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Abstract: In this paper, the extended Fan sub-equation method is applied to obtain
exact solutions of the generalized Zakharov equation. Applying this method, we
obtain various solutions which are benefit to further understand the concepts of the
complicated nonlinear physical phenomena. This method is straightforward, and it
can be applied to many nonlinear equations. In this work, we use Mathematica for
computations and programming.
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1 Introduction

Nonlinear partial differential equations (PDEs) appear in many fields, such as fluid me-
chanics, solid state physics, plasma physics, chemical physics, nonlinear optics , and so
on. Thus, nonlinear PDEs play an important role in the study of nonlinear science,
especially in the study of nonlinear physical science. Exact solutions of nonlinear PDEs
can provide much physical information to understand the mechanism that governs these
physical models or provide better knowledge of the physical problems and possible appli-
cations [2]. For example, the wave phenomena observed in fluid dynamics, plasma and
elastic media are often modeled by the bell-shaped sech solutions and the kink-shaped
tanh solutions. Therefore, finding exact solutions of nonlinear PDEs has been of great
significance. In the past decades, many researchers have paid more attention to various
powerful methods for obtaining exact solutions to nonlinear PDEs. Some of the most
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important methods are the Jacobi elliptic method [4], Taylor-series expansion method [6],
simplest equation method [9], the transformed rational function method [11], variational

iteration method [12], tanh-sech method [14], sine-cosine method [1, 15], G′

G -expansion
method [17], exp function method [7], homotopy analysis method [8], and so on.

Yomba [16] demonstrated that the F-expansion method, the tanh and the extended
tanh function method belonged to a class of methods called the sub-equation methods,
because we can obtain exact solutions of the complicated nonlinear PDEs in use and
study some simple nonlinear ordinary differential equations. These methods consist of
solving the nonlinear PDEs under a suggestion that a polynomial in a variable satisfies an
equation (named the sub-equation). Fan [5] recently developed a new algebraic method,
called the Fan sub-equation method, for obtaining exact analytical solutions to nonlinear
equations. These solutions include polynomial solutions, trigonometric periodic wave so-
lutions, exponential solutions, rational solutions, hyperbolic and solitary wave solutions.
The powerful Fan sub-equation method is widely applied by many scientists, see [3] and
the references therein. In this paper, the extended Fan sub-equation method will be used
to find exact solutions for the generalized Zakharov equation. We show the extended
Fan sub-equation method is a very powerful mathematical technique for finding exact
solutions of nonlinear differential equations. Here the exact solutions of the nonlinear
PDEs can be expressed as a polynomial and the degree of this polynomial can be de-
termined by considering the homogeneous balance between the highest order derivatives
and nonlinear terms in the considered equation. The aim of this paper is to find exact
solutions of the generalized Zakharov equation by using the extended Fan sub-equation
method as follows.

The form of the generalized Zakharov equation is [10] iut + uxx − 2α|u|2u+ 2uv = 0,

vtt − vxx + (|u|2)xx = 0.
(1)

Here the coefficient α is a real arbitrary constant. The nonlinear self-interaction in the
high-frequency subsystem, such as a term corresponding to a self-focusing effect in plasma
physics can be described via the third term of the first equaton in (1). The rest of this
paper is organized as follows. In Section 2, we describe the extended Fan sub-equation
method for solving nonlinear PDEs. In Section 3, we give an application of the proposed
method to the generalized Zakharov equation. In Section 4, some conclusions are given.

2 Extended Fan Sub-Equation Method for Finding the Exact Solutions of Non-
linear PDEs

In this section, we illustrate the basic idea of the extended Fan sub-equation method for
solving nonlinear differential equations. We consider a nonlinear PDE in two independent
variables x, t and dependent variable u. Then by means of an appropriate transformation,
it can be reduced to a nonlinear ordinary differential equation(ODE) as follows:

P (u, u′, u′′, u′′′, ...) = 0. (2)

Here prime denotes the derivative with respect to ξ. Exact solution for this equation can
be constructed as follows:

u(ξ) =
A−n
ψ(ξ)n

+ ...+
A−1
ψ(ξ)

+A0 +A1ψ(ξ) + ...+Anψ(ξ)n; An 6= 0. (3)
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Here Ai (i = 0, 1, 2, · · · , n) are constants to be determined later. Also, ψ = ψ(ξ) satisfies
the following ODE:

ψ′(ξ) = ε

√√√√ 4∑
i=0

ωiψi, (4)

where ε = ±1 and ωi are constants. Thus the derivatives with respect to ξ can be
calculated with respect to the variable ψ as follows:

du

dξ
= ε

√√√√ 4∑
i=0

ωiψi
du

dψ
, (5)

d2u

dξ2
=

1

2

4∑
i=0

iωiψ
i−1 du

dψ
+

4∑
i=0

ωiψ
i d

2u

dψ2
, .... (6)

The solutions of equation (4) are:

• Case 1. When ω0 = ω1 = ω3 = 0, we have the following solutions

ψ =

√
−ω2

ω4
sech(

√
ω2ξ); ω2 > 0, ω4 < 0, (7)

ψ =

√
−ω2

ω4
sec(
√
−ω2ξ); ω2 < 0, ω4 > 0, (8)

ψ = − ε
√
ω4ξ

; ω2 = 0, ω4 > 0. (9)

• Case 2. When ω1 = ω3 = 0, ω0 =
ω2

2

4ω4
, we have the following solutions

ψ = ε

√
− ω2

2ω4
tanh(

√
−ω2

2
ξ); ω2 < 0, ω4 > 0, (10)

ψ = ε

√
ω2

2ω4
tan(

√
ω2

2
ξ); ω2 > 0, ω4 < 0. (11)

• Case 3. When ω1 = ω3 = 0, we have the following solutions

ψ =

√
− ω2m2

ω4(2m2 − 1)
cn(

√
ω2

2m2 − 1
ξ,m); ω2 > 0, ω4 < 0, ω0 =

1−m2

(2m2 − 1)2
,

(12)

ψ = ε

√
− ω2m2

ω4(m2 + 1)
sn(

√
− ω2

m2 + 1
ξ,m); ω2 < 0, ω4 > 0, ω0 =

ω2
2m

2

2ω4(m2 + 1)
,

(13)

where m is the modulus. In limiting cases, the Jacobi elliptic function solutions can
degenerate to hyperbolic function solutions and trigonometric function solutions, for
example, sn(ξ)→ tanh(ξ) as m→ 1, and sn(ξ)→ sin(ξ) as m→ 0.
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• Case 4. When ω0 = ω1 = ω4 = 0, we have the following solutions

ψ = −ω2

ω3
sech2(

√
ω2

2
ξ); ω2 > 0, (14)

ψ = −ω2

ω3
sec2(

√
−ω2

2
ξ); ω2 < 0, (15)

ψ =
1

ω3ξ2
; ω2 = 0. (16)

Substituting (3)-(6) into equation (2) and collecting all terms with the same powers of ψ
together, the left-hand side of equation (2) is converted into a polynomial. After setting
each coefficients of this polynomial to zero, we obtain a set of algebraic equations in terms
of An (n=0,1,2,...,n). Solving the system of algebraic equations and then substituting the
results and the general solutions of (7)-(16) into equation (3), gives solutions of equation
(2).

3 Application of the Extended Fan Sub-Equation Method

In this section, we apply the extended Fan sub-equation method for solving the general-
ized Zakharov equation as follows.

Example 3.1 We consider the generalized Zakharov equation in the form

iut + uxx − 2α|u|2u+ 2uv = 0, (17)

vtt − vxx + (|u|2)xx = 0. (18)

For obtaining exact solutions of (17) and (18), we use

u(x, t) = ρ(x, t) ei(kx+λt), (19)

where k, λ are constants which should to be determined later. Substituting equation (19)
into equations (17) and (18), we get

i(ρt + 2kρx) + ρxx − (λ+ k2)ρ− 2αρ3 + 2ρv = 0, (20)

vtt − vxx + ρ2xx = 0. (21)

We take the traveling wave transformation

ρ = ρ(ξ), v = v(ξ), ξ = ω(x− 2kt), (22)

here ω is a constant which should be determined later. Then equations (20) and (21) are
reduced into two nonlinear ODEs

ωρ′′ − (λ+ k2)ρ− 2αρ3 + 2ρv = 0, (23)

(4k2 − 1)v′′ + (ρ2)′′ = 0, (24)

integrating equation (24) with respect to ξ, we have

v =
ρ2

1− 4k2
. (25)
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Substituting equation (25) into equation (23) yields

ω2ρ′′ − (λ+ k2)ρ− 2αρ3 +
2

1− 4k2
ρ3 = 0. (26)

Balancing ρ′′ with ρ3 in (26) gives n=1. Thus the extended Fan sub-equation method
admits the following solution

ρ(ξ) =
A−1
ψ(ξ)

+A0 +A1ψ(ξ), (27)

where A−1, A0, A1 are constants to be determined and ψ satisfies equation (4).
By substituting equations (27) and (4) into equation (26), collecting the coefficients

of ψi and setting them to be zero, a set of algebraic equations is obtained. Solving this
set of algebraic equations using Mathematica [13], we get

• A0 = 0, A1 =
ω
√
ω4β√

1 + αβ
, A−1 =

[(λ+ k2)− ω2ω2]
√
β

6ω
√
ω4(1 + αβ)

, β = −1 + 4k2, (28)

ω0 = ω0, ω1 = ω3 = 0, ω2 = ω2, ω4 6= 0.

