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Abstract: There exists a well-developed stability theory for integro-differential equa-
tions of the first order and only a few results on integro-differential equations of the
second order. The aim of this paper is to fill up this gap. Explicit tests for uniform
exponential stability of linear scalar delay integro-differential equations of the second

order
t t

Z(t) + G(t,s)i(s)ds + H(t,s)z(s)ds =0
g(t) h(t)
are obtained.
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1 Introduction

Beginning with the classical book of Volterra [1] integro-differential equations and, more
generally, functional differential equations have many applications in biology, physics, me-
chanics (see, for example, [2,[4H7L[22[[26]). In particular, second order integro-differential
equations appear in stability problems of viscoelastic shells |3]. There are many papers
devoted to stability of the first order integro-differential equations [8-11}/18] and only few
papers on stability for the second order equations [1214]. Oscillation conditions for the
first and the second order functional differential equations can be found in papers |[15H17].

The aim of the present paper is to fill up this gap and obtain new explicit exponential
stability conditions for the equation

Z(t) + / G(t,s)z(s)ds + H(t,s)z(s)ds = 0. (1)
g(t) h(t)
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Papers [12-14] are devoted to some asymptotic properties of partial cases of .
In [12] an asymptotic behavior of solutions is studied using analysis of a generalized
characteristic equation. In [14] the authors obtain stability results by an application of the
Lyapunov functional method. In [13] the authors use a connection between asymptotic
properties of (1)) ( for some special kernels G(¢, s), H(¢, s)) and a system of infinite number
of ordinary differential equations.

To obtain new stability tests, we apply the method based on the Bohl-Perron theo-
rem together with a priori estimations of solutions, integral inequalities for fundamental
functions of linear delay equations and various transformations of a given equation. We
consider equation in more general assumptions than in the above mentioned papers:
all kernels and delays are measurable functions, derivative of a solution is an absolutely
continuous function.

2 Preliminaries

Denote

t
a(t):/ G(t,s)ds, b / H(t,s)d
g(t)

¢
ai(t) = / G(t,s)(t — s)ds, bi(t) = H(t,s)(t — s)ds.
g(t) h(t)

We consider scalar delay differential equation (1) under the following conditions:

( 1) G(t,s) > 0, H(t,s) > 0 are Lebesgue measurable on ¢ > s > 0, h, g are measurable
n [0, 00) functions, a,b, a1, are essentially bounded on [0, o) functions;

( )O<a0<a()§Ao,O<b0§b()§BO for all t > tg > 0 and some fixed to > 0;

(a3) 0 <t — ()<0,0§t7h(t)§7fort2t0 and some o > 0,7 > 0 and o > 0.
Along with (| , we consider for each ty > 0 an initial value problem

Z(t) + G(t, s)z(s)ds + H(t,s)x(s)ds = f(t), (2)
g(t) h(t)

2(t) = p(t), (t) = ¢(t), t <to, 3)

where f : [tgp,00) — R is a Lebesgue measurable locally essentially bounded function,
@ :(—00,t9] = R, ¢ : (—o0,ty) — R are Borel measurable bounded functions.

Further, we assume that the above conditions hold without mentioning it.

A function z with a locally absolutely continuous on [tg, 00) derivative 2’ : R — R is
called a solution of problem ({2)) if it satisfies the equation (2)) for almost all ¢ € [tg, 00)
and the equalities in for t < tg.

There exists a unique solution of problem —, see [6,21].

Equation is (uniformly) exponentially stable if there exist positive numbers
M and v such that the solution of problem with f = 0 satisfies the estimate

max{|z(t)], [#(t)[} < MeT ) sup  max{[o ()], lp(6)]}, ¢ = to, (4)

te(—o0,to]

where M and ~ do not depend on ¢y > 0 and functions v, .
Next, we present the Bohl-Perron theorem [6}[19].



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1-SI) (2019) 119

Lemma 2.1 Assume that the solution x of the problem with the initial conditions
x(t) = x(t) = 0,t < to, and its derivative & are bounded on [tg, +00) for any essentially
bounded function f on [ty,+00). Then equation s exponentially stable.

Consider now an ordinary differential equation
#(t) + a(t)i(t) + b(t)z(t) = 0 (5)
and denote by X (¢, s) the fundamental function of ().

Lemma 2.2 [20] If Ao > a(t) > ag > 0,By > b(t) > by > 0,t > to and a2 > 4By,
then X (t,s) > 0, equation is exponentially stable and

/tX(t,s)b(s)ds <1

For a fixed bounded interval I = [tg, t1], consider the space Lo [to, t1] of all essentially
bounded on I functions with the norm ||y||(,.+,) = esssup;¢;|y(t)|, denote

Hf||[to,+oo) = eSSSUPt2t0|f(t)|

for an unbounded interval, E is the identity operator.

In the sequel, we use the concept of a non-singular M-matrix. For convenience, we
recall this notion.

Definition 2.1 [ [24]] An m x m matrix A = (aij);?jzl is called a non-singular M-
matrix if a;; <0, 4,7 = 1,...,m, i # j and one of the following equivalent conditions
holds:

1. There exists a positive inverse matrix A=!.

2. All the principal minors of matrix A are positive.

3 Explicit Stability Conditions

Theorem 3.1 Assume that for some tyg > 0 and t > tg a% > 4By and the following
condition holds

aq bl b aiq
T e B (H Pl |22 )
’ a [tg,00) b . a o ’ a [tg,00)
[to,00) [to,00) . (6)
a
i i + Nl | <1
b 1l o) ( liz0,00) + Nlallizo,00) || = .

