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Analytical and Experimental Investigation of Vertical Vibration

of a Freight Wagon in the Presence of Mechanical Asymmetry . . . . . . . . . 32

F.N. Nangolo, J. Soukup, A. Petrenko and J. Skocilas

Researches Defining the Characteristics of Hyperelastic and Composite

Materials with Gas Phase in the Vehicle–Pedestrian System . . . . . . . . . . . 43

J. Osinski and P. Rumianek

Mathematical Modeling of the Hydro-Mechanical Fluid Flow System

on the Basis of the Human Circulatory System . . . . . . . . . . . . . . . . . . . . . . . . 50

W. Parandyk, D. Lewandowski and J. Awrejcewicz

Six-Legged Robot Gait Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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Special Issue

Experimental Approaches in Dynamical Analysis and

Control of Mechanical Systems

Preface

Identification of system parameters is usually a very troublesome problem. It encloses
a multidisciplinary approaches ranging from systems theory, methods of nonlinear dy-
namics, the measurement signal treatment, the experimental engineering procedures, and
many other. The more the system of analysis is complicated, which is often related to its
multi-dimensional modeling, the more laborious its parameters are possible to estimate.
Usually, a dynamical process subject to one of the above itemized approaches behaves
unpredictably, and may be identified only partially. Therefore, the Special Issue extends
selected papers presented during the international conference on Dynamical Systems –

Theory and Applications held on December 2-5, 2013 in Lodz, Poland. Main areas of
modern experimental and numerical analysis taken into consideration by authors of these
papers could be mentioned: bifurcations and chaos in dynamical systems, stability of dy-
namical systems, original numerical methods of vibration analysis, non-smooth systems,
engineering systems and differential equations, control in dynamical systems, asymptotic
methods in nonlinear dynamics, vibrations of lumped and continuous systems, dynam-
ics in life sciences and bioengineering. In particular, the following areas of nonlinear
dynamics and systems theory with respect to the Mathematics Subjects Classification
are covered: stability, nonlinear resonances, bifurcations and instability, general systems,
mathematical modeling (models of systems, model-matching), system identification, con-
trol systems and adaptive control. A brief description of contents of this Special Issue
follows.

The theory of fractional calculus and the concept of fractals is studied by Abramova
and Abramov. Various types of fractal nanotraps based on quasi-two-dimensional fractal
structures are obtained by the method of sections. It is shown that the behavior of the de-
formation field for the coupled state of the fractal nano-system is essentially different from
the deformation field for the uncoupled state. It is proposed to use fractal nanotraps for
trapping individual particles or groups of particles in order to study their physical prop-
erties. Stanczyk and Awrejcewicz present results of investigations of real six-legged robot
called hexapod. Due to specific construction of legs having three degrees-of-freedom, a
prototype allows to model gait of reptiles and insects. Applied mathematical model
yields identification of the angular velocity, acceleration and moments generated by each
of the robot cells, separately. As a result it is possible to determine quality coefficients
of different gait patterns of the robot, i.e. maximal speed or maximal load depending on
the number of moving legs. Obtained results are confronted with a theoretical model of
differential equations regulating gait of the hexapod.

c© 2015 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 1
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2 EXPERIMENTAL APPROACHES IN DYNAMICAL ANALYSIS AND CONTROL . . .

A study by Osinski and Rumianek is carried out to develop the methods of describ-
ing some properties of investigated materials. The knowledge of basic materials and
gas pressure formed during foaming using the theory of hyperplastic materials, and in
particular, Ogden’s model and its modifications is extended. The aim also goes on to
analyze the possibility of energy dissipation between a pedestrian and a vehicle on im-
pact. The energy created during the impact is dissipated by the element of protection
made of a hyperdeformable material. The presented methods and applications of the
characteristics of hyper elastic materials and composites with the gas phase are used to
determine the proper selection of material properties, increasing the opportunities for a
proper assessment of the effectiveness of safety devices.

Kyziol and Okninski study dynamics of the Duffing - Van der Pol driven oscillator.
Periodic steady-state solutions of the corresponding equation are determined within the
Krylov-Bogoliubov-Mitropolsky approach to yield dependence of amplitude on forcing
frequency as an implicit function, referred to as resonance curve or amplitude profile.
Equations for singular points of resonance curves are solved exactly. Authors investigate
metamorphoses of the computed amplitude profiles induced by changes of control pa-
rameters near singular points of these curves since qualitative changes of dynamics occur
in neighborhoods of singular points. More exactly, conditions for birth of resonances as
well as for attractor crises are found. Bifurcation diagrams are estimated to show good
agreement with the predictions of theoretical analysis.

An analysis of equations describing single and multi-joint muscles cooperation during
movement of limb segments is presented by Zagrodny and Awrejcewicz. The Pareto-
optimum problem is considered for the human upper limb in a case of movement in the
sagittal plane. Uncertainty of this problem and some additional physiological restrictions
are described. Moreover, effects of practical verification based on the video analysis of
the volunteer’s arm movement and its lack of reproducibility is addressed. Examination
of the artificial arm prototype shows similar behavior to the human biological musculo-
skeletal system.

Production and construction asymmetry of railway vehicles in the presence of multiple
track irregularities on the rail influences the time flow of the wheel. It has an influence
on wheel and rail wear defects, especially on driving safety. Production and construction
asymmetry is found during the experimental investigation of the basic parameters of
mechanical properties of a double-axel freight wagon of Smmps type. The contribution
by Nangulo et al. introduces a methodology of analytical solution of the influence of
production and construction asymmetry on the vertical dynamic response of a double-
axel freight wagon in the presence of multiple track irregularities. Measured field data
are used to validate the model.

A non-standard bifurcation, similar to a transcritical one, in a model of a bioreactor
is detected by Villa et al. This happens in a periodically-forced system with restrictions
on the state space. The bioreactor is periodically fed with substrate. In the mathe-
matical model, a periodic orbit approaches (without hitting) the restriction surface as
a bifurcation parameter is varied. The way the orbit approaches the switching surface
in the three-dimensional state space is such that it becomes parallel to the restriction
surface. This phenomenon is somehow analogous to a transcritical bifurcation, which is
described, since another periodic orbit exists inside the restriction surface, but they do
not collide.

The objective of the study carried out by Parandyk et al. is to examine a hu-
man/mammal circulatory system. Considering structures and operating rules of a nat-
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ural, biological circulatory system it can be easily stated that it is possible to create
an analogous hydromechanical dynamic system. Noting the similarities and taking into
account blood and vessels features there is mathematical model given that include dif-
ferential equations of the fluid mechanics. Additionally a stand/analog consisted of
hydraulic and electronics elements is presented. A prototype of the circulatory system
is proposed with a construction of the heart as a bicapsular pumping unit powered by
external pneumatic system. Solving the equations describing biological system, it gives
opportunities to examine some external and internal risk factors, model input signals
and activity under different conditions.

Udwadia and Mylapilli expose the connections between the determination of the equa-
tions of motion of constrained systems and the problem of tracking control of nonlinear
mechanical systems. The new duality between the imposition of constraints on a me-
chanical system and the trajectory requirements for tracking control is exposed through
the use of a simple example. It is shown that given a set of constraints, d’Alembert’s
principle corresponds to the problem of finding the optimal tracking control of a me-
chanical system for a specific control cost function that Nature seems to choose. The
way Nature seems to handle the tracking control problem of highly nonlinear systems
suggests ways in which authors are able to develop new control methods that do not
make any approximations and/or linearizations related to the nonlinear system dynam-
ics. More general control costs are used and Nature’s approach is thereby extended to
general control problems.

Finally, it should be emphasized that the selected papers are mainly oriented toward
modeling and identification of mechanical systems. They have been reviewed to satisfy
the journal’s standards.

In addition, J. Awrejcewicz, a Guest Editor of this Special Issue, greatly appreciates
a kind invitation of Professor A.A. Martynyuk to publish the recommended papers.
Furthermore, a professional help of the NDST’s staff in the final production process is
acknowledged.

Guest Editor:

Jan Awrejcewicz,

Lodz University of Technology, Department of Automation, Biomechanics and

Mechatronics, 1/15 Stefanowski Str., 90-924 Lodz, Poland

and
Institute of Vehicles, Warsaw University of Technology, 84 Narbutta st., 02–524,
Warsaw, Poland;

mailto:jan.awrejcewicz@p.lodz.pl

mailto: jan.awrejcewicz@p.lodz.pl
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Coupled Fractal Nanosystem: Trap –

Quasi-two-dimensional Structure

O.P. Abramova ∗ and S.V. Abramov

Donetsk National University, 24 University st., Donetsk, 83001, Ukraine

Received: March 31, 2014; Revised: December 17, 2014

Abstract: For a model nanosystem various types of quasi-two-dimensional fractal
structures are obtained. To this end the theory of fractional calculus and the concept
of fractal are used. Various types of fractal nanotraps based on quasi-two-dimensional
fractal structures are obtained by the method of sections. It is shown that the behavior
of the deformation field for the coupled state of the fractal nanosystem is essentially
different from the behavior of the deformation field for the uncoupled state. It is pro-
posed to use fractal nanotraps for trapping individual particles or groups of particles
in order to study their physical properties.

Keywords: quasi-two-dimensional fractal structures; fractional calculus; nanosys-

tem; nanotraps; numerical modeling.

Mathematics Subject Classification (2010): 93A10, 93A30.

1 Introduction

Investigating the fundamental properties of nanosystems and nanomaterials of a new
generation [9–11, 14] is actual for the modern areas of nanotechnology, structural and
nonlinear mechanics [8]. The active nanostructural elements in real nanomaterials are
clusters, pores, quantum dots, wells, two-dimensional quantum billiards (quantum cor-
rals) [17]. These elements can find their application in quantum information science,
nanomechanics, quantum optics, and for the quantum computers, molecular spin mem-
ory devices [14]. The theoretical description of the chaotic states in the structural me-
chanics, analysis of nonlinear dynamical models of attractors and the chaotic simulation
are discussed in the books [8, 16–18].

Quasi-two-dimensional fractal structures such as fractal linear, elliptic and hyperbolic
dislocations, fractal quantum dots (particles or groups of particles) [3–6] may occur in

∗ Corresponding author: mailto:oabramova@ua.fm

© 2015 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 4
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model nanosystems. The location of the singular points (attractors) of the deformation
field in the core of fractal structures is typical for linear dislocation, real ellipse, hyperbola
or an imaginary ellipse. In the general case the behavior of the deformation field near
these singular points is stochastic and has unusual quantum statistical properties [3–6],
there is the presence of quantum chaos [17].

