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Abstract: We analyze, in spaces of distributions with finite higher moments, dis-
crete mass and momentum dependent equations describing the movement of charged
particles (electrons, ions) aggregating and moving in a relativistic zero-magnetic field.
The model is a combination of two processes (kinetic and aggregation), each of which
is proven to be separately conservative. Under specific hypothesis, notably on the
relativistic work and aggregation rate, we prove existence results for the full model
using the perturbation theory and the subordination principle. This result may have
a great impact, especially in the full control of the total number of charged particles
described by the model.
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1 Introduction

It is well known [1] that magnetic fields can be produced by charged particles moving in
the space. The particles such as electrons or ions, produce complicated but well known
magnetic fields that depend on their charge, and their momentum. There are numerous
applications and implications of the effects caused by the movements of charged parti-
cles in (zero) magnetic fields. The most common example, in consequence of the recent
discoveries in the technology of ultrahigh intensity lasers and high current relativistic
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charged bunch sources, is the use of laser pulses together with charged bunches for exci-
tation of strong waves (for example, plasma containing charged particles). The excited
waves can be used, for example, for acceleration of charged particles and focusing of
bunches [2,3]. Another example in optics is the production of pulses of light of extremely
short duration using the mode-locking technique [3]. In biophysics it was proved [4] that
the 250-fold screening of the geomagnetic field, which is a ”zero” magnetic field with an
induction, affects early embryogenesis and the capacity of some animals (a mouse, for
instance) to reproduce.

On the other side, various types of pure aggregation equations have been comprehen-
sively analyzed in numerous works (see, e.g., [5–12]). Conservative and nonconservative
regimes for pure fragmentation equations have been thoroughly investigated, sometime
leading to dishonesty in the process, that is, a process in which models are based on the
principle of conservation of mass (individuals, or particles) but which generate solutions
that are not conservative.

It is possible to combine the two processes described above into one unique model (the
full model). However the analysis and the well posedness of this model are still hardly
explored in the domain of mathematical and abstract analysis. Kinetic-type models with
diffusion, growth or decay were globally investigated in [13–16], where the authors showed
that the transport part does not affect the breach of the conservation laws.

At a macroscopic level, the discrete mass of charged particles (molar or relative molar
mass) can be considered during the modeling. Thus, we obtain the following generalized
model derived from the combination of Vlasov-Maxwell equations [17] and aggradation
equation [18]:

Dα
t g(t, x, p, n) = −γp

n

∂g(t, x, p, n)

∂x
+ qE

∂g(t, x, p, n)

∂p
− a(x, p, n)g(t, x, p, n)

+
∞∑

m=n+1
a(x, p,m)b(x, p, n,m)g(t, x, p,m),

g(0, x, p, n) = g
o

(x, p, n), t ∈ R, n = 1, 2, 3 . . . ,

(1)

where Dα
t is defined as

Dα
t g(t, x, p, n) =

∂α

∂tα
g(t, x, p, n) =

1

Γ(1− α)

t∫
0

(t− r)−α ∂
∂r
g(r, x, p, n)dr, (2)

with 0 < α ≤ 1 and represents the fractional derivative of the function g in the sense
of Caputo [19], where Γ is the gamma-function Γ(ζ) =

∫∞
0
tζ−1e−tdt. Moreover, the

distribution function gn ≡ g(t, x, p, n) describes the density of groups of size n, that
is, the number of particles (electrons or ions) having approximately the momentum p
near the position x at time t. Here the independent variables (x, p, n) take values in a
set R3 × R3 × N and γ is a Lorentz factor. We assume that the mass n of a cluster
in motion is dependent on γ and the rest mass n0, n = γn0. This implies that the
relativistic momentum relation takes the same form as for the classical momentum, p =
γp0. an = a(x, p, n) ≥ 0 is the average aggregation rate, that is, the average number
at which clusters of size n undergo splitting, bn,m = b(x, p, n,m) ≥ 0 is the average
number of n-groups produced upon the splitting of m-groups. Equation (3) is really
complex: the first member on its right-hand side represents the kinetic process due to
the effect of charged particles in the relativistic zero-magnetic field E, while the second
term represents the fission of groups of size n (the loss due to the fragmentation) and
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the third term is the fission to form groups of size n (the gain due to the fragmentation).
The analysis of such a model required us to proceed step by step as we will see in the
following sections. To analyse the generalized model (1) with 0 < α ≤ 1, we need to
start with the case α = 1. We shall therefore fully study the well-posedness for the case
α = 1 and then extend the analysis to the general case 0 < α ≤ 1 by exploiting the
subordination principle [6, 20–22].

