z

∣∣∣∣
z=z(c0r)

, R(y(ε), ε) ∈ `2.

Here, we have

R(·, ε) ∈ C1(‖y‖ ≤ q), R(y(·), ·) ∈ C[0, ε0], R(0, 0) = 0,
∂R(0, 0)

∂y
= 0.

Thus, we consider the right-hand side of system (14) as an inhomogeneity. According to
Theorem 2.1, system (14) has a solution

y(ε) = PΛr
cr + ȳ(ε), ∀cr ∈ Rr, (16)
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ȳ(ε) = εΛ+Λ1V (z(c0r) + y(ε), ε).

The solvability condition of system (14) takes the form

PΛ∗
r
Λ1V (z(c0r) + y(ε), ε) = 0. (17)

We substitute expansion (15) in equality (17)

PΛ∗
r
Λ1(V (z0(c0r), 0) +A1y(ε) +R(y(ε), ε)) = 0.

In view of equation (13) and representation (16), we obtain

B0cr = −PΛ∗
r
Λ1(A1ȳ(ε) +R(y(ε), ε)), (18)

where B0 is the (r × r)-dimensional matrix of the form

B0 = PΛ∗
r
Λ1A1PΛr

. (19)

The algebraic system (18) is solvable if and only if the following condition

PB∗
0
PΛ∗

r
Λ1(A1ȳ(ε) +R(y(ε), ε)) = 0 (20)

is satisfied. If

PB∗
0
PΛ∗

r
Λ1 = 0, (21)

then equality (20) is always satisfied and system (18) possesses a solution.
Thus, we arrive at the following system of operator equations for finding the solution

of system (14)

y(ε) = PΛr
cr(ε) + ȳ(ε),

cr(ε) = −B+
0 PΛ∗

r
Λ1(A1ȳ(ε) +R(y(ε), ε)),

ȳ(ε) = εΛ+Λ1(V (z0(c0r), 0) +A1(PΛr
cr(ε) + ȳ(ε)) +R(y(ε), ε)).

(22)

Introducing a new variable u = col(y(ε), cr(ε), ȳ(ε)), we obtain the equation

u = Lu+ Fu, (23)

where

L =

0 PΛr
I

0 0 L1

0 0 0

 ,

L1 := −B+
0 PΛ∗

r
Λ1A1,

Fu :=

 0
−B+

0 PΛ∗
r
Λ1R(y(ε), ε)

εΛ+Λ1(V (z0(c0r), 0) +A1(PΛr
cr(ε) + ȳ(ε)) +R(y(ε), ε))

 .

Since the quasitriangular block matrix operator I − L always possesses the inverse
operator, equation (23) can be rewritten in the form

u = Su, S := (I − L)−1F. (24)
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The operator equation (24) belongs to the class of equations, which are solved with
the use of the method of simple iterations [4, 7, 13]. We obtain the following iterative
process for system (22).

The first approximation ȳ1(ε) to the element ȳ(ε) is obtained as a particular solution
of the equation

Λȳ1(ε) = εΛ1V (z(c0r), 0).

This solution exists due to the choice of constant c0r ∈ Rr from the equation for generating
constants (13) and has the form

ȳ1(ε) = εΛ+Λ1V (z(c0r), 0).

We set the first approximation y1(ε) to the solution y(ε) of system (14) equal to ȳ1(ε):

y1(ε) = ȳ1(ε).

The second approximation y2(ε) to y(ε) is obtained from the equation

Λy2(ε) = εΛ1(V (z0(c0r), 0) +A1(PΛrc
1
r(ε) + ȳ1(ε)) +R(ȳ1(ε), ε)). (25)

Equation (25) is solvable if and only if the following condition

B0c
1
r(ε) = −PΛ∗

r
Λ1(A1ȳ1(ε) +R(ȳ1(ε), ε)) (26)

is satisfied.
The solvability condition of equation (26) has the form

PB∗
0
PΛ∗

r
Λ1(A1ȳ1(ε) +R(ȳ1(ε), ε)) = 0. (27)

Under condition (21), equality (27) is satisfied and the first approximation c1r(ε) to
the parameter cr(ε) is obtained from equation (26)

c1r(ε) = −B+
0 PΛ∗

r
Λ1(A1ȳ1(ε) +R(ȳ1(ε), ε)).

The second approximation y2(ε) to y(ε) has the form

y2(ε) = PΛr
c1r(ε) + ȳ2(ε),

where
ȳ2(ε) = εΛ+Λ1(V (z0(c0r), 0) +A1(PΛrc

1
r(ε) + ȳ1(ε)) +R(ȳ1(ε), ε)).

The third approximation y3(ε) to y(ε) is obtained from the equation

Λy3(ε) = εΛ1(V (z0(c0r), 0) +A1(PΛr
c2r(ε) + ȳ2(ε)) +R(y2(ε), ε)). (28)

Equation (28) is solvable if and only if the following condition

B0c
2
r(ε) = −PΛ∗

r
Λ1(A1ȳ2(ε) +R(y2(ε), ε)) (29)

is satisfied.
The solvability condition of equation (29) has the form

PB∗
0
PΛ∗

r
Λ1(A1ȳ2(ε) +R(y2(ε), ε)) = 0. (30)
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Under condition (21), equality (30) is satisfied and the second approximation c2r(ε)
to the parameter cr(ε) is obtained from equation (29)

c2r(ε) = −B+
0 PΛ∗

r
Λ1(A1ȳ2(ε) +R(y2(ε), ε)).

The third approximation y3(ε) to y(ε) has the form

y3(ε) = PΛr
c2r(ε) + ȳ3(ε),

where

ȳ3(ε) = εΛ+Λ1(V (z0(c0r), 0) +A1(PΛr
c2r(ε) + ȳ2(ε)) +R(y2(ε), ε)).

Continuing the iterative process, we obtain the following procedure for finding y(ε):

ckr (ε) = −B+
0 PΛ∗

r
Λ1(A1ȳk(ε) +R(yk(ε), ε)),

ȳk+1(ε) = εΛ+Λ1(V (z0(c0r), 0) +A1(PΛr
ckr (ε) + ȳk(ε)) +R(yk(ε), ε)),

yk+1(ε) = PΛr
ckr (ε) + ȳk+1(ε), k = 0,∞,

y0(ε) = ȳ0(ε) = 0.

(31)

Hence, the following theorem is true.

Theorem 4.1 Assume that, under r linearly independent conditions (10), the gen-
erating system (9) for system (8) possesses an r-parameter family of solutions z(cr) ∈ `2
(11). Then, for each real value of vector cr = c0r ∈ Rr satisfying the equation for gener-
ating constants (13) and under the condition

PB∗
0
PΛ∗

r
Λ1 = 0,

system (8) possesses a solution z(ε) ∈ `2 continuous in ε, which turns into the generating
solution z(c0r) for ε = 0. This solution can be found from the following iterative process:

ckr (ε) = −B+
0 PΛ∗

r
Λ1(A1ȳk(ε) +R(yk(ε), ε)),

ȳk+1(ε) = εΛ+Λ1(V (z0(c0r), 0) +A1(PΛr
ckr (ε) + ȳk(ε)) +R(yk(ε), ε)),

yk+1(ε) = PΛr
ckr (ε) + ȳk+1(ε),

zk(ε) = z(c0r) + yk(ε), k = 0,∞,

y0(ε) = ȳ0(ε) = 0.

By using the obtained results for a countably dimensional system of weakly nonlinear
algebraic equations (8), we can make conclusions about the existence of solution of weakly
nonlinear integral equation (1). We achieve this using the approach applied in [17].

Assume that system (8) possesses at least one solution
z(ε) = col

(
x1(ε), x2(ε), . . . , xi(ε), . . .

)
. According to the Riesz–Fischer theorem,

xi(ε) are the Fourier coefficients for the element x = x(t, ε): x(·, ε) ∈ L2[a, b], x(t, ·) ∈
C[0, ε0]. Thus, the following representation is true:

x(t, ε) =

∞∑
i=1

xi(ε)ϕi(t) = Φ(t)z(ε), (32)
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where
Φ(t) =

(
ϕ1(t), ϕ2(t), . . . , ϕi(t), . . .

)
,

{ϕi(t)}∞i=1 is a complete orthonormal system of functions in L2[a, b].
By analogy with [14,15], we can conclude that the set of elements x(t, ε), defined by

the relation (32), is the required family of solutions of the original equation (1).
Hence, we can apply the results of Theorem 4.1 for system (8) to integral equation

(1).

Theorem 4.2 Assume that, under r linearly independent conditions (10), the gener-
ating equation (2) for equation (1) possesses an r-parameter family of solutions x(t, cr).
Then, for each real value of vector cr = c0r ∈ Rr satisfying the equation for generating
constants (13) and under the condition

PB∗
0
PΛ∗

r
Λ1 = 0,

equation (1) possesses a solution x = x(t, ε): x(·, ε) ∈ L2[a, b], x(t, ·) ∈ C[0, ε0], which
turns into the generating solution x0(t, cr) for ε = 0. This solution can be found by using
the convergent iterative process

ckr (ε) = −B+
0 PΛ∗

r
Λ1(A1ȳk(ε) +R(yk(ε), ε)),

ȳk+1(ε) = εΛ+Λ1(V (z0(c0r), 0) +A1(PΛr
ckr (ε) + ȳk(ε)) +R(yk(ε), ε)),

yk+1(ε) = PΛr
ckr (ε) + ȳk+1(ε),

zk(ε) = z(c0r) + yk(ε),

xk(t, ε) = Φ(t)zk(ε), k = 0,∞,
y0(ε) = ȳ0(ε) = 0.

(33)

Remark 4.1 If the condition PB0
= 0 is satisfied, then, according to the Fredholm

property of index zero of matrix B0, we obtain PB∗
0

= 0 and condition (21) is automati-

cally satisfied. In this case detB0 6= 0 and in the iterative process (33) instead of B+
0 it

will be B−1
0 .

Remark 4.2 In the case, where K(t, s) = 0, f(t) = 0, ε = 1, K1(t, s) is a piece-
wise continuous, symmetric, positive-definite kernel, the results introduced in this paper
coincide with the results established in [14].