For theoretical description of fractal objects it is proposed to use the theory of frac-
tional calculus [15], the Hamilton operators [1, 2] and the concept of fractal [12]. For
experimental investigations of physical properties of individual atoms (electrons, pho-
tons) and quantum measurement it is needed to create special traps: nanosystems are
represented by a trapped particle (or a group of particles) in the trap. W. Paul [13]
considered the electromagnetic traps for charged and neutral particles (having a dipole
moment). In [17] the traps (quantum corrals) constructed experimentally from individ-
ual atoms (molecules) are considered. Physical properties of the particles placed in such
traps qualitatively differ from those of free particles. If we have single atom in the trap,
it is possible to observe the interaction of the atom with the radiation field and the sta-
tistical behavior of a single atom in a pure form. Using the variety of external actions
(acoustic, electromagnetic, mechanical excitation, laser cooling, etc.), we can change the
state of the atoms in the trap [11, 14, 17]. In papers [9, 10] the experimental methods
that made it possible to measure and govern individual quantum systems are proposed.

The purpose of this paper is to investigate the possibility of constructing fractal
nanotraps based on quasi-two-dimensional fractal structures and governing the behavior
of coupled systems: fractal trap – fractal structure.

2 Fractal Structures and Fractal Traps

We consider a model nanosystem [3–6]: volumetric discrete lattice N1 × N2 × N3, whose
nodes are given by integers n, m, j, (n = 1, N1; m = 1, N2; j = 1, N3). The dimensionless
variable displacement u of lattice nodes in a fractal trap is described by analogy with [3
- 6], but with a changed value Q

u = (1 − α)(1 − 2sn2(u − u0, k))/Q. (1)

Here α is the fractal dimension of the deformation field u along the Oz-axis (α ∈ [0, 1]);
u0 is the constant (critical) displacement; k is the modulus of the elliptic sine.

The changed value Q considers both the interaction of the nodes in the main plane
of rectangular discrete lattice and the interplanar interactions by an angular parameter
ϕ(j). This allows to fulfill a stochastic (due to changes in the internal parameters, the
process of self-organization) governing of the alteration of these structures. The initial
expression for Q in the coordinate system nOm has the form

Q = p′

0 + q1 + q2; q1 = p′

1n + p′

2m; q2 = −(p11n2 − 2p12nm + p22m2). (2)

Here the functions q1, q2 are linear quadratic forms with respect to the independent
variables n, m. The expression (2) has six parameters. The parameter p′

0 is independent
of the variables n, m; parameters p′

1
, p′

2
are included in the linear form; parameters p11,

p12, p22 determine the behavior of the quadratic form.
The rotation operation of the coordinate axes by angle ϕ > 0 is used to go from the

coordinate system nOm to the coordinate system n′Om′ according to the formulas

n′ = n cos ϕ − m sin ϕ; m′ = n sin ϕ + m cos ϕ. (3)
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Doing the operation of parallel translation of the coordinate system we obtain an expres-
sion for Q

Q = p0 − b1(n′ − n0)2/n2

c − b2(m′ − m0)2/m2

c . (4)

Here, the previous parameters are related with the new parameters by expressions

p′

0 = p0 − b1n2

0/n2

c − b2m2

0/m2

c ; p′

1 = 2n0b1 cos ϕ/n2

c + 2m0b2 sin ϕ/m2

c ;

p′

2
= 2m0b2 cos ϕ/m2

c − 2n0b1 sin ϕ/n2

c; p11 = b1 cos2 ϕ/n2

c + b2 sin2 ϕ/m2

c ; (5)

p22 = b1 sin2 ϕ/n2

c + b2 cos2 ϕ/m2

c ; p12 = (b1/n2

c − b2/m2

c) sin ϕ cos ϕ.

Parameters (n′

c)
2 = p0n2

c/b1, (m′

c)2 = p0m2

c/b2 play the role of semi-axes of quasi-two-
dimensional structures of the type of elliptical or hyperbolic dislocation in a coordinate
system n′Om′. To classify the type of fractal structures, we introduce a row-vector
b = (b1, b2, p0).

When b = b11 = (1, 1, p01), p01 > 0 a fractal elliptical dislocation at state 1 (ED1) is
obtained. When b = b12 = (−1, −1, −p01) a fractal elliptical dislocation in state 2 (ED2)
is obtained.

For fractal hyperbolic dislocation we have four states HD1, HD2, HD3, HD4 with b =
b21 = (1, −1, p02), b = b22 = (1, −1, −p02), b = b23 = (−1, 1, p02), b = b24 = (−1, 1, −p02),
respectively, where p02 > 0.

The fractal quantum dot in the two states QD1, QD2 is obtained at b = b31 =
(1, 1, −p03), b = b32 = (−1, −1, p03), respectively, where p03 > 0.

The set of fractal quantum dots (the imaginary line dislocations) can be in four
states SQD1, SQD2, SQD3, SQD4 with b = b41 = (1, 0, −p04), b = b42 = (0, 1, −p04),
b = b43 = (−1, 0, p04), b = b44 = (0, −1, p04), respectively, where p04 > 0.

Fractal linear split dislocation can be in four states LSD1, LSD2, LSD3, LSD4
with b = b51 = (1, 0, p05), b = b52 = (0, 1, p05), b = b53 = (−1, 0, −p05), b = b54 =
(0, −1, −p05), respectively, where p05 > 0.

The stochastic state of the whole lattice can be realized in two states SSL1, SSL2
with b = b61 = (0, 0, p06), b = b62 = (0, 0, −p06), respectively, where p06 > 0.

The initial fractal quasi-two-dimensional structures are obtained by using the iterative
method to solve the equation (1) with Q in the form (2) for the angular parameter ϕ = 0,
for the values of other constant parameters α = 0.5, k = 0.5, u0 = 29.537, n0 = 14.3267,
nc = 9.4793, m0 = 19.1471, mc = 14.7295, N1 = 30, N2 = 40.

Using the method of sections of original fractal structures (Fig. 1) other sectioned
fractal structures (Fig. 2) can be obtained.The original structures are shown in Fig. 1:
structure SSL1 for parameter p06 = 0.1523 (Fig. 1 (a)); structure ED1 for parameter
p01 = 1.0123 (Fig. 1 (b)); structure QD2 for parameter p03 = −3.457 ·10−11 (Fig. 1 (c)).

Sectioned fractal structures can be used as fractal traps for trapping or capturing
other fractal quasi-two-dimensional structures (particles or groups of particles) in order
to investigate their physical properties. The deformation field of fractal traps is essentially
stochastic both in the area core and inside the fractal structure (Figs. 1, 2). The state of
fractal trap at the transition from one node plane to another (j = 1, N3) can be changed
by using the parameter ϕ(j). Sectioned fractal traps (Fig. 2) allow to obtain porous
traps: the pores can be on the boundary nodal planes and inside the bulk nanosystem.
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(a) (b) (c)

Figure 1: The behavior of the functions u of the original fractal structures on n, m for ϕ = 0:
SSL1, p06 = 0.1523 (a); ED1, p01 = 1.0123 (b); QD1, p03 = −3.457 · 10−11 (c).

(a) (b) (c)

(d) (e) (f)

Figure 2: The behavior of the functions u of sectioned structures (a, b, c) and their cuts (d, e,
f) u ∈ [−1, 1] (top view) on n, m for ϕ = 0: SSL1 (a, d); ED1 (b, e); QD1 (c, f).



8 O.P. ABRAMOVA AND S.V. ABRAMOV

3 Coupled Systems: Fractal Trap - Fractal Structure

We investigate the state of the system: the fractal trap – fractal structure (Figs. 3, 4).
The state of such a system is significantly different depending on the choice of the type
of the iteration process when solving the basic non-linear equations.

As fractal traps the fractal structures SSL1 (Fig. 1 (a)), ED1 (Fig. 1 (b)) are used.
As fractal structures the structures QD1 (Fig. 1 (c)); SQD1 with p04 = 3.457 · 10−11 are
chosen.

(a) (b) (c)

(d) (e) (f)

Figure 3: The behavior of u of structure SSL1-QD1 (a, b, c) and cuts (d, e, f) u ∈ [−1, 1] on
n, m for ϕ = 0: uncoupled state A (a, d); coupled state B (b, e); deviation δ (c, f).

We investigate the states of the following systems: SSL1-QD1; ED1-QD1; SSL1-
SQD1; ED1-SQD1. Independent displacement functions for trap u1 and structure u2

are determined by using the iteration method with its values Q1 and Q2 structures for
selected higher structures by the solution of independent nonlinear equations, respectively

u1 = (1 − α)(1 − 2sn2(u1 − u0, k))/Q1; (6)

u2 = (1 − α)(1 − 2sn2(u2 − u0, k))/Q2. (7)

In this case, the displacement function of the system is given by uA = u1 + u2

(uncoupled state A). For the coupled system the nonlinear equation for the displacement
function u (coupled state B) is given in the form

u = (1 − α)(1 − 2sn2(u − u0, k))/Q1 + (1 − α)(1 − 2sn2(u − u0, k))/Q2; uB = u. (8)

The deviation of the displacement system (state B from state A) is described by the
function

δ = (uB − uA)/2. (9)
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(a) (b) (c)

(d) (e) (f)

Figure 4: The behavior of the functions u of structures ED1-QD1 (a); SSL1-SQD1 (b); ED1-
SQD1 (c) and cuts (d, e, f) u ∈ [−1, 1] (top view) on n, m for ϕ = 0 in state B.

The fractal trap SSL1 (Fig. 1 (a)) and the fractal structure QD1 (Fig. 1 (c)) are
selected to investigate the displacement function u of system SSL1-QD1 (Fig. 3). For
the uncoupled state A (Figs. 3 (a, d)) the behavior of the displacement function is
significantly different from that of the displacement function for the coupled state B
(Figs. 3 (b, e)). This changes the direction and the amplitude of the main peak and the
behavior of the deformation field in the whole area N1 × N2 of the nodal plane of the
lattice. The dependency of the deviation δ for these states from n, m is given in Figs. 3
(c, f). Some other types of coupled structures (in state B) are shown in Fig. 4.