2 Existence Results: The Case α = 1

2.1 Well-posedness of the full model

The case α = 1 yields from (1) the following model

∂g

∂t
(t, x, p, n) = −γp

n

∂g(t, x, p, n)

∂x
+ qE

∂g(t, x, p, n)

∂p
− a(x, p, n)g(t, x, p, n)

+
∞∑

m=n+1
a(x, p,m)b(x, p, n,m)g(t, x, p,m),

g(0, x, p, n) = g
o

(x, p, n), t ∈ R, n = 1, 2, 3 . . . .

(3)

Throughout this work we assume that the following hypotheses are satisfied.

(H1): bn,m = 0 for all m ≤ n (since a group of size m ≤ n cannot split to form a group
of size n);

(H2): a1 = 0 (a cluster of size one cannot split);

(H3):
∑n−1
m=1mbm,n = n, (n = 2, 3, ...), (the sum of all individuals obtained by fragmen-

tation of an n-group is equal to n);

The total number of particles, no matter the momentum in the space, is given by

U(t) =

∫
R3

∫
R3

∞∑
n=1

ng(t, x, p, n)dxdp =

∞∑
n=1

n

∫
R3

∫
R3

g(t, x, p, n)dxdp.

This number is normally not changed by interactions among groups, so we expect the
following conservation law to be satisfied:

d

dt
U(t) = 0. (4)

Since gn = g(t, x, p, n) is the density of groups of size n with the momentum p near the
position x at time t and the total number of particles is expected to be conserved, it is
appropriate to work in the Banach space

X1 :=
{
h = (hn)

∞
n=1 : R3 × R3 × N 3 (x, p, n)→ hn(x, p), ‖h‖1 :=

∫
R3

∫
R3

∞∑
n=1

n|hn(x, p)|dxdp <∞}.

(5)
We choose to restrict our analysis to a smaller class of functions, the class of distributions
with finite higher moments

{Xr :=
{
h = (hn)

∞
n=1 : R3×R3×N 3 (x, p, n)→ hn(x, p), ‖h‖r :=

∫
R3

∫
R3

∞∑
n=1

nr|hn(x, p)|dxdp <∞},

(6)
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r ≥ 1, which coincides with X1 for r = 1. We assume that for each t ≥ 0, the function
(x, p, n) −→ g(x, p, n) = gn(x, p) is such that g = (gn(x, p))∞n=1 is from the space Xr with
r ≥ 1. In Xr we can rewrite (3) in a more compact form

∂

∂t
g = Tg−Ag + BAg := Tg + Fg,

g|t=0
= g

o

.
(7)

Here g is the vector (g(t, x, p, n))n∈N, A is the diagonal matrix (an)n∈N, B =
(bn,m)1≤n≤m−1,m≥2, T is the transport expression defined as (g(t, x, p, n))n∈N −→(
T̃n[g(t, x, p, n)]

)∞
n=1

with

T̃n[g(t, x, p, n)] := −γp
n

∂g(t, x, p, n)

∂x
+ qE

∂g(t, x, p, n)

∂p
. (8)

g
o

is the initial vector (g
o

n(x, p))n∈N which belongs to Xr and F is the fragmentation
expression defined by

Fg :=

(
−ang(t, x, p, n) +

∞∑
m=n+1

bn,mamg(t, x, p,m)

)∞
n=1

. (9)

Proposition 2.1 The fragmentation model described by (9) is formally conservative.

Proof. We aim to show that (4) is satisfied, that is,

d

dt
U(t) =

d

dt

∫
R3

∫
R3

∞∑
n=1

ng(t, x, p, n)dxdp =

∫
R3

∫
R3

∞∑
n=1

n
∂

∂t
g(t, x, p, n)dxdp = 0.

It suffices to show that∫
R3

∫
R3

∞∑
m=1

am|gm(x, p)|mdxdp =

∫
R3

∫
R3

∞∑
n=1

n

( ∞∑
m=n+1

bn,mam|gm(x, p)|

)
dxdp.