Example 4.1 To illustrate the proposed procedure for the analysis of integral equa-
tion of the form (1), we consider the integral equation

x(t)− 2

π

π∫
0

sin(t+ s)x(s)ds = sin t− cos t+

+ ε

π∫
0

cos t sin s
(
π(2− ε2)− 4(2 + 3ε2)x(s) + 3πεx2(s)

)
ds (34)

and the generating equation

x(t)− 2

π

π∫
0

sin(t+ s)x(s)ds = sin t− cos t. (35)
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Let us consider the orthonormal functions ϕ1(t) = 1√
π

(sin t + cos t) and ϕ2(t) =
1√
π

(sin t− cos t), which are eigenfunctions of the operator

(Kw)(t) =
2

π

π∫
0

sin(t+ s)w(s)ds,

and correspond to the characteristic numbers λ1 = 1 and λ2 = −1, respectively.
We reduce equations (34) and (35) to equations (8) and (9). By using the introduced

notation (4)-(6), we obtain

Λz = g + εΛ1V (z(ε), ε), (36)

Λz = g, (37)

Λ =

(
0 0
0 2

)
, z =

(
x1

x2

)
, g =

(
0√
π

)
, Λ1 =

π

4

(
1 1
−1 −1

)
, (38)

x1 =
1√
π

π∫
0

x(t)(sin t+ cos t)dt, x2 =
1√
π

π∫
0

x(t)(sin t− cos t)dt,

V (z(ε), ε) = 2
√
π(2− ε2)

(
1
1

)
− 4(2 + 3ε2)

(
x1

x2

)
+

2ε√
π

(
5x2

1 + 2x1x2 + x2
2

x2
1 + 2x1x2 + 5x2

2

)
.

By using the well-known formulas [7, p. 48], [16, p. 501], we get

Λ+ =

(
0 0
0 1

2

)
, PΛ = PΛ∗ =

(
1 0
0 0

)
. (39)

Taking into account (38), (39), it is easy to see that the condition for the solvability
(10) is satisfied in this case. According to Theorem 2.1, system (37) possesses a solution

z(cr) =

(
cr√
π

2

)
, ∀cr ∈ R,

and equation (35) has a solution

x(t, cr) =

(
cr√
π

+
1

2

)
sin t+

(
cr√
π
− 1

2

)
cos t. (40)

In the case, the necessary condition for the existence of a solution z(ε) of system (36),
which turns into one of the generating solutions z(cr) of system (37) for ε = 0, takes the
form

PΛ∗
r
Λ1V (z(cr), 0) =

π

4

(
1 0

)( 1 1
−1 −1

)(
m1(0)
m2(0)

)
=

=
π

4
(m1(0) +m2(0)) = 2π

(√
π

2
− cr

)
= 0. (41)

Equation (41) possesses the unique solution c0r =
√
π

2 that specifies the generating solution
z(c0r), which may correspond to the solution z(ε) of system (36).
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We now establish a sufficient condition for the existence of a solution of system (36).
For this purpose, we perform the following change of variables:

z(ε) := z(c0r) + y(ε), (42)

where

z(c0r) =

√
π

2

(
1
1

)
(43)

is the generating solution of system (36).
System (14) for definition y(ε) takes the form

Λy(ε) = εΛ1V (z(c0r) + y(ε), ε), (44)

where the matrices Λ, Λ1 have the form (38) and

V (z(c0r) + y(ε), ε) = 4
√
π(ε− 2ε2)

(
1
1

)
−

−4

(
3ε2 − 3ε+ 2 −ε

−ε 3ε2 − 3ε+ 2

)(
y1(ε)
y2(ε)

)
+

2ε√
π

(
(y1(ε) + y2(ε))2 + 4y2

1(ε)
(y1(ε) + y2(ε))2 + 4y2

2(ε)

)
.

That is, in this case

V (z0(c0r), 0) = 0, A1 = −8

(
1 0
0 1

)
, (45)

R(y(ε), ε) = 4
√
π(ε− 2ε2)

(
1
1

)
+

+4ε

(
3− 3ε 1

1 3− 3ε

)(
y1(ε)
y2(ε)

)
+

2ε√
π

(
(y1(ε) + y2(ε))2 + 4y2

1(ε)
(y1(ε) + y2(ε))2 + 4y2

2(ε)

)
.

According to (19), (38), (39), (45), we obtain

B0 = PΛ∗
r
Λ1A1PΛr = −2π

(
1 0

)( 1 1
−1 −1

)(
1 0
0 1

)(
1
0

)
= −2π.

Thus,

B+
0 = B−1

0 = − 1

2π
, PB0

= PB∗
0

= 0

and sufficient condition (21) for the existence of solution of system (36) is satisfied.
After appropriate calculations, we obtain that under condition (21), system (44) is

equivalent to the system

cr(ε) =
√
π(ε− 2ε2) +

1

2
(4ε− 3ε2)y1(ε) +

3ε

2
√
π

(y1(ε))2,

ȳ1(ε) = ȳ2(ε) = y2(ε) = 0, y1(ε) = cr(ε).

(46)

In this case, algorithm (31) takes the form

ckr (ε) =
√
π(ε− 2ε2) +

1

2
(4ε− 3ε2)yk1 (ε) +

3ε

2
√
π

(yk1 (ε))2,

ȳk+1
1 (ε) = ȳk+1

2 (ε) = yk+1
2 (ε) = 0, yk+1

1 (ε) = ckr (ε), k = 0,∞,
y0

1(ε) = y0
2(ε) = ȳ0

1(ε) = ȳ0
2(ε) = 0.

(47)
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Convergence of the method of simple iterations (47) can be estimated by the method
of Lyapunov majorants [3, 13]. The majorizing system for system (46) takes the form

v = U(v, ε) =
√
π(ε− 2ε2) +

1

2
(4ε− 3ε2)v +

3ε

2
√
π
v2,

ū1 = ū2 = u2 = 0, u1 = v.

To estimate the range of convergence for ε of the iterative process (47), we construct
the system

v = U(v, ε), 1− ∂U

∂v
= 0.

This system possesses a real positive solution

ε∗ = −1

3
(2−

√
10) ≈ 0, 3874, v∗ = −

√
π

3
(2−

√
10) ≈ 0, 6867.

Hence, system (36) has a solution z(ε) in a neighborhood of ε = 0, which turns into
the generating solution z(c0r) for ε = 0. This solution can be found by the use of iterative
process (47) convergent for ε ∈ [0, ε∗] and equality (42).

We construct the first few approximations of the iterative process by scheme (47)

y1
1(ε) = 0,

y2
1(ε) =

√
π(ε− 2ε2),

y3
1(ε) =

√
π(ε− 4ε3 − 3ε4 + 6ε5),

y4
1(ε) =

√
π

2
(2ε− 16ε4 − 24ε5 + 15ε6 + 66ε7 + 72ε8 − 117ε9 − 108ε10 + 108ε11).

(48)

As we see, the constructed approximate solutions in the neighborhood of ε = 0 lead
to the vector

y∗(ε) =

(√
πε

0

)
. (49)

One can easily verify by substitution that this vector is a solution of equation (44).
Deviation of approximations (48) from the exact solution (49) is represented in the table.

Table 1: Approximation accuracy constructed by the method of simple iteration (47)

ε |y∗1(ε)− y1
1(ε)| |y∗1(ε)− y2

1(ε)| |y∗1(ε)− y3
1(ε)| |y∗1(ε)− y4

1(ε)|
0,3874 0,686648 0,532015 0,439177 0,375906
0,3000 0,531736 0,319042 0,208653 0,142307
0,2000 0,354491 0,141796 0,061823 0,027792
0,1000 0,177245 0,035449 0,007515 0,001611
0,0100 0,017725 0,000354 0,000007 0,000000

Thus, according to (42) and (49), the solution z∗(ε) of system (36), which turns, for
ε = 0, into the generating solution (43) of system (37), has the form

z∗(ε) =

√
π

2

(
1 + 2ε

1

)
.
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And, according to Theorem 4.2, the solution of equation (34) takes the form

x(t) = (ε+ 1) sin t+ ε cos t. (50)

It is easy to see that solution (50) is transformed, for ε = 0, into the generating solution

(40) with a constant c0r =
√
π

2 . The constant c0r =
√
π

2 is the root of the equation for
generating constants (41).

5 Conclusion

We considered the weakly nonlinear integral equation of the Hammerstein type in space
L2[a, b] with a parameter. The problem of existence and construction of solutions, which
turn into one of solutions of the generating equation for zero value of the parameter, is
investigated. The equation for generating constants is obtained and it is shown that for
the existence of the required solution it is necessary that this equation possesses at least
one real root. Sufficient conditions for the existence of such a solution are obtained and a
constructive algorithm for its finding is proposed. An illustrative example is given. The
obtained results are also valid for the case of weakly nonlinear Fredholm boundary-value
problems for integral equations.
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Abstract: In this paper we use a matrix approach to investigate the distribu-
tion of particles in nucleation coalescence models with discrete lattices, both in
the irreversible coagulation case and in the reversible one. In the irreversible case
(A + A → A), the evolution of the particle distribution is described by means of a
simple recursive procedure. In two particular cases the model is analytically solv-
able: with high density and particles that always fuse into one, and in the case of
constant density. In the reversible case (A+A 
 A) offspring production is allowed,
and the system can reach a stationary distribution, which is jointly calculated with
the equilibrium density. The particular case, in which meeting particles react with
probability one, admits an exact solution.

Keywords: coalescence models; Markov chain; exponential matrix; Poisson distri-
bution; phase transition.
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1 Introduction

In the last decades, diffusion-controlled coalescence processes have attracted much re-
search interest [1], [2], [3], [4], [5], [6] (see [7] and [8] for literature reviews). The models
of these processes are applied to the analysis of phenomena involving particles in a solid,
chemical species which randomly hop and react with adjacent ones, or non-equilibrium
processes ranging from fluorescence to explosions. This kind of models is increasingly
being used in biology, chemistry, genetics, sociology or finance, see [9], [10], [11] and [12],
in which variations of the Ising model are used. We apply a simple matrix approach
to the analysis of one-dimension coalescence models that usually require sophisticated
mathematical tools (or Monte-Carlo simulations) to be solved.