• A0 =

√
βγ

4
√

3
, A1 =

√
3βγω2ω3

2[5ω2ω2 − 2(λ+ k2)]
, A−1 =

√
βγ[−2(λ+ k2)− ω2ω2]

24
√

3ω2ω3

,(29)

γ = 10ω2ω2 − (1 + 4k), ω0 = ω0, ω1 = 0, ω2, ω3 6= 0, ω4 = ω4.

By using (28), (27) and cases (7)-(13) respectively, we get

ρ1(x, t) =
[(λ+ k2)− ω2ω2]

√
β

6ω
√
−ω2(1 + αβ)

cosh[
√
ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sech[
√
ω2(ω(x− 2kt))], (30)

ρ2(x, t) =
[(λ+ k2)− ω2ω2]

√
β

6ω
√
−ω2(1 + αβ)

cos[
√
−ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sec[
√
ω2(ω(x− 2kt))], (31)

ρ3(x, t) = −
√
β√

1 + αβ

{
[(λ+ k2)− ω2ω2](ω(x− 2kt))

6 ε ω
+

ε ω

ω(x− 2kt)

}
, (32)

ρ4(x, t) =
[(λ+ k2)− ω2ω2]

√
2β

6 ε ω
√
−ω2(1 + αβ)

coth[

√
−ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tanh[

√
−ω2

2
(ω(x− 2kt))], (33)

ρ5(x, t) =
[(λ+ k2)− ω2ω2]

√
2β

6 ε ω
√
−ω2(1 + αβ)

cot[

√
ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tan[

√
ω2

2
(ω(x− 2kt))], (34)
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ρ6(x, t) =
[(λ+ k2)− ω2ω2]

√
β(2m2 − 1)

6ω
√
−ω2m2(1 + αβ)

1

cn(
√

ω2

2m2−1 ω(x− 2kt),m)
,

ω
√
−ω2m2β√

(2m2 − 1)(1 + αβ)
cn(

√
ω2

2m2 − 1
ω(x− 2kt),m), (35)

ρ7(x, t) =
[(λ+ k2)− ω2ω2]

√
β(m2 + 1)

6 ε ω
√
−ω2m2(1 + αβ)

1

sn(
√
− ω2

m2+1 ω(x− 2kt),m)
,

ε ω
√
−ω2m2β√

(m2 + 1)(1 + αβ)
sn(

√
− ω2

m2 + 1
ω(x− 2kt),m). (36)

Substituting (30)-(36) into (19) and (25) respectively, we have

u1(x, t) = { [(λ+ k2)− ω2ω2]
√
β

6ω
√
−ω2(1 + αβ)

cosh[
√
ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sech[
√
ω2(ω(x− 2kt))]}ei(kx+λt),

v1(x, t) =
1

1− 4k2
{ [(λ+ k2)− ω2ω2]

√
β

6ω
√
−ω2(1 + αβ)

cosh[
√
ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sech[
√
ω2(ω(x− 2kt))]}2,

u2(x, t) = { [(λ+ k2)− ω2ω2]
√
β

6ω
√
−ω2(1 + αβ)

cos[
√
−ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sec[
√
ω2(ω(x− 2kt))]}ei(kx+λt),

v2(x, t) =
1

1− 4k2
{ [(λ+ k2)− ω2ω2]

√
β

6ω
√
−ω2(1 + αβ)

cos[
√
−ω2(ω(x− 2kt))] +

ω
√
−ω2β√

1 + αβ

sec[
√
ω2(ω(x− 2kt))]}2,

u3(x, t) = {−
√
β√

1 + αβ

{
[(λ+ k2)− ω2ω2](ω(x− 2kt))

6 ε ω
+

ε ω

ω(x− 2kt)

}
}ei(kx+λt),

v3(x, t) =
1

1− 4k2
{−

√
β√

1 + αβ

{
[(λ+ k2)− ω2ω2](ω(x− 2kt))

6 ε ω
+

ε ω

ω(x− 2kt)