Making use of assumptions (H1)–(H3), we have∫
R3

∫
R3

∞∑
n=1

n

( ∞∑
m=n+1

bn,mam|gm(x, p)|

)
dxdp

=

∫
R3

∫
R3

∞∑
m=2

am|gm(x, p)|

( ∞∑
n=1

nbn,m

)
dxdp

=

∫
R3

∫
R3

∞∑
m=2

am|gm(x, p)|

(
m−1∑
n=1

nbn,m

)
dxdp

=

∫
R3

∫
R3

∞∑
m=2

am|gm(x, p)|mdxdp

=

∫
R3

∫
R3

∞∑
m=1

am|gm(x, p)|mdxdp,

(10)
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which ends the proof.
In this work, for any subspace S ⊆ Xr, we will denote by S+ the subset of S defined

as S+ = {h = (hn)∞n=1 ∈ S;hn(x, p) ≥ 0, n ∈ N, x ∈ R3}. Note that any h ∈ (Xr)+
possesses moments

Mq(h) :=

∞∑
n=1

nqhn

of all orders q ∈ [0, r]. Imposing r > 1 ensures that a significant amount of mass after
fragmentation is concentrated in small particles. This has the physical interpretation
that surface effects are reduced, i.e. it is unlikely that a large cluster will fragment into
large groups, therefore making more clusters with small sizes and concentrated at the
origin. In Xr, we define the operators A and B by

Ah := (anhn)
∞
n=1 , D(A) := {h ∈ Xr :

∫
R3

∫
R3

∞∑
n=1

nran|hn(x, p)|dxdp <∞}; (11)

Bh := (Bnhn)
∞
n=1 =

( ∞∑
m=n+1

bn,mamhm

)∞
n=1

, D(B) := D(A). (12)

Throughout, we assume that the coefficients an and bn,m satisfy the mass conservation
conditions (H1)-(H3). Now let us prove that B is well defined on D(A). Using the
condition (H1)–(H3), we can prove that [5]

n−1∑
m=1

mrbm,n ≤ nr (13)

for r ≥ 1, n ≥ 2. Note that the equality holds for r = 1. Using this inequality we have,
for every h ∈ D(A),

‖Bh‖r

=

∫
R3

∫
R3

∞∑
n=1

nr

( ∞∑
m=n+1

bn,mam|hm(x, p)|

)
dxdp

=

∫
R3

∫
R3

∞∑
m=2

am|hm(x, p)|

( ∞∑
n=1

nrbn,m

)
dxdp

=

∫
R3

∫
R3

∞∑
m=2

am|hm(x, p)|

(
m−1∑
n=1

nrbn,m

)
dxdp =

∫
R3

∫
R3

∞∑
m=2

am|hm(x, p)|mrdxdp

= ‖Ah‖r <∞.

Then ‖Bh‖r ≤ ‖Ah‖r, for all h ∈ D(A), so that we can take D(B) := D(A) and
(A + B, D(A)) is well-defined.

3 Analysis of the Transport Operator in Λ = R3 × R3 × N

Our primary objective in this section is to analyze the solvability of the Cauchy problem
for the transport equation

∂

∂t
g(t, x, p, n) = −γp

n

∂g(t, x, p, n)

∂x
+ qE

∂g(t, x, p, n)

∂p
, (14)
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g(0, x, p,m) = g
o

n(x, p), t ∈ R, n = 1, 2, 3 . . .

or its compact form
∂

∂t
p = Tp, p|t=0

= p
o

. (15)

in the space Xr.

3.1 Setting

We note that the operators on the right-hand side of (7) have the property that one
of the variables is a parameter and, for each value of this parameter, the operator has
a certain desirable property (like being the generator of a semigroup) with respect to
the other variable. Thus we need to work with parameter-dependent operators that can
be “glued”together in such a way that the resulting operator inherits the properties of
the individual components. Let us provide a framework for such a technique called the
method of semigroups with a parameter. Let us consider the space X := Lg(S,X) where
1 ≤ p <∞, (S, dm) is a measure space and X is a Banach space. Let us suppose that we
are given a family of operators {(As, D(As))}s∈S in X and define the operator (A, D(A))
acting in X according to the following formulae:

D(A) := {h ∈ X ;h(s) ∈ D(As) for almost every s ∈ S, Ah ∈ X}, (16)

and, for h ∈ D(A),

(Ah)(s) := Ash(s), (17)

for every s ∈ S. We have the following proposition.

