
Nonlinear Dynamics and Systems Theory, 15 (3) (2015) 290–297

Effectiveness of the Extended Kalman Filter Through

Difference Equations

R. Jothilakshmi
∗

School of Advanced Sciences, VIT University, Vellore Campus, India

Received: January 31, 2014; Revised: June 30, 2015

Abstract: The extended Kalman filter is extensively used in the nonlinear state
estimation systems. As long as the system characteristics are correctly known, the
extended Kalman filter gives the best performance. However, when the system in-
formation is partially known or incorrect, the extended Kalman filter (EKF) may
diverge or give the biased estimates. To overcome this problem we introduced the
new Riccati difference equation (RDE) which is used to study and examine the per-
formance analysis of extended Kalman filter. We consider the special case of tracking
a target with cluster, but with a probability arrival of small value. Finally the con-
vergence analysis and stabilizing solution of Riccati difference equations arising from
the standard extended Kalman filter is studied. Simulations results for convergence
of EKF for the class of nonlinear filters are done through MATLAB.
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1 Introduction

Several recent papers have been devoted to a study of nonlinear Riccati difference equa-
tions. The family of Kalman filters have been applied for state as well as parameter esti-
mation for numerous linear as well as nonlinear systems. Though the standard Kalman
filter is considered in an optimal estimator (in case of linear systems) with Gaussian noise
characters, its nonlinear (extended Kalman filter) suboptimal counterpart is known to
diverge under the influences of severe nonlinearities and uncertainties [4,7]. As a solu-
tion to this problem robust form of the EKF have been formulated for a wide class of
uncertainities [13] in the form of new RDE.
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The paper is organized as follows. In Section 2, we introduced the new Riccati dif-
ference equation and algebraic Riccati equation, which are used to arrive the feasible
solutions. Also we introduced some lemmas and assumptions which are useful for ar-
riving the convergence analysis. Section 3 provides the conditions needed to ensure the
convergence analysis and stabilizing the solutions of the new RDE with the initial condi-
tions. Section 4 provides the simulation results for convergence of the EKF for the class
of nonlinear systems through MATLAB [12]. Conclusions are made in Section 5.

2 Preliminaries

Consider the following linear discrete-time system [5, 10]

uk+1 = Axk +Bwk k ∈ N, (1)

vk = Cxk +Duk k ∈ N, (2)

zk = Lxk, (3)

with the initial condition x0 and k = 0, 1, 2, . . . , N , where xk ∈ Rn is the system state,
wk ∈ Rq is the noise, vk ∈ Rm is the output measurements, uk ∈ Rm is the input
measurements, zk ∈ Rp is a linear combination of the state variable to be estimated. A,
B, C, D and L are known real constant matrices with appropriate dimensions. Time
step k is defined as Zk = {z1, z2, z3, ..., zk}, often this is referred to as the measurement.

It is worth noting that an estimator zk is called an a priori filter if ẑk is obtained with
the output measurements [15] {v0, v1, . . . , vk−1} , while ẑk is referred to as a posteriori
filter. This ẑk is obtained by the measurements {v0, v1, . . . , vk} .

Now we introduce the following new Riccati difference equation (RDE)

Pk+1 = APkA
T −

(

APkC
T +BDT

) (

CPkC
T +R

)−1 (

CPkA
T +DBT

)

, (4)

and the Algebraic Riccati Equation (ARE) [14],

P = APAT −
(

APCT +BDT
) (

CPCT +R
)−1 (

CPAT +DBT
)

. (5)

It is clear that the existence of filter is related to the RDE (4) or ARE (5), and the
fulfillment of a suitable matrix inequality (feasibility condition) [1], [3]. Now, we adopt
the definition of feasible solution [6]. The feasiblility and convergence analysis problem
studied in this paper is stated as follows: Given an arbitrarily large N , find the suitable
conditions on the initial state P0 such that the solution Pk is feasible at every step
k ∈ [0, N ] and converges to the stabilizing solution Ps as N → ∞ [8],[9]. We end this
section by giving two preliminary results which play an important role in deriving the
main results of this paper. The first is an extension of a comparison result of new RDE
[16].

Lemma 2.1 Consider the following Riccati difference equation

Pk+1 = APkA
T −

(

APkC
T +BDT

) (

CPkC
T +R

)−1 (

CPkA
T +DBT

)

+BBT .

Let P 1
k and P 2

k be solutions of (4) with different initial conditions P 1
0 = P̄ 1

0 ≥ 0 and

P 2
0 = P̄ 2

0 ≥ 0, respectively. Then the difference between the two solutions P̃k = P 2
k − P 1

k

satisfies the following equation

P̃k+1 = ÃkP̃kÃ
T
k − ÃkP̃kC

T
(

CP̃kC
T + R̃k

)

−1

CP̃kÃ
T
k ,
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where Ãk = A−
(

AP 1
KCT +BDT

) (

CP 1
kC

T +R
)

−1
C and R̃k = CP 1

kC
T +R.

