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Abstract: In this paper, we introduce a recursive solution approach to linear systems
of the form Ax = b, where A is non-singular and its corner minors are all non-
zero. For the first time in the literature, we show how one can exploit (possible)
useful information provided by corner sub-matrices of A towards an efficient solution
approach to the linear system. This is going to initiate a thorough study of solution
methods whose goals are to fully exploit available information within the given linear
system.
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1 Introduction

The problem of solving a linear system Ax = b is central to scientific computation [1],
a subject which is used in most parts of modern mathematics. Computational solution
methods of such system are often an important part of numerical linear algebra (see [2,3]),
and play an important role in engineering, physics, chemistry, computer science, and
economics [4]. Even more, systems of non-linear equations are often approximated by
linear ones with the aim of linearization, a helpful technique while making a mathematical
model or computer simulation of a relatively complex system. A reader interested in the
applications of linear systems is referred to [4–7].

Iterative vs. direct solution methods for solving general linear systems have been
gaining popularity in many areas of scientific computing [8, 9]. Until recently, direct
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solution methods were often preferred to iterative methods in real applications because
of their robustness and predictable behavior [9]. However, to the best of our knowledge,
none of the existing methods is capable of exploiting special information provided by the
underlying linear system. This information could appear in an application setting within
which a linear system with known solution is going to be expanded to a larger linear
system. Other than that, simple matrix operations often reveal sub-matrices of A whose
inverse are quickly computable. This paper initiates the study of linear systems when
such information is available. We limit our attention to a special class of non-singular
matrices and build necessary algebraic tools to study linear systems with such coefficient
matrices.

The rest of the paper is organized as follows. In Section 2, we define and elaborate
on the necessary notations and definitions needed in the paper. In Section 3, we build
algebraic tools to derive matrix inverse while fully exploiting available information of
inverse of a sub-matrix. We elaborate on the method by algorithmic restatement and
also by giving an example. In Section 4, we explain how the result obtained in Section
3 can naturally result in a solution method to linear systems. Finally, in Section 5 we
draw some conclusions and outline some possible avenues for further improvement.

2 Terminology

We consider a matrix A = (ai,j)n×m of n rows and m columns. For any 1 ≤ i ≤ n
and any 1 ≤ j ≤ m, the i-th row and the j-th column of A are denoted by Ai and Aj ,
respectively. The index sequence of rows and columns of A are the sequence 〈1, 2, · · · , n〉
and 〈1, 2, · · · ,m〉, respectively. Let us refer to A’s index sequence of rows as A’s r-
sequence and A’s index sequence of columns as A’s c-sequence. Having a sub-sequence
〈r1, r2, · · · , rp〉 of the A’s r-sequence and a sub-sequence 〈c1, c2, · · · , cq〉 of A’s c-sequence,
one can define a sub-matrix S = (si,j)p×q of A as si,j = ari,cj . Conversely, for any
sub-matrix S of A, S’s r-sequence and c-sequence are proper sub-sequences of A’s r-
sequence and A’s c-sequence, respectively. In this setting, crossing off the i-th index
in A’s r-sequence defines a sub-matrix of A denoted by deli(A). Similarly, crossing off
the j-th index in A’s c-sequence defines a sub-matrix denoted by delj(A). If the deletion
operations happen simultaneously, we get the sub-matrix delij(A). We also need to define
a matrix obtained by adding a new row and simultaneously a new column to A. Given
indexes 1 ≤ i ≤ n+1 and 1 ≤ j ≤ m+1, and vectors F1×(n+1), G(m+1)×1 with f1,j = gi,1,
the unique matrix B, defined by

Bi = F, Bj = G, delij(B) = A,

is denoted by addij(A,F,G). The operators del and add will be extensively used in the
following.