For these structures the behavior of the displacement functions for coupled state B is
also essentially different from that of the displacement function for the uncoupled state
A. In this case, the fractal structure QD1 can play the role of a single particle, and the
fractal structure SQD1 - the role set of particles.

4 The Influence of Translation and Rotation on the State of the Coupled

System

We investigate the influence of the angular parameters ϕ = ϕ61 (for the traps SSL1), and
ϕ = ϕ31 (for the fractal structure QD1) on the state of the coupled system SSL1-QD1.

The initial state of this coupled system for ϕ61 = 0 and ϕ31 = 0 is given in Figs. 3
(b, e). Fractal trap SSL1 remains in the initial state with ϕ = ϕ61 = 0, then from (2),
(5) for Q1 we obtain

Q1 = p06; p′

0 = p06; p′

1 = p′

2 = p11 = p22 = p12 = 0. (10)
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For the structure QD1 being captured at ϕ = ϕ31 6= 0 from (2), (5) we find the expression
for Q2

Q2 = p′

0
+ p′

1
n + p′

2
m − p11n2 + 2p12nm − p22m2; (11)

p′

0 = −p03 − n2

0/n2

c − m2

0/m2

c; p′

1 = 2n0 cos ϕ31/n2

c + 2m0 sin ϕ31/m2

c;

p′

2
= 2m0 cos ϕ31/m2

c − 2n0 sin ϕ31/n2

c; p11 = cos2 ϕ31/n2

c + sin2 ϕ31/m2

c ; (12)

p22 = sin2 ϕ31/n2

c + cos2 ϕ31/m2

c ; p12 = (1/n2

c − 1/m2

c) sin ϕ31 cos ϕ31.

The displacement function uB = u of the coupled system SSL1-QD1 (Fig. 5) is deter-
mined when solving the nonlinear equation (8) with the values for Q1 from (10) and Q2

from (11)-(12) for the angular parameter ϕ31 = π/8 (right polarization) and ϕ31 = −π/8
(left polarization).

(a) (b) (c)

(d) (e) (f)

Figure 5: Dependencies of cuts u ∈ [−1, 1] (a, d) and projections (b, c, e, f) of u on ϕ31 for
structure SSL1-QD1 (state B): ϕ31 = π/8 (a, b, c); ϕ31 = −π/8 (d, e, f).

The projections of the displacement function on the planes mOu (Fig. 5 (b, e)), nOu
(Fig. 5 (c, f)) allow us to determine the coordinates of the main peak. We introduce
the state vector M = (m, n, u). Then for the peak down with right polarization M =
M1 = (12, 20, −160) are found. Then for the peak down with left polarization M =
M2 = (23, 6, −2300) are found. The state vector M = M0 = (19, 14, −360) of the peak
down with ϕ31 = 0 is found from Fig. 3 (b). We investigate the influence of the angular
parameters ϕ = ϕ11 (for the trap ED1) and ϕ = ϕ31 (for the fractal structure QD1) on
the state of the coupled system ED1-QD1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (1) (2015) 4–13 11

The initial state of this coupled system for ϕ11 = 0 and ϕ31 = 0 is given in Fig. 4 (a,
d). Fractal trap ED1 remains in the initial state with ϕ = ϕ11 = 0, then from (2), (5)
for Q1 we obtain

Q1 = p′

0 + p′

1n + p′

2m − p11n2 + 2p12nm − p22m2; p′

0 = p01 − n2

0/n2

c − m2

0/m2

c ; (13)

p′

1 = 2n0/n2

c ; p′

2 = 2m0/m2

c; p11 = 1/n2

c; p22 = 1/m2

c; p12 = 0. (14)

For the captured structure QD1 at ϕ = ϕ31 6= 0 the expressions for Q2 (11) - (12) are
used. The displacement function uB = u of the coupled system ED1-QD1 (Fig. 6) is
determined when solving the nonlinear equation (8) with the values for Q1 from (13)-
(14) and Q2 from (11)-(12) for the angular parameter ϕ31 = π/8 (right polarization) and
ϕ31 = −π/8 (left polarization).

(a) (b) (c)

(d) (e) (f)

Figure 6: Dependencies of cuts u ∈ [−1, 1] (a, d) and projections (b, c, e, f) of u on ϕ31 for
structure ED1-QD1 (state B): ϕ31 = π/8 (a, b, c); ϕ31 = −π/8 (d, e, f).

The projections of the displacement function on the planes mOu (Fig. 6 (b, e)),
nOu (Fig. 6 (c, f)) allow us to determine the coordinates of the main peak. For the
main peak down with right polarization M = M1 = (13, 23, −440) are found. For the
peak up with left polarization M = M2 = (23, 6, 2800) are found. The state vector
M = M0 = (19, 14, −400) of the main peak down with ϕ31 = 0 is found from Fig. 4 (a).

Changing the angle parameter ϕ = ϕ31 for the fractal structure QD1, captured by
fractal traps SSL1 with ϕ61 = 0 or ED1 with ϕ11 = 0 leads to essential changes of the de-
formation field, location, amplitudes of the main peaks and the effect of the reorientation
of the main peaks of the coupled systems SSL1-QD1 or ED1-QD1.
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It is also possible to carry out operations of translation and rotation of the fractal
traps only (by changing the angular parameter ϕ of the trap), leaving a fixed capturing
fractal structure or to carry out operations of translation and rotation jointly (both for
traps and structures). This offers additional possibilities to govern the coupled systems:
fractal trap – fractal structure.

5 Conclusions

The possibility of creating fractal nanotraps based on quasi-two-dimensional fractal struc-
tures is shown. By using the method of sections sectioned fractal traps are obtained. The
deformation field of fractal traps is essentially stochastic. Sectioned fractal traps allow
to obtain porous traps: the pores can be both on the boundary nodal planes and inside
the bulk nanosystems. It is proposed to use fractal traps to capture the fractal structures
in order to investigate their physical properties in a trap, and also the behavior of the
coupled system: fractal trap - fractal structure. It is shown that the behavior of the
deformation field for the coupled state of the system (fractal trap – fractal structure) is
essentially different from the behaviour of the deformation field for the uncoupled state.
By varying the angular parameters it is possible to govern both the states of a separate
trap and a captured structure and the state of the whole coupled system.
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Abstract: In the paper, the differential equations of the controlled pneumatic ac-
tuators as a part of simulator for training drivers of freight vehicles based on 6-DOF
Stewart Platform are presented. The sliding-mode control strategy is proposed and
studied by simulations. The experimental results for the existing on-off logical control
algorithm are given, showing potential advantage of the sliding-mode controller for
tracking fast reference signals.

Keywords: Stewart platform; control; pneumatic actuator; nonlinear dynamics.

Mathematics Subject Classification (2010): 00A06, 00A69, 00A72, 03C98,
34L30.

1 Introduction

The present paper is devoted to designing a simulator for training of freight KamAZ
vehicle drivers. The simulator is currently under construction by the Transas Co. The
car cab is mounted on the Gough–Stewart platform for reproducing the desired motions
of the cab. The distinguish feature of the simulator is employing pneumatic servo as
actuators.

Pneumatic systems are widely used in many applications, but the control of such
systems poses difficult problems due to the nonlinear behavior of friction-like phenomena
and great variation of the system properties associated with the system state.

During the last decades, the control/tracking problem for pneumatic actuators has
been extensively studied in the literature. The authors of [1] presented results on the
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modeling and the control of a heavy pneumatic machine designed for handling logs. The
paper shows that a significant improvement in performance results from modified self
tuning generalized predictive control of pneumatic systems. In [2] it is demonstrated
that low friction pneumatic cylinders offer real potential for the precision control sys-
tems and the self-tuning strategy is proposed to obtain correct operating parameters at
the start of a session. In [2] the low-friction cylinder is compared to conventional, sealed
cylinders showing the enhanced performance. An experimental comparison between six
different techniques to control the position of a pneumatic actuator, such as PID control,
fuzzy control, PID control with pressure feedback, fuzzy control with pressure feedback,
sliding mode control and neuro-fuzzy control is given in [3]. It is stressed that the non-
linear nature of pneumatic systems together with the large uncertainty in the model
parameters does not allow a realistic comparison using only mathematical models and
simulations. The authors conclude that in terms of both error and complexity of design
and cost, the Fuzzy logic controller with neural estimator instead of the pressure sensor
has some advantages as compared with other control methods. Results of the experi-
mental comparison of PID control and the nonlinear robust tracking control strategy for
servo-controlled pneumatic systems are presented in [4], demonstrating some advantages
of the proposed nonlinear controller design. A combination of a fuzzy-PID controller
used to ensure tracking performance with an adaptable wavelet neuro compensator, used
to compensate for the time delay resulting from the control valve is proposed in [5]. By
simulation of the linear time delayed model of the pneumatic system, the authors show
that the system without delay-time compensation may become unstable when the delay
time exceeds 0.02 s, and that the adaptable neural network ensures performance robust-
ness in the face of environment and physical variations. Possibility of chaotic motion in
nonlinear systems is discussed in [6].

The paper is organized as follows. The car simulator based on the Stewart plat-
form is briefly described in Section 2, where Gough–Stewart platform construction is
recalled, and specifications for control system of the platform are given. The model of
the pneumatic actuator is presented in Section 3. The fluid servodrive of the Transas car
simulator and the control algorithms are described in Section 4. Results of the simulation
and experimental study are given in Section 5. Concluding remarks and the future work
intensions are presented in Section 6.

2 Freight Vehicle Simulator Based on Stewart Platform

2.1 Gough–Stewart platform

The Stewart (or Gough–Stewart) platform is a six-degree-of-freedom parallel manipulator.
This platform being representative of the class of parallel manipulators, the concepts
applicable for it have direct relevance to the entire class [7]. The Stewart platform has 6
degrees of freedom, such as:

— three spatial coordinates: x, y, z;

— three angular coordinates: yaw ψ, pitch ϑ and roll γ.

Scematic view of the Stewart platform is shown in Fig. 1.