}
}2,

u4(x, t) = { [(λ+ k2)− ω2ω2]
√

2β

6 ε ω
√
−ω2(1 + αβ)

coth[

√
−ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tanh[

√
−ω2

2
(ω(x− 2kt))]}ei(kx+λt),

v4(x, t) =
1

1− 4k2
{ [(λ+ k2)− ω2ω2]

√
2β

6 ε ω
√
−ω2(1 + αβ)

coth[

√
−ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tanh[

√
−ω2

2
(ω(x− 2kt))]}2.
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u5(x, t) = { [(λ+ k2)− ω2ω2]
√

2β

6 ε ω
√
−ω2(1 + αβ)

cot[

√
ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tan[

√
ω2

2
(ω(x− 2kt))]}ei(kx+λt),

v5(x, t) =
1

1− 4k2
{ [(λ+ k2)− ω2ω2]

√
2β

6 ε ω
√
−ω2(1 + αβ)

cot[

√
ω2

2
(ω(x− 2kt))] +

ε ω
√
−ω2β√

2(1 + αβ)

tan[

√
ω2

2
(ω(x− 2kt))]}2,

u6(x, t) = {
[(λ+ k2)− ω2ω2]

√
β(2m2 − 1)

6ω
√
−ω2m2(1 + αβ)

1

cn(
√

ω2

2m2−1 ω(x− 2kt),m)

ω
√
−ω2m2β√

(2m2 − 1)(1 + αβ)
cn(

√
ω2

2m2 − 1
ω(x− 2kt),m)}ei(kx+λt),

v6(x, t) =
1

1− 4k2
{

[(λ+ k2)− ω2ω2]
√
β(2m2 − 1)

6ω
√
−ω2m2(1 + αβ)

1

cn(
√

ω2

2m2−1 ω(x− 2kt),m)

ω
√
−ω2m2β√

(2m2 − 1)(1 + αβ)
cn(

√
ω2

2m2 − 1
ω(x− 2kt),m)}2,

u7(x, t) = {
[(λ+ k2)− ω2ω2]

√
β(m2 + 1)

6 ε ω
√
−ω2m2(1 + αβ)

1

sn(
√
− ω2

m2+1 ω(x− 2kt),m)

ε ω
√
−ω2m2β√

(m2 + 1)(1 + αβ)
sn(

√
− ω2

m2 + 1
ω(x− 2kt),m)}ei(kx+λt),

v7(x, t) =
1

1− 4k2
{

[(λ+ k2)− ω2ω2]
√
β(m2 + 1)

6 ε ω
√
−ω2m2(1 + αβ)

1

sn(
√
− ω2

m2+1 ω(x− 2kt),m)

ε ω
√
−ω2m2β√

(m2 + 1)(1 + αβ)
sn(

√
− ω2

m2 + 1
ω(x− 2kt),m)}2.

By using (29), (27) and cases (14) and (15) respectively, we get

ρ8(x, t) =
[2(λ+ k2) + ω2ω2]

√
βγ

24
√

3ω2ω2

cosh2[

√
ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sech2[

√
ω2

2
ω(x− 2kt)], (37)

ρ9(x, t) =
[2(λ+ k2) + ω2ω2]

√
βγ

24
√

3ω2ω2

cos2[

√
−ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sec2[

√
−ω2

2
ω(x− 2kt)]. (38)

Substituting (37)-(38) into (19) and (25) respectively, we have
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u8(x, t) = { [2(λ+ k2) + ω2ω2]
√
βγ

24
√

3ω2ω2

cosh2[

√
ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sech2[

√
ω2

2
ω(x− 2kt)]}ei(kx+λt),

v8(x, t) =
1

1− 4k2
{ [2(λ+ k2) + ω2ω2]

√
βγ

24
√

3ω2ω2

cosh2[

√
ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sech2[

√
ω2

2
ω(x− 2kt)]}2,

u9(x, t) = { [2(λ+ k2) + ω2ω2]
√
βγ

24
√

3ω2ω2

cos2[

√
−ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sec2[

√
−ω2

2
ω(x− 2kt)]}ei(kx+λt),

v9(x, t) =
1

1− 4k2
{ [2(λ+ k2) + ω2ω2]

√
βγ

24
√

3ω2ω2

cos2[

√
−ω2

2
ω(x− 2kt)] +

√
βγ

4
√

3

−
√

3βγ ω2ω2

2(5ω2ω2 − 2(λ+ k2))
sec2[

√
−ω2

2
ω(x− 2kt)]}2.

