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Abstract: Some new sufficient conditions for oscillation of all solutions of a class
of second order differential equations with several sub-linear neutral terms are given.
Our results generalize and extend those reported in the literature. Examples are
included to illustrate the importance of the results obtained.

Keywords: second order neutral differential equation; sub-linear neutral term; os-
cillation.

Mathematics Subject Classification (2010): 34C10, 34K11.

1 Introduction

In this paper, we study the oscillatory behavior of second order differential equations
with several sub-linear neutral terms of the form

(a(t)z′(t))′ + q(t)xβ(σ(t)) = 0, t ≥ t0 > 0, (1)

where m > 0 is an integer, z(t) = x(t) +
∑m
i=1 pi(t)x

αi(τi(t)) and we assume that

(H1) 0 ≤ αi ≤ 1 for i = 1, 2, ...,m and β are the ratios of odd positive integers;
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(H2) a, pi, q : [t0,∞)→ R+ are continuous functions for i = 1, 2, ...,m with∫ ∞
t0

1

a(t)
dt =∞; (2)

(H3) τi, σ : [t0,∞)→ R are continuous functions with τi(t) < t, σ(t) ≤ t, σ′(t) > 0 and
τi(t), σ(t)→∞ as t→∞ for i = 1, 2, ...,m.

By a solution of equation (1), we mean a function x ∈ C([Tx,∞),R), Tx ≥ t0, which
has the property az′ ∈ C1([Tx,∞),R) and satisfies equation (1) on [Tx,∞). We consider
only those solutions x of equation (1) which satisfy sup{|x(t)| : t ≥ T} > 0 for all
T ≥ Tx, and assume that the equation (1) possesses such solutions. As usual, a solution
of equation (1) is called oscillatory if it has a zero on [T,∞) for all T ≥ Tx; otherwise it
is called nonoscillatory. If all solutions of a differential equation are oscillatory, then the
equation itself is called oscillatory.

The problem of investigating the oscillatory behavior of solutions of particular func-
tional differential equations received a great attention in the past decades, see, for exam-
ple, [1] – [20] for recent references. However, there are few results dealing with the oscil-
lation of second order differential equations with a sub-linear neutral term, see [3, 8, 19],
even though, such equations arise in many applications, see [9]. In establishing some new
criteria for the oscillation of solutions of such equations, we reduce the equation to an
equation with linear neutral term, using some inequalities.

Thus, by using some elementary inequalities, we obtained in this paper some new
oscillation results, which are new, extend and complement those established in [2–5,14–
17,19,20].

2 Oscillation Results

In what follows, all functional inequalities considered here are assumed to hold eventually,
that is, they are satisfied for all t large enough. Due to the assumptions and the form of
the equation (1), we can deal only with eventually positive solutions of equation (1).

We begin with the following lemma.

Lemma 2.1 If a and b are nonnegative, then

aαb1−α ≤ αa+ (1− α)b for 0 < α ≤ 1, (3)

where equality holds if and only if a = b.

Proof. The proof of the lemma can be found in [9]. 2

To simplify our notation, for any function ρ : [t0,∞)→ R+ which is positive, contin-
uous decreasing to zero, we set

P (t) =

(
1−

m∑
i=1

αipi(t)−
1

ρ(t)

m∑
i=1

(1− αi)pi(t)

)
,

Q(t) = q(t)P β(σ(t))

and

R(t) =

∫ t

t1

1

a(s)
ds.
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Remark 2.1 It follows from condition (2), that the lower bound t1 is an absolutely
unimportant constant in the intended oscillatory criteria.

Lemma 2.2 Assume condition (2) and let x be a positive solution of equation (1).
Then the corresponding function z satisfies

z(t) > 0, z′(t) > 0, and (a(t)z′(t))′ < 0, t ≥ t1 ≥ t0, (4)

z(t) ≥ R(t)a(t)z′(t), t ≥ t1 (5)

and
z(t)

R(t)
is decreasing for t ≥ t1. (6)

Proof. Assume that x is a positive solution of (1). Then (a(t)z′(t))′ < 0 for t ≥ t1 ≥
t0 which in view of (2) implies z′(t) > 0 for t ≥ t1 ≥ t0. Since a(t)z′(t) is decreasing, we
have

z(t) ≥
∫ t

t1

a(s)z′(s)
1

a(s)
ds ≥ a(t)z′(t)R(t).

Moreover, using the previous inequality, we have(
z(t)

R(t)

)′
=
a(t)z′(t)R(t)− z(t)

a(t)R2(t)
≤ 0.