Proposition 3.1 (see [5, 13, 14]). If for almost any s ∈ S the operator As is m-
dissipative in X, and the function s −→ R(λ,As)h(s) is measurable for any λ > 0
and h ∈ X , then the operator A is an m-dissipative operator in X . If (Gs(t))t≥0 and
(G(t))t≥0 are the semigroups generated by As and A, respectively, then for almost every
s ∈ S, t ≥ 0, and h ∈ X we have

[G(t)h](s) := Gs(t)h(s). (18)

Using the above ideas, we introduce relevant operators in the present applications.
In the transport part of (7), the variable n is the parameter and x is the main variable.
We set

X := L1(R3 × R3, dxdp) := {ψ : ‖ψ‖ =

∫
R3

∫
R3

|ψ(x, p)|dxdp <∞}

and define in X the operators (Tn, D(Tn)) as

Tngn = T̃ngn, with T̃ngn represented by (8)

D(Tn) := {gn ∈ X, Tngn ∈ X}, n ∈ N.
(19)

Then we introduce the operator T in Xr defined by

Tg = (Tngn)n∈N,

D(T) = {g = (gn)n∈N ∈ Xr, gn ∈ D(Tn) for almost everyn ∈ N, Tg ∈ Xr}.
(20)
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Making use of Proposition 3.1, we can take A = T, X = Xr = L1(N,X) =
L1(Λ, dµdmr) = L1(R3×R3×N, dµdmr), where N is equipped with the weighted count-
ing measure dmr with weight nr and dµ = dxdp = dz is the Lebesgue measure in R6.
In the notation of the proposition, (N, dmr) = (S, dm), X = X and As = Tn, therefore
(Tn, D(Tn))n∈N is a family of operators in X and using (17), we have

(Tg)n := Tngn. (21)

Here, Tngn is understood in the sense of distribution. Now we can properly study the
transport operator T. Let us fix n ∈ N. We consider the function zn : R3 × R3 −→ R3

defined by zn(x, p) = (−γpn , qE(x, p)). For each n ∈ N, we assume the following:
(H4): zn is globally Lipschitz continuous;
(H5): zn ∈ L1

loc(R3 × R3;R3 × R3); and divzn ∈ L1
loc(R3 × R3);

(H6): g
o

n ∈ L∞(R3 × R3). Let us set z = (x, p) ∈ R3 × R3, we rely on the following
definition.

Definition 3.1 A function gn is called a (weak) L∞-solution to (14) if gn ∈
L∞([0, T ]× R3 × R3 and moreover, for every test function Ψ ∈ C∞0 (R3 × R3),∫
R6

Ψ(z)gn(t, z)dz=

∫
R6

Ψ(z)g
o

n(z)dz+

t∫
0

dσ

∫
R6

gn(σ, z)(zn(σ, z)·∇Ψ(z)+Ψ(z)divzn(σ, z))dz,

t ∈ R.

Lemma 3.1 In X the existence and uniqueness of L∞-solutions to (14) hold if the
above assumptions (H4)-(H6) are satisfied.

We prove it by uniquely solving the characteristic ordinary differential equations

n(s)ג̇ = zn(גn(s)), s ∈ R,
n(t)ג = z,

(22)

with z ∈ R3×R3 and t ∈ R, which have one and only one solution n(s)ג taking values in
R3×R3. Thus we find the flow (φnt,s), t, s ∈ R generated by zn with φnt,s : R3×R3 −→
R3 × R3, that is,

1. φnt,s(z) = ,n(s)ג where n(s)ג s ∈ R, solves (22),

2. φnt,s(z) = φnτ,s(φ
n
t,τ (z)), t, s, τ ∈ R,

3. The transformations φnt,s : R3 × R3 −→ R3 × R3 are Lipschitz-homeomorphism.

Note that the functions φnt,s possess many more desirable properties as listed in [5,
23–25] that are relevant for studying the transport operator in Xr. Then making use of
gn(t, φn0,t(z)) = g

o

n(z), we obtain the unique solution to (14) given by

gn(t, x, p) = g
o

n((φn0,t)
−1(x, p)).

