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Abstract: In this work, we consider an impulsive neutral integro-differential equa-
tion of Sobolev type with infinite delay in an arbitrary Banach space X. The existence
of mild solution is obtained by using resolvent operator and Hausdorff measure of non-
compactness. We give an example based on the theory and provide the conclusion at
the end of the paper.
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1 Introduction

In our recent work [19], we have studied the impulsive neutral integro-differential equation
with infinite delay in a Banach space (X, ‖ · ‖),

d

dt
[u(t)− F (t, ut)] = A[u(t) +

∫ t

0

f(t− s)u(s)ds] +G(t, ut,

∫ t

0

E(t, s, us)ds),

t ∈ J = [0, T0], t 6= tk, k = 1, 2, · · · ,m, (1)

u0 = φ ∈ B, (2)

∆u(ti) = Ii(uti), i = 1, 2, · · · ,m, (3)

where 0 < T0 < ∞, A is a closed linear operator defined on a Banach space
(X ; ‖ · ‖) with dense domain D(A) ⊂ X ; f(t), t ∈ [0, T0] is a bounded lin-
ear operator. The functions F : [0, T0] × B → X , G : [0, T0] × B × X → X ,
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E : [0, T0] × [0, T0] × B → X , Ii : X → X, i = 1, · · · ,m are appropriate functions
and 0 < t1 < t2 < · · · < tm < tm+1 = T0 are pre-fixed numbers. The symbol
∆u(t) = u(t+) − u(t−) denotes the jump of the function u at t i.e., u(t−) and u(t+)
denotes the end limits of the u(t) at t. The history ut : (−∞, 0] → X is a continuous
function defined as ut(s) = u(t + s), s ≤ 0 belongs to the abstract phase space B and
B is the phase space defined axiomatically later in Section 2. We have established the
existence results by using Hausdorff measure of noncompactness and Darbo fixed point
theorem with the assumption that A generates an analytic resolvent operator and G
satisfies the Carathèodary condition.

In [20], the authors have discussed the regularity of solutions of the semilinear integro-
differential equations of Sobolev type in Banach space which is illustrated as

d

dt
[Ey(t)] = A[y(t) +

∫ t

0

f(t− s)y(s)ds] + F (t, y(t)), (4)

y(0) = y0, t ∈ [0, T0], 0 < T0 < ∞, (5)

where E and A are considered as closed linear operators such that the domains contained
in Banach space X and ranges contained in Banach space Y , f(t), t ∈ [0, T0] is a bounded
linear operator such that Y is continuously and densely embedded in X . The nonlinear
function F : [0, T0] ×X → Y is a continuous function. The authors have obtained the
results by using Banach fixed point theorem and resolvent operator.

As in the above mentioned work, our aim in this paper is to investigate the existence of
mild solution of the following impulsive Sobolev type neutral integro-differential equation
with infinite delay in a Banach space (X, ‖ · ‖),

d

dt
[Ey(t) + F (t, yt,

∫ t

0

a(t, s, ys)ds)] = A[y(t) +

∫ t

0

f(t− s)y(s)ds]

+G(t, ut,

∫ t

0

E(t, s, us)ds), t ∈ J = [0, T0], t 6= ti, (6)

u0 = φ ∈ B, (7)

∆u(ti) = Ii(uti), i = 1, 2, · · · ,m, (8)

where E and A are the same operators as defined in equation (4). The functions
F : [0, T0] × B × X → Y , G : [0, T0] × B × X → Y , E : [0, T0] × [0, T0] × B → X ,
Ii : X → X, i = 1, · · · ,m are appropriate functions satisfying some suitable conditions
to be mentioned in Section 3.

Recently, impulsive differential equations have been rising as an important area of
study due to their wide applicability in sciences and engineering such as physics, control
theory, biology, population dynamics, medical domain and many others, and hence they
have earned considerable attention of researchers. The process or phenomena subject
to short-term external influences can be modeled by the impulsive differential equations
which allow for discontinuities in the evolution of the state. For more study of such
differential equations and their applications, we refer to the monographs [12], [24] and
papers. Moreover, Sobolev type semilinear integrodifferential equation can be used to
describe the flow of fluid through fissured rocks [2], thermodynamics and shear in second
order fluids and many others. For wide study of Sobolev type differential equation, we
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refer to papers [20] – [23]. A lot of natural phenomena emerging from numerous areas,
for example, fluid dynamics, electronics and kinetics, can be modeled in the form of
the integro-differential equation. Integro-differential equation of neutral type with delay
describe the system of rigid heat conduction with finite wave spaces.

The organization of the paper is as follows: Section 2 provides some basic facts,
lemmas and theorems which will be used for establishing the result. Section 3 focuses
on the existence of a mild solution by means of Hausdorff measure of noncompactness
and analytic semigroup. Section 4 provides an example based on the obtained abstract
theory. The last section of the paper is devoted to providing conclusion.

2 Preliminaries and Assumptions

In this section, we provide some fundamental definition, lemmas and theorems which will
be utilized all around this paper.

Let X be a Banach space. The symbol C([a, b];X), (a, b ∈ R) stands for the Banach
space of all the continuous functions from [a, b] intoX equipped with the norm ‖ z(t)‖C =
supt∈[a,b] ‖ z(t)‖X and Lp((a, b);X) stands for Banach space of all Bochner-measurable
functions from (a, b) to X with the norm

‖ z‖Lp = (

∫

(a,b)

‖ z(s)‖pXds)1/p.

For the differential equation with infinite delay, Kato and Hale [9] have proposed the
phase space B satisfying certain fundamental axioms.