We can conclude that z(t)
R(t) is decreasing for t ≥ t1. 2

Theorem 2.1 Let β > 1 and conditions (H1)− (H3) and (2) hold. Let∫ ∞
t1

1

a(u)

∫ ∞
u

q(s)P β(σ(s))ds du =∞. (7)

Assume that there is a positive continuous decreasing function ρ : [t0,∞) → (0,∞)
tending to zero, such that P (t) is positive for t ≥ t0. If there exists a positive function
µ(t) ∈ C1([t0,∞),R) such that

lim
t→∞

sup

∫ t

t0

[
µ(s)Q(s)− a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
ds =∞, (8)

then every solution of equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0, x(τi(t)) > 0
and x(σ(t)) > 0 for t ≥ t1, some t1 ≥ t0 and for i = 1, 2, ...,m. It is easy to see that
z(t) > 0 for t ≥ t1, and from Lemma 2.2 (4) holds.

Now from the definition of z, we have

x(t) = z(t)−
m∑
i=1

pi(t)x
αi(τi(t))

≥ z(t)−
m∑
i=1

pi(t)z
αi(t)

≥ z(t)−
m∑
i=1

pi(t)(αiz(t) + (1− αi))

=

(
1−

m∑
i=1

αipi(t)

)
z(t)−

m∑
i=1

(1− αi)pi(t), (9)
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where we have used inequality (3) with b = 1. Since z(t) is positive and increasing and
ρ(t) is positive and decreasing to zero, there is a t2 ≥ t1 such that

z(t) ≥ ρ(t) for t ≥ t2. (10)

Using (10) in (9), we obtain

x(t) ≥

(
1−

m∑
i=1

αipi(t)−
1

ρ(t)

m∑
i=1

(1− αi)pi(t)

)
z(t) = P (t)z(t)

and substituting this in equation (1) yields

(a(t)z′(t))′ + q(t)P β(σ(t))zβ(σ(t)) ≤ 0, t ≥ t2. (11)

From condition (7) it follows that z(t)→∞ as for t→∞ and for β > 1, inequality

zβ(σ(t)) > z(σ(t))

holds. Using this inequality in (11), we obtain

(a(t)z′(t))′ +Q(t)z(σ(t)) ≤ 0, t ≥ t2. (12)

Define the function

w(t) = µ(t)
a(t)z′(t)

z(σ(t))
, t ≥ t2.

Then w(t) > 0 for t ≥ t2 and

w′(t) = µ′(t)
a(t)z′(t)

z(σ(t))
+ µ(t)

(a(t)z′(t))′

z(σ(t))
− µ(t)a(t)z′(t)

z2(σ(t))
z′(σ(t)).σ′(t). (13)

Since a(t)z′(t) is positive and nonincreasing, we obtain

a(t)z′(t) ≤ a(σ(t))z′(σ(t)). (14)

Using (14) and (12) in (13), and completing the square, we see that

w′(t) ≤ −µ(t)Q(t) +
a(σ(t))(µ′(t))2

4µ(t)σ′(t)
.

An integration of the last inequality from t2 to t yields∫ t

t2

[
µ(s)Q(s)− a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
ds ≤ w(t2),

and on taking lim sup as t→∞, we obtain a contradiction with (8). This completes the
proof. 2

Next, we present new oscillation results for equation (1) with β > 1.

Theorem 2.2 Let β > 1 and conditions (H1) − (H3) and (2) hold. Assume that
there is a positive continuous and decreasing function ρ : [t0,∞) → R+ tending to zero
as t → ∞ such that P (t) is positive for all t ≥ t0. If there exists a positive function
µ(t) ∈ C1([t0,∞),R) such that

lim
t→∞

sup

∫ t

t0

[
µ(s)q(s)P β(σ(s))ρβ−1(σ(s))− a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
=∞, (15)

then every solution of equation (1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0, x(τi(t)) > 0
and x(σ(t)) > 0 for t ≥ t1, some t1 ≥ t0 and i = 1, 2, ...,m. Proceeding as in the proof of
Theorem 2.1, we see that (11) holds. Now using (10) in (11), we obtain

(a(t)z′(t))′ + q(t)P β(σ(t))ρβ−1(σ(t))z(σ(t)) ≤ 0, t ≥ t2.

The rest of the proof is similar to that of Theorem 2.1 and hence it is omitted. 2

If β = 1, then from Theorem 2.2 one can immediately obtain the following oscillation
results for the equation (1).