∗ Corresponding author: mailto:oscar.gutierrez@uab.es

c© 2019 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua302

mailto: oscar.gutierrez@uab.es
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (2) (2019) 302–312 303

In one-dimension diffusion-limited reactions, the reaction time is much shorter than
the diffusion time, so it is often assumed to be instantaneous. The physical system has
a high number of particles, which can nucleate, and the distances between particles in a
nucleus are negligible if compared to the distances between nuclei, which do not interact.
The attractive interaction between particles is small, so the particles can diffuse into
neighbor regions. Lastly, the energy of nucleated particles is very small, so reactions
among the particles are neglected. Then, it is sensible to model the physical system
by means of a discrete lattice where separate cells (sites) contain an integer number
of particles. Two different situations can be considered: (i) In the case of irreversible
coagulation, A+A→ A, the particle input is not allowed and particles diffuse until two of
them meet and fuse (or not) into one. The fusion happens with some probability k, which
reflects the fact that reactions are not necessarily instantaneous (k = 1 means that the
reaction occurs instantaneously). (ii) If the back reaction is possible, particles can give
birth to another particle (offspring production, A→ A+A). In the reversible coalescence
process, A + A 
 A, the system can reach an equilibrium state, often characterized by
the existence of a phase transition. Some well-known results in low-dimension diffusion-
limited reaction models are: (i) the mean-field approximation for reaction kinetics breaks
down (in the mean-field approximation, the particle density goes with the inverse of
time, ρ ∼ t−1, a dependence derived from the dynamics equation dρ/dt ∝ ρ2); (ii) in the
irreversible case (coagulation), the system is temporarily described by the classical limit;
but in the long-time regime, when the mean distance between particles is very large, it
follows a diffusion limited decay, with ρ ∼ t−1/2 ; (iii) the one-dimensional single-species
reversible reaction, A+A
 A, is characterized by a second-order phase transition.

In this paper we use a one-dimensional discrete model to derive the particle distri-
bution in two nucleation models: the irreversible coalescence model, and the reversible
model with back reaction. J. C. Lin [3] also uses a discrete formalism, but centers his
attention on the time-dependent probability that an interval with n sites is empty at
time t, and Doering and Ben-Avraham [2] use the same interparticle distribution func-
tion in continuous formalism. Instead of analyzing the interparticle distribution as in [2]
and [3], we propose a simple matrix approach to calculate the occupation probabilities
and the particle density. The method offers a description of the system where the particle
distribution can be obtained, valid whenever the particle density is not too low. This is
so since we implicitly neglect spatial correlations (so, in particular, the occupation num-
bers in adjacent sites are uncorrelated). In the irreversible case, in which the number of
particles never increases, we describe the occupation dynamics (which represents a non-
equilibrium state unless k = 0). In the two particular cases of high density with k = 1,
and non-reacting particles (k = 0, the number of particles does not vary) the steady state
distribution is given in closed-form. In the reversible case, the particle input is allowed,
we describe the stationary distribution. In the particular case, where particles always
react (k = 1), the model is solved in closed-form. The appearance of a phase transition
is predicted.

A matrix approach to systems of interacting particles with random dynamics is al-
ready used in [13], but applied to different phenomena (the authors analyze the one-
dimensional fully asymmetric exclusion model, where the particles hop in a preferred
direction with hard core interactions). J.M. Cushing [14] also applies a matrix approach
to analyze a bifurcation phenomenon for a class of nonlinear matrix models, describing
the evolutionary dynamics of a structured population.

Section 2 presents a simple coalescence model where the particle input is forbidden, so



304 O. GUTIÉRREZ

the number of particles cannot increase. We analytically show some results derived in [15]
by means of Monte-Carlo simulations. In Section 3, the particle input is allowed. The
equilibrium distribution is obtained, and the appearance of a dynamic phase transition
is analyzed. Section 4 summarizes the paper results and concludes.

2 Irreversible Coagulation: A+A→ A

Consider a system with N identical particles located in a lattice containing L identical
sites. The initial distribution can be approximated by a Poisson one with the parameter
ρ = N/L. The choice is natural: if each particle initially occupies a site chosen at
random, the occupation number (the random number of particles in an arbitrary site)
follows a binomial distribution, which tends to the Poisson one as N and L tend to +∞.
Particles leap from one site to an adjacent one. Then, the reaction can take place (with
probability k) or not, which reflects that reactions are not instantaneous. If the reaction
takes place, the number of particles in the system decreases by one unity; the occupation
number in the former site of the leaping particle is one unit less; and the site, where
the particle leaps, has the same occupation number since the reaction takes place and
one particle disappears. If the reaction does not take place, the particle just changes its
location, so the number of particles in the system remains the same. The model is more
complex than the hard-core model, where sites can be occupied by only one particle,
see [15]. [8] offers a simple explanation of why a particle in a many-particle quantum
system can behave as a classical object that occasionally hops from one lattice cell to
another.

The interval of time between two leaps is assumed to be the inverse of the number of
particles: δt = 1/N(t). We center our attention on the number of particles in a represen-
tative site, and calculate the transition probabilities associated to the representative site.
The transition probabilities are put in an infinite matrix that resembles a Markov chain
matrix (see the matrix below). However, probabilities depend on time since N varies
with time, so we must notice that, strictly speaking, it is not a Markov chain unless
k = 0 (N remains then constant). In spite of this limitation, we use the Markov chain
formalism to describe the particle distributions in discrete one-dimensional coagulation
systems. The transition matrix at time t is

M ≡ (M j
i )i,j=0,1,2,...,N = (Iji )i,j=0,1,2,...,N + (Aji )i,j=0,1,2,...,N (1)

with (Iji )i,j=0,1,2,...,N being the identity matrix and (Aji )i,j=0,1,2,...,N=

=



− 1
L

1
L 0 0 0 ...

1
N − 1

N −
1
L (1− k) 1

L (1− k) 0 0 ...
0 2

N − 2
N −

1
L (1− k) 1

L (1− k) 0 ...
0 0 3

N − 3
N −

1
L (1− k) 1

L (1− k) ...
0 0 0 4

N − 4
N −

1
L (1− k) ...

...
...

...
...

...
...


.

Stricto sensu, matrix M has finite dimension. However, given that the number of
particles is very large, matrix M can be thought of as defined in RN with N → +∞, a
vector space of infinite dimension, and the particle distribution can be taken as a Poisson
one. The master equation of the system can be obtained from the transition matrix (1).
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As in any stochastic matrix, the sum of elements in a row is equal to one. We observe
that transitions can only occur to adjacent sites; the transition matrix is then systolic,
like all the transition matrices in the paper. The probability that a site with j(≥ 1)
particles turns to be occupied by j+ 1 particles when the system contains N(t) particles
is equal to Pj→j+1 ≡ M j+1

j = (1/L)(1− k), independently of N , while the probability

of remaining with j particles is Pj→j ≡M j
j = 1− j/N − (1/L)(1− k). Next, we explain

how the diagonal element (j, j) in matrix M (with j ≥ 1) is obtained. Let us look at the
adjacent elements: on the one hand, if the representative site has j particles at time t,
the element (j, j − 1) in matrix M , denoted by M j−1

j , which represents the probability
associated to the event ”the site will have j − 1 particles at t + δt”, is equal to j/N ;
this means that one of the j particles in the site is the one which hops between t and
t+ δt. On the other hand, the site can be occupied by j+ 1 particles after the next hop.
Taking into account that a particle can hop from any adjacent site, and that a particular
particle hops with probability 1/N , the probability that an additional particle will occupy

the site considered is M j+1
j = 1−k

N [0.5
∑N
j=1 jP (j) + 0.5

∑N
j=1 jP (j)] = 1−k

N ρ = 1−k
L .

Consequently, for j ≥ 1, the element (j, j) in M must be M j
j = 1− j/N − (1/L)(1− k).

By means of the transition matrix M in (1) we obtain the evolution of the particle
distribution, from which we calculate the particle density: the product of the initial
distribution (a vector) by the time-dependent matrices (written in terms of N(t)) gives
us the particle distribution across time (a vector), and its scalar product with vector

(0,1,2,3,...) gives us the particle density ρ(t) =
∑N
j=1 jP (j) , which changes with time.

The distributions are written in terms of N (or, alternatively, ρ), and are readily obtained
by a simple recursive procedure. The evolution of the density and particle distribution
can be explicitly written in terms of time by using the fact that δN(t) = −k((1− P (0))
and δt = 1/N(t). The method works when the particle density is not very low. In
the long-time regime, however, the mean distance between particles is very large, so the
occupation numbers are low and not independent of the occupation numbers of adjacent
sites. So, correlations between the number of particles in adjacent sites are not negligible,
which is confirmed by the well-known dynamics corresponding to the long-term regime,
see [15], [16]. Consequently, the method proposed does not work in the long-run and in
general with very low densities.

The numerical experiments performed by implementing the recursive method based
on matrix M show that the time-dependent particle distribution quickly departs from
the initial Poisson distribution (unless the reaction constant k is very low). In partic-
ular, the proportion of empty sites, P (0), is well below the Poisson probability, while
P (j ≥ 1) can be greater or lower than its Poisson counterpart, depending on the partic-
ular values of k, ρ and j. Let us check it for the two first probabilities. Recall that the
first three probabilities of a Poisson distribution are: PPOI(0) = e−ρ , PPOI(1) = ρe−ρ,
PPOI(2) = ρ2e−ρ/2!. Let us denote by P (j|X) the probability that the representative
cell has j particles when the system has X particles. If the system initially contains N
particles, after the first iteration the probability of null occupation remains unchanged,
P (0|N − δN) = PPOI(0|N). However, in expectation the number of particles has de-
creased (from N to N − δN), so the density has also decreased (in expectation). This
implies that the Poisson distribution overestimates the true probability of null occupa-
tion (so, there are more occupied cells actually than the Poisson pattern establishes). For
P (1), however, we obtain P (1|N − δN) = PPOI(1|N) + kρe−ρ/L, so in this case the true
probability P (1|N − δN) can be above or below the Poisson one, PPOI(1|N − δN) (ob-
serve that ρe−ρ is not a monotone function of ρ). In general, the deviation of P (j ≥ 1)
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from the Poisson case has not a definite sign. For a typical parameter configuration,
k=0.5, L = 105 and N(0) = 3L, for ρ = 1.5 we obtain P (0)=0.179, P (1)=0.391 and
PPOI(0)=0.223, PPOI(1)=0.335, in concordance with the explanation above. These re-
sults are in excellent agreement with the Monte-Carlo simulations of Figs. 1 and 2 in [15].

In two particular cases the particle distribution admits a closed-form solution.