3 Computing A−1

Given a non-singular n × n matrix A, suppose that there exists a square sub-matrix of
A, say S, whose inverse is known (or quickly computable). The core question in this
work asks: how can A−1 be computed using the available information on (the inverse of)
the sub-matrix S? In this paper, we build our results on a special class of non-singular
matrices for which every corner minor is non-zero.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1-SI) (2019) 193–199 195

Let us limit our attention and assume every corner minor of A is non-zero. Let
S = delnn(A) and suppose that its inverse, S−1, is known. Note that by the assumption
on A, S−1 does exist. Define

B = addnn(S, In, In) =
(
S 0
0 1

)
whose inverse is simply

B−1 = addnn(S−1, In, In) =
(
S−1 0
0 1

)
and consider the n × n square matrix C given by the equation A = B.C. Then C is
simply given by

C =
( I(n−1)×(n−1) V
an,1···an,n−1 an,n

)
where V = S−1.(a1,n, · · · , an−1,n)T (1)

and I is the identity matrix. Matrix C has the property that its inverse can be easily
computed by means of the following lemma.

Lemma 3.1 Let p = An.
(
V
−1

)
, then p is non-zero and the i−th row of C−1 is given

by

(C−1)i =

{ 1
p (An − (1 + ann)In), i = n

−vi(C−1)n + Ii, i 6= n.
(2)

Proof. Knowing C−1C = I, let us expand the equations obtained by (C−1)nC = In:

c−1
n,1 + c−1

nnan,1 = 0,

c−1
n,2 + c−1

nnan,2 = 0,

...

c−1
n,n−1 + c−1

n,nan,n−1 = 0,

(c−1
n,1, c

−1
n,2, · · · , c

−1
n,n−1) · V + c−1

n,nan,n = 1. (3)

Now, the j-th equation gives c−1
n,j = −c−1

nnan,j for each j = 1, · · · , n − 1. Then we write
the last equation as

1− c−1
n,nan,n = −c−1

n,n(an,1, an,2, · · · , an,n−1).V

and we get

c−1
n,n((an,1an,2 · · · an,n−1) · V − an,n) = −1,

c−1
n,n

(
(an,1, an,2, · · · an,n−1, an,n)

(
V

−1

))
= −1,

c−1
n,n

(
An

(
V

−1

))
= −1. (4)
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This, in turn, implies that c−1
n,n = − 1

p , where p = An
(
V
−1

)
6= 0. As a result

(C−1)n = (c−1
n,1, c

−1
n,2, · · · , c

−1
n,n−1, c

−1
n,n)

= (−c−1
n,nan,1,−c−1

n,nan,2, · · · − cn,n−1an,n−1, c
−1
n,n)

= −c−1
n,n(an,1, an,2, · · · , an,n−1,−1)

= −c−1
n,n(an,1, an,2, · · · , an,n−1,−1− ann + ann)

=
1

p
(An − (1 + an,nI

n)) .

(5)

Now, in order to compute other rows of C−1, let us expand the equations obtained
by (C−1)iC = Ii, i 6= n, as

c−1
i,1 + c−1

i,nan,1 = 0,

c−1
i,2 + c−1

i,nan,2 = 0,

...

c−1
i,i + c−1

i,nan,i = 1,

...

c−1
i,n−1 + c−1

i,nan,n−1 = 0,

(c−1
i,1 c

−1
i,2 · · · c

−1
i,i · · · c

−1
i,n−1) · V + c−1

i,nan,n = 0. (6)

One can write the first n− 1 equations as

(c−1
i,1 , c

−1
i,2 , · · · , c

−1
i,i , · · · , c

−1
i,n−1) = Ii − c−1

i,n(an,1, an,2, · · · , an,i, · · · , an,n−1).

Now, using the last equation in (6), we get

−c−1
i,nan,n = Ii · V − c−1

i,n(an,1, an,2, · · · , an,i, · · · , an,n−1) · V,

c−1
i,n

(
An

(
V

−1

))
= vi.

This, in turn, implies that c−1
i,n = 1

p .vi. As a result

(C−1)i = (c−1
i,1 , c

−1
i,2 , · · · , c

−1
i,i , · · · c

−1
i,n−1, c

−1
i,n)

= −c−1
i,n(an,1, an,2, · · · , an,i, · · · , an,n−1,−1) + Ii

= −c−1
i,n(an,1, an,2, · · · , an,i, · · · , an,n−1,−1 + an,n − an,n) + Ii

= −c−1
i,n(An − (1 + an,n)In) + Ii

= −1

p
· vi(An − (1 + an,n)In) + Ii

= −vi.(C−1)n + Ii.