Then equation 18 exponentially stable.

Proof. For simplicity we omit the index in the norm || - ||z, 4-0) of functions.

Consider problem with ||f|| < oo, where z(t) = 4(t) = 0, t < tg. We will prove
that the solution x and its derivative are bounded functions on [tg, +00). First we have
to obtain estimates for =, &, %, t € I = [to,t1],t1 > to. Rewrite equation

Z(t) +a(t)z(t) +b(t)z(t) = " G(t,s)(&(t) —@(s))ds+ h(t)H(t, s)(z(t) —z(s))ds+ f(t)
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_/gt G(t,s)/:i(T)deS-l- t H(t,s)/:o‘c(f)dfdwf(t)-

(t) h(t)
Hence
t
o0 = [ X(ts) [ / s / #(r)drde
to
1 S S .
b [ H(s,9) [ atrydrde| s+ o),
b(s) Jn(s) ¢
where X (¢, s) is the fundamental function of equation (5 and f; (¢ ft s)ds.

Since X (¢, s) has an exponential estimate, f; is essentially bounded on [to, )
By Lemma 2.2l we have

a || .. b, .
lellpor < || 5| N + \ | Ml + 1Al (7)

Rewrite now in another form:

(1) + a(t)i(t) = / ,69) / #(F)drds — /h  H9(0)ds + 110

Hence
t . 1 s s
() = / N ARIGE Y N eTp / #(r)drde
to CL(S) g(s) 3
——/ H(s, €)(€)de | ds + falt),
where fo(t) f e fta(g)dff( )ds is an essential bounded on [tg, 00) function.
Hence
ol < 212l + | 2| Bl + 1520 ®)
From equation we have
1] to.021 < llallllltto, 2] + 0Nl to 021 + [ £ 9)
Denote ¥ = {2l toaj [l totas [l sy} F = LA L 1l 11 37 Inequalities (@)-
@ imply Y < BY + F, where
b
U
— b a
B=1 %0 o [
o el 0

Hence AY < F, where A = E — B. Theorem conditions imply that A is an M-matrix
then Y < A~'F, where A™'F is a constant vector which does not depend on the interval
I. Hence the solution of (2]) with its derivative are bounded functions on [tg, 00), therefore
by Lemma equation is exponentially stable.
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Corollary 3.1 Assume that for some to > 0 and t > to, a3 > 4Bgy and the following
condition holds

b a
olallpoe+7(|| | +olblleoe)) +o|7]

[tUaoo)

(Il |5
[to,00) [t0,09) a [to,00)
(10)

Then equation 1s exponentially stable.

Proof. For simplicity we omit the index in the norm on functions. We have t — s <
t—g(t) <o for g(t) <s <t. Similarly, t —s <t —h(t) <7 for h(t) <s <t. Hence

t t

a@®) = [ Gt s)t—s)ds < / G(t, 5)ods = ca(t),
g(t) g(t)
t t
bt = [ H(t,s)(t - s)ds < / H(t, s)rds = 7b(t).
h(t) h(t)
a b b a a b
ot |+ [ (3] vl 20) = N0 Coon-+ e | 2])

b a
<ol 47 (|2 + oten) + 5] (1o
By Theorem [3.1] equation ([I]) is exponentially stable.

Corollary 3.2 Assume there exist

b
2]+ o) <1
a

tlg(r)lo a(t) =a > O,tlgrolo b(t)=b> O,tliglo ai(t) =a; > O,tli}rrolo b1(t) = b1 > 0.
If

a? > 4b, 3aq + M

<1,
then the equation 18 exponentially stable.

Limits in the corollaryexist, for example, for kernels of the form M(t—s)"e_“f(t_s)
where n > 0 is a natural number.

Example 3.1 Consider the following equation

t t
Z(t) + M, / e 1 =) 5 (5)ds + Mg/ e 2= 1 (s)ds = 0, (11)
t—o t—T1
where ae > 0,8 > 0,0 > 0,7 > 0.
We have .
M
a(t) =a= M1/ eolt=s)gg = L (1—e ),
t—o aq
t
M.
b(t) =b= M2/ em2(t=s)gg = 2 (1—e 7)),
t—7 Q2

t
el M, (1 _ 1
H=a =M t— alt=s)gg = L [ = _gao =
a1(t) = ay 1/tio( s)e s o O (a+a) ,

t

_ _ My (1 _ 1
bi(t) = b = / t— g)e—ca(t s)ds:<_e asz_’_).
1(t) = b1 = Mo t_T( ) o\ ( 5)

Hence, if a® > 4b, 3a; + Lﬁal) < 1, then equation is exponentially stable.
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Corollary 3.3 Assume fort > tg
0 < ap < a(t) < Ap,0< by <b(t) < By,aj > 4By,

0<op<t—gt)<o,0<1<t—h(t)<rT

and

A()O’3 Bg7‘3 1+ AOO'Q) A()B()TUQ (1 A()U) <1.

2(100'0 2a0b0T00'0 2 2b07’0 apog

Then the equation s exponentially stable.

Proof. The proof follows from the inequalities

2 2
a0 < alt) < Aoo,boro < b(t) < Borax(t) < Ao, ba(t) < Bo-

and Theorem [B3.11
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