Definition 2.1 The linear space of all functions from (−∞, 0] into Banach space X
with a seminorm ‖ · ‖B is known as phase space B. The fundamental axioms on B are
the following:

(A) If y : (−∞, d + T0] → X , T0 > 0 is a continuous function on [d, d + T0] such that
yd ∈ B and y|[d,d+T0] ∈ B ∈ PC([d, d + T0];X), then for every t ∈ [d, d + T0), the
following conditions hold:

(i) yt ∈ B,

(ii) H‖ yt‖B ≥ ‖ y(t)‖,

(iii) ‖ yt‖B ≤ N(t+ d)‖ yd‖B +K(t− d) sup{‖ y(s)‖ : d ≤ s ≤ t},
where H is a positive constant; N, K : [0,∞) → [1,∞), N is locally bounded, K
is continuous and K, H, N are independent of y(·).

(A1) For the function y in (A1), yt is a B-valued continuous function for t ∈ [d, d+ T0].

(B) The space B is complete.

Consider the following integro-differential equation

d

dt
[Ey(t)] = A[y(t) +

∫ t

0

f(t− s)y(s)ds]. (9)

To prove the result, we impose the following data on operators A and E. The following
conditions are fulfilled by operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y :
(E1) A and E are closed linear operators,
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(E2) D(E) ⊂ D(A) and E is bijective,
(E3) E−1 : Y → D(E) is continuous operator and E−1B = BE−1,
(E4) AE−1 : Y → Y is the infinitesimal generator of uniformly continuous semigroup of
bounded linear operators in X .

To set the structure for our primary existence results, we have to introduce the
following definitions.

Definition 2.2 A family {R(t)}t∈[0,T0] of bounded linear operators is said to be a
resolvent operator for equation (9) if the following conditions are satisfied

(i) R(0) = I, where I is the identity operator on X .

(ii) R(t) is strongly continuous for t ∈ [0, T0].

(iii) R(t) ∈ B(Z), t ∈ [0, T0]. For z ∈ Z and R(·)z ∈ C([0, T0];Z) ∩ C1([0, T0];Z), we
have

d

dt
R(t)z = AE−1[R(t)z +

∫ t

0

f(t− s)R(s)zds], (10)

= R(t)AE−1z +

∫ t

0

R(t− s)AE−1f(s)zds, t ∈ [0, T0]. (11)

Here B(Z) denotes the space of bounded linear operators defined on Z and Z is a
Banach space formed from D(A) with the graph norm.

Throughout the work, the resolvent operator {R(t)}t≥0 is assumed to be analytic in
Banach space X and there exist positive constants N1 and N2 such that ‖ R(t)‖ ≤ N1

and ‖f(t)‖ ≤ N2 for each t ∈ [0, T0].
To consider the mild solution for the impulsive problem, we propose the set

PC([0, T0];X) = {y : [0, T0] → X : y is continuous at t 6= ti and left continuous
at t = ti and y(t+i ) exists, for all i = 1, · · · ,m}. Clearly, PC([0, T0];X) is a Banach space
endowed with the norm ‖ u‖PC = supt∈[0,T0] ‖ u(s)‖. For a function y ∈ PC([0, T0];X)
and i ∈ {0, 1, · · · ,m}, we define the function ỹi ∈ C([ti, ti+1], X) such that

ỹi(t) =

{
y(t), for t ∈ (ti, ti+1],

y(t+i ), for t = ti.
(12)

For W ⊂ PC([0, T0];X) and i ∈ {0, 1, · · · ,m}, we have W̃i = {ỹi : y ∈ W} and the
following Accoli-Arzelà type criteria.

Lemma 2.1 [7]. A set W ⊂ PC([0, T0];X) is relatively compact if and only if each

set W̃i ⊂ C([ti, ti+1], X) (i = 0, 1 · · · ,m) is relatively compact.

Now, we discuss some basic definition of measure of noncompactness (MNC).

Definition 2.3 [10] The Hausdorff’s measure of noncompactness (H’MNC) χY is
defined as

χY (U) = inf{ε > 0 : U can be covered by a finite number of balls with radius ε}, (13)

for the bounded set U ⊂ Y , where Y is a Banach space.
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Lemma 2.2 [10] For any bounded set U, V ⊂ Y , where Y is a Banach space. Then
the following conditions are fulfilled:

(i) χY (U) = 0 if and only if U is pre-compact;

(ii) χY (U) = χY (conv U) = χY (U), where conv U and U denote the convex hull and
closure of U respectively;

(iii) χY (U) ⊂ χY (V ), when U ⊂ V ;

(iv) χY (U + V ) ≤ χY (U) + χY (V ), where U + V = {u+ v : u ∈ U, v ∈ V };

(v) χY (U ∪ V ) ≤ max{χY (U), χY (V )};

(vi) χY (λU) = λ · χY (U), for any λ ∈ R;

(vii) If the map P : D(P ) ⊂ Y → Z is continuous and satisfy the Lipschitsz condition
with constant κ, then we have that χZ(PU) ≤ κχY (U) for any bounded subset
U ⊂ D(P ), where Y and Z are Banach spaces.

Definition 2.4 [10] A bounded and continuous map P : D ⊂ Z → Z is a χZ-
contraction if there exists a constant 0 < κ < 1 such that χZ(P (U)) ≤ κχZ(U), for any
bounded closed subset U ⊂ D, where Z is a Banach space.

Lemma 2.3 [16] Let D ⊂ Z be closed, convex with 0 ∈ D and the continuous map
P : D → D be a χZ-contraction. If the set {u ∈ D : u = λPu, for 0 < λ < 1} is
bounded, then the map P has a fixed point in D.