In order to extend the above lemma, we need the following assumption.

Assumption 2.1 The matrix Ā = A−BDT
(

DDT
)

−1
C is invertible.

Lemma 2.2 Consider Riccati difference equation (4). Let P 1
k and P 2

k be the two

solutions of (4) with different initial conditions P 2
0 > P 1

0 > 0. Then, under Assumption

2.1, when P 2
k is feasible, it results that P 2

k > P 1
k > 0 and P 1

k is feasible too. Furthermore,

if P 2
0 > P 1

0 , then P 2
k > P 1

k .

3 Convergence Analysis of Riccati Difference Equation

It is well known from filtering and control theory that the Kalman recursions lead to a
recursive formula for the covariance matrix analysis [2]. This result is obtained by elim-
inating the Kalman gain from the recursion formula. This recursion formula is referred
to as the Riccati difference equation [8]. The issue of the speed of convergence is an
important one. So we introduced the following Lyapunov equation

ÃTY Ã− Y = −M−, (6)

where Ã = A− (APsC
T +BDT )(CPsC

T +R)−1C . Now we can formulate Kalman-like
recursions for a general system as

Mk = Ã−T
(

G+ CT R̃−1C
)

Ã−1 −GK , (7)

Gk = −P−1
s − P−1

s

(

LTL− P−1
s

)−1
P−1
s , (8)

Rk = CPsC
T +R, (9)

where k is the Kalman gain [5]. The following theorem establishes the relationship
between the initial state P0 and feasibile solution to RDE (4).

Theorem 3.1 Consider the Riccati difference equation (4). Let Assumption 2.1

hold, and let Y be the solution to the Lyapunov equation (6). Then the solution Pk of

RDE (4) is feasible over [0 ∞) if for some sufficiently small ǫ > 0, the initial condition

satisfies

0 < P0 < (Gk − Y +Mk + I)
−1

+ Ps. (10)

Proof. The procedure of the proof is classified into three cases.
Case (i) P0 < Ps. Ps is a constant feasible solution of (4), then the feasibility of Pk

follows from Lemma 2.2 directly.
Case (ii) P0 > Ps. Let’s define Xk = Pk −Ps. Then, applying Lemma 2.1 to (4) and

(5), immediately we obtain that Xk satisfies the following

Xk+1 = ÂXkÂ
T − ÂXkC

(

CXkC
T + R̂

)

−1

CXkÂ
T

= Â
(

X−1

k + CT R̂−1C
)

−1

ÂT ,

(11)

where X0 = p0−Ps, Â = A−
(

APsC
T +BDT

) (

CPsC
T +R

)

−1
C and R̂ = CPsC

T +R.

Now let Zk = X−1

k − Gk, where Gk is defined by (8). It is worth noting that Gk ≥ 0,
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since Ps is feasible. Note that Â is invertible as Ā is invertible and Ps is feasible.
Then by (11), we have Zk+1 = Â−TZkÂ

−1 + Mk, where Mk is defined by (7) and

Z0 = (P0 − Ps)
−1

−Gk. Since Ps is feasible and Xk > 0, then according to Lemma 2.2,
it is clear that the feasibility of Pk is equivalent to the positive definiteness of Zk, which

follows from Zk = P − s−1

[

(

P − s−1 − P−1

k

)−1
−
(

P−1
s − LTL

)

−1
]

P−1
s .

Now consider the following Lyapunov equation [11]

Ẑk+1 = Â−T Ẑk+1Â
−1 +M− (12)

with Ẑ0 = Z0. By definition Mk ≥ M−, so that Zk ≥ Ẑk. Then Ẑk > 0 is sufficient to
guarantee the positivity of Zk. Now we compute (12) as follows

Zk ≥ Ẑk =
(

Â−k
)T



Z0 +

k
∑

j=1

(

Âj
)T

M−Â
j



 Â−k

≥
(

Â−k
)T



Z0 +

∞
∑

j=1

(

Âj
)T

M−Â
j



 Â−k,

(13)

from (6), we deduce the value of Y ,

Y =
∞
∑

j=0

(

Âj
)T

M−Â
j

= M− +

∞
∑

j=1

(

Âj
)T

M−Â
j .

(14)

Now comparing (13) and (14), we have

Zk ≥ Ẑk ≥
(

Â−k
)T

(Z0 + Y −M−) Â
−k. (15)

So, if Z0 + Y −M− > 0, then Ẑk > 0 and in turn Zk > 0. Here Z0 + Y −M− > 0. This
is rewritten as

(P0 − Ps)
−1

−Gk + Y −M− > 0. (16)

Since −Y +M− ≥ 0 and Gk ≥ 0, then (10) implies (16). Thus the proof of feasibility for
the case of P0 > Ps is completed.