Case 1: ρ � 1 and k = 1: density is high and particles always react fusing into one.
Next, we show that the particle distribution obeys a Poisson distribution as long as
density remains high (say, above 5). Obviously, in the distant future, inequality ρ � 1
will not hold since the number of particles decreases with time, and the approximation
then fails. The proof resembles that in [17], where in a different context the authors first
calculate the infinitesimal generator of the transition, and then derive the equilibrium
condition of the system and the steady-state probability distribution. Condition ρ � 1
implies P (0) ≈ 0, so N diminishes in one unity every time step with probability close to
one (recall that k = 1), and the transition probability P0→1 can be neglected. Then, the
transition matrix M reduces to

M = (Iji ) + 1
N



0 0 0 0 0 ...
1 −1 0 0 0 ...
0 2 −2 0 0 ...
0 0 3 −3 0 ...
0 0 0 4 −4 ...
...

...
...

...
...

...


, so the transition matrix can be ex-

pressed as M = I + Gδt, with I being the identity matrix, G being the infinitesimal
generator of the transition, and 1/N=δt being the time step. Next, we calculate the
exponential matrix exp(GT ). It corresponds to the finite transformation corresponding
to the time interval T , and gives the solution to the Kolmogorov forward equation when
applied to the initial distribution vector. Time T is the sum of incremental time intervals:

T=
∑
δt=

∑N(T )
N=N(0) 1/N ≈

∫ N(T )

N(0)
(1/x)dx=ln(N(0)/N(T )). The matrix exp(GT ) is cal-

culated by diagonalizing G, which can be expressed as G = PDP−1, where D represents
the diagonal matrix constructed with the eigenvalues of G, D=diag (0,−1,−2,−3, ...),
and P is constructed with the eigenvectors of G. The eigenvectors form a basis under
which G becomes diagonal and are obtained (up to constants) by solving a system of
linear equations, whose solution gives us a possible choice for matrix P . We choose the
basis written in terms of the binomial coefficients, (P )ji =

(
i
j

)
≡ i!

j!(i−j)! . The inverse

matrix is given by (P−1)ji = (−1)i+j
(
i
j

)
. The exponential matrix is then written as

exp(GT ) = P exp(DT )P−1 with

P =



1 0 0 0 0 ...
1 1 0 0 0 ...
1 2 1 0 0 ...
1 3 3 1 0 ...
1 4 6 4 1 ...
...

...
...

...
...

...


, P−1 =



1 0 0 0 0 ...
−1 1 0 0 0 ...
1 −2 1 0 0 ...
−1 3 −3 1 0 ...
1 −4 6 −4 1 ...
...

...
...

...
...

...


,
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exp(DT )=



1 0 0 0 0 ...
0 α 0 0 0 ...
0 0 α2 0 0 ...
0 0 0 α3 0 ...
0 0 0 0 α4 ...
...

...
...

...
...

...


, where α :=exp(−T ).

Finally, performing the product of the three matrices above we obtain

exp(GT )=


1 0 0 0 0 ...

1− α α 0 0 0 ...
1− 2α+ α2 2α− 2α2 α2 0 0 ...

1− 3α+ 3α2 − α3 3α− 6α2 + 3α3 3α2 − 3α3 α3 0 ...
...

...
...

...
...

...

.

The element j of the first column in exp(GT ) obeys the form
∑j
i=0

(
j
i

)
(−1)iαi, with

j ≥ 0. The element j in the second column obeys the form
∑j
i=1 j

(
j−1
i−1
)
(−1)i+1αi, with

j ≥ 1, et cetera. The (matrix) product of the initial distribution vector and exp(GT )
gives the particle distribution at T , valid whenever k=1 and ρ is high. We can show
that if the initial distribution follows a Poisson distribution with parameter ρ(0), the
time-dependent distribution of particles follows a Poisson distribution with parameter
ρ(t). Let us check it for the two first probabilities of the distribution. Consistently with
the Poisson assumption, we take N → +∞:

P (0) =
∑∞
j=0 PPOI(j)

∑j
i=0

(
j
i

)
(−1)iαi [making −α ≡ β]

=
∑∞
j=0 e

−ρ0(ρ0
j/j!)

∑j
i=0

(
j
i

)
βi =

∑∞
i=0 β

ie−ρ0
∑∞
j=i(ρ0

j/j!)
(
j
i

)
=e−ρ0

∑∞
i=0(βi/i!)

∑∞
j=i

ρj0
(j−i)! =e−ρ0

∑∞
i=0 (βi/i!)ρi0e

ρ0

=
∑∞
i=0 (βi/i!)ρi0 = eρ0β .

Recalling that β := −α= −exp(−T ) =−N(T )/N(0), we finally obtain
P (0) =exp(−ρ(t)). Similarly we obtain P (1):

P (1) =
∑∞
j=0 PPOI(j)

∑j
i=1 j

(
j−1
i−1
)
(−1)i+1αi = (−1)

∑∞
j=1

je−ρ0ρ0
j

j!

∑j
i=1β

i (j−1)!
(i−1)!(j−i)!

=−e−ρ0
∑∞
i=1

ρi0β
i

(i−1)!
∑∞
j=i

ρj−i0

(j−i)! =−
∑∞
i=1

ρi0β
i

(i−1)! = −ρ0βeρ0β = ρ(t)e−ρ(t).

The rest of probabilities, P (j ≥ 2), are similarly obtained and correspond to a Poisson
distribution of parameter ρ. In [15], the authors use Monte-Carlo simulations to show
that the particle distribution is sensibly described by means of a Poisson distribution (of
parameter equal to the system density) when densities are high. We have shown this
result analytically.

Case 2: k=0 (particles never react, so N(t)=N). Now the transition matrix (1) is
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(M j
i ) = (Iji ) +



− 1
L

1
L 0 0 0 ...

1
N − 1

N −
1
L

1
L 0 0 ...

0 2
N − 2

N −
1
L

1
L 0 ...

0 0 3
N − 3

N −
1
L

1
L ...

0 0 0 4
N − 4

N −
1
L ...

...
...

...
...

...
...


.

The stationary distribution corresponds to the eigenvector with eigenvalue 1. Solving
the system of equations xM = x we obtain: δ1 = ρδ0, δ2 = ρδ1/2, δ3 = ρδ2/3, ...,
δj = ρδj−1/j and so on. Then, δj = ρjδ0/j!. Condition

∑
P (j) = 1 implies that

δ0
∑∞
j=0 ρ

j/j! = 1, so δ0=exp(−ρ): the stationary distribution is a Poisson one with
parameter ρ = N/L, the constant density. The result is independent of the initial
distribution. So, if the system initially follows a Poisson distribution, particles merely
diffuse, and the particle distribution remains; otherwise, the particle distribution evolves
over time towards the Poisson one.

3 Reversible Coalescence: A+A
 A

In this section we consider that particles can give birth to another particle at rate λ: in
the time interval between t and t+ δt any particle will give birth to a new particle with
probability λδt. Then both the offspring production (A → A+A) and the coagulation
processes (A+A→ A) coexist. We assume that the new particle stays in the same site
as the generating one, in contrast with [3], where the new particle appears in an adjacent
site (an assumption made for the sake of tractability in order to make the model solvable).
We also assume that the particle born does not react (this is assumed without lost of
generality, as parameter λ can be redefined to account for the situation where the new
particle can react). We impose that inequality λ < k must hold; otherwise, the number
of particles would increase without boundary. As the time step is inversely related to
the current number of particles in the system, δt = 1/N , the probability that a given
particle gives birth to a new particle between t and t+ δt is λ/N . The disappearance of
one particle between t and t+δt occurs if a particle hops in such time interval and reacts.
So, the probability associated to the disappearance of an arbitrary given particle in the
interval δt is k/N if it jumps to a non-empty site, and 0 otherwise. In the stationary
state, Peq(0) is calculated by imposing that the number of particles in the system does
not change in expectation: E(δN)=λNδt− (1− Peq(0))k=λ− (1− Peq(0))k = 0, where
the minuend represents the probability of birth of a new particle in the interval (t, t+δt),
and the subtrahend represents the probability of disappearance of some particle in the
same interval (a hopping particle arrives at a non-empty site and reacts). Then, at
equilibrium, the probability associated to an empty site is P (0) = 1 − λ/k with λ < k.
The transition matrix is now

M ≡ (Iji ) + (Bji ) (2)

with (Iji ) being the identity matrix and (Bji ) =
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=



− 1
L

1
L 0 0 ...

1
N − 1

N −
1
L (1− k + λ/ρ) 1

L (1− k + λ/ρ) 0 ...
0 2

N − 2
N −

1
L (1− k + 2λ/ρ) 1

L (1− k + 2λ/ρ) ...
0 0 3

N − 3
N −

1
L (1− k + 3λ/ρ) ...

0 0 0 4
N ...

...
...

...
...

...


.

The stationary particle distribution corresponds to the eigenvector with eigenvalue
1. By solving the system of equations xM = x, with M being the matrix given in
(2), we obtain the following recursive relation: P (1) = ρP (0), P (2) = (ρ/2)(1 − k +
λ/ρ)P (1), ..., P (j) = (ρ/j)[1−k+(j−1)λ/ρ]P (j−1), with P (n) denoting the probabilities
of the stationary distribution; the equilibrium density, ρeq, is still to be determined.
Disentangling the recursive relation, the general term of the succession can be written as
P (j ≥ 2) = P (0)(ρj/j!)

∏j−1
n=1(1− k + nλ/ρ).

Finally, ρeq is obtained by imposing that the sum of probabilities is one. We must
observe that the system can reach an arbitrarily high population even though the birth
rate is below the nucleation rate (λ < k).

A particular case deserves attention. If k = 1 (meeting particles always react and
fuse into one), we obtain an exact solution. Let us see it. The computation of P (j ≥ 2)
reduces to

P (j ≥ 2) = P (0)(ρj/j!)

j−1∏
n=1

(nλ/ρ) = ρP (0)λj−1/j.

The equilibrium density is calculated as follows:

1 =

∞∑
j=0

P (j) = 1− λ+ ρ(1− λ) +

∞∑
j=2

P (j) =

= (1 + ρ)(1− λ) + (P (1)/λ)(

∞∑
j=1

λj/j − λ) =

= (1 + ρ)(1− λ) + (P (1)/λ)

∞∑
j=1

λj/j − P (1).