Lemma 2.4 (Darbo-Sadovskii) [10]. Let D ⊂ Z be bounded, closed and convex. If
the continuous map P : D → D is a χZ-contraction, then the map P has a fixed point in
D.

In this paper, we consider that χ denotes the Hausdorff’s measure of noncompactness
(H’MNC)in X , χC denotes the Hausdorff’s measure of noncompactness in C([0, T0];X)
and χPC denotes the Hausdorff’s measure of noncompactness in PC([0, T0];X).

Lemma 2.5 ( [10]. If U is bounded subset of C([0, T0];X), then we have that
χ(U(t)) ≤ χC(U), ∀ t ∈ [0, T0], where U(t) = {u(t);u ∈ U} ⊆ X. Furthermore, if
U is equicontinuous on [0, T0], then χ(U(t)) is continuous on the interval [0, T0] and

χC(U) = sup
t∈[0,T0]

{χ(U(t))}. (14)

Lemma 2.6 [10] If U ⊂ C([0, T0];X) is bounded and equicontinuous, then χ(U(t))
is continuous and

χ(

∫ t

0

U(s)ds) ≤

∫ t

0

χ(U(s))ds, ∀ t ∈ [0, T0], (15)

where
∫ t

0
U(s)ds = {

∫ t

0
u(s)ds, u ∈ U}.

Lemma 2.7 [14]
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(1) If U ⊂ PC([0, T0];X) is bounded, then χ(U(t)) ≤ χPC(U), ∀ t ∈ [0, T0], where
U(t) = {u(t) : u ∈ U} ⊂ X;

(2) If U is piecewise equicontinuous on [0, T0], then χ(U(t)) is piecewise continuous for
t ∈ [0, T0] and

χPC(U) = sup{χ(U(t)) : t ∈ [0, T0]}; (16)

(3) If U ⊂ PC([0, T0];X) is bounded and equicontinuous, then χ(U(t)) is piecewise
continuous for t ∈ [0, T0] and

χ(

∫ t

0

U(s)ds) ≤

∫ t

0

χ(U(s))ds, ∀ t ∈ [0, T0], (17)

where
∫ t

0
U(s)ds = {

∫ t

0
u(s)ds : u ∈ U}.

Now, we present the definition of mild solution for the system (6)-(8).

Definition 2.5 A piecewise continuous function y : [−∞, T0] is said to be a mild
solution for the system (6)-(8) if y0 = φ, y(·)|[0,T0] ∈ PC and the following integral
equation

y(t) = E−1R(t)Eφ(0) + E−1R(t)F (0, φ, 0)− E−1F (t, yt,

∫ t

0

a(t, s, ys)ds)

−E−1

∫ t

0

R(t− s)AE−1F (s, ys,

∫ s

0

a(s, τ, yτ )dτ)ds

−E−1

∫ t

0

R(t− s)AE−1

∫ s

0

f(s− τ)F (τ, yτ ,

∫ τ

0

a(τ, ξ, yξ)dξ)dτds

+E−1

∫ t

0

R(t− s)G(s, ys,

∫ s

0

E(s, τ, yτ )dτ)ds

+
∑

0<ti<t

E−1R(t− ti)Ii(yti), t ∈ [0, T0], (18)

is verified.

3 Main Results

We assume the following conditions which will be required to establish the result.

(E5) The function F : [0, T0] × B × X → X is a continuous function and there exist
positive constants LF1

and LF2
such that

‖F (t1, w1, z1)− F (t2, w2, z2)‖ ≤ LF1
[|t1 − t2|+ ‖w1 − w2‖B + ‖z1 − z2‖X ],

‖AF (t, w1, z1)−AF (t, w2, z2)‖ ≤ LF2
[‖w1 − w2‖B + ‖z1 − z2‖X ], (19)

for all t1, t2, t ∈ [0, T0], w1, w2 ∈ B and z1, z2 ∈ X with L1 = supt∈[0,T0] ‖F (t, 0, 0)‖,
L2 = supt∈[0,T0] ‖AF (t, 0, 0)‖.

(E6) (1). The function a(t, s, ·) : B → X is continuous for each (t, s) ∈ [0, T0] × [0, T0]
and a(·, ·, w), E(·, ·, w) : [0, T0]× [0, T0] → X are strongly measurable for all w ∈ B.
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The function a : J ×J ×B → X is a continuous function and there exists constant
a1 > 0 such that

‖

∫ t

0

[a(t, s, w) − a(t, s, z)]ds‖ ≤ a1‖w − z‖B, (20)

for each (t, s) ∈ J × J and z, w ∈ B.
(2). There exist functions ma,mE : [0, T0]× [0, T0] → [0,+∞) such that ma,mE are

differentiable, a.e., with respect to the first variable and
∫ t

0
ma(t, s)ds,

∫ t

0
mE(t, s)ds,∫ t

0
∂,ma(t,s)[or mE(t,s)]

∂t ds are bounded on [0, T0] and
∂mE

∂t ≥ 0, for a.e., 0 ≤ s < t ≤ T0

such that

‖a(t, s, w)‖ ≤ ma(t, s)Wa(‖w‖B),

‖E(t, s, w)‖ ≤ mE(t, s)WE (‖w‖B), (21)

for each 0 ≤ s < t ≤ T0, w ∈ B and Wa,WE : [0,∞) → (0,∞) are continuous
nondecreasing functions.