Dynamics of the Stewart platform, arbitrarily placed on six rods of variable length,
with allowance for the inertia and weight rods is described as a special case of rigid body
motion in [8,9]. The equation of motion of the center of gravity C of the loaded platform
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Figure 1: Scematic view of the Stewart platform.

in the fixed reference frame may be written as follows:

m
(

r̈
0 + ω̇

0 × r0c + ω0 × (ω0 × r0c)
)

+mgk0,
r0
c = P · rc,

(1)

where F
0 =

∑6

k=1
Fke

0

kt, Fk (k = 1, . . . , 6) are the forces, acting to the platform from
the side of the pneumatic actuators, m denotes the mass of the platform with a load, g is

the gravity acceleration,
−−→
OC = rc is the radius vector of the center of gravity platform

in the moving reference frame, r̈0 stands for the acceleration of point O.

The equation of moments with respect to the center of gravity C in the moving
reference frame has the folowing form

Jc · ω̇ + ω × (Jc · ω) = M ,

ekt = P
T · e0kt, ω = P

T · ω0,
(2)

where M =
∑6

k=1
Fk (ak −rc)×ekt, Jc is the inertia tensor with respect to point C, F 0

and M denote the principal forces vector and the principal torque, respectively, acting
to the platform from the side of the pneumatic cylinders.

Kinematics of the platform is described by the following matrix equation

A · V 0 = l̇, l̇ = (l̇1, ..., l̇6)
T, (3)

where matrix A is composed from the row-vectors

Lk · V 0 = l̇k, k = 1, . . . , 6, (4)

(·)T denotes the transpose operation (see [8] for more details).

In the projections on the coordinate axesX,Y, Z, system (1), (2), (3) has the following
form:
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Jxω̇x + (Jz − Jy)ωyωz =
∑6

k=1
Fk(akyekz − a∗kzeky),

Jyω̇y + (Jx − Jz)ωzωx =
∑6

k=1
Fk(a

∗

kzekx − akxekz),

Jzω̇z + (Jy − Jx)ωxωy =
∑6

k=1
Fk(akxekx − akyekx),

a∗kz = akz − zc.

(5)

m(ẍ+ zcω̇y + zcωxωz) =
∑6

k=1
Fkekx +mg sinϑ,

m(ẍ− zcω̇y + zcωyωz) =
∑6

k=1
Fkeky −mg cosϑ sin γ,

m(ẍ− zc(ω
2
x + ω2

y)) =
∑6

k=1
Fkekz −mg cosϑ cos γ,

(6)

ϑ̇=ωy cos γ−ωz sin γ,

γ̇=ωz+ψ̇ sinϑ,

ψ̇=(ωy sin γ+ωz cos γ) · (cosϑ)−1.

(7)

The system of quations (5)–(7) is of order 12. This system should be supplemented
by equations of the external forces Fk (k = 1, . . . , 6), acting to the platform from the
side of pneumatic actuators.

2.2 Freight vehicle simulator of Transas Co.

The present paper deals with a pneumatically actuated Stewart platform, which serves as
a computer-controlled mobile base of the simulator for training of freight KamAZ vehicle
drivers. An axonometric plan of the Stewart platform used as a part of the Transas car
simulator is presented in Fig. 2.

Figure 2: Axonometric plan of the Stewart platform of Transas car simulator.

The considered system peculiarity is the usage of pneumatic servosystems instead of
the hydraulic ones. The advantage of pneumatic actuators is the design simplicity and
relative ease of operation and maintenance. Besides, they are relatively cheap and func-
tional flexible. As well as the hydraulic systems, they may reproduce forward movement
without gears.

Pneumatic actuators have the following advantages over the hydraulic ones:
— Their actuators have higher operating speed and lower cost;



18 B. ANDRIEVSKY, D.V. KAZUNIN, D.M. KOSTYGOVA, et al

— Return lines are much shorter, since the air can be vented to the atmosphere from
any point of the system;

— There is an unlimited supply of air as the working fluid.
However, pneumatic actuators of the same dimension as the hydraulic ones, are pro-

ducing the smaller force due to the higher fluid pressure in the hydraulic actuators. In
addition, it is difficult to ensure sufficient control accuracy by the pneumatic actuators
due to the air compressibility. This imposes special requirements to the control system
design.

2.3 Specifications for control system of the platform

The control system is aimed at providing prescribed motion of the platform center-of-
gravity, and the angular position of the platform, ensuring tracking of the reference signal
produced by the higher level of the simulator control. Adaptability of the control system
is required for ensuring stable platform behavior in the total region of admissible variables
and parameters.

The control algorithm should involve the procedure for converting the input data,
removing the platform from the admissible region, to the acceptable one.

The requirements on the tracking precision should be fulfilled by means of minimal
frequency of pneumatic valve actuations.

From the experience of the operation of such kind of platforms it is known that, due
to leaks in pneumatic equipment, the parasitic oscillations occur in the quiescent state.
These oscillations should be suppressed.

Additionally, the control system must ensure fulfillment of the above stated require-
ments for the case of increasing the mass of the service load up to 400 kg above its
nominal value.

3 Pneumatic Actuator Model

3.1 Basic relations

Equations (5)–(7) should be considered jointly with the following equations for pressures
p1 and p2 in the working and exhaust cavities of the pneumatic cylinder [10, 11]:

ṗ1=
kf ef

1 Kph
√
RTh

F1(x01 + x)
ϕ(σ1)−

kp1
x01 + x

· ẋ, (8)

σ1 = p1/ph; K =
√

2gk/(k − 1); x01 = V01/F1;

where ph and Th denote the air pressure and temperature (respectively) in the header
pipe; f ef

1 = µ1f1 is the effective area of the inlet hole; µ1 denotes the flow coefficient of the
inlet pipe; f1 is the inlet area; x01 stands for the initial piston position; V01 is the initial
working chamber space; k denotes the adiabatic index (for standard air, k = 1.4); g is
the acceleration of gravity 1. Nonlinear discharge function ϕ(·) in (8) has the following
form [10, 11]:

ϕ(σ) =

{√

σ
2
k − σ

k+1

k , if 0.528 < σ < 1;

0.2588, if 0 < σ < 0.528.
(9)

1 In the present work all the values are given in the engineer’s system of units.
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Initial values of x01 and V01 include not only the initial volume of the chamber (the
so-called clearance space), but also the volume of the pipeline from the distributor to the
working cylinder.

Equation for pressure p2 in the exhaust chamber 2 differs from (8) not only by signs
of its members and the piston coordinate, but by the fact that it includes a varying
temperature T2 in the exhaust chamber instead of the constant air temperature Th in
the header pipe:

ṗ2=− kf ef
2 K

√
RT2

F2(s+ x02 − x)
ϕ

(

σa
σ2

)

+
kp2

s+ x02 − x
· ẋ, (10)

where σ2 =
p2
ph

; x02 =
V02
F1

; f ef
2 = µ2f2, ϕ (·) is given by (9).

Since the adiabatic process occurs in the absence of the heat exchange in the exhaust
chamber, the temperature T2 in (10) may be expressed in terms of p2 as

p2
p1

=

(

v1
v2

)k

,
p2
p1

=

(

T2
T1

)
k

k−1

,
T2
T1

=

(

v1
v2

)k−1

.

Then (10) reads as follows:

ṗ2=− kf ef
2 Kp

3k−1

2k

2

√
RTh

F2(s+x02− x)p
k−1

2k

h

ϕ

(

σ

σ2

)

+
kp2

s+x02−x
· ẋ. (11)

4 Fluid Servodrive of Transas Car Simulator

4.1 Dynamics model of tracking pneumo actuator

Foregoing equations (5)–(7), (8), (9), (11) make it possible to study motion of the pneumo
valve under the variations of the load and the inlet and outlet areas, but these equations
do not take into account that input and output cavities are not fixed during the motion
control, they may be referred to upper and to lower parts of the pneumatic cylinder,
depending on the current control action. Besides, it should be also considered that in
the particular servo system, the pressure force is controlled by means of air exhaust (not
air injection) from the corresponding chamber of the pneumatic cylinder. This is made
by means of three controlled outlet valves with different selectional areas, which makes
possible to compose the 3-bit control signal (for each direction). Air pressure in the
cavities is restored from the surge vessel, which is connected with the compressor, via
two uncontrolled valves (one for each chamber). Additionally, in what follows it is taken
into account that the weight of the piston is negligibly small in comparison with the load
forces applied from the moving platform with the cab, mounted on it.

Following [9, 12], to describe motion of the pneumatic actuator let us introduce the
dimensionless controlling parameter −1 ≤ α ≤ 1 such as f1 = f2 = |α|fmax, where fmax

denotes the maximal area of the outlet hole, assuming that if α > 0 then the outlet hole
of the upper chamber is connected to the atmosphere, and visa versa, if α < 0 then this
is made for the lower chamber. If α = 0 then both chambers are closed off for the air
discharge. As is stated above, parameter α is represented by 4 binary digits (one bit is
for the sign).

Finally, the following model for air pressures in the chambers is obtained:
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ṗ1=
kf0Kph

√
RTh

F1(x01 + x)
ϕ (σ1)−

kp1
x01 + x

· ẋ

−















0, if α > 0,

kf ef
1 Kp

3k−1

2k

1

√
RTh

F1(x01 + x)p
k−1

2k

h

ϕ

(

pa
p1

)

, otherwise,
(12)

ṗ2=
kf0Kph

√
RTh

F2(s+ x02 − x)
ϕ(σ2)+

kp2
s+x02−x

· ẋ

−















kf ef
2 Kp

3k−1

2k

2

√
RTh

F2(s+x02−x)p
k−1

2k

h

ϕ

(

pa
p2

)

, if α > 0,

0, otherwise,

(13)

where K =
√

2gk/(k − 1), x01 = V01/F1, x02 = V02/F1, f1 = f2 = fmax|α|, f1 = f2 =
fmax|α|, f0 = µ0fmax, f

ef
1 = µ1f1, f

ef
2 = µ2f2, σ1 = p1/ph, σ2 = p2/ph. The first term in

(12), (13) describes air feeding the chambers from the compressor over the valve with a
sectional area f0.

4.2 Sliding-mode control of pneumatic actuator

Let x∗(t) be the reference signal, representing the desired piston position (and, conse-
quently, the running-out of the rod).

To ensure the high tracking accuracy along with robustness to parametric uncer-
tainties, unmodelled nonlinearities and the external disturbances (such as varying forces
applied from the load), the following sliding-mode controller may be used [3, 13, 14, 16]:

u(t) = e(t) + kDė(t), (14)

α(t) = sat
(

κ sign(u) ·
√

|u|
)

, (15)

where e(t) = x∗(t) − x(t) denotes the tracking error, kD stands for the damping gain,
ensuring “smooth” sliding motion [13–15]. In what follows, after some trial and error
iterations, the “guessed” values kD = 0.4 s/m, κ = 15 have been taken.