Theorem 2.3 Let β = 1 and conditions (H1) − (H3) and (2) hold. Assume that
there is a positive continuous and decreasing function ρ : [t0,∞) → R+ tending to zero
as t → ∞, such that P (t) is positive for all t ≥ t0. If there exists a positive function
µ(t) ∈ C1([t0,∞),R) such that

lim
t→∞

sup

∫ t

t0

[
µ(s)q(s)P (σ(s))− a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
ds =∞, (16)

then every solution of equation (1) is oscillatory.

Next, we obtain an oscillation result for the equation (1) in the case 0 < β < 1.

Theorem 2.4 Let 0 < β < 1 and conditions (H1)− (H3) and (2) hold. Assume that
there is a positive continuous and decreasing function ρ(t) : [t0,∞)→ R+ tending to zero
as t → ∞, such that P (t) is positive for all t ≥ t0. If there exists a positive function
µ(t) ∈ C1([t0,∞),R) such that

lim
t→∞

sup

∫ t

t0

[
µ(s)q(s)P β(σ(s))Rβ−1(σ(s))

K1−β − a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
ds =∞ (17)

for every constant K > 0, then every solution of equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0, x(τi(t)) > 0
and x(σ(t)) > 0 for t ≥ t1, for some t1 ≥ t0 and i = 1, 2, ...,m. Proceeding as in the proof
of Theorem 2.1, we obtain (11). Now (11) can be written as

(a(t)z′(t))′ + q(t)P β(σ(t))Rβ−1(σ(t))
zβ−1(σ(t))

Rβ−1(σ(t))
z(σ(t)) ≤ 0 (18)

for all t ≥ t2 ≥ t1. Since z(t)
R(t) is decreasing, there is a constant K > 0 such that

z(t)

R(t)
≤ K for t ≥ t2. (19)

Using (19) and β < 1, in (18), we have

(a(t)z′(t))′ + q(t)
P β(σ(t))Rβ−1(σ(t))

K1−β z(σ(t)) ≤ 0, t ≥ t2.

We define function w(t) as in proof of Theorem 2.1. Proceeding exactly as in the proof
of Theorem 2.1, we get

w′(t) ≤ −µ(t)q(t)
P β(σ(t))Rβ−1(σ(t))

K1−β +
a(σ(t))(µ′(t))2

4µ(t)σ′(t)
.
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Integrating the last inequality from t2 to t, we obtain∫ t

t0

[
µ(s)q(s)P β(σ(s))Rβ−1(σ(s))

K1−β − a(σ(s))(µ′(s))2

4µ(s)σ′(s)

]
ds ≤ w(t2),

and on taking limsup as t→∞, we have a contradiction with (17). 2

Next, we use a comparison method to prove our results for the case β ∈ (0,∞).

Theorem 2.5 Let conditions (H1) − (H3) and (2) hold. Assume that there is a
positive, continuous and decreasing function ρ(t) : [t0,∞) → R+ tending to zero such
that P (t) is positive for all t ≥ t0. If the first order delay differential equation

w′(t) + q(t)P β(σ(t))Rβ(σ(t))wβ(σ(t)) = 0, t ≥ t1 (20)

is oscillatory, then every solution of equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0, x(τi(t)) > 0
and x(σ(t)) > 0 for t ≥ t1, for some t1 ≥ t0 and i = 1, 2, ...,m. Proceeding as in the proof
of Theorem 2.1, we see that (11) holds. Using (5) in (11), we obtain

(a(t)z′(t))′ + q(t)P β(σ(t))Rβ(σ(t))(a(σ(t))z′(σ(t)))β ≤ 0, t ≥ t1. (21)

Set w(t) = a(t)z′(t). Thus w(t) > 0, and

w′(t) + q(t)P β(σ(t))Rβ(σ(t))wβ(σ(t)) ≤ 0.

By Lemma 2.2 of [17], the equation (20) has a positive solution which is a contradiction.
This completes the proof. 2

Using the results of [8] and [18], one can easily obtain the following corollaries from
Theorem 2.5.

Corollary 2.1 Let all conditions of Theorem 2.5 hold with β = 1 for all t ≥ t0. If

lim
t→∞

inf

∫ t

σ(t)

q(s)P (σ(s))R(σ(s))ds >
1

e
,

then every solution of equation (1) is oscillatory.

Corollary 2.2 Let all conditions of Theorem 2.5 hold with 0 < β < 1 for all t ≥ t0.
If ∫ ∞

t0

q(t)P β(σ(t))Rβ(σ(t))dt =∞,

then every solution of equation (1) is oscillatory.

Corollary 2.3 Let all conditions of Theorem 2.5 hold with β > 1 for all t ≥ t0. If
σ(t) = t− δ, δ > 0, and

lim
t→∞

inf β−
t
δ log(q(t)P β(t− δ)Rβ(t− δ)) > 0,

then every solution of equation (1) is oscillatory.
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3 Examples

In this section, we provide some examples to illustrate the main results.