It is obvious that this solution belongs to D(Tn). Therefore the operator (Tn, D(Tn))
generates a semigroup given by

[GTn(t)gn] (x, p) = gn((φn0,t)
−1(x, p)), (23)

gn ∈ X. For existence and uniqueness in the full space Xr, we state the following.
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Proposition 3.2 Under the conditions of Lemma 3.1, there is one and only one
L∞-solution to (15) holding in Xr and belonging to D(T).

Proof. The proof follows immediately from relation (21) and Lemma 3.1

4 Generalization: Existence Results for 0 < α ≤ 1

Now, as we have fully analized the special case (3), proved its well-posedness and shown
its existence results, we can come back to the general model (1):

Dα
t g(t, x, p, n) = −γp

n

∂g(t, x, p, n)

∂x
+ qE

∂g(t, x, p, n)

∂p
− a(x, p, n)g(t, x, p, n)

+
∞∑

m=n+1
a(x, p,m)b(x, p, n,m)g(t, x, p,m),

g(0, x, p, n) = g
o

(x, p, n), t ∈ R, n = 1, 2, 3 . . . .

(24)

This model can be written in the same way as the perturbed transport equation (7)
above to read as

Dα
t g = Tg−Ag + Bg,

g|t=0
= g

o

.
(25)

To process we need the following.

Definition 4.1 ( [21,26]) Consider an operator Q applied in the fractional model

Dα
t (g(x, t)) = Qg(x, t), 0 < α < 1, x, t > 0, (26)

subject to the initial condition

g(x, 0) = f(x), x > 0 (27)

and defined in a Banach space X1. A family (GQ(t))t>0 of bounded operators on X1 is
called a solution operator of the fractional Cauchy problem (26)-(27) if

(i) : GQ(0) = IX1
;

(ii) :GQ(t) is strongly continuous for every t ≥ 0;

(iii) :QGQ(t)f = GQ(t)Qf for all f ∈ D(Q);

(iv) :GQ(t)D(Q) ⊂ D(Q);

(v) :GQ(t)f is a (classical) solution of the model (26)− (27) for all f ∈ D(Q), t ≥ 0.

It is well known [5] that an operator Q̃ ∈ G(M,ω) means Q̃ generates a C0-semigroup
(GQ̃(t))t>0 so that there exists M > 0 and ω such that

‖GQ̃(t)‖ ≤Meωt. (28)

Whence, by analogy, if the fractional Cauchy problem (26)-(27) has a solution opera-
tor (GQ(t))t>0 verifying (28), then we say that Q ∈ Gα(M,ω). The solution operator
(GQ(t))t>0 is positive if

GQ(t) ≥ 0

and contractive if
‖GQ(t)‖X1

≤ 1, (29)

and we say Q ∈ Gα(1, 0).
This leads to the following existence result.
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Proposition 4.1 Assume that the conditions of Lemma 3.1 hold, then for (25) there
is an extension (Kα, D(Kα)) of (T −A + B, D(T) ∩ D(A)) that generates a positive
solution operator on Xr, denoted by (GKα(t))t≥0.

Proof. The proof follows from the subordination principle [6, 20–22], by considering
the existence result for (7) with α = 1 and extending it to 0 < α ≤ 1.

5 Results and Conclusion

We have analyzed, in the space Xr of distributions with finite higher moments, the
generalized mass dependent discrete model (1), describing the movement of charged
particles (electrons, ions) aggregating and moving in a relativistic zero-magnetic field.
We showed existence of a solution g to (1) that is positive. Therefore, the evolution of the
number of charged particles, given by this solution, is the same as the one predicted by the
local law given in (4) which was used to construct the model. This is not always true since
the analysis of certain models sometimes leads to the breach of the mass conservation
law (called shattering) and that has been attributed to a phase transition creating a dust
of ”zero-size” particles with nonzero mass [9], which are beyond the model’s resolution.
Then we can use the full combination model (1) to study and control the dynamics of
a number of charged particles moving in a relativistic zero-magnetic field. This work
generalizes the preceding ones with the combination of the mass dependent relativistic
kinetic and aggregation kernels which were not considered before. This work will therefore
help addressing the problem of identifying and characterizing the full generator of our
model which is still an unsolved issue.
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