5 Simulation and Experimental Results

The simulations of the closed-loop system (12), (13) with sliding-mode controller (14) for
all six “legs” of the platform was studied by the simulations. In our study the various
reference signals on platform coordinates x∗c , y

∗

c , z
∗

c , ψ
∗, ϑ∗, γ∗ have been converted by

means of the kinematic equations (see, e.g. [17]) to the reference signals on the each leg
x∗i (t), i = 1, . . . , 6 of the pneumatic servo systems. Then the actual running-out of each
rod xi(t) has been re-converted by means of the inverse kinematic relations [17] to the
actual platform coordinates xc(t), yc(t), zc(t), ψ(t), ϑ(t), γ(t) for accuracy evaluation.

One example of the simulation results is demonstrated in Figs. 3–5. The harmonic
reference signal on the vertical platform coordinate zc has been taken, the other reference
variables have been taken zeros.
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Figure 3: Model (12), (13), controller (14). Legs 1–4 lengths vs t. Solid line – actual value,
dashed line – desired value.

Figure 4: Model (12), (13), controller (14). Platform translational coordinates vs t. Solid line
– actual value, dashed line – desired value.

Figure 5: Model (12), (13), controller (14). Platform angular coordinates vs t.
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As is seen from the plots, control law (14) ensures high precision and operating speed
of tracking process.

The same reference signals have been applied to the real-world set-up (see Fig. 6),
which is supplied with the on-off logic controller, which has been borned by the typical
solutions for pneumatic automation systems. It is seen from the plots (Figs. 7–9), that
the tracking error for the siding mode controller is up to 5 time less than that for the
on-off logic controller.

Figure 6: Performing the experiments.

Figure 7: Experimental results. On-off logic control. Legs 1–4 lengths vs t. Solid line – actual
value, dashed line – desired value.

6 Conclusions

In the paper the problem of pneumatic actuators control by switching the valves is
considered. The actuators are the part of the simulator for training drivers of freight
vehicles, based on the 6-DOF Stewart Platform.
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The sliding-mode control strategy is proposed and studied by simulations. The ex-
perimental results for the existing on-off logical control algorithm are given. Comparison
of the results demonstrates possibility for improvement of the stimulator performance
based on the sliding-mode controller.

The future work intentions are the implementation of the proposed control law on the
real-world pneumatic actuators for experimental valuation of the robustness properties of
the sliding-mode controller with respect to the unmodelled plant dynamics, uncertainties
and varying external disturbances from the load.

Figure 8: Experimental results. On-off logic control. Platform translational coordinates vs t.
Solid line – actual value, dashed line – desired value.

Figure 9: Experimental results. On-off logic control. Platform angular coordinates vs t.
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Abstract: We study dynamics of the Duffing–Van der Pol driven oscillator. Peri-
odic steady-state solutions of the corresponding equation are determined within the
Krylov-Bogoliubov-Mitropolsky approach to yield dependence of amplitude on forc-
ing frequency as an implicit function, referred to as resonance curve or amplitude
profile. Equations for singular points of resonance curves are solved exactly. We in-
vestigate metamorphoses of the computed amplitude profiles induced by changes of
control parameters near singular points of these curves since qualitative changes of
dynamics occur in neighbourhoods of singular points. More exactly, conditions for
birth of resonances as well as for attractor crises are found. Bifurcation diagrams are
computed to show good agreement with theoretical analysis.

Keywords: oscillators; resonance curves; singular points.
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1 Introduction

Nonlinear oscillators have many important applications in various areas of science and
engineering [1, 2]. In this paper we investigate Duffing–Van der Pol oscillator which
has been extensively studied due to potential applications in physics, chemistry, biology,
engineering, electronics, and many other fields, see [3, 4] and references therein.

The periodically forced Duffing – Van der Pol oscillator (DvdP) is written as:

d2x

dt2
−
(

b − cx2
) dx

dt
+ ax + dx3 = f cos ωt. (1)

There are three main cases of the Duffing potential V (x) = 1
2 ax2 + 1

4 dx4: (i) single
well (a > 0, d > 0), (ii) double well (a < 0, d > 0), and (iii) double hump (a > 0, d < 0).
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In the present paper we consider cases (i), ( iii) and it is thus assumed that a, b, c, f, ω > 0
while d is arbitrary.

There are many numerical and analytical methods to solve nonlinear oscillator equa-
tions. Analytical methods lead to complicated (approximate) formulae and analysis of
such solutions is difficult. In the present work we analyse such approximate analytic
solutions using the theory of algebraic curves. More exactly, we determine periodic
steady-state solutions of the DvdP equation within the Krylov-Bogoliubov-Mitropolsky
approach to get dependence of amplitude on forcing frequency as an implicit function,
referred to as resonance curve or amplitude profile. We investigate metamorphoses of
the computed amplitude profiles induced by changes of control parameters near singular
points of these curves since qualitative changes of dynamics occur in neighbourhoods of
singular points, see [5] and references therein. We have learned recently that idea to use
Implicit Function Theorem in this context was put forward in [6].

The paper is organized as follows. In Section 2 the Van der Pol – Duffing equation is
written in nondimensional form and implicit equation for resonance curves L (Ω, A) = 0
is derived via the Krylov-Bogoliubov-Mitropolski (KBM) approach. In Section 3 theory
of algebraic curves is applied to compute singular points on the amplitude profiles. Equa-
tions for singular points are solved and in Section 4 the solutions are used to study birth
of resonances as well as attractor crises. We summarize our results in the last Section 5.

2 Nonlinear Resonances via KBM Method

We apply the Krylov-Bogoliubov-Mitropolsky (KBM) perturbation approach [7, 8] to
equation (1). Substituting into (1):

x =
√

b
c
z, t = 1

√

a
τ, b =

√
aµ, ω =

√
aΩ, (2)

we get the DvdP in nondimensional form:

d2z

dτ2
− µ

(

1 − z2
) dz

dτ
+ z + λz3 = G cos (Ωτ) ,

µ, G, Ω > 0, λ – arbitrary,
(3)

where λ = bd
ac

, G = f
a

√

c
b
.

The equation (3) is written in the following form:

d2z

dτ2
+ Ω2z + ε (σz + g) = 0, (4)

where

g = −Θ2
0z − µ0

dz

dτ
+ µ0z2 dz

dτ
+ α0z + λ0z3 − G0 cos (Ωτ) ,

Θ2
0 =

Θ2

ε
, µ0 =

µ

ε
, α0 =

1

ε
, λ0 =

λ

ε
, G0 =

G

ε
, εσ = Θ2 − Ω2.











(5)

According to the KBM method we assume for small nonzero ε that the solution for
1 : 1 resonance can be written as:

z = A (τ) cos (Ωτ + ϕ (τ)) + εz1 (A, ϕ, τ) + . . . (6)
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with slowly varying amplitude and phase:

dA

dτ
= εM1 (A, ϕ) + . . . , (7)

dϕ

dτ
= εN1 (A, ϕ) + . . . . (8)

Computing now derivatives of z from equations (6), (7), (8) and substituting to
equations (4), (5), eliminating secular terms and demanding M1 = 0, N1 = 0 we obtain
the following equations for the amplitude and phase of steady states:

A2

(

µ2Ω2

(

1 −
1

4
A2

)2

+

(

1 +
3

4
λA2 − Ω2

)2
)

= G2. (9)

3 General Properties of the Amplitude Profile A (Ω)

After introducing new variables, Ω2 = X , A2 = Y , the equation (9) defining the ampli-
tude profile reads L (X, Y ) = 0, where:

L (X, Y ; λ, µ, G)
df
= µ2XY

(

1 − 1
4 Y
)2

+ Y
(

1 + 3
4 λY − X

)2
− G2. (10)

Singular points of L (X, Y ) are computed from equations [9]:

L = 0, (11a)
∂L
∂X

= 0, (11b)
∂L
∂Y

= 0. (11c)

There are several classes of physically acceptable solutions of equations (11), i.e.
solutions fulfilling conditions: X > 0, Y > 0, µ > 0.

1. Firstly, if we fix values of X, µ, then the solution reads:

3mY 3 − 36mY 2 + (144m − 64 + 256X)Y − 192m + 256 − 512X = 0,

λ = 16m−8mY +mY 2
−32+32X

24Y
, g = − mY

48

(

XY 2 − 16X + 8Y − 16 − Y 2
)

,

}

(12)

where m ≡ µ2, g ≡ G2 and a special solution for the unforced case (G = 0) is:

Y = 4, λ = − 1
3 + 1

3 X, G = 0 (µ – arbitrary) . (13)

2. In the second case, when λ, µ are fixed, we obtain the special solution (13) again
as well as equation for Y :

A3Y 3 + A2Y 2 + A1Y + A0 = 0,
A3 = 5µ2, A2 = −192λ − 44µ2,
A1 = 112µ2 + 384λ − 192, A0 = 256 − 64µ2,

(14)

equation for Z:

Z2 = B6µ6 + B4µ4 + B2µ2 + B0,

B6 = −4 (Y − 4)2 ,
B4 = (39λ + 20) Y 2 − (144λ + 152) Y + 336λ + 416,
B2 =

(

2232λ2 + 660λ
)

Y 2 −
(

6048λ2 + 192λ − 480
)

Y
+2304λ2 − 1344λ − 640,
B0 = 2304λ2

(

3λY 2 + (−6λ + 3) Y − 4
)

,

(15)
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and, finally, after solving equations (14), (15), we can compute X, G:

X = − 1
32 µ2Y 2 + 1

4

(

µ2 + 3λ
)

Y + 1 − 1
2 µ2, G = 1

10µ
Z. (16)

3. On the other hand, if we fix values of X, Y , then we get:

G2 = 4
9 (Y X + 4X − Y + 4) (4Y X − 8X − Y + 4) Y

(Y −4)2 ,

µ2 = − 64
3

4Y X−8X−Y +4
(Y −4)3 ,

λ = − 4
9

5Y X+Y −4X−4
Y (Y −4) .

(17)

Necessary conditions: µ2 > 0, G2 > 0 lead to:

Y X λ

0 < Y < 2 0 < X < Y −4
4(Y −2) sign(λ) = sign (s)

2 < Y < 4 0 < X sign(λ) = sign (s)

4 < Y 0 < X < Y −4
4(Y −2) λ < 0

(18)

where s = X + Y −4
5Y −4 .