Taking into account the fact that P (1) = ρP (0) = ρ(1− λ) and that∑∞
j=1 λ

j/j = λ+ λ2/2 + λ3/3 + ... = −ln(1− λ) if λ < 1, we finally obtain:

ρeq =
λ2

(1− λ)[−ln(1− λ)]
. (3)

This equilibrium density is a positive number that can be above 1 (if λ > 0.606)
or below 1 (if λ < 0.606). The quantity −ln(1 − λ), denoted by ρ∗ henceforth, is
necessarily smaller than ρeq (inequality ρ∗ < ρeq is easily shown using the fact that
−ln(1− λ) = λ+ λ2/2 + λ3/3 + ... ). This inequality is relevant later on.

The particular case k = 1 (which leads to (3)) is not as restrictive as it may seem,
since the condition k < 1 represents that reactions are not instantaneous, so time can be
re-scaled to kt. Then we can also re-scale the birth rate λ (changing it to λ/k) to have a
model similar to the previous one. After re-scaling, the simpler model (k = 1) gives a good
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approximation to ρeq when k < 1. Both models are not mathematically identical, but

qualitatively similar. The approximation ρeq =
(λ/k)2

(1− (λ/k))[−ln(1− (λ/k))]
obtained

from (3) is very good if the ratio λ/k is small.
An apparent paradox arises: both ρ(t) and Pt(0) can be increasing functions of time.

Consider, for example, L = 105, N = 0.7 × 104, k = 1 and λ = 0.5; then ρ(t) increases
from ρ(0) = 0.7 to ρeq = 0.7213 and P (0) increases from P0(0)=e−ρ(0) = 0.4966 to
Peq(0) = 1 − λ = 0.5. Can both the density and the number of empty sites simultane-
ously increase? The answer is affirmative. The paradox is not such since the particle
distribution follows a Poisson one only at t = 0, but in equilibrium the system has more
empty sites than in the Poisson case (oppositely to the irreversible model, A+A→ A).
A distinguishing feature of the model is that the particle density does not necessarily
evolve monotonically towards the equilibrium. This fact is related to the existence of a
kinetic phase transition. Let us see it.

At any time t, the system density decreases if the birth rate λ is smaller than the
disappearance rate kC(t), with C(t) ≡ 1− P (0) being the system concentration. Take
k = 1 and assume ρ0 = ρeq for simplicity, with ρeq given in (3). At t = 0, the density
decreases if λ < kC(t) = 1 − e−ρ0 ; recall that k = 1 and the initial distribution is a
Poisson one. Inequality λ < 1− e−ρ∗ is equivalent to −ln(1− λ) < ρ∗, which necessarily
holds because ρ∗ ≡ −ln(1− λ) is smaller than ρeq (see above). So, starting at ρ0 = ρeq,
the density initially decreases and then increases (towards ρeq). In the case where ρ0 is
below ρ∗, the density initially increases instead, since λ > kC(t) necessarily holds. In
sum: ρ∗ is lower than ρeq, as in [3] and [18], and for initial densities lying between ρ∗

and ρeq, ρ(t) first decreases and then increases. If, for example, λ = 0.2, the equilibrium
density is ρeq = 0.2241; if the initial density is between 0.2231 and 0.2241, equal to
−ln(1−λ) and ρeq respectively, the system density initially decreases and then increases
towards ρeq. The concentration evolves from C(0) = 1− e−ρ0 = 0.2007 to λ = 0.2.

Then, the system evolution depends on the initial conditions. In particular, the time
until equilibrium behaves differently depending on whether the initial density is above
or below ρ∗: if T denotes the time elapsed until the density first reaches ρeq, it is easy to
show that in the neighborhood of ρ∗, ∂T/∂ρ0 < 0 if ρ0 < ρ∗ but ∂T/∂ρ0 > 0 if ρ0 > ρ∗.
The discontinuity in the derivative suggests the existence of a dynamic phase transition
at ρ0 = ρ∗, which confirms a result in [3]: the lattice effect is not important qualitatively
in predicting the transition. Equivalently, the dynamic phase transition corresponds to
an initial concentration C(0) = λ. In fact, the system concentration (rather than the
density) is the key to explain the system behavior, which shows a manifestation of the
lattice effect. The order of the phase transition requires the calculation of the relaxation
time, which is not available from the transition matrix; see [3] or [18] for its computation
in a different formulation.

If we assume instead that the particle input occurs in an adjacent site to the site
of the mother particle, the transition matrix is slightly different from the previous case
(in which the particle input occurs in the cell of the mother particle). The matrix
elements are now: M0

0 = 1 − (1/L)(1 + λ), M j
j = 1 − j/N − (1/L)(1 + λ)(1 − k) and

M j+1
j = (1/L)(1 + λ)(1 − k) for j ≥ 1, and the rest of elements are obtained by taking

into account the fact that the matrix is stochastic.
If k < 1, from the new matrix we obtain P (0) = 1 − λ

k(λ+1) , P (1) = ρ(1 + λ)P (0),

and the recursive relation P (j) = (ρ/j)(1 + λ)(1 − k)P (j − 1), which leads to P (j) =
[ρ(1+λ)(1−k)]j−1

j! P (1). By imposing that the sum of probabilities is one, we obtain an
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equation from which the equilibrium density ρeq can be computed. The density obtained
is below the equilibrium density obtained in the previous case, because now the new
particle is born in an adjacent site and can react, which is neglected by assumption
in the previous model (in which the particle remains in the site of the mother particle
without reacting).

If k = 1, then P (j ≥ 2) = 0, and the equilibrium density reduces to ρeq = λ/(1 + λ).
In equilibrium, sites are either empty or occupied by one particle, so, asymptotically, the
model resembles the hard-core model.

4 Concluding Remarks

In this paper we use a matrix method to analyze the particle distribution in nucleation
diffusion-limited models, both in the irreversible case (A+A→ A) and in the reversible
one (A+A
 A). In the irreversible case, the number of particles in the system cannot
increase with time. We focus our attention on the situation where the system density
is not too low and decays with ρ ∼ t−1. In the long-time regime, however, the decay
goes with ρ ∼ t−1/2, which remains out of our scope. In the reversible case particles give
birth to other particles, and the density reaches an equilibrium level for some parameter
configurations. According to the method proposed, the particle distribution can be
calculated by using a simple recursive procedure based on Markov chains, with the density
being part of the solution.

In some particular cases, exact solutions are obtained. In particular, in the irreversible
coagulation case, if density is high and particles react with probability 1 (i.e., ρ� 1 and
k = 1), then the time-dependent distribution is Poisson with parameter equal to the
time-dependent density. Also, if offspring production is not allowed and particles do not
react (k = 0, so the number of particles remains constant), the stationary distribution
also follows a Poisson one, in this case independently of the initial distribution. In the
reversible case, in which offspring production is allowed, an equilibrium stationary state
is reached if λ < k. The model admits an exact solution when particles always react,
k = 1. This simple model predicts a dynamic phase transition.

The matrix approach presented can be used in many other contexts. For example,
it can be used to analyze situations in which the porosity of a medium depends on the
particle distribution of its cells, which relates to percolation problems. It can also be
used to analyze other problems from physics, chemistry, biology or social sciences.
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Abstract: In this paper, by combining generalized synchronization (GS) and inverse
generalized synchronisation (IGS), new schemes for increased and reduced synchro-
nization between different dimensional discrete-time systems are proposed. Based
on the Lyapunov stability theory, two control laws are proposed to prove the co-
existence of GS and IGS between the general three-dimensional drive map and the
two-dimensional response map in 3D and 2D, respectively. Numerical simulation has
confirmed the findings of the paper.
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1 Introduction

Chaotic discrete–time systems have received a considerable attention over the last
two decades due to their many applications in secure communications [1]. One of the
most studied aspects in discrete-time chaotic systems is the synchronization of chaotic
systems. Synchronization refers to the addition of a set of control parameters to the con-
trolled chaotic system and adaptively updating the controls so that the states become
synchronized [2–4]. Throughout the years, many studies have considered the synchro-
nization of discrete–order chaotic and hyperchaotic systems including [5–7]. One of the
most exciting synchronization types is the generalized synchronization (GS). It refers
to the existence of a functional relationship between the drive states and the response
states. Instead of the conventional definition of synchronization, which stipulates that
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the difference between the drive and response trajectories tends to zero as t→ +∞, GS
forces the difference between the response states and a function of the drive states to
zero. IGS is the natural reversal of GS, i.e. the error is the difference between the master
states and a function of the slave states. The importance of GS and IGS stems from the
fact that they can enrich the behavior of chaotic systems [8].

Naturally, curiosity grew as to the possibility of multiple synchronization types being
achieved simultaneously for the states of the response system. This phenomenon is
commonly referred to as the coexistence of synchronization types [9–11]. The present
research work focuses on the coexistence of GS and IGS between chaotic and hyperchaotic
systems. The next section of this paper describes the model for the drive and response
systems. Section 3 presents the control law that guarantees the coexistence of GS and
IGS in 3D. Section 4 presents numerically the control laws that establish the coexistence
of GS and IGS in 2D. Finally, Section 5 summarizes the work carried out in this paper.

2 Drive–Response Model

We consider the following drive chaotic system:

x1(k + 1) = f1(x1(k), x2(k)), (1)

x2(k + 1) = f2(x1(k), x2(k)),

where (x1(k), x2(k))
T

is the state vector of the drive system and fi : R2 −→ R, 1 ≤ i ≤ 2.
As the response system, we consider the following hyperchaotic system:

y1(k + 1) =

3∑
j=1

b1jyj(k) + g1(y1(k), y2(k), y3(k)) + u1, (2)

y2(k + 1) =

3∑
j=1

b2jyj(k) + g2(y1(k), y2(k), y3(k)) + u2,

y3(k + 1) =

3∑
j=1

b3jyj(k) + g3(y1(k), y2(k), y3(k)) + u3,

where (y1(k), y2(k), y3(k))
T

is the state vector of the response system, (bij) ∈ R3×3 is the
linear part of the response system, gi : R3 −→ R, 1 ≤ i ≤ 3, are the nonlinear functions
and ui, 1 ≤ i ≤ 3, are the controllers to be designed.