Example 3.1 Consider the differential equation with sub-linear neutral terms(
t

(
x(t) +

1

t
x

1
3

(
t

2

)
+

1

t2
x

1
5

(
t

3

))′)′
+ tγx3

(
t

2

)
= 0, t ≥ 8. (22)

Here a(t) = t, p1(t) = 1
t , p2(t) = 1

t2 , τ1(t) = t
2 , τ2(t) = t

3 , σ(t) = t
2 , q(t) = tγ ,

α1 = 1
3 , α2 = 1

5 and β = 3. Let ρ(t) = 1
t then ρ(t)→ 0 as t→∞ and η(t) = 1

t and

P (t) =

(
1− 1

3t
− 1

5t2
− t
(

2

3t
+

4

5t2

))
=

(
1

3
− 1

3t
− 1

5t2
− 4

5t

)
=

5t2 − 17t− 3

15t2
> 0 for t ≥ 8.

By taking µ(t) = t, we see that

lim
t→∞

sup

∫ t

8

(
3

2
sγ−1

(
5s2 − 34s− 12

15s2

)3

− 1

4

)
ds =∞

provides γ > 1. So by Theorem 2.2, every solution of equation (22) is oscillatory.

Example 3.2 Consider the differential equation with sub-linear neutral terms(
t

(
x(t) +

1

t
x

3
5

(
t

2

)
+

1

t2
x

1
3

(
t

3

))′)′
+ tγx

(
t

2

)
= 0. (23)

Here a(t) = t, p1(t) = 1
t , p2(t) = 1

t2 , τ1(t) = t
2 , τ2(t) = t

3 , σ(t) = t
2 , q(t) = tγ ,

α1 = 3
5 , α2 = 1

3 and β = 1. Let ρ(t) = 1
t then ρ(t)→ 0 as t→∞ and

P (t) = 1− 3

5t
− 1

3t2
− t
(

2

5t
+

2

3t2

)
=

(
1− 3

5t
− 1

3t2
− 2

5
− 2

3t

)
=

3

5
− 19

15t
− 1

3t2

=
1

15t2
(9t2 − 19t− 5),

P

(
t

2

)
=

(
9t2 − 38t− 20

15t2

)
> 0 for t ≥ 8.

By taking µ(t) = t, we see that

lim
t→∞

sup

∫ t

8

(
sγ+1

(
9s2 − 38s− 20

15s2

)
− 1

4

)
ds =∞

provides γ ≥ −1. By Theorem 2.3, every solution of equation (23) is oscillatory.
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Example 3.3 Consider the differential equation with sub-linear neutral terms(
t
1
2

(
x(t) +

1

t
x

1
3

(
t

2

)
+

1

t2
x

5
7

(
t

3

))′)′
+ tγx

1
3

(
t

2

)
= 0. (24)

Here a(t) = t
1
2 , p1(t) = 1

t , p2(t) = 1
t2 , α1 = 1

3 , α2 = 5
7 , β = 1

3 , q(t) = tγ , τ1(t) = t
2 ,

τ2(t) = t
3 and σ(t) = t

2 . Let ρ(t) = 1
t , then ρ(t)→ 0 as t→∞ and

P (t) = 1− 1

3t
− 5

7t2
− t
(

2

3t
+

2

7t2

)
= 1− 1

3t
− 5

7t2
− 2

3
− 2

7t
=

(
1

3
− 13

21t
− 5

7t2

)
,

P (σ(t)) =

(
1

3
− 26

21t
− 20

7t2

)
=

(7t2 − 26t− 60)

21t2
> 0, t ≥ 8,

R(t) =

∫ t

8

1

s1/2
ds = 2

√
t− 4

√
2.

By taking µ(t) = 1, we see that

lim
t→∞

sup

∫ t

8

K1/3−1sγ
(

7s2 − 26s− 60

21s2

) 1
3 (

2s
1
2 − 4

√
2
)− 2

3

ds =∞

provides γ ≥ 1
3 . By Theorem 2.4, every solution of equation (22) is oscillatory.

4 Conclusion

The results presented in this paper are new and complement to those of [3, 17, 19, 20].
Further it would be of interest to use this method to study equation (1) with αi > 1 for i =
1, 2, ...,m, that is, equation (1) with several superlinear neutral terms. Also, the results
established in [2–5, 14–17, 19, 20] cannot be applied to equations (22) to (24), since the
neutral term contains more than one sub-linear neutral term. Thus the results obtained
in this paper are applicable to several classes of neutral type differential equations.
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