4 Computational Results

In this Section singular points of amplitude profiles – solutions of equations (10), (11)
– are studied. In the first Subsection we shall consider the special solution (13), corre-
sponding to the amplitude profile with isolated point. On the other hand, this solution
describes birth of a limit cycle in the unforced case (G = 0). In Subsection 4.2 we
consider the second class of solutions defined by equations (14), (15), (16). In this case
metamorphosis of the resonance corresponds to change of attractor size (crisis).

4.1 Birth of resonances from isolated points

The solution (13) yields for X = Ω2 = 4 the following values: Y = A2 = 4, λ = 1
and we choose µ = 0.5. Since G = 0, this solution corresponds to a resonance in the
unforced case living exactly at this critical value X = Ω2 = 4. On the plot L

(

Ω2, A2
)

= 0
this resonance is represented by an isolated point. For increasing values of G this point
gives rise to growing ovals and thus the corresponding resonances (limit cycles) exist in
a broader and broader range of Ω. In Fig. 1 implicit plots L

(

Ω2, A2; λ, µ, G
)

= 0 are
shown for µ = 0.5, λ = 1 and G = 0.01, 0.10, 0.20, 0.50.

We have computed bifurcation diagrams for µ = 0.5, λ = 1 and G = 0.01, 0.05, 0.10,
0.20 to show birth and growth of the resonance. This scenario is shown in Fig. 2. It
can be seen that for decreasing values of G the resonance shrinks around Ω ∼=

√
4 = 2

with amplitude A ∼=
√

4 = 2, in good agreement with (13). More exactly, the resonance
appears at Ω = 1.92 rather than Ω = 2 thus providing estimate of the KBM method’s
error.

4.2 Metamorphoses of resonances in the neighbourhood of self-intersection

Let us consider the second class of solutions described in Section 3. For example, for

λ = 1, we compute from equation (13) X = 4, Y = 4, G
(1)
cr = 0 and we choose µ = 0.5.

Now for λ = 1 and µ = 0.5 we get from equations (14), (15), (16) one physical solution
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Figure 1: Implicit plots L
(

Ω2, A2; λ, µ, G
)

= 0 where µ = 0.5, λ = 1 and G = 0.01 (red line),
0.10 (magenta), 0.20 (sienna), 0.50 (black).

X = 2. 289 217 833 44, Y = 1. 770 724 499 36, G
(2)
cr = 0.563 412 500 579. The first solution

represents isolated point and describes birth of a resonance in the unforced case (G = 0),
while the second solution corresponds to a self-intersection of the resonance curve. Both
solutions are shown in Fig. 3.

Now, for G = 0 and increasing we have to do with scenario described in Subsection

4.1. Black curve in Fig. 3 corresponds to G = 0.5 < G
(2)
cr . The attractor is shown in

Fig. 4 (left figure). There is only one stable solution corresponding to black oval in Fig.

3, the lower black branch being unstable. Then for G = 1.5 > G
(2)
cr (the corresponding

amplitude profile is represented by green line in Fig. 3) the attractor increases its size,
cf. Fig. 4 where bifurcation diagrams are shown. Let us add here that for smaller values

of G but greater than G
(2)
cr , say for G = 0.75, the resonance is stable on a smaller interval

of Ω.

5 Summary and Discussion

In this work we have studied dynamics of the periodically forced Duffing-van der Pol
equation. Steady-state nonlinear resonances have been determined within the Krylov-
Bogoliubov-Mitropolsky approach. We have applied theory of algebraic curves [9] to
determine singular points of the computed resonance profiles since qualitative changes
of dynamics occur in neighbourhood of singular points [5]. Resonance curves (9) have
two classes of singular points: isolated points as well as self-intersections. We have found
that a family of resonances (limit cycles) of the unforced DvdP equation (G = 0) is born
when the amplitude profile of the forced equation, computed according to the KBM
method has singular point for G = 0, see Subsection 4.1. It is possible to control value
of Ω at which the resonance appears for G > 0, see equation (13). For growing values
of forcing amplitude G stability range in the Ω space is growing as well. On the other
hand, in the neighbourhood of self-intersections of resonance curves there are crises – the
corresponding attractor changes its size. We have computed several bifurcation diagrams
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Figure 2: Bifurcation diagrams, µ = 0.5, λ = 1 and G = 0.01, G = 0.05, G = 0.10, G = 0.20
(left to right, top to bottom).
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Figure 4: Bifurcation diagrams, µ = 0.5, λ = 1, and G = 0.5 (left figure), G = 1.5 (right
figure).

documenting qualitative changes of dynamics in the neighbourhood of metamorphoses
of resonance curves.
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1 Introduction

This paper was successfully presented at the conference of Dynamic Systems Theory in
Lodz, Poland, 2013. In the present paper, an analytical method to study the effects of
production and construction asymmetry on the vertical vibration response of a railway
wagon in the presence of multiple track irregularities and their consequences is presented.
A review of published material on the subject revealed that many analyses [18] have
been made from which general conclusions regarding the dynamic behavior of complex
mechanical systems were drawn. The fundamentals of this subject are covered in detail in
[3], and will not be treated here. The reader is referred to [4,5,12] for further background.

Investigation of the influence of asymmetry on ground vehicles as a simple model was
introduced in 1925 and today it is mostly used as a textbook example in vibration of
mechanical system with two degrees of freedom [2, 5]. The full vehicle model dealing
with the influence of production and construction asymmetry on the vertical vibration
response of a railway wagon in the presence of multiple track irregularities is rarely de-
scribed in literatures. Therefore, it is the intention of this work to extend preceding
analysis by introducing the effect of production and construction asymmetry on the ver-
tical vibration response of complex mechanical systems under multiple track excitations.
In this paper a double-axel freight wagon modeled as a 9 DOF three-dimensional system
intended for the investigation of the effect of production and construction asymmetry
on vertical vibration response in the presence of multiple track irregularities and their
consequences is presented.

2 Literature Review

In analyzing the interaction between the train and the track, the vehicle system can be
modeled as one-dimensional, two-dimensional, or three-dimensional model. The simplest
vehicle model is a single degree of freedom (DOF) one-dimensional model, which considers
a single wheel with static force representing the static load due to the car-body and
bogie where the contact between the wheel and rail is maintained by either linear or non-
linear spring. This model has been applied in a number of published studies concerned
with dynamic wheel-rail interaction; see for example [9]. The single DOF is considered
sufficient for high frequency vibration analysis considering the interaction between the
wheel and rail with surface irregularities. However, this model is insufficient to analyze
the contributions due to pitch and roll motions of the vehicle on wheel-rail impact load or
to investigate the effect of multiple defects in different wheel-sets and/or multiple surface
irregularities on the rail.

Alternatively, two-dimensional models that include half of the car-body and two bo-
gies and four wheel-sets have been most widely formulated and applied for studies on
wheel-rail interactions. Nielsen and Igeland [17], developed a four-DOF two-dimensional
pitch plane model in order to study the influence of wheel and rail imperfections on
vehicle-track interaction. This model has been further employed by Dong [15] and
Cai [16] in order to simulate the vehicle-track interaction under wheel defects. Sev-
eral two-dimensional vehicle models have also been formulated with 10-14 DOF that
consist of half bogie and a quarter of the car-body weight and include the pitch motion
of both the car-body and bogie [13, 14]. Such a model would be sufficient to analyze
the dynamic interaction between the leading and trailing bogie and wheels and effect of
the cross wheel defects. However, contributions due to either pitch or roll motion of the
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car-body and bogies have to be neglected in such models.

Three-dimensional vehicle models have been developed incorporating a full or half
of the car-body, two bogies and two wheel-sets. Such models permit dynamic coupling
between the leading and trailing bogies. Sun et al. [10] developed a comprehensive
three-dimensional vehicle model in order to study lateral and vertical dynamics of the
wagon-track system [11]. Such a model provides all the advantages of roll, pitch plane
models and is quite adequate for the investigation of the influences of coupled vertical,
the pitch and lateral dynamics of the vehicle [7]. The pitch and roll motions of the car-
body and bogie that could enhance the wheel-rail impact force caused by the wheel and
rail irregularities can be adequately investigated. However, the effects of production and
construction asymmetry on the vertical vibration response in the presence of multiple
track irregularities and their consequences have never been investigated with this full
three-dimensional vehicle model. Therefore it is the intension of this paper to introduce
an analytical method to solve vertical vibration response of complex mechanical system
with multi-DOF. This method is limited to vertical vibration responses only.

3 Railway Vehicle Model

In the present paper an analytical model of a railway vehicle was developed as illustrated
in Figure 1. The model consists of a car body, two bogie frames and four wheel-sets.
The car body is modeled as a rigid body having a mass m, and having moment of inertia
Jx and Jy about the transverse and longitudinal centroidal horizontal axes, respectively.
While the bogie frames are considered as rigid bodies with m1 and m2, with moment of
inertia Jx1 and Jy1 for the front bogie and similarly rear bogie having moment of inertia
Jx2 and Jy2 about the transverse and longitudinal centroidal horizontal axes, respectively.
The springs in the primary and secondary suspension system are characterized by spring
stiffness constant kjki and damping coefficient bjki, where j = 1, 2, quadrant k = 1,
2, 3, 4 and spring position orders i = 1, ..., n. Assuming small vertical motion and
the vehicle car body to be rigid, its motion may be described by the relative vertical
displacement wt and rotations about the main longitudinal horizontal axis ϕx and about
main the transverse horizontal axis ϕy. Likewise, the motions of the two bogie frames
are described by w1, ϕx1, ϕy2 for the front bogie frame and w2, ϕx2, ϕy2 for the rear
bogie frame each about their centroidal. The railway wagon is thus represented by a 9
DOF mechanical system.

4 Analytical Method and Solution

A number of analytical solutions to vehicle dynamic response have been developed in
the past. Some authors have considered the mechanical analog of the DNA base pair
oscillations to analysis rotational oscillations of a DNA fragment in detail, see [8]. To
facilitate analyse, it is essential to reduce the complex vehicle vibrating system to its
simplest elements. At the same time, careful judgment is called for to avoid assumptions
that are not in accord with the basic realities of the situation. Hence with this point in
mind, in the present paper the analytical solution of the railway vehicle is considered to
be a system of three rigid bodies with 9 degrees of freedom coupled by spring-damper
elements with the consideration of linear viscous damping, as shown in Figure 2.