3 Synchronization in 3D

The problem of increased synchronization in 3D between the drive system (1) and the
response system (2) is to find controllers ui, i = 1, 2, 3, and functions φ, χ : R2 −→ R,
ϕ : R −→ R, such that the synchronization errors

e1 (k) = y1(k)− φ (x1(k), x2(k)) , (3)

e2 (k) = x2(k)− ϕ (y2(k)) ,

e3 (k) = y3(k)− χ (x1(k), x2(k))

satisfy the condition lim
n→+∞

ei(k) = 0, for i = 1, 2, 3.
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Remark 3.1 From the error system (3), it is clear that y1 and (x1, x2)
T

are general-
ized synchronized, x2 and y2 are inverse generalized synchronized and y3 is in generalized
synchronization with x1 and x2 so that generalized synchronization and inverse general-
ized synchronization coexist in the synchronization of the systems (1) and (2) in 3D.

We assumed that ϕ is an invertible function and its inverse is noted by ϕ−1. Hence,
we have proved the following result.

Theorem 3.1 Increased synchronization in 3D between systems (1) and (2) is
achieved under the following controllers:

u1 = −
3∑

j=1

b1jyj(k) − g1(Y (k)) + φ (f1(X(k)), f2(X(n))) + 1
2
e1 (k) + 2

5
e2 (k) − 2

3
e3 (k) ,

u2 = −
3∑

j=1

b2jyj(k) − g2(Y (k)) + ϕ−1
(
1
2
e1 (k) + 2

5
e2 (k) + 2

3
e3 (k) − f2(X(k))

)
,

u3 = −
3∑

j=1

b3jyj(k) − g3(Y (k)) + χ (f1(X(k)), f2(X(k))) + 1
2
e1 (k) − 4

5
e2 (k) ,

(4)

where X(k) = (x1(k), x2(k))
T
and Y (k) = (y1(k), y2(k), y3(k))

T
.

Proof. The error system (3) can be derived as

e1 (k + 1) =

3∑
j=1

b1jyj(k) + g1(Y (k)) + u1 − φ (f1(X(k)), f2(X(k))) , (5)

e2 (k + 1) = f2(X(k)) − ϕ

(
3∑

j=1

b2jyj(k) + g2(Y (k)) + u2

)
,

e3 (k + 1) =

3∑
j=1

b3jyj(k) + g3(Y (k)) − χ (f1(X(k)), f2(X(k))) .

Substituting the control law (4) into (5), one can get

e1 (k + 1) =
1

2
e1 (k) +

2

5
e2 (k) − 2

3
e3 (k) , (6)

e2 (k + 1) =
1

2
e1 (k) +

2

5
e2 (k) +

2

3
e3 (k) ,

e3 (k + 1) =
1

2
e1 (k) − 4

5
e2 (k) .

We construct the Lyapunov function in the form V (e1(k), e2(k), e3(k)) = e21(k)+e22(k)+
e23(k), so

∆V = e21(k + 1) + e22(k + 1) + e23(k + 1) − e21(k) − e22(k) − e23(k)

= −
(

1

4
e21(k) +

17

25
e22(k) +

1

9
e23(k)

)
< 0.

It is immediate that all solutions of error system (6) go to zero as k → +∞. Therefore,
systems (1) and (2) are globally synchronized in 3D.

The result of the numerical simulation of the error system (6) is plotted in (Figure
1).
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Figure 1: Time evolution of the synchronization errors 6.

4 Synchronization in 2D

The problem of reduced synchronization in 2D between the drive system (1) and the
response system (2) is to find controllers ui, i = 1, 2, 3, and functions ψ : R2 −→ R,
λ, ω : R −→ R, such that the synchronization errors

e1 (k) = y1(k)− ψ (x1(k), x2(k)) , (7)

e2 (k) = x2(k)− λ (y2(k))− ω (y3(k))

satisfy the condition lim
n→+∞

ei(k) = 0, for i = 1, 2. We assume that the functions λ and

ω are invertible.

Remark 4.1 From the error system (7), it is clear that y1 is generalized synchro-
nized with x1 and x2, and x2 is inverse generalized synchronized with y2 and y3, so
that generalized synchronization and inverse generalized synchronization coexist in the
synchronization of the systems (1) and (2) in 2D.

The error system (7) can be described as

e1 (k + 1) =
3∑

j=1

b1jyj(k) + g1(Y (k)) + u1 − ψ (f1(X(k)), f2(X(k))) ,

e2 (k + 1) = f2(X(k))− λ

(
3∑

j=1

b2jyj(k) + g2(Y (k)) + u2

)

−ω

(
3∑

j=1

b3jyj(k) + g3(Y (k)) + u3

)
.

(8)
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In this case, the controllers can be constructed as follow:

u1 = −
3∑

j=1

b1jyj(k) − g1(Y (k)) − u1 + ψ (f1(X(k)), f2(X(k))) − e1 (k) − e2 (k) , (9)

u2 = −
3∑

j=1

b1jyj(k) − g1(Y (k)) + λ−1 (e1 (k) − e2 (k)) ,

u3 = −
3∑

j=1

b3jyj(k) − g3(Y (k)) + ω−1 (f2(X(k))) ,

where λ−1 and ω−1 are the inverse functions of λ and ω, respectively. By substituting
the control law (9) into (8), the error system can be described as

e1 (k + 1) =
1

2
e1 (k) +

1

2
e2 (k) , (10)

e2 (k + 1) =
1

2
e1 (k) − 1

2
e2 (k) .

We construct a Lyapunov function in the form V (e1(k), e2(k)) = e21(k) + e22(k), so

∆V = e21(k + 1) + e22(k + 1) − e21(k) − e22(k)

= −1

2

(
e21 (k) + e22 (k)

)
< 0.

Thus, from the Lyapunov stability theory, it is immediate that lim
n→+∞

ei(k) = 0, (i = 1, 2).

Hence, we have proved the following result.

Theorem 4.1 The drive system (1) and the response system (2) are reduced syn-
chronization in 2D under the control law (9).

The result of the numerical simulation of the error system (10) is plotted in Figure
2.

Figure 2: Time evolution of the synchronization errors (10).
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5 Conclusion

In this work, we have shown that different types of synchronization can co-exist for dif-
ferent dimensional discrete-time chaotic systems. We assumed a two dimensional drive
system and a three dimensional response system. The main results of the study were
two-fold. First, we presented a control scheme whereby GS and IGS are achieved simul-
taneously in 3D. The stability of the zero solutions, and, consequently, the convergence
of the synchronization errors were established by means of the Lyapunov stability theory.
The second main result concerns the co-existence of GS and IGS in 2D. Simulations were
carried out on Matlab to ensure that the errors converge to zero subject to the proposed
control laws.
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[3] E. Inzunza-González, and C. Cruz-Hernández. Double hyperchaotic encryption for security
in biometric systems. Nonlinear Dynamics and Systems Theory 13 (1) (2013) 55–68.

[4] R. L. Filali, M. Benrejeb and P. Borne. On observer-based secure communication design
using discrete-time hyperchaotic systems. Communications in Nonlinear Science and Nu-
merical Simulation 19 (5) (2014) 1424–1432.

[5] A. Ouannas. A new synchronization scheme for general 3D quadratic chaotic systems in
discrete-time. Nonlinear Dynamics and Systems Theory 15 (2) (2015) 163-170.

[6] A. Ouannas and G. Grassi. Inverse full state hybrid projective synchronization for chaotic
maps with different dimensions. Chiness Physics B 25 (9) (2016) 090503-6.

[7] A. Ouannas and M. M. Al-sawalha. A new approach to synchronize different dimensional
chaotic maps using two scaling matrices. Nonlinear Dynamics and Systems Theory 15 (4)
(2015) 400-408.

[8] A. Ouannas and Z. Odibat. Generalized synchronization of different dimensional chaotic
dynamical systems in discrete time. Nonlinear Dynamics 81 (1-2) (2015) 765–771.

[9] A. Ouannas and G. Grassi. A new approach to study co-existence of some synchronization
types between chaotic maps with different dimensions. Nonlinear Dynamics 86 (2) (2016)
1319–1328.

[10] A. Ouannas, A. T. Azar and R. Abu-Saris. A new type of hybrid synchronization between
arbitrary hyperchaotic maps. International Journal of Learning Machine and Cybernitic 8
(6) (2017) 1–8.

[11] A. Ouannas. Co-existence of various synchronization types in hyperchaotic maps. Nonlinear
Dynamics and Systems Theory 16 (3) (2016) 312–321.



Nonlinear Dynamics and Systems Theory, 19 (2) (2019) 319–330

A New Representation of Exact Solutions for Nonlinear

Time-Fractional Wave-Like Equations with Variable

Coefficients

A. Khalouta ∗ and A. Kadem

Laboratory of Fundamental and Numerical Mathematics,
Departement of Mathematics, Faculty of Sciences,

Ferhat Abbas Sétif University 1, 19000 Sétif, Algeria.

Received: November 29, 2018; Revised: April 8, 2019

Abstract: In this paper, we give a new representation of exact solutions for nonlinear
time-fractional wave-like equations with variable coefficients using a recent and reli-
able method, namely the fractional reduced differential transform method (FRDTM).
Using the FRDTM, it is possible to find solution for this type of equations in the form
of infinite series, this series in closed form gives the exact solution. It has been proven
that the FRDTM is a convenient and effective method in its application. The accu-
racy and efficiency of the method is tested by means of three numerical examples.
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1 Introduction

The nonlinear fractional partial differential equations (NFPDEs) are increasingly used
to model many problems in mathematical physics, including electromagnetics, fluid flow,
diffusion, quantum mechanics, damping laws, viscoelasticity and other applications. Ex-
act solutions of NFPDEs are sometimes too complicated to be attained by conventional
techniques due to the computational complexities of nonlinear parts involving them.
Therefore, for the study of solution of NFPDEs there are variety of analytical and ap-
proximate methods found in literature. Among them most useful and common meth-
ods are: the Adomian decomposition method (ADM) [8], variational iteration method
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(VIM) [10], fractional difference method (FDM) [4], generalized differential transform
method (GDTM) [1], homotopy analysis method (HAM) [11], homotopy perturbation
method (HPM) [9].

Recently, an efficient analytical technique for handling different types of NFPDEs has
been developed called the fractional reduced differential transform method (FRDTM).
The FRDTM was effectively used for finding the solution of various kinds of NFPDEs [5–
7]. Further, this method does not require any discretization, linearization and therefore it
reduces significantly the numerical computations compare with the existing methods such
as the perturbation technique, differential transform method (DTM) and the Adomian
decomposition method (ADM).