4 Conclusion

We have applied the extended Fan sub-equation method to solve nonlinear partial dif-
ferential equations. As an application of the proposed method, some exact analytical
solutions of the generalized Zakharov equation are successfully obtained. These solu-
tions include hyperbolic function solutions, trigonometric function solutions and rational
function solutions. Moreover, the proposed method is shown to be a simple, yet powerful
algorithm for handling the systems of PDEs. Mathematica has been used for computa-
tions and programming in this paper.

Acknowledgment

The author would like to acknowledge the financial support of Bozorgmehr University of
Qaenat for this research under contract number 1025.

References

[1] M. Alquran, A. Jarrah and E.V. Krishnan. Solitary wave solutions of the phi-four equation
and the breaking soliton system by means of Jacobi elliptic sine-cosine expansion method.
Nonlinear Dynamics and Systems Theory 18(3) (2018) 233–240.

[2] G.E. Chatzarakis, J. Diblk, G.N. Miliaras and I.P. Stavroulakis. Classification of neutral
difference equations of any order with respect to the asymptotic behavior of their solutions.
Applied Mathematics and Computation 228 (2014) 77–90.

[3] Y. Chen, Q. Wang and B.A. Li. A generalized method and general form solutions to the
Whitham-Broer-Kaup equation. Chaos Solitons and Fractals 22(3) (2004) 675–682.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1-SI) (2019) 151–159 159

[4] R.B. Djob, E. Tala-Tebue, A. Kenfack-Jiotsa and T.C. Kofane. The Jacobi elliptic method
and its applications to the generalized form of the phi-four equation. Nonlinear Dynamics
and Systems Theory 16(3) (2016) 260–267.

[5] E. Fan. Uniformly constructing a series of explicit exact solutions to nonlinear equations in
mathematical physics. Chaos Solitons and Fractals 16(5) (2003) 819–839.

[6] H. Jafari and A. Azad. A computational method for solving a system of Volterra integro-
differential equations. Nonlinear Dynamics and Systems Theory 12(4) (2012) 389–396.

[7] H. Jafari, N. Kadkhoda and C.M. Khalique. Exact solutions of equation using Lie symmetry
approach along with the simplest equation and Exp-function methods. Abstract and Applied
Analysis vol. 2012, Article ID 350287, 7 pages, 2012. https://doi.org/10.1155/2012/350287.

[8] H. Jafari, H. Tajadodi and A. Biswas. Homotopy analysis method for solving a couple
of evolution equations and comparison with Adomian’s decomposition method. Waves in
Random and Complex Media 21(4) (2011) 657–667.

[9] N. Kadkhoda and H. Jafari. Kudryashov method for exact solutions of isothermal magne-
tostatic atmospheres. Iranian Journal of Numerical Analysis and Optimization 6(1) (2016)
43–52.

[10] Y. Khan, N. Faraz and A. Yildirim. New soliton solutions of the generalized Zakharov
equations using He’s variational approach. Applied Mathematics Letters 24(6) (2011) 965–
968.

[11] W.X. Ma and J.H. Lee. A transformed rational function method and exact solutions to the
(3+ 1)-dimensional Jimbo-Miwa equation. Chaos Solitons Fractals 42 (2009) 1356-1363.

[12] M. A. Noor and S. T. Mohyud-Din. Variational iteration method for solving higher-order
nonlinear boundary value problems using Hes polynomials. International Journal of Non-
linear Science and Numerical Simulation 9(2) (2008) 141–156.

[13] I.P. Stavroulakis and S.A. Tersian. Partial Differential Equations: An Introduction With
Mathematica and Maple Second Edition. World Scientific Publishing Company, Singapore,
2004.

[14] A.M. Wazwaz. Two reliable methods for solving variants of the KdV equation with compact
and noncompact structures. Chaos Solitons Fractals 28(2) (2006) 454–462.

[15] A.M. Wazwaz. The sine-cosine method for obtaining solutions with compact and noncom-
pact structures. Applied Mathematics and Computation 159(2) (2004) 559–576.

[16] E. Yomba. The extended Fan Sub-equation method and its application to KdV-MKdV,
BKK and variant Boussinesq equations. Physics Letters A 336(6) (2005) 463–476.

[17] J. Zhang, X. Wei and Y. Lu. A generalized G′

G
-expansion method and its applications.

Physics Letters A 372(20) (2008) 3653–3658.


	Introduction
	Extended Fan Sub-Equation Method for Finding the Exact Solutions of Nonlinear PDEs 
	Application of the Extended Fan Sub-Equation Method
	Conclusion