Case (iii). P0−Ps is not a definite matrix. Initially we need to study the convergence
of the solution of the RDE (4). It is easy to know that (4) satisfies the following matrix
recursions

Pk+1 = ĀS−1

k ĀT +B
[

I −DT
(

DDT
)−1

D
]

BT ,

Sk = P−1

k + CTR−1C,
(17)

so Sk satisfies the following RDE

Sk =
{

ĀS−1

k ĀT +B
[

I −DT
(

DDT
)−1

D
]

BT
}

−1

+ CTR−1C, (18)
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and the associated ARE is

S =
{

ĀS−1ĀT +B
[

I −DT
(

DDT
)−1

D
]

BT
}

−1

+ CTR−1C. (19)

Under Assumptions 2.1 and 19, we concluded that both the stabilizing solution Ss and
antistabilizing solution Sa provides Ss − Sa > 0. This implies that there exists a P̄0

satisfying (10) and such that P̄0 > P0 and P̄0 > Ps. Hence P0 − Ps is not a definite
matrix.

The following theorem provides a sufficient condition for ensuring convergence as well
as feasibility of the solution of the RDE (4) over [0, ∞) .

Theorem 3.2 Consider the Riccati difference equation (4). Let Assumption 2.1 hold,

then the solution Pk of RDE (4) is feasible over [0 ∞) and converges to the stabilizing

solution Ps of (5) as k → ∞ if Ps is feasible and for some sufficiently small ǫ > 0, then
the initial condition satisfies

0 < P0 < (Gk − Y +M− + ǫI)
−1

+ Ps, (20)

where G, Y, and M are defined as in Theorem 3.1.

Proof. Initially, it is noted that Pk is feasible over [0 ∞) from Theorem 3.1.
Consider (4), (5), (18) and (19), and the study of convergence of Pk is equivalent to the
study of the convergence of Sk to Ss. So we focus on the convergence of Sk as follows,
let U = {Sa − Sa}

−1
, then from (19), we have

U = ÃTUÃ+ S−1
s − PsÂ

TP−1
s ÂPs. (21)

Next, let W = Ps

[

Gk − Y +M− + P−1
s

]

Ps, then from (6), we have

W = ÃTUÃ+ S−1
s − PsÂ

TP−1
s ÂPs +N, (22)

where

N = PsC
T R̂−1CPs + Ps

(

Gk − ÂTGkÂ
)

Ps − PsÂ
TM−ÂPs = PsÂ

TM+ÂPs ≥ 0.

Comparing (21) and (22), we have W ≥ U. Now consider (17) and (20), and we obtain

S0 = P−1

0 + CTR−1C

>
[

(Gk − Y +M− + ǫI)
−1

+ Ps

]

−1

+ CTR−1C

= Ss − P−1
s

[

Gk − Y +M− + ǫI + P−1
s

]

−1
P−1
s

≥ S − s−W−1

≥ Ss − U−1 = Sa.

(23)

From (23), we have S0 > Sa. This implies that lim
k→∞

Sk = Ss. It shows that Pk converges

to P , and remains feasible at every step. Hence the proof.
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4 Simulation Results

Example 4.1

Matrix States Initial Estimations

Initial States

[

2 0
0 2.04

]

Arbitrary Matrix P

[

0.6 1
1 0.4

]

Arbitrary Matrix R

[

0.9 0
0 1.2

]

Table 1: Initial values for Figure 1.

Figure 1: Convergence analysis for Table 1.

Example 4.2

Matrix States Initial Estimations

Initial States

[

1.7 0
0 1.03

]

Arbitrary Matrix P

[

0.2 1
1 0.7

]

Arbitrary Matrix R

[

1.2 0
0 1.9

]

Table 2: Initial Values for Figure 2.
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Figure 2: Convergence analysis for Table 2.

Example 4.3

Matrix States Initial Estimations

Initial States

[

0.4 0
0 0.9

]

Arbitrary Matrix P

[

1.7 1
1 2.4

]

Arbitrary Matrix R

[

1.4 0
0 2.1

]

Table 3: Initial Values for Figure 3.

Figure 3: Convergence analysis for Table 3.

5 Conclusion

In this paper we classified the relationship between the initial state P0 and the feasible
solution through a new theorem. The estimation performance of the EKF is improved
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when we introduced the new RDE corresponding to ARE. Moreover, the convergence
analysis is derived with the proposed RDE with good initial conditions alongwith a
small ǫ. Furthermore, an additional theorem is formulated to ensure the convergence as
well as feasible solutions of the new RDE. Simulation results show the performance of
the proposed theorem even for the bad initializations.
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