In [3], we solved the nonlinear time-fractional wave-like equations with variable coef-
ficients by two different methods and compared between these two methods.

The main objective of this paper is to give a new representation of exact solutions
for this type of equations using the FRDTM.

Consider the following nonlinear time-fractional wave-like equations:

D2α
t u =

n∑
i,j=1

F1ij(X, t, u)
∂k+m

∂xki ∂x
m
j

F2ij(uxi , uxj ) (1)

+

n∑
i=1

G1i(X, t, u)
∂p

∂xpi
G2i(uxi

) +H(X, t, u) + S(X, t),

with the initial conditions

u(X, 0) = a0(X), ut(X, 0) = a1(X), (2)

where D2α
t is the Caputo fractional derivative operator of order 2α, 1

2 < α ≤ 1.
Here X = (x1, x2, ..., xn) ∈ Rn, n ∈ N∗, F1ij , G1i i, j ∈ {1, 2, ..., n}, are nonlinear

functions of X, t and u, F2ij , G2i i, j ∈ {1, 2, ..., n} , are nonlinear functions of derivatives
of u with respect to xi and xj i, j ∈ {1, 2, ..., n} , respectively. Also H,S are nonlinear
functions and k,m, p are integers.

These types of equations are of considerable significance in various fields of applied sci-
ences, mathematical physics, nonlinear hydrodynamics, engineering physics, biophysics,
human movement sciences, astrophysics and plasma physics. These equations describe
the evolution of erratic motions of small particles that are immersed in fluids, fluctuations
of the intensity of laser light, velocity distributions of fluid particles in turbulent flows.

2 Basic Definitions

In this section, we give some basic definitions and properties of the fractional calculus
theory which are used further in this paper. For more details, see [4].

Definition 2.1 A real function u(x, t), x ∈ I ⊂ R, t > 0, is considered to be in the
space Cµ(I × R+), µ ∈ R if there exists a real number p > µ, so that u(x, t) = tpf(x, t),
where f(x, t) ∈ C (I × R+), and it is said to be in the space Cnµ if u(n)(x, t) ∈ Cµ, n ∈ N.

Definition 2.2 Let u(x, t) ∈ Cµ(I ×R+), µ ≥ −1. The Riemann-Liouville fractional
integral operator of order α ≥ 0 of u(x, t) is defined as follows:

Iαt u(x, t) =

 1
Γ(α)

t∫
0

(t− ξ)α−1
u(x, ξ)dξ, α > 0, x ∈ I, t > ξ ≥ 0,

u(x, t), α = 0,

(3)
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where Γ(.) is the well-known gamma function.

Definition 2.3 The Caputo fractional derivative operator of order α of u(x, t) is
defined as follows:

Dα
t u(x, t) =

 1
Γ(n−α)

t∫
0

(t− ξ)n−α−1
u(n)(x, ξ)dξ, n− 1 < α < n,

u(n)(x, t), α = n.

(4)

For the Riemann-Liouville fractional integral and Caputo fractional derivative, we
have the following relation:

Iαt D
α
t u(x, t) = u(x, t)−

n−1∑
k=0

u(k)(x, 0+)
tk

k!
, x ∈ I, t > 0. (5)

3 Fractional Reduced Differential Transform Method (FRDTM)

In this section, we apply the fractional reduced differential transform method for (n +
1)−variable function u(x1, x2, ..., xn, t) which has been developed in [2].

On the basis of the properties of the one-dimensional differential transform, the func-
tion u(x1, x2, ..., xn, t) can be represented as

u(x1, x2, ..., xn, t) =

( ∞∑
k1=0

F1(k1)xk11

)( ∞∑
k2=0

F2(k2)xk22

)
× ...

×

( ∞∑
kn=0

Fn(kn)xknn

)
×

( ∞∑
km=0

Fm(km)tkm

)

=

∞∑
k1=0

∞∑
k2=0

...

∞∑
kn=0

∞∑
km=0

U(k1, k2, ..., kn, km)xk11 x
k2
2 ...x

kn
n tkm ,

where U(k1, k2, ..., kn, km) = F1(k1)×F2(k2)×...×Fn(kn)×Fm(km) is called the spectrum
of u(x1, x2, ..., xn, t). Next, we assume that u(X, t), X = (x1, x2, ..., xn) is a continuously
differentiable function with respect to the space variable and time in the domain of
interest.

Definition 3.1 Let u(X, t) be an analytic function, then the FRDT of u is given by

Uk(X) =

∞∑
k=0

1

Γ(kα+ 1)

[
∂kα

∂tkα
u(X, t)

]
t=t0

, (6)

where α is a parameter describing the order of time fractional derivative in the Caputo
sense. Here the lowercase u(X, t) represents the original function while the uppercase
Uk(X) stands for the fractional reduced transformed function.

Definition 3.2 The inverse FRDT of Uk(X) is defined by

u(X, t) =

∞∑
k=0

Uk(X)(t− t0)kα. (7)
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Combining equations (6) and (7), we have

u(X, t) =

∞∑
k=0

1

Γ(kα+ 1)

[
∂kα

∂tkα
u(X, t)

]
t=t0

(t− t0)kα. (8)

In particular, for t0 = 0, equation (8) becomes

u(X, t) =

∞∑
k=0

1

Γ(kα+ 1)

[
∂kα

∂tkα
u(X, t)

]
t=0

tkα. (9)

Moreover, if α = 1, then the FRDT of equation (8) reduces to the classical RDT
method. From the above definitions, the fundamental operations of the FRDTM are
given by the following theorems.

Theorem 3.1 Let Uk(X), Vk(X) and Wk(X) be the fractional reduced differential
transform of the functions u(X, t), v(X, t) and w(X, t), respectively, then

(1) if w(X, t) = λu(X, t) + µv(X, t), then Wk(X) = λUk(X) + µVk(X), λ, µ ∈ R.

(2) if w(X, t) = u(X, t)v(X, t), then Wk(X) =
k∑
r=0

Ur(X)Vk−r(X).

(3) if w(X, t) = u1(X, t)u2(X, t)...un(X, t), then

Wk(X) =

k∑
kn−1=0

kn−1∑
kn−2=0

...

k3∑
k2=0

k2∑
k1=0

U1
k1(X)U2

k2−k1(X)

×...× Un−1
kn−1−kn−2

(X)Unk−kn−1
(X).

(4) if w(X, t) =
∂nα

∂tnα
u(X, t), then

Wk(X) =
Γ (kα+ nα+ 1)

Γ (kα+ 1)
Uk+n(X), n = 1, 2, ....

4 FRDTM for Nonlinear Time-Fractional Wave-Like Equations

Theorem 4.1 Consider the nonlinear time-fractional wave-like equations (1) with
the initial conditions (2).

Then, by FRDTM the solution of equations (1)-(2) is given in the form of infinite
series as follows:

u(X, t) =

∞∑
k=0

Uk(X)tkα,

where Uk(X) is the fractional reduced differential transformed function of u(X, t).

Proof. In order to achieve our goal, we consider the following nonlinear time-
fractional wave-like equations (1) with the initial conditions (2).

Applying the FRDTM to equation (1), we obtain the following recurrence relation
formula:
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Uk+2(X) =
Γ (kα+ 1)

Γ (kα+ 2α+ 1)
[Ak(X) +Bk(X) + Ck(X) +Dk(X)] , (10)

where Ak(X), Bk(X), Ck(X) and Dk(X) are the transformed form of the nonlinear

terms,
n∑

i,j=1

F1ij(X, t, u)
∂k+m

∂xki ∂x
m
j

F2ij(uxi , uxj ),
n∑
i=1

G1i(X, t, u)
∂p

∂xpi
G2i(uxi), H(X, t, u)

and S(X, t), rerspectively.
Now, using the FRDTM under the initial conditions (2), we obtain

U0(X) = a0(X), U1(X) = a1(X). (11)

We substitute equation (11) into equation (10), we get

U0(X) = a0(X), U1(X) = a1(X),

U2(X) =
1

Γ (2α+ 1)
[A0(X) +B0(X) + C0(X) +D0(X)] ,

U3(X) =
Γ (α+ 1)

Γ (3α+ 1)
[A1(X) +B1(X) + C1(X) +D1(X)] , (12)

U4(X) =
Γ (2α+ 1)

Γ (4α+ 1)
[A2(X) +B2(X) + C2(X) +D2(X)] .

...

Then, the solution of equations (1)-(2) in the form of infinite series is given by

u(X, t) =

∞∑
k=0

Uk(X)tkα. (13)

The proof is complete.

5 Numerical Examples

In this section, we describe the method explained in Section 4. Three numerical examples
of nonlinear time-fractional wave-like equations with variable coefficients are considered
to validate the capability, reliability and efficiency of the FRDTM.

Example 5.1 Consider the 2-dimensional nonlinear time-fractional wave-like equa-
tion with variable coefficients:

D2α
t u =

∂2

∂x∂y
(uxxuyy)− ∂2

∂x∂y
(xyuxuy)− u, t > 0,

1

2
< α ≤ 1, (14)

with the initial conditions

u(x, y, 0) = exy, ut(x, y, 0) = exy, (x, y) ∈ R2. (15)

Applying the FRDTM to equations (14)-(15), we obtain the following recurrence
relation formula:

U0(x, y) = exy, U1(x, y) = exy, (16)

Uk+2(x, y) =
Γ (kα+ 1)

Γ (kα+ 2α+ 1)

[
∂2

∂x∂y
Ak(x, y)− ∂2

∂x∂y
Bk(x, y)− Uk(x, y)

]
,
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where Ak(x, y) and Bk(x, y) are the transformed form of the nonlinear terms, uxxuyy and
xyuxuy. For the convenience of the reader, the first few nonlinear terms are as follows:

A0 = U0xxU0yy,

A1 = U0xxU1yy + U1xxU0yy,

A2 = U0xxU2yy + U1xxU1yy + U2xxU0yy,

B0 = xyU0xU0y,

B1 = xyU0xU1y + xyU1xU0y,

B2 = xyU0xU2y + xyU1xU1y + xyU2xU0y.