The equations of motion for the railway model considered in this paper are derived
from the Lagrange equation of motion and therefore it is necessary to determine the



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (1) (2015) 32–42 35

Figure 1: The analytical model.

kinetic energy Ek, potential energy Ep and Rayleigh dissipation function Rd of the me-
chanical system. The vectors of generalized coordinates system are given as

qj(t) = [w,w1, w2, ϕx, ϕy, ϕx1, ϕy1, ϕx2, ϕy2]
T , q̇j(t), q̈j(t). (1)

The kinetic energy:

Ek =
1

2
mẇ2 +

1

2

(

Jxϕ̇x
2 + Jyϕ̇y

2 − 2Dxyϕ̇xϕ̇y

)

+ Ek1 + Ek2, (2)

where

Ek1 =
1

2
m1ẇ1

2 +
1

2
Jx1 ˙ϕx1

2 +
1

2
Jy1 ˙ϕy1

2, Ek2 =
1

2
m2ẇ2

2 +
1

2
Jx2 ˙ϕx2

2 +
1

2
Jy2 ˙ϕy2

2.

To determine the potential energy of the mechanical system, it is necessary to deter-
mine the displacements, marked by Ajki, of the individual springs in the primary and
secondary suspension system wjki characterized by spring stiffness constant kjki, where
j = 1, 2, quadrant k = 1, 2, 3, 4 and spring position orders i = 1, ..., n.

Points Vertical displacements Constant stiffness
A111 w111 = w1 (t)− y111ϕx1 (t) + x111ϕy1 (t)− h111 k111
A121 w121 = w1 (t)− y121ϕx1 (t) + x121ϕy1 (t)− h121 k121
A131 w131 = w1 (t)− y131ϕx1 (t) + x131ϕy1 (t)− h131 k131
A141 w141 = w1 (t)− y141ϕx1 (t) + x141ϕy1 (t)− h141 k141

Table 1: Front bogie (m1) for j = 1.
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Points Vertical displacements Constant stiffness
A211 w211 = w2 (t)− y211ϕx2 (t) + x211ϕy2 (t)− h211 k211
A221 w221 = w2 (t)− y221ϕx2 (t) + x221ϕy2 (t)− h221 k221
A231 w231 = w2 (t)− y231ϕx2 (t) + x231ϕy2 (t)− h231 k231
A241 w241 = w2 (t)− y241ϕx2 (t) + x241ϕy2 (t)− h241 k241

Table 2: Rear bogie (m2) for j = 2.

In case of the car body (m), with the point marked by Bjki, their coordinates xjki, yjki,
j = 0, k = 1, 2 respectively, i = 1, 4 and the kjki individual springs as shown in Figure
2, are:

Points Vertical displacements Const. stiff.
B011 w011 = w (t)− y011ϕx (t) + x011ϕy (t)− w1 + (y011 + ey)ϕx1 k011
B014 w014 = w (t)− y014ϕx (t) + x014ϕy (t)− w1 + (y014 + ey)ϕx1 k014
B021 w021 = w (t)− y021ϕx (t) + x021ϕy (t)− w2 + (y021 + ey)ϕx2 k021
B024 w024 = w (t)− y024ϕx (t) + x024ϕy (t)− w2 + (y024 + ey)ϕx2 k024

Table 3: Car body (m).

The potential energy is:

Ep =
1

2

2
∑

j=1

4
∑

k=1

kj
∑

i=1

kjkiw
2
jki +

1

2

∑

j=0

∑

k=1,2

∑

i=1,4

kjkiw
2
jki. (3)

The Rayleigh dissipation function is:

Rd =
1

2

2
∑

j=1

4
∑

k=1

kj
∑

i=1

bjkiẇjki +
1

2

∑

j=0

∑

k=1,2

∑

i=1,4

bjkiwjki. (4)

The equations of motion for the railway model considered in this paper are derived
from the Lagrange equation of motion (5). By substituting equations (2), (3) and (4)
into equation (5) and after the derivation of equation (5) we have

d

dt

(

∂Ek

∂q̇j

)

− ∂Ek

∂qj
+

∂Ep

∂qj
+

∂Rd

∂q̇j
= Qj (5)

for j=1, ..., p=9. According to [1] and [4], in the time domain the equations of motion
for this system may be obtained in the general form as

Mq̈ (t) +Bq̇ (t) +Kq (t) = Qj (t) , (6)

where M is the mass matrix, B is the damping matrix, K is the stiffness matrix and for
generalization, all elements of matrix B and K are considered not to equal zero.

qj(t) = [w,w1, w2, ϕx, ϕy, ϕx1, ϕy1, ϕx2, ϕy2]
T
, q̇j(t), q̈j(t)

are the vectors of the generalized coordinates and Qj (t) is the vector of the generalized
kinematic excitation functions. After dividing equation (6) by the respective diagonal
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element of the mass matrix M and after the Laplace transformation for the zero initial
conditions q (0) and q̇ (0), the system of differential equations is transformed to the system
of algebraic equations

Gq̄ (s) = f̄ (s) , (7)

where s is the parameter of transformation, q̄ (s) and f̄ (s) are the vectors of the gener-
alized coordinates q (t) and forces f (t). It holds for the elements of the matrix G:

gij = s2 + βijs+ κij , for i = j,
gij = −δijs

2 + βijs+ κij , for i 6= j and for i = 4, 6, 8 and j = i+ 1,
gij = βijs+ κij , for i 6= j and for i = 5, 7, 9

and j = i− 1 for i = 3, ..., 9 and j = 1, ..., 9,,

where δ12 = −Dxy

Jx
and δ21 = −Dxy

Jy
are the elements representing the influence of asym-

metric distribution of the sprung mass.
For solving the system of algebraic equations (7), it is possible due to small number

of equations, to apply the Cramer rule [1] as follows

q̄j (s) =

n/2
∑

i=1

(−1)
j+i

f̄i (s)
Dji (s)

D (s)
, j = 1, 2, ..., n/2, n = 18. (8)

This method is suitable regarding the process of obtaining the vector of the general-
ized coordinates q(t) by the inverse transformation. In order to determine the original
qj(t) of the corresponding image q̄j(s) it is necessary to transform equation (8) to the
form of convolution integral. Therefore, it is necessary to find the poles of the char-
acteristic polynomial D(s) of equation (8) [1]. The poles are supposed to be in the
form of complex conjugates si = −Resk ± Imsk, for k= 1,2,..., n/2. To evaluate the
poles of the characteristic equation D(s), it is necessary to equate the polynomial in the
form of the product of the quadratic polynomials using the product of the roots factors
s2 + pks + rr, for k= 1,2,..., n/2. The polynomial responding to the sub-determinant
Dji(s) is determined using the same algorithm.

In order to determine the original qj(t) of the corresponding image q̄j(s) it is suitable
to transform equation (8) to the form of convolution. Therefore it is possible to transfer
the ratio of the determinants in equation (8) to the sum of partial fractions in the form

Dij (s)

D (s)
=

n/2
∑

r=1

[

(Kji,rs+ Lji,r)
n/2
∏

k=1,k 6=i

(

s2 + pks+ rk
)

]

n/2
∏

k=1

(s2 + pks+ rk)

=

n/2
∑

r=1

Kji,rs+ Lji,r

s2 + pks+ rk
, (9)

where the constants Kji,r and Lji,r for j= 1,2,..., n/2, i= 1,2,..., n/2, r= 1,2,..., n/2, can
be determine from the condition of the coefficients equality of the identical powers of the
parameter s in the numerator of the fractional equation (9). By substituting equation
(9) into equation (8) for the determination of the image of the generalized coordinates
q̄(s), for j= 1,2,..., n/2, the latter can be modified as follows

q̄j (s) =

n/2
∑

i=1

(−1)
j+i

f̄i (s)

n/2
∑

k=1

Kji,ks+ Lji,k

s2 + pks+ rk
. (10)
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After inverse transformation of equation (10) for the function of the generalized coor-
dinate qj(t), for j = 1, 2, 3,..., 9, the form of the sum of convolution integrals is obtained
as follows

qj (t) =
9

∑

i=1

(−1)j+i
9

∑

k=1

[G1 +G2] , (11)

where

G1 = Kji,k

t
∫

0

Fi (τ) e
−βk(t−τ)cos [Ωk (t− τ)] dτ,

G2 =
Lji,k − βkKji,k

Ωk

t
∫

0

Fi (τ) e
−βk(t−τ)sin [Ωk (t− τ)] dτ.

Equation (11) shows the solution for a linear viscous damped mechanical system,
where j-th component of vector of generalized coordinates qj(t) is the sum of convolution
integrals, multiplied by i-th generalized kinematic excitation elements Fi(t) designated
by the product of spring constant and height of the road or rail surface unevenness and
by product of damping coefficient bjik, and time derivative of height contact place of the
m-index wheel at specific crossing velocity, to the k-th harmonic component with its own
natural frequency Ωk. Kjik and Ljik are unknown coefficients of amplitude, depending
on the mechanical properties of the system under consideration. Vector components of
the kinematic excitation function Fi(t) are given in the range of 0 ≤ t.

5 Production and Construction Asymmetry of the Mechanical System

In this paper asymmetry of the distributed sprung mass of the railway vehicle is simulated
as shown in Figure 2, where Figure 2a shows the symmetrical case, where T = C,
ex = ey = 0 and Figure 2b shows the asymmetrical case, where T 6= C, ex 6= 0 and ey 6= 0.
The position of the external weight placed on the surface of the wagon introduces weight
eccentricities due to the uneven distribution of the sprung mass of the mechanical system.
This effect causes the center of mass to be arbitrarily positioned so that no symmetry
exists in the system, as a result of this the system center of mass T is shifted along the
x-axis and y-axis directions with respect to the system’s geometrical center. Meanwhile,
Figure 2 shows the arrangement of rail defects as kinematic excitations; Figure 2c shows
the symmetrical arrangement of the multiple track irregularities on the track, while
Figure 2d shows the asymmetrical arrangement of rail defects. Meanwhile Figure 3 shows
different cases of asymmetry and the arrangement of the multiple track irregularities
(kinematic excitation) on both rails. In this paper the multiple track irregularities are
modeled as a unit step function.