(E7) G : [0, T0]×B×X → X is a nonlinear function such that
(1) For each y : (−∞, T0] → X , y0 = φ ∈ B, G(t, ·, ·) is continuous a.e. for

t ∈ [0, T0] and function t 7→ G(t, yt,
∫ t

0 E(t, s, ys)ds) is strongly measurable for
y ∈ PC([0, T0];X).
(2) There are integrable functions α, β : J → [0,∞) and continuously differentiable
increasing functions Ω, W : R+ → R+ such that

‖ G(τ, w, z)‖ ≤ α(τ)Ω(‖ w‖B) + β(τ)W(‖ z‖), τ ∈ [0, T0], (w, z) ∈ B×X. (22)

(3) There is an integrable function ξ : J → [0,∞) such that for any bounded subsets
H1 ⊂ PC((−∞, 0];X), H2 ⊂ X , we have that

χ(R(τ)G(τ,H1, H2)) ≤ ξ(τ){ sup
−∞≤θ≤0

χ(H1(θ)) + χ(H2)}, (23)

a.e. for t ∈ [0, T0]. Where H1(θ) = {u(θ) : u ∈ H1}.

(E8) (1) The functions Ii : B → X, i = 1, 2, · · · ,m are continuous and there are con-
stants Li > 0 (i = 1, 2, · · · ,m) such that

‖ Ii(x) − Ii(y)‖ ≤ Li‖ x− y‖B, ∀ x, y ∈ B. (24)

(2) There exist positive constants K1
i and K2

i ,(i = 1, · · · ,m) such that

‖ Ii(x)‖ = K1
i ‖ x‖B +K2

i , x ∈ B. (25)

(E9)

∫ T0

0

b(s)ds ≤

∫ +∞

e

[Wa(ϑ) + Ω(ϑ) +
WE(ϑ)

Ω′(ϑ)
W

′

(LWE(ϑ))]
−1ds, (26)
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where

b1(t) =
1

1− C2
[(NT0

ΛLF1
+ Λ2N1T0LF2

+ Λ2N2N1T
2
0LF2

)(ma(t, t)

+

∫ t

0

∂ma(t, s)

∂t
ds)],

b2(t) =
NT0

ΛN1p(t)

1− C2
, b3(t) = mE(t, t) +

∫ t

0

‖
∂mE(t, s)

∂t
‖ds,

p(t) = max{α(t), β(t)} b(t) = max{b1(t), b2(t), b3(t)} d =
C1

1− C2
,

C1 = NT0
[ΛN1(LF1

T0 + L1) + ΛL1 + Λ2N1T0L2(1 +N2T0) +N1 +
∑

0<ti<t

K2
i ]

+[N1LF1
NT0

+ (NT0
ΛΛ

′

N1H +KT0
)]‖φ‖B,

C2 = NT0
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N2N1T

2
0LF2

+ ΛN1

∑

0<ti<t

K1
i ] < 1,

e = Ω−1(Ω(d) +W(d)),

∫ t

0

mE(t, s)ds < L0,

Ω1 is arbitrary positive constant.

We consider the function z : (−∞, T0] → X defined by z0 = φ and z(t) = E−1R(t)Eφ(0)
on [0, T0]. It is easy to see that ‖zt‖ ≤ [NT0

ΛΛ
′

N1H + KT0
]‖φ‖B, where NT0

=
supt∈[0,T0] N(t), KT0

= supt∈[0,T0] K(t) and Λ = ‖E−1‖, Λ
′

= ‖E‖.

Theorem 3.1 If the assumptions (E1)− (E9) are fulfilled and

NT0
[Λ(1 + a1)(LF1

+ ΛN1T0LF2
+ ΛN1N2T

2
0LF2

) + ΛN1

∑

0<ti<t

Li]

+Λ(1 + L0Ω1)

∫ t

0

ξ(s)ds < 1. (27)

Then, there exists at least one solution for the system (6)-(8).

Proof. Let S(T0) = {y : (−∞, T0] → X : y0 = φ, y|[0,T0] ∈ PC} with the supremum
norm (‖ · ‖T0

) be the space. Now, we consider the operator Π : S(T0) → S(T0) defined
by

Πy(t) =





0, t ∈ (−∞, 0],

E−1R(t)F (0, φ, 0)− E−1F (t, yt + zt,
∫ t

0
a(t, s, ys + zs)ds)

−E−1
∫ t

0 R(t− s)AE−1F (s, ys + zs,
∫ s

0 a(s, τ, yτ + zτ )dτ)ds

−E−1
∫ t

0
R(t− s)AE−1

∫ s

0
f(s− τ)F (τ, yτ + zτ ,

∫ τ

0
a(τ, ξ, yξ + zξ)dξ)dτds

+E−1
∫ t

0
R(t− s)G(s, ys + zs,

∫ s

0
E(s, τ, yτ + zτ )dτ)ds

+
∑

0<ti<t E
−1R(t− ti)Ii(yti + zti), t ∈ [0, T0].

(28)

Clearly, we have ‖yt + zt‖B ≤ [NT0
ΛΛ

′

N1H + KT0
]‖φ‖B + NT0

‖y‖t, where ‖y‖t =
sups∈[0,t] ‖y(s)‖. From the axioms A, our assumptions and the strong continuity of R(t),
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we can see that Πy ∈ PC. For y ∈ S(T0), we get

‖R(t− s)AE−1F (s, ys + zs,

∫ s

0

a(s, τ, yτ + zτ )dτ)‖ ≤ ΛN1[LF2
(‖ys + zs‖B

+

∫ t

0

ma(t, s)Wa(‖ys + zs‖B)) + L2],

and

‖f(s− τ)AE−1F (τ, yτ + zτ ,

∫ τ

0

a(τ, ξ, yξ + zξ)dξ)dτ‖ ≤ N2Λ[LF2
(‖ys + zs‖B

+

∫ t

0

ma(t, s)Wa(‖ys + zs‖B)) + L2].