From the relationship in (16), we obtain

U0(x, y) = exy, U1(x, y) = exy, U2(x, y) = − 1

Γ (2α+ 1)
exy,

U3(x, y) = − Γ (α+ 1)

Γ (3α+ 1)
exy, U4(x, y) =

1

Γ (4α+ 1)
exy...

So, the solution of equations (14)-(15) is given in the form of infinite series as follows:

u(x, y, t) =

(
1 + tα − 1

Γ(2α+ 1)
t2α − Γ(α+ 1)

Γ(3α+ 1)
t3α +

1

Γ(4α+ 1)
t4α + ...

)
exy.

In particular, for α = 1, the solution of equations (14)-(15) has the general pattern
form which coincides with the following exact solution in terms of infinite series:

u(x, y, t) =

(
1 + t− t2

2!
− t3

3!
+
t4

4!
+ ...

)
exy.

Therefore, the exact solution of equations (14)-(15) in a closed form of elementary
function will be given by

u(x, y, t) = (cos t+ sin t) exy,

which is the same result as those obtained by the NIM and NHPM [3].

Example 5.2 Consider the following nonlinear time-fractional wave-like equation
with variable coefficients:

D2α
t u = u2 ∂

2

∂x2
(uxuxxuxxx) + u2

x

∂2

∂x2
(u3
xx)− 18u5 + u, t > 0,

1

2
< α ≤ 1, (17)

with the initial conditions

u(x, 0) = ex, ut(x, 0) = ex, x ∈ ]0, 1[ . (18)

Applying the FRDTM to equations (17)-(18), we obtain the following recurrence
relation formula:

U0(x) = ex, U1(x) = ex, (19)

Uk+2(x) =
Γ (kα+ 1)

Γ (kα+ 2α+ 1)
[Ak(x) +Bk(x)− 18Ck(x) + Uk(x)] ,
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where Ak(x), Bk(x) and Ck(x) are the transformed form of the nonlinear terms,

u2 ∂
2

∂x2
(uxuxxuxxx), u2

x

∂2

∂x2
(u3
xx) and u5. For the convenience of the reader, the first

few nonlinear terms are as follows:

A0 = U2
0

∂2

∂x2
[U0xU0xxU0xxx] ,

A1 = 2U0U1
∂2

∂x2
[U0xU0xxU0xxx] + U2

0

∂2

∂x2
[U1xU0xxU0xxx

+U0xU1xxU0xxx + U0xU0xxU1xxx] ,

B0 = U2
0x

∂2

∂x2
U3

0xx,

B1 = 2U0xU1x
∂2

∂x2
U3

0xx + 3U2
0x

∂2

∂x2

[
U2

0xxU1xx

]
,

C0 = U5
0 , C1 = 5U4

0U1.

From the relationship in (19), we obtain

U0(x) = ex, U1(x) = ex,

U2(x) =
1

Γ(2α+ 1)
ex, U3(x) =

Γ (α+ 1)

Γ (3α+ 1)
ex...

So, the solution of equations (17)-(18) is given in the form of infinite series as follows:

u(x, t) =

(
1 + tα +

1

Γ(2α+ 1)
t2α +

Γ(α+ 1)

Γ(3α+ 1)
t3α + ...

)
ex.

In particular, for α = 1, the solution of equations (17)-(18) has the general pattern
form which coincides with the following exact solution in terms of infinite series:

u(x, t) =

(
1 + t+

t2

2!
+
t3

3!
+ ...

)
ex.

Therefore, the exact solution of equations (17)-(18) in a closed form of elementary
function will be given by

u(x, t) = ex+t,

which is the same result as those obtained by the NIM and NHPM [3].

Example 5.3 Consider the following one-dimensional nonlinear time-fractional
wave-like equation with variable coefficients:

D2α
t u = x2 ∂

∂x
(uxuxx)− x2(uxx)2 − u, t > 0,

1

2
< α ≤ 1, (20)

with the initial conditions

u(x, 0) = 0, ut(x, 0) = x2, x ∈ ]0, 1[ . (21)
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Applying the FRDTM to equations (20)-(21), we obtain the following recurrence
relation formula:

U0(x) = 0, U1(x) = x2, (22)

Uk+2(x) =
Γ (kα+ 1)

Γ (kα+ 2α+ 1)

[
x2 ∂

∂x
Ak(x)− x2Bk(x)− Uk(x)

]
,

where Ak(x) and Bk(x) are the transformed form of the nonlinear terms, uxuxx and u2
xx.

For the convenience of the reader, the first few nonlinear terms are as follows:

A0 = U0xU0xx,

A1 = U0xU1xx + U1xU0xx,

A2 = U0xU2xx + U1xU1xx + U2xU0xx,

B0 = U2
0xx,

B1 = 2U0xxU1xx,

B2 = 2U0xxU2xx + U2
1xx.

From the relationship in (22), we obtain

U0(x) = 0, U1(x) = x2, U2(x) = 0,

U3(x) = − Γ(α+ 1)

Γ(3α+ 1)
x2, U4(x) = 0...

So, the solution of equations (20)-(21) is given in the form of infinite series as follows:

u(x, t) =

(
tα − Γ(α+ 1)

Γ(3α+ 1)
t3α +

Γ(α+ 1)

Γ(5α+ 1)
t5α + ...

)
x2.

In particular, for α = 1, the solution of equations (20)-(21) has the general pattern
form which coincides with the following exact solution in terms of infinite series:

u(x, t) =

(
t− t3

3!
+
t5

5!
+ ...

)
x2.

Therefore, the exact solution of equations (20)-(21) in a closed form of elementary
function will be given by

u(x, t) = x2 sin t,

which is the same result as those obtained by the NIM and NHPM [3].

6 Numerical Results and Discussion

In this section the numerical results for all Examples 5.1, 5.2 and 5.3 are presented.
Figures 1, 3 and 5 represent the surface graph of the exact solution and the 6−term
approximate solution at α = 0.6, 0.8, 1. Figures 2, 4 and 6 represent the behavior of the
exact solution and the 6−term approximate solution at α = 0.7, 0.8, 0.95, 1 in the case
when x = y = 0.5 for Example 5.1 and x = 0.5 for Examples 5.2 and 5.3. Tables 1, 2
and 3 show the absolute errors between the exact solution and the 6−term approximate
solution at α = 1 and different values of x, y and t. The numerical results afirm that
when α approaches 1, our results obtained by the FRDTM approach the exact solutions.
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Figure 1: The surface graph of the exact solution and the 6−term approximate solution by
the FRDTM for Example 5.1 when y = 0.5: (a) u when α = 0.6, (b) u when α = 0.8, (c) u
when α = 1, and (d) u is exact.
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Figure 2: The behavior of the exact solution and the 6−term approximate solution by the
FRDTM for different values of α for Example 5.1 when x = y = 0.5.

t/x, y 0.1 0.3 0.5 0.7
0.1 1.4226× 10−9 1.5411× 10−9 1.8085× 10−9 2.2991× 10−9

0.3 1.0648× 10−6 1.1535× 10−6 1.3536× 10−6 1.7208× 10−6

0.5 2.3382× 10−5 2.5330× 10−5 2.9725× 10−5 3.7787× 10−5

0.7 1.8000× 10−4 1.9499× 10−4 2.2882× 10−4 2.9089× 10−4

0.9 8.2963× 10−4 8.9872× 10−4 1.0547× 10−3 1.3407× 10−3

Table 1: Comparison of the absolute errors for the obtained results and the exact solution for
Example 5.1, when n = 6 and α = 1.
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Figure 3: The surface graph of the exact solution and the 6−term approximate solution by
the FRDTM for Example 5.2 : (a) u when α = 0.6, (b) u when α = 0.8, (c) u when α = 1, and
(d) u is exact.
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Figure 4: The behavior of the exact solution and the 6−term approximate solution by the
FRDTM for different values of α for Example 5.2 when x = 0.5.

t/x 0.1 0.3 0.5 0.7
0.1 1.5572× 10−9 1.9019× 10−9 2.3230× 10−9 2.8373× 10−9

0.3 1.1688× 10−6 1.4276× 10−6 1.7436× 10−6 2.1297× 10−6

0.5 2.5810× 10−5 3.1525× 10−5 3.8504× 10−5 4.7029× 10−5

0.7 2.0036× 10−4 2.4472× 10−4 2.9890× 10−4 3.6507× 10−4

0.9 9.3372× 10−4 1.1404× 10−3 1.3929× 10−3 1.7013× 10−3

Table 2: Comparison of the absolute errors for the obtained results and the exact solution for
Example 5.2, when n = 6 and α = 1.
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Figure 5: The surface graph of the exact solution and the 6−term approximate solution by
the FRDTM for Example 5.3 : (a) u when α = 0.6, (b) u when α = 0.8, (c) u when α = 1, and
(d) u is exact.
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Figure 6: The behavior of the exact solution and the 6−term approximate solution by the
FRDTM for different values of α for Example 5.3 when x = 0.5.

t/x 0.1 0.3 0.5 0.7
0.1 1.9839× 10−13 1.7855× 10−12 4.9596× 10−12 9.7209× 10−12

0.3 4.3339× 10−10 3.9005× 10−9 1.0835× 10−8 2.1236× 10−8

0.5 1.5447× 10−8 1.3903× 10−7 3.8618× 10−7 7.5692× 10−7

0.7 1.6229× 10−7 1.4606× 10−6 4.0574× 10−6 7.9524× 10−6

0.9 9.3840× 10−7 8.4456× 10−6 2.3460× 10−5 4.5982× 10−5

Table 3: Comparison of the absolute errors for the obtained results and the exact solution for
Example 5.3, when n = 6 and α = 1.



330 A. KHALOUTA AND A. KADEM

7 Conclusion

In this paper, a new representation of exact solutions for nonlinear time-fractional wave-
like equations with variable coefficients was presented by using the fractional reduced
differential transform method (FRDTM). The method was applied to three numerical
examples. In the numerical examples, our method gave us the solutions in the form
of infinite series, this series in closed form gives the corresponding exact solutions for
these equations without any transformation, discretization and any other restrictions,
therefore it reduces significantly the numerical computations compare with the existing
methods such as the perturbation technique, differential transform method (DTM) and
the Adomian decomposition method (ADM). Also, our results obtained in this paper
are in a good agreement with the exact solutions; hence, this technique is powerful and
efficient as an alternative method for finding approximate and exact solutions for many
other nonlinear fractional partial differential equations.
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