6 Experimental Tests

Experimental tests were done on a four-axel freight wagon of Smmps type. The railway
freight wagon was modified in a way to be in accordance with the requirements of the
analytical model derivate in Section 2. The original bogies were removed from the wagon
and replaced by another bogie of Y25 type from a passenger freight car. The outer springs
of the primary spring system of these bogie frames were removed and secondary spring
system, consisting of three springs was fitted to the bogie frames. The bogie frames were
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Figure 2: The analytical - symmetry and asymmetrical model, (a) Symmetrical and (b) asym-
metrical distribution of the sprung mass (c) Symmetrical and (d) asymmetrical of multiple track
irregularities.

Figure 3: Symmetric and asymmetric model.

fixed to the wagon by means of wire ropes net to keep the car body in equilibrium, see
Figure 4 and Figure 5 respectively.

Figure 4: Secondary spring system.
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Figure 5: Connection of bogie frame to car body.

6.1 Test procedures

The vertical vibration responses of the freight wagon were done as follows:

• The freight wagon loaded as illustrated in Table 1 was towed by a shunting loco-
motive to move over track irregularities. The locomotive was connected to the car
body with a wire rope. The wedge blocks stimulated the Heaviside unit function.

• The measurements were sensed by means of HBM amplifiers, signals went through
the low-pass filter 32 kHz into the digital-to-analogue system DAS 48.

• Each test was repeated 2 – 3 times. A total of 89 tests were measured. Twenty
quantities were measured during the tests – the bogie frames relative vertical vi-
bration response with respect to the axel-box (9 sensors), car body relative vertical
vibration response with respect to the front and the rear bogie frames (4 sensors),
vertical acceleration of the car body (5 sensors) and finally, acceleration of the bogie
frames (2 sensors). The purpose of these tests was to determine and record time
histories of relative vertical vibration response of the freight wagon in the pres-
ences of production and construction asymmetry and multiple general kinematic
excitations to verify the theoretical model in Section 2.

7 Analytical Solutions

Two types of analysis were performed in this paper in order to investigate the effects of
production and construction asymmetry on the vertical vibration response of the railway
vehicle in the presence of multiple track irregularities. The first analysis was done for
simulated analytical data set and the second was for experimental data to validate the
analytical model. The analytical data was processed using a MatLab code, which was
written specifically for this investigation. In regard of large amount of collected data, it
was not possible to process and include all the results into this one investigation report,
because of its very limited extent. Therefore, the present work comprises only general
conclusions. Figure 6, shows the analytical results processed using a MatLab code for
the symmetrical (a) and asymmetrical (b) distribution of the sprung mass running over
uneven track irregularities (d), as shown in Figure 2. The results showed the expected
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trends of vertical vibration response of the model with no definite cut off between stable
and unstable behavior.

Figure 6: Vertical dynamic response due to a single unit step on all wheels on the right side of
the wagon.

8 Validation of the Developed Model

The developed model has been validated using the experimental data reported by
J.Soukup and J.V olek, see [1] for more detail. The parameters employed in the sim-
ulation are obtained from reported studies [6]. The comparisons between the responses
obtained by the developed model in Section 4 with that of the reported study are shown
in Figure 7. The results showed expected trends of vertical vibration response in the pres-
ence of production and construction asymmetry of the mechanical system. It is quite
evident, that good agreement with a 9DOF vehicle model has been achieved, but several
limitations of the model have been identified. The significance of these limitations is cur-
rently being investigated with more additional degrees of freedom. It can be concluded
that, the influence of production and construction asymmetry on the vertical vibration
response in the presence of multiple track irregularities is obvious. Hence detail analysis
of this phenomenon is a necessity in railway vehicle design process.

Figure 7: The comparisons between the responses obtained by the developed model with that
of the reported study.

9 Conclusion

The present paper confirmed the influence of production and construction asymmetry
of railway vehicle in the presence of multiple track irregularities inputs. In regard to
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the large amount of collected data, it was not possible to process and include all the
results into this one investigation report, because of its very limited extent. Therefore,
the present work comprises only general conclusions.
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1 Introduction

Hyperelastic materials and composites with the gas phase have wide applications due
to their thermal properties and ability to absorb energy tremendously. The structure of
these materials resembles closed cells, in which we find two phases: the solid phase, from
which the material is formed and the gas phase, which is formed as a result of ongoing
physical or chemical phenomena during the stages of production. The relevant properties
of the structure are obtained not only by the choice of the way of producing, but also
through appropriate selection of materials and proper design of the structure geometry.

The study’s aim is to develop a methodology and an overall assessment of the analysis
of elements made of hyperelastic foams and composites with gas phase. The main aspect
that has been considered is to determine the properties of the materials, as well as
to assess the potential energy dissipation by elements made of the above-mentioned
materials. The methods of modeling hyper elastic materials and composites with the gas
phase are applicable to the structure to increase the safety of the passengers in the vehicle
and outside the vehicle as well as of the materials used in motorcycle and bicycle helmets.
The used materials have a high capacity to transfer the kinetic energy during impact,
which is compensated by the destruction process (crushing, breaking). The developed
methodology of analysis using the Finite Element Method allows to not only determine
the properties of the tested materials, evaluate the ability to dissipate energy, but above
all, without the need for costly impact tests, to show the effectiveness of the protective
elements.

To determine the properties of any selected materials two experimental stages are
involved, which take into account the intended use [5]. The first step is to conduct
experimental research carried out in accordance with standard specifications: PN-EN
ISO 604:2004, PN-EN ISO 604:2006, PN-H-04320:1957 [2].

In the second stage, using the theory of hyperelastic materials and MES - Abaqus,
simulating the specified data set experimentally during the first stage, we select the ap-
propriate model, the description of which is the most consistent. Owing to the simulation
we can properly determine the coefficients of the model. For the analysis it is necessary
to use polynomial models, such as Ogdens model or hyperfoam model. Conducted ex-
perimental studies were performed using strength machines located at the Faculty of
Automotive and Construction Machinery Engineering and Department of Materials Sci-
ence and Engineering of the Warsaw University of Technology.

2 The Material

Tests of samples, made of foamed polypropylene used for the implementation of the
protective elements, which is a plastic material having the form of interconnected gas
filled granules, were carried out. After several studies it can be noticed that there are
bubbles in the interior of the granules called the cell structure. Due to the type used for
research of the testing machine, the samples were made in two sizes: 80mm x 80mm and
height of 40mm, and 20mm x 20mm and 30mm height. The variety of foams having a
density from 25 to 220 g/dm3. Tests were also carried out for samples of different shape,
which made it possible to assess the impact on the mechanical ability of the shape of the
material [6, 7].

Also, the tests were carried out of pedestrian protection element used in the VW
car Skoda Fabia II (Figure 1). For energy absorber (pedestrian protection element) a
fastening element was made, which makes it possible to mount the machine for strength



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (1) (2015) 43–49 45

Figure 1: Energy absorber used in the
VW car Skoda Fabia II.

.

Figure 2: SEM image of pedes-
trian safety element fracture made of
polypropylene foam.

research.

Figure 3: Series of compression curves set experimentally.

3 Methodology of Research

3.1 Determination of structure of the material

The material from which the sample was made, was not linked to the other form of
gas-filled granules. Material with such structure is suitably formed in forming machines,
during the formation of the granules taking the form of closed-cell structures creating
a material having a relatively high rigidity (Figure 2). The use of granules of different
sizes effects on the alteration properties of the foam. To determine the properties of the
structure it was necessary to conduct a study which was carried out in the Department
of Integrated Process Engineering at the Faculty of Chemical and Process Engineering
of Warsaw University of Technology.

During the study, there were no adhesive substances between the granules. The ma-
terial has a high temperature resistance, up to about 150oC, excellent thermoformability
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and shape memory (large capacity to return to its original shape after static and dy-
namic loads). Due to the fact that the process of formation of the foam is expanding -
foaming granules of material such as polypropylene with water vapor and using pressure,
the granules are combined with each other while increasing the volume. More than 90%
of the volume of foam produced in the process is air.

3.2 Experimental studies

Static test for plastic compression is different, due to the nature of the deformation.
Stress-strain characteristics obtained in the compression test for the tested materials are
shown in the drawing (Figure 3).

In all tests the temperature changes have been recorded by the pyrometer. The
compressive strength was determined using a sample testing machine Q-test 10 of MTS
and Zwick / Roell Z005. The samples were prepared in the form of cuboids. The research
component of pedestrian protection, due to the large size, compression test took place
only on the first machine. The compression rate at 23oC for the first machine was 5
mm/min, the second machine – 1 mm/s. Tests were also made for the cold samples,
which were cooled with dry ice. During the course of the test, recordings were made
according to the compression force between the piston and the piston displacement,
which constituted the first part of the experimental testing. On this basis, the following
samples were made for graphs showing the dependence of the deformation stress. Taking
into account the effect of the initial temperature, the samples were studied with the
initial temperature 23oC and -15oC. On this basis, the hysteresis loop was determined
as in the case of quasi-static compression.

3.3 The simulation studies

Analysis of simulation models was made using a system Abaqus FEA (Finite Element
Method), which allows us to fit models that exist in the database, according to the
theory of hyperelastic materials. Simulations were made by using the EXPLICIT module.
Numerical analyses were performed for the samples appropriately modeled and for the
security of the element. The models were constructed using the Catia V5R19. During
the simulation, the effect of friction during deformation of the foam structure led to
the crimping of a gas-filled cell. For safety element model, the structure model takes
into account the issue of the structure of the material contact problem. The evaluation
of dynamic loads: stresses, accelerations and deformations occurring during the impact
against a pedestrian, allows for the ability of a material to absorb the energy. Except for
the actual values of the coefficients, αi leads to a nonlinear model, which allows for the
description of materials and compressibility [4].

Ogden’s model can include different cases (Figure 4). If we accept the description
of the coefficients αi = 2, 4, 6, ..., then we have a polynomial model, including various
special cases: models of Mooney-Rivlin (Figure 5), Yeoch and Neo-Hookean (Figure 6).
By introducing the equation of αi coefficients with fractional values, we obtained non-
linear model already in the first approximation [4]. The values of the coefficients are
determined based on experimentally defined approximations of the stress - strain. The
data of Ogden’s material model were determined on the basis of research conducted at
the Institute of Mechanical Engineering at the