This completes the proof. 2

Having computed B−1 and C−1, the inverse of A can be computed as A−1 = C−1B−1.
Note how S−1 is used in computing A−1. The equation also suggests a recursive proce-
dure to obtain A−1 via its corner sub-matrices as described in Algorithm 3.1.
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Algorithm 3.1 Computing A−1

1: procedure Inverse(A,n)
2: S ← delnn(A)
3: S−1 ← Inverse(S, n− 1)
4: V ← S−1.(a1,n, · · · , an−1,n)T

5: B−1 ←
(
S−1 0
0 1

)
6: p = An

(
V
−1

)
7: (C−1)i ←

{
1
p (An − (1 + an,n).In) if i = n,

−vi.(C−1)n + Ii if i 6= n.
, ∀ i = 1, 2, · · · , n

8: return C−1B−1

Example 3.1 Let

A =


1 0 0 2
0 1 0 −1
0 0 1 1
1 1 0 3


and set S = del44(A), which is simply I3×3. Then

V = I3×3.(2,−1, 1)T = (2,−1, 1)T ,

p = (1, 1, 0, 3).(2,−1, 1,−1)T = −2,

(C−1)4 = −1

2
{(1, 1, 0, 3)− 4(0, 0, 0, 1)} = (−0.5, 0.5, 0, 0.5),

(C−1)1 = −2.(
−1

2
,
−1

2
, 0,

1

2
) + (1, 0, 0, 0) = (2, 1, 0,−1),

(C−1)2 = +1.(
−1

2
,
−1

2
, 0,

1

2
) + (0, 1, 0, 0) = (

−1

2
,

1

2
, 0,

1

2
),

(C−1)3 = −1.(
−1

2
,
−1

2
, 0,

1

2
) + (0, 0, 1, 0) = (

1

2
,

1

2
, 1,
−1

2
).

Putting all together

C−1 =


2 1 0 −1
−1
2

1
2 0 1

2
1
2

1
2 1 −1

2−1
2

−1
2 0 1

2


we have A−1 = C−1 as computed above. 2

4 Solving Linear System of Equations

Having a procedure to compute A−1, as introduced above, automatically results in a
solution procedure of the linear system A.x = b, where x = (x1, · · · , xn)T and b =
(b1, · · · , bn)T . Algorithm 3.1 will immediately translate to a recursive solution procedure
of the linear system as follows.

Here again, we try to find a connection between the solution of the linear system and
the solution of the subsystem delnn(A).y = deln(b). Recall that S = delnn(A).
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Solution x of the linear system Ax = b simply satisfies

S.deln(x) = deln(b)− xn.del
n(An), (7)

deln(An).deln(x) = bn − an,n.xn. (8)

Having S−1 available, one can rewrite (7) as

deln(x) = S−1.deln(b)− xn.S
−1.deln(An). (9)

Note that the term S−1.deln(b) is the solution to the subsystem S.y = deln(b). Then
the solution to the system Ax = b can be easily computed using equations (8) and (9).
In this way, the solution process of the system Ax = b can carefully make use of the
information (possibly) available through the subsystem S.y = deln(b).

Example 4.1 Let A be the matrix given in Example 1 and b = (1,−2, 1, 4)T . In
order to solve the system Ax = b, set S = del44(A) which is simply I3×3. Computing
del4(x) by equation (9) and putting it in equation (8) give

(1, 1, 0)
(( 1

−2
1

)
− x4

( 2
−1
1

))
= 4− 3x4,

then x4 = 2.5 and equation (9) computes

del4(x) =
( 1
−2
1

)
− x4

( 2
−1
1

)
=
( −4

0.5
−1.5

)
.

So, we have x = (del4(x), x4)T = (−4, 0.5,−1.5, 2.5)T . 2

Note that the way we solved the above linear system has an important capability
with which different solution procedures of a linear system can be combined.

5 Conclusion

In this paper, we studied linear systems of the form Ax = b. When A admits non-zero
corner minors, we showed a solution method could be devised capable of using available
information provided by the corner submatrices of A. This, in turn, asks for a more
detailed study of solution methods whose goals are to fully exploit available information
within the given linear system having a general coefficient matrix.
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