Thus, from the Bocher theorem it takes after that AR(t−s)F (s, ys+zs,
∫ s

0 a(s, τ, yτ+
zτ )dτ) is integrable. So, we deduce that Π is well defined on S(T0). Next, we give the
demonstration of Theorem 3.1 in numerous steps.

Step 1. The set {y ∈ PC([0, T0], X) : y(t) = λΠy(t), for 0 < λ < 1} is bounded.
For λ ∈ (0, 1), let yλ be a solution for y = λΠy. We obtain

‖ yλt + zt‖ ≤ [NT0
ΛΛ

′

N1H +KT0
]‖φ‖B +NT0

‖yλ‖t. (29)

Let uλ(t) = [NT0
ΛΛ

′

N1H +KT0
]‖φ‖B +NT0

‖yλ‖t for each t ∈ [0, T0] and λ ∈ (0, 1).
‖yλ(t)‖ = ‖λΠyλ(t)‖ ≤ ‖Πyλ(t)‖

≤ ‖E−1R(t)F (0, φ, 0)‖+ ‖E−1F (t, yλt + zt,

∫ t

0

a(t, s, yλs + zs)ds)‖

+‖E−1

∫ t

0

R(t− s)AE−1F (s, yλs + zs,

∫ s

0

a(s, τ, yλτ + zτ )dτ)ds‖

+‖E−1

∫ t

0

R(t− s)AE−1

∫ s

0

f(s− τ)F (τ, yλτ + zτ ,

∫ τ

0

a(τ, ξ, yλξ + zξ)dξ)dτds‖

+‖

∫ t

0

R(t− s)E−1G(s, yλs + zs,

∫ s

0

E(s, τ, yλτ + zτ )dτ)ds‖

+
∑

0<ti<t

‖E−1R(t− ti)Ii(yλti + zti)‖,

≤ ΛN1(LF1
(T0 + ‖φ‖B) + L1) + Λ[LF1

(uλ(t) +

∫ t

0

ma(t, s)Wa(uλ(s))ds) + L1]

+Λ2N1T0[LF2
(uλ(t) +

∫ t

0

ma(t, s)Wa(uλ(s))ds) + L2]

+Λ2N2N1T
2
0 [LF2

(uλ(s) +

∫ t

0

ma(t, s)Wa(uλ(s))ds) + L2]

+ΛN1

∫ t

0

α(s)Ω(uλ(s)) + β(s)W(

∫ s

0

mE(s, τ)WE (uλ(τ))dτ)ds

+ΛN1

∑

0<ti<t

(K1
i uλ(t) +K2

i ),
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which gives that
‖yλ(t)‖

≤ ΛN1(LF1
T0 + L1) + ΛL1 + Λ2N1T0L2(1 +N2T0) +N1

∑

0<ti<t

K2
i +N1LF1

‖φ‖B

+[ΛLF1
+ Λ2N1T0LF2

+ Λ2N2N1T
2
0LF2

+ ΛN1

∑

0<ti<t

K1
i ]uλ(t)

+[ΛLF1
+ Λ2N1T0LF2

+ Λ2N2N1T
2
0LF2

]

∫ t

0

ma(t, s)Wa(uλ(s))ds

+ΛN1

∫ t

0

α(s)Ω(uλ(s)) + β(s)W(

∫ s

0

mE(s, τ)WE (uλ(τ))dτ)ds.

Thus, we estimate

uλ(t) ≤
C1

1− C2
+

NT0

1− C2
[ΛLF1

+ Λ2N1T0LF2

+Λ2N2N1T
2
0LF2

]

∫ t

0

ma(t, s)Wa(uλ(s))ds

+
NT0

ΛN1

1− C2

∫ t

0

α(s)Ω(uλ(s)) + β(s)W(

∫ s

0

mE(s, τ)WE (uλ(τ))dτ)ds.

Take d = C1

1−C2

and get

uλ(t) ≤ d+
NT0

1− C2
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N2N1T

2
0LF2

]

∫ t

0

ma(t, s)Wa(uλ(s))ds

+
NT0

ΛN1

1− C2

∫ t

0

α(s)Ω(uλ(s)) + β(s)W(

∫ s

0

mE(s, τ)WE (uλ(τ))dτ)ds. (30)

Let

µλ(t) = d+
NT0

1− C2
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N2N1T

2
0LF2

]

∫ t

0

ma(t, s)Wa(uλ(s))ds

+
NT0

ΛN1

1− C2

∫ t

0

α(s)Ω(uλ(s)) + β(s)W(

∫ s

0

mE(s, τ)WE (uλ(τ))dτ)ds, (31)

then, we get µλ(0) = d and uλ(t) ≤ µλ for each t ∈ [0, T0]. Thus, we get

µ
′

λ(t) ≤
NT0

1− C2
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N2N1T

2
0LF2

]

×(a0(t, t)Wa(uλ(t)) +

∫ t

0

∂ma(t, s)

∂t
Wa(uλ(t))ds)

+
NT0

ΛN1

1− C2
[α(t)Ω(uλ(t)) + β(t)W(

∫ t

0

mE(t, s)WE (uλ(s))ds)].

Let ϑ(t) be such that

Ω(ϑ) = Ω(µλ) +W(

∫ t

0

mE(t, s)WE (µλ)ds). (32)
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We also have ϑ ≥ µλ. We differentiate the above equation and get

Ω
′

(ϑ)ϑ
′

= Ω
′

(µλ)µ
′

λ +W
′

(

∫ t

0

mE(t, s)WE (µλ)ds)

×[

∫ t

0

∂mE

∂t
(t, s)WE(µλ)ds+mE(t, t)WE (µλ)],

Ω
′

(ϑ)ϑ
′

≤ Ω
′

(ϑ)[
NT0

1− C2
(ΛLF1

+ Λ2N1T0LF2
+ Λ2N2N1T

2
0LF2

)

×Wa(ϑ)(a0(t, t) +

∫ t

0

∂ma(t, s)

∂t
ds)

+
NT0

ΛN1

1− C2
p(t)Ω(ϑ)] +W

′

(WE (ϑ)

∫ t

0

mE(t, s)ds)

×WE(ϑ)[

∫ t

0

‖
∂mE

∂t
(t, s)‖ds+mE(t, t)] (33)

Furthermore, from the hypotheses on Ω, we get

Ω
′

(ϑ) ≥ Ω
′

(µλ) ≥ Ω(µλ(0)) ≥ Ω
′

(ΛΛN1‖φ‖B) > 0.

Thus, we get

ϑ
′

≤
1

1− C2
[(NT0

ΛLF1
+ Λ2N1T0LF2

+ Λ2N2N1T
2
0LF2

)×Wa(ϑ)(a0(t, t)

+

∫ t

0

∂ma(t, s)

∂t
ds) +NT0

ΛN1p(t)Ω(ϑ)] +
WE(ϑ)

Ω′(ϑ)
W

′

(WE(ϑ)

∫ t

0

mE(t, s)ds)

×[

∫ t

0

‖
∂mE

∂t
(t, s)‖ds+mE(t, t)]. (34)

By the assumption (E9), we estimate

ϑ
′

≤ [b1Wa(ϑ) + b2Ω(ϑ) +
b3WE(ϑ)

Ω′(ϑ)
W

′

(LWE(ϑ))],

≤ b(t)(Wa(ϑ) + Ω(ϑ) +
WE(ϑ)

Ω′(ϑ)
W

′

(LWE(ϑ))). (35)

Thus, for t ∈ [0, T0]

∫ ϑ(t)

ϑ(0)

[Wa(ϑ) + Ω(ϑ) +
WE(ϑ)

Ω′(ϑ)
W

′

(LWE(ϑ))]
−1ds

≤

∫ T0

0

b(s)ds,

≤

∫ +∞

e

[Wa(ϑ) + Ω(ϑ) +
WE(ϑ)

Ω′(ϑ)
W

′

(LWE(ϑ))]
−1ds, (36)

it implies that the function ϑ(t) is bounded function on [0, T0]. Thus, we obtain that the
function uλ(t) is bounded on [0, T0]. Hence, yλ(·) is bounded on [0, T0].
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Step 2. Π is a χ-contraction.
Now, we introduce the decomposition of Π = Π1 +Π2 defined by

Π1y(t) = E−1R(t)F (0, φ, 0)− E−1F (t, yt + zt,

∫ t

0

a(t, s, ys + zs)ds)

−E−1

∫ t

0

R(t− s)AE−1F (s, ys + zs,

∫ s

0

a(s, τ, yτ + zτ )dτ)ds

−E−1

∫ t

0

R(t− s)AE−1

∫ s

0

f(s− τ)F (τ, yτ + zτ ,

∫ τ

0

a(τ, ξ, yξ + zξ)dξ)dτds

+
∑

0<ti<t

E−1R(t− ti)Ii(yti + zti), (37)

Π2y(t) = E−1

∫ t

0

R(t− s)G(s, ys + zs,

∫ s

0

E(s, τ, yτ + zτ )dτ)ds. (38)

Now, we firstly show that Π is Lipschitz continuous with Lipschitz constant K1. Let
y1, y2 ∈ S(T0). Then, we obtain

‖Π1y1(t)−Π1y2(t)‖ ≤

‖E−1F (t, y1t + zt,

∫ t

0

a(t, s, y1s + zs)ds)− E−1F (t, y2t + zt,

∫ t

0

a(t, s, y2s + zs)ds)‖

+‖E−1‖

∫ t

0

‖R(t− s)AE−1[F (s, y1s + zs,

∫ s

0

a(s, τ, y1τ + zτ )dτ)

−F (s, y2s + zs,

∫ s

0

a(s, τ, y2τ + zτ )dτ)]‖ds

+‖E−1‖

∫ t

0

‖R(t− s)AE−1

∫ s

0

f(s− τ)F (τ, y1τ + zτ ,

∫ τ

0

a(τ, ξ, y1ξ + zξ)dξ)

−F (τ, y2τ + zτ ,

∫ τ

0

a(τ, ξ, y2ξ + zξ)dξ)]dτ‖ds

+
∑

0<ti<t

‖E−1R(t− ti)‖ · ‖Ii(y1ti + zti)− Ii(y2ti + zti)‖,

≤ ΛLF1
(1 + a1)‖y1t − y2t‖B + Λ2N1T0LF2

(1 + a1)‖y1t − y2t‖B

+Λ2N1N2T
2
0LF2

(1 + a1)‖y1t − y2t‖B + ΛN1

∑

0<ti<t

Li‖y1t − y2t‖B,

≤ NT0
[Λ(1 + a1)(LF1

+ ΛN1T0LF2
+ ΛN1N2T

2
0LF2

) + ΛN1

∑

0<ti<t

Li]

×‖y1 − y2‖T0
, (39)

which implies that Π1 is Lipschitz continuous with Lipschitz constant K1 =
NT0

[Λ(1 + a1)(LF1
+ ΛN1T0LF2

+ ΛN1N2T
2
0LF2

) + ΛN1

∑
0<ti<t Li] < 1.

Let B be an arbitrary subset of S(T0). Besides, R(t) is equicontinuous resolvent
operator. Therefore, from the assumption (HG) and the strong continuity of R(t), we
have that R(t− s)G(s, xs + ys,

∫ s

0
E(s, τ, xτ + yτ )dτ) is piecewise equicontinuous. Then,

by Lemma 2.6 we have
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χ(Π2(B(t)))

≤ χ(E−1

∫ t

0

R(t− s)G(s,Bs + zs,

∫ s

0

E(s, τ, Bτ + zτ )dτ)ds),

≤ Λ

∫ t

0

ξ(s) · ( sup
−∞<θ≤0

χ(B(s+ θ) + z(s+ θ)) + χ(

∫ s

0

E(s, τ, Bτ + zτ )dτ))ds,

≤ Λ

∫ t

0

ξ(s) sup
−∞<θ≤0

[χ(B(s+ θ) + z(s+ θ)) + L0χ(WE(B(s+ θ) + z(s+ θ)))]ds,

≤ Λ

∫ t

0

ξ(s) sup
0≤τ≤s

(χ(B(τ)) + L0χ(WE (B(τ))))ds,

≤ Λ χPC(B)[1 + Ω1L0]

∫ t

0

ξ(s)ds, [∴ χ(WE(B(τ))) ≤ Ω1χ(B(τ))], (40)

for every bounded set B ⊂ PC. Here Ω1 is constant and
∫ t

0 mE(t, s)ds ≤ L0.

Now we can see that for any bounded subset B ∈ PC

χPC(Π(B)) = χPC(Π1B +Π2B),

≤ χPC(Π1B) + χPC(Π2B),

≤ (K1 + Λ(1 + L0Ω1)

∫ t

0

ξ(s)ds)χPC(B), (41)

from the above inequality we obtain that Π is χ-contraction. Hence Π has at least one
fixed point in B by Darbo fixed point theorem. Let y be the fixed point of the map Π
on S(T0). Thus u = y + z is a mild solution for the problem (6)-(8). Therefore, this
completes the proof of the theorem.

Theorem 3.2 Let us assume that the hypotheses (E1)-(E4) and (E5)-(E9) are sat-
isfied and

NT0
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N1N2T

2
0LF2

+N1Λ
∑

0<ti<t

K1
i ]

+(ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

)×

∫ T0

0

ma(T0, s) lim
τ→∞

sup
Wa(τ)

τ
ds

+ΛN1

∫ T0

0

[α(s) lim
τ→∞

sup
Ω(τ)

τ
+ β(s) lim

τ→∞
sup

W(τ)

τ
]ds < 1. (42)

Then, there exists at least one mild solution for Sobolev type equation (6)-(8).

Proof. The proof of the theorem is similar to the proof of the previous Theorem 3.1.
We consider the operator Π defined by the equation (28). Next, we show that there exist
a positive constant k such that Π(Bk) ⊂ Bk, here Bk denotes the closed and convex ball
with center at the origin and radius k i.e.,Bk = {y ∈ S(T0) : ‖y‖T0

≤ k}. To show the
claim, we assume that for any k > 0, there exists yk ∈ Bk and tk ∈ [0, T0] such that
k < ‖ Πyk(tk)‖. For yk ∈ Bk and tk ∈ [0, T0], we get
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k < ‖Πyk(tk)‖

≤ ΛN1(LF1
T0 + L1)‖φ‖B + Λ[LF1

(‖yktk + ztk‖B

+

∫ tk

0

ma(tk, s)Wa(‖yktk + ztk‖B)ds) + L1]

+Λ2N1T0[LF2
(‖yktk + ztk‖B +

∫ tk

0

ma(tk, τ)Wa(‖ykτ + zτ‖B)dτ) + L2]

+Λ2N1N2T
2
0 [LF2

(‖yks + zs‖B +

∫ tk

0

ma(tk, τ)Wa(‖ykτ + zτ‖B)dτ) + L2]

+ΛN1

∫ tk

0

α(s)Ω(‖yks + zs‖B) + β(s)W(

∫ s

0

mE(s, τ)WE (‖ykτ + zτ‖B)dτ)ds

+N1Λ
∑

0<ti<t

(K1
i ‖yktk + ztk‖B +K2

i ),

≤ N1(LF1
T0 + L1)‖φ‖B + ΛL1 + Λ2N1T0L2 + Λ2N1N2T

2
0L2 +N1Λ

∑

0<ti<t

K2
i

+[ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

+N1Λ
∑

0<ti<t

K1
i ]× ‖yktk + ztk‖B

+(ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

)

∫ tk

0

ma(tk, s)Wa(‖yktk + ztk‖B)ds

+ΛN1

∫ tk

0

[α(s)Ω(‖yks + zs‖B) + β(s)W(

∫ s

0

mE(s, τ)WE (‖ykτ + zτ‖B)dτ)]ds,

≤ N1(LF1
T0 + L1)‖φ‖B + ΛL1 + Λ2N1T0L2 + Λ2N1N2T

2
0L2 +N1Λ

∑

0<ti<t

K2
i

+[ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

+N1Λ
∑

0<ti<t

K1
i ]

×[(NT0
ΛΛ

′

N1H +KT0
)‖φ‖B +NT0

k] + (ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

)

×

∫ tk

0

ma(tk, s)Wa((NT0
ΛΛ

′

N1H +KT0
)‖φ‖B +NT0

k)ds

+ΛN1

∫ tk

0

[α(s)Ω((NT0
ΛΛ

′

N1H +KT0
)‖φ‖B +NT0

k)

+β(s)W(

∫ s

0

mE(s, τ)WE (NT0
ΛΛ

′

N1H +KT0
)‖φ‖B +NT0

k)dτ)]ds (43)

Dividing the above inequality by k and taking k → ∞, we conclude

1 < NT0
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N1N2T

2
0LF2

+N1Λ
∑

0<ti<t

K1
i ]

+(ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

)

×

∫ T0

0

ma(T0, s) lim
k→∞

sup
Wa((NT0

ΛΛ
′

N1H +KT0
)‖φ‖B +NT0

k)

k
ds

+ΛN1

∫ T0

0

[α(s) lim
k→∞

sup
Ω((NT0

ΛΛ
′

N1H +KT0
)‖φ‖B +NT0

k)

k
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+β(s) lim
k→∞

sup
W(

∫ T0

0
mE(T0, τ)WE (NT0

ΛΛ
′

N1H +KT0
)‖φ‖B +NT0

k)dτ)

k
]ds

≤ NT0
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N1N2T

2
0LF2

+N1Λ
∑

0<ti<t

K1
i ]

+(ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

)×

∫ T0

0

ma(T0, s) lim
τ→∞

sup
Wa(τ)

τ
ds

+ΛN1

∫ T0

0

[α(s) lim
τ→∞

sup
Ω(τ)

τ
+ β(s) lim

τ→∞
sup

W(τ)

τ
]ds (44)

which gives a contradiction with the inequality (42). Hence, we obtain that Π(Bk) ⊂ Bk.
As in the proof of Theorem 3.1, we conclude that there exists at least one mild solution
for the system (6)-(8).

4 Application

Consider the following first order impulsive Sobolev type integro-differential equation
with unbounded delay in a Banach space (X, ‖ · ‖)

d

dt
[x(t, u) + xuu(t, u)− F (t, x(t− k, u),

∫ t

0

g1(t, s, x(s− k, u))ds)]

=
∂2

∂u2
[x(t, u) +

∫ t

0

f(t− s, u)x(s, u)ds]

+

∫ t

0

a(t, u, s− t)G(x(s, u),

∫ s

0

E(s, τ, xτ )dτ)ds, t ∈ [0, T0], u ∈ [0, π], (45)

x(t, 0) = x(t, π) = 0, t ∈ [0, T0], (46)

x(τ, u) = φ(τ, u), τ ≤ 0, 0 ≤ u ≤ π, (47)

∆x(ti)(u) =

∫ t

−∞

ci(ti − s)x(s, u)ds, (48)

where φ ∈ C0 × L2(h,X) (B-Phase space) and 0 < t1 < t2 < · · · < tm < b are fixed
numbers.

The functions f, a,G,E, ci, F satisfy the following conditions:

(A1) The operator f(t), t ≥ 0 is bounded and ‖ f(t, u)‖ ≤ N2;

(A2) a(t, u, τ) is continuous function on [0, T0]× [0, π]× (−∞, 0] with
∫ 0

−∞
a(t, u, τ)dτ =

n(t, u) < ∞;

(A3) G is a continuous function, satisfying G(x1, x2) ≤ Ω1(‖ x1‖) + Ω2(‖ x2‖), where
Ω1(·) and Ω2(·) are continuous, increasing and positive functions on [0,∞);

(A4) The function E(·) is a continuous function, satisfying 0 ≤ E(t, s, u) ≤
mE(t, s)ω(‖ u‖), where ω is a positive increasing continuous function on
[0,∞) and mE is differentiable a.e., with respect to the first variable with∫ t

0
mE(t, s)ds,

∫ t

0
∂mE(t,s)

∂t ds are bounded on [0, T0] and
∂mE(t,s)

∂t ≥ 0;

(A5) The functions ci ∈ C([0,∞);R) and K3
i = (

∫ 0

−∞

(ci(s))
2

h(s) ds)1/2 < 0, ∀ i = 1, · · · ,m;
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(A6) F is an appropriate Lipschitz continuous function satisfying assumption (E5).

We define the operators A : D(A) ⊂ X → X and E : D(E) ⊂ X → X such that

Ax = x′′, Ex = x+ x′′,

where D(A) and D(B) are defined by

{x ∈ X : x, xu are absolutely continuous, xuu ∈ X, x(0) = x(π) = 0}. (49)

Then, we get

Ax =

∞∑

n=1

n2 < x, xn > xn, x ∈ D(A),

Ez =

∞∑

n=1

(1 + n2) < x, xn > xn, x ∈ D(E), (50)

with xn(u) =
√
2/π sin(nu), n = 1, · · · , is the orthogonal set of vectors of A.

Moreover, x ∈ X , we get

E−1z =

∞∑

n=1

1

1 + n2
< xn, x > xn,

AE−1 =

∞∑

n=1

n2

1 + n2
< xn, x > xn,

R(t)x =

∞∑

n=1

exp(
n2t

1 + n2
) < xn, x > xn. (51)

Clearly, AE−1 is the infinitesimal generator of a strongly continuous resolvent operator
R(t) on Y . Applying Theorem 3.1, we conclude that there exists at least one mild solution
for the system (45)-(48).

5 Conclusion

The existence of mild solution for an impulsive neutral integro-differential equation of
Sobolev type was investigated. The sufficient condition for ensuring the existence of mild
solution was provided by using Darbo-Sadovskii fixed point theorem, analytic semigroup
and Hausdorff measure of noncompactness without assuming Lipschitz continuity of non-
linear part G and compactness of semigroup. An example was studied for explaining the
feasibility of the discussed results.
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[17] Akhmerov, R. R., Kamenskǐi, M. I., Potapov, A. S., Rodkina A. E. and Sadovskǐi, B. N.
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