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1 Introduction

The fractional calculus which deals with derivatives and integrals of arbitrary orders
plays a vital role in many fields of applied science and engineering [4]. Recently, nonlin-
ear fractional partial differential equations are successfully applied to many mathematical
models in mathematical biology, aerodynamics, rheology, diffusion, electrostatics, elec-
trodynamics, control theory, fluid mechanics, analytical chemistry and so on.

Several analytical and numerical methods have been proposed to solve nonlinear
fractional partial differential equations. The most commonly used ones are: the adomian
decomposition method (ADM) [8] variational iteration method (VIM) [10], fractional
difference method (FDM) [4], homotopy perturbation method (HPM) [3].

In this paper, the main objective is to introduce a comparative study of nonlinear
time-fractional wave-like equations with variable coefficients by using the new iterative
method (NIM) which uses only the inverse operator and the natural homotopy pertur-
bation method (NHPM) which is a coupling of the natural transform and the homotopy
perturbation method (HPM) using He’s polynomials.

Consider the following nonlinear time-fractional wave-like equations:

Dα
t v =

n∑
i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj ) (1)

+

n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi) +H(X, t, v) + S(X, t)

with the initial conditions

v(X, 0) = a0(X), vt(X, 0) = a1(X), (2)

where Dα
t is the Caputo fractional derivative operator of order α, 1 < α ≤ 2.

Here X = (x1, x2, ..., xn), F1ij , G1i are nonlinear functions of X, t and v, F2ij , G2i are
nonlinear functions of derivatives of v with respect to xi and xj , respectively. Also H,S
are nonlinear functions and k,m, p are integers.

In the classical case, these types of equations are of considerable significance in various
fields of applied sciences, mathematical physics, nonlinear hydrodynamics, engineering
physics, biophysics, human movement sciences, astrophysics and plasma physics. These
equations describe the evolution of erratic motions of small particles that are immersed
in fluids, fluctuations of the intensity of laser light, velocity distributions of fluid particles
in turbulent flows [7].

2 Basic Definitions

In this section, we give some basic definitions and important properties of fractional
calculus theory and natural transform, which will be used in this paper.

Definition 2.1 [4] The Riemann-Liouville fractional integral operator of order α ≥ 0
of a function f ∈ Cµ, µ ≥ −1 is defined as follows:

Iαt f(t) =
1

Γ(α)

t∫
0

(t− ξ)α−1f(ξ)dξ, t > 0. (3)
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Definition 2.2 [4] The Caputo fractional derivative operator of order n−1 < α ≤ n,
n ∈ N of a function f ∈ Cn−1 is defined as follows:

Dα
t f(t) = In−αt Dnf(t) =

1

Γ(n− α)

t∫
0

(t− ξ)n−α−1f (n), t > 0. (4)

For the Riemann-Liouville fractional integral and Caputo fractional derivative, we
have the following relation:

Iαt D
α
t f(t) = f(t)−

n−1∑
k=0

f (k)(0)
tk

k!
, t > 0. (5)

Definition 2.3 [1] The natural transform is defined over the set of functions A ={
f(t)/∃M, τ1, τ2 > 0, |f(t)| < Me

|t|
τj , if t ∈ (−1)j × [0,∞)

}
by the following integral:

N+ [f(t)] = R+(s, u) =
1

u

+∞∫
0

e−
st
u f(t)dt, s, u ∈ (0,∞). (6)

Definition 2.4 [6] The natural transform of the Caputo fractional derivative of
order n− 1 < α ≤ n, n ∈ N is defined as follows:

N+ [Dα
t f(t)] = R+

α (s, u) =
sα

uα
R+(s, u)−

n−1∑
k=0

sα−(k+1)

uα−k
f (k)(0+). (7)

3 The New Iterative Method (NIM)

In this section, we introduce the new iterative method for solving equations (1) and (2).
Applying the inverse operator Iαt on both sides of equation (1) and using (5), we get

v(X, t) =

n−1∑
k=0

v(k)(X, 0)
tk

k!
+ Iαt

 n∑
i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj ) (8)

+

n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi) +H(X, t, v)

)
+ Iαt (S(X, t)) .

Let

g(X, t) =

n−1∑
k=0

v(k)(X, 0)
tk

k!
+ Iαt (S(X, t)) ,

N(v(X, t)) = Iαt

 n∑
i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj ) (9)

+

n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi) +H(X, t, v)

)
.
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Thus, (8) can be written in the following form:

v(X, t) = g(X, t) +N(v(X, t)), (10)

where g is a known function, N is a nonlinear operator of v.
The nonlinear operator N can be decomposed in the same way as in [2].
So, the solution of equation (10) can be written in the following series form:

v(X, t) =

∞∑
i=0

vi(X, t) = g(X, t) +N

( ∞∑
i=0

vi(X, t)

)
. (11)

4 The Natural Homotopy Perturbation Method (NHPM)

In this section, we describe the application of the natural homotopy perturbation method
(NHPM) for equations (1) and (2). First we define

Nv =

n∑
i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj ),

Mv =

n∑
i=1

G1i(X, t, v)
∂p

∂xpi
G2i(vxi),Kv = H(X, t, v). (12)

Equation (1) is written in the form

Dα
t v(X, t) = Nv(X, t) +Mv(X, t) +Kv(X, t) + S(X, t), t > 0. (13)

Apply the natural transform on both sides of (13) and use (7), after that, we take
the inverse natural transform, we obtain

v(X, t) = L(X, t) +N−1
(
uα

sα
N+ [Nv(X, t) +Mv(X, t) +Kv(X, t)]

)
, (14)

where L(X, t) is a term arising from the source term and the prescribed initial conditions.
Now we apply the homotopy perturbation method and the nonlinear terms can be

decomposed in the same way as in [9], we get

∞∑
n=0

pnvn(X, t) = L(X, t) + p

[
N−1

(
uα

sα
N+

[ ∞∑
n=0

pnHn(v) +

∞∑
n=0

pnKn(v)

+

∞∑
n=0

pnJn(v)

])]
, (15)

where Hn(v), Kn(v) and Jn(v) are He’s polynomials [5].
By using the coefficient of the like powers of p in equation (15), the following approx-

imations are obtained:

p0 : v0(X, t) = L(X, t),

p1 : v1(X, t) = N−1
(
uα

sα
N+ [H0(v) +K0(v) + J0(v)]

)
, (16)

p2 : v2(X, t) = N−1
(
uα

sα
N+ [H1(v) +K1(v) + J1(v)]

)
...
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Hence, the solution of equations (1) and (2) is given by

v(X, t) =

∞∑
n=0

vn(X, t). (17)

5 Illustrative Examples and Numerical Results

Example 5.1 Consider the 2-dimensional nonlinear time-fractional wave-like equa-
tion with variable coefficients

Dα
t v =

∂2

∂x∂y
(vxxvyy)− ∂2

∂x∂y
(xyvxvy)− v, t > 0, 1 < α ≤ 2, (18)

with the initial conditions

v(x, y, 0) = exy, vt(x, y, 0) = exy, (x, y) ∈ R2. (19)

5.1 Application of the NIM

By applying the steps involved in NIM as presented in Section 3 to equations (18) and
(19), we have

v0 = (1 + t) exy, v1 = −
(

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
exy,

v2 =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
exy... (20)

So, the solution of equations (18) and (19) is

v(x, y, t) =

(
1 + t− tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
− ...

)
exy. (21)

In the special case, α = 2, the series (21) has the closed form

v(x, y, t) = (cos t+ sin t) exy. (22)

5.2 Application of the NHPM

By applying the steps involved in NHPM as presented in Section 4 to equations (18) and
(19), we have

p0 : v0(x, y, t) = (1 + t)exy, p1 : v1(x, y, t) = −
(

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
exy,

p2 : v2(x, y, t) =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
exy... (23)

Therefore, the solution of equations (18) and (19) can be expressed by

v(x, y, t) =

(
1 + t− tα

Γ(α+ 1)
− tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
− ...

)
exy. (24)

Taking α = 2 in equation (24), we obtain the exact solution as

v(x, y, t) = (cos t+ sin t) exy. (25)
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Figure 1: (a) The comparison of the 3−term approximate solution by NIM, NHPM and the
exact solution, when α = 2 and x = y = 0.5, (b) The behavior of the exact solution and the
3−term approximate solution by NIM and NHPM for different values of α when x = y = 0.5.

|vexact − vNIM | |vexact − vNHPM | |vexact − vNIM | |vexact − vNHPM |
t/x, y 0.5 0.5 0.7 0.7

0.1 1.8085× 10−9 1.8085× 10−9 2.2991× 10−9 2.2991× 10−9

0.3 1.3536× 10−6 1.3536× 10−6 1.7208× 10−6 1.7208× 10−6

0.5 2.9725× 10−5 2.9725× 10−5 3.7787× 10−5 3.7787× 10−5

0.7 2.2882× 10−4 2.2882× 10−4 2.9089× 10−4 2.9089× 10−4

0.9 1.0547× 10−3 1.0547× 10−3 1.3407× 10−3 1.3407× 10−3

Table 1: The absolute errors for differences between the exact solution and 3−term approximate
solution by NIM and NHPM for Example 5.1, when α = 2.

Example 5.2 Consider the following nonlinear time-fractional wave-like equation
with variable coefficients

Dα
t v = v2

∂2

∂x2
(vxvxxvxxx) + v2x

∂2

∂x2
(v3xx)− 18v5 + v, t > 0, 1 < α ≤ 2, (26)

with the initial conditions

v(x, 0) = ex, vt(x, 0) = ex, x ∈ ]0, 1[ . (27)

5.3 Application of the NIM

By applying the steps involved in NIM as presented in Section 3 to equations (26) and
(27), we have

v0 = (1 + t) ex, v1 =

(
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
ex,

v2 =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
ex... (28)
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So, the solution of equations (26) and (27) is

v(x, t) =

(
1 + t+

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
+ ...

)
ex. (29)

In the special case, α = 2, the series (29) has the closed form

v(x, t) = ex+t. (30)

5.4 Application of the NHPM

By applying the steps involved in NHPM as presented in Section 4 to equations (26) and
(27), we have

p0 : v0(x, t) = (1 + t)ex, p1 : v1(x, t) =

(
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)
ex,

p2 : v2(x, t) =

(
t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)
ex... (31)

Therefore, the solution of equations (26) and(27) can be expressed by

v(x, t) =

(
1 + t+

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
+ ...

)
ex. (32)

Taking α = 2 in equation (32), we obtain the exact solution as

v(x, t) = ex+t. (33)
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Figure 2: (a) The comparison of the 3−term approximate solution by NIM, NHPM and the
exact solution, when α = 2 and x = 0.5, (b) The behavior of the exact solution and the 3−term
approximate solution by NIM and NHPM for different values of α when x = 0.5.
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|vexact − vNIM | |vexact − vNHPM | |vexact − vNIM | |vexact − vNHPM |
t/x 0.5 0.5 0.7 0.7
0.1 2.323× 10−9 2.323× 10−9 2.8373× 10−9 2.8373× 10−9

0.3 1.7436× 10−6 1.7436× 10−6 2.1297× 10−6 2.1297× 10−6

0.5 3.8504× 10−5 3.8504× 10−5 4.7029× 10−5 4.7029× 10−5

0.7 2.9890× 10−4 2.9890× 10−4 3.6507× 10−4 3.6507× 10−4

0.9 1.3929× 10−3 1.3929× 10−3 1.7013× 10−3 1.7013× 10−3

Table 2: The absolute errors for differences between the exact solution and 3−term approximate
solution by NIM and NHPM for Example 5.2, when α = 2.

Example 5.3 Consider the following one-dimensional nonlinear time-fractional
wave-like equation with variable coefficients

Dα
t v = x2

∂

∂x
(vxvxx)− x2(vxx)2 − v, t > 0, 1 < α ≤ 2, (34)

with the initial conditions

v(x, 0) = 0, vt(x, 0) = x2, x ∈ ]0, 1[ . (35)

5.5 Application of the NIM

By applying the steps involved in NIM as presented in Section 3 to equations (34) and
(35), we have

v0 = tx2, v1 = − tα+1

Γ(α+ 2)
x2, v2 =

t2α+1

Γ(2α+ 2)
x2... (36)

So, the solution of equations (34) and (35) is

v(x, t) = x2
(
t− tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− ...

)
. (37)

In the special case, α = 2, the series (37) has the closed form

v(x, t) = x2 sin t. (38)

5.6 Application of the NHPM

By applying the steps involved in NHPM as presented in Section 4 to equations (34) and
(35), we have

p0 : v0(x, t) = tx2, p1 : v1(x, t) = − tα+1

Γ(α+ 2)
x2, p2 : v2(x, t) =

t2α+1

Γ(2α+ 2)
x2... (39)

Therefore, the solution of equations (34) and(35) can be expressed by

v(x, t) = x2
(
t− tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− ...

)
. (40)
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Taking α = 2 in equation (40), we obtain the exact solution as

v(x, t) = x2 sin t. (41)
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Figure 3: (a) The comparison of the 3−term approximate solution by NIM, NHPM and the
exact solution, when α = 2 and x = 0.5, (b) The behavior of the exact solution and the 3−term
approximate solution by NIM and NHPM for different values of α when x = 0.5.

|vexact − vNIM | |vexact − vNHPM | |vexact − vNIM | |vexact − vNHPM |
t/x 0.5 0.5 0.7 0.7
0.1 4.9596× 10−12 4.9596× 10−12 9.7209× 10−12 9.7209× 10−12

0.3 1.0835× 10−8 1.0835× 10−8 2.1236× 10−8 2.1236× 10−8

0.5 3.8618× 10−7 3.8618× 10−7 7.5692× 10−7 7.5692× 10−7

0.7 4.0574× 10−6 4.0574× 10−6 7.9524× 10−6 7.9524× 10−6

0.9 2.346× 10−5 2.346× 10−5 4.5982× 10−5 4.5982× 10−5

Table 3: The absolute errors for differences between the exact solution and 3−term approximate
solution by NIM and NHPM for Example 5.3, when α = 2.

The numerical results (see Figures 1,2 and 3) affirm that when α approaches 2, our
results approach the exact solutions. In Tables 1,2 and 3, the absolute errors obtained
by NIM are the same as the results obtained by NHPM.

Remark 5.1 In general, the results obtained show that the method described by
NIM is a very simple and easy method compared to the other methods and gives the ap-
proximate solution in the form of series, this series in closed form gives the corresponding
exact solution of the given problem.

Remark 5.2 In this paper, we only apply three terms to approximate the solutions,
if we apply more terms of the approximate solutions, the accuracy of the approximate
solutions will be greatly improved.
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6 Conclusion

In this paper, we have compared between the new iterative method (NIM) and the natural
homotopy perturbation method (NHPM) for solving nonlinear time-fractional wave-like
equations with variable coefficients. The two methods are powerful and efficient methods
and both give approximations of higher accuracy and closed form solutions, if any. The
comparison gives similar results and supplies quantitatively reliable results. It is worth
mentioning that the NIM has an advantage over the NHPM because it takes less time
and uses only the inverse operator to solve the nonlinear problems and there is no need to
use any other inverse transform as in the case of NHPM. The two methods are powerful
mathematical tools for solving other nonlinear fractional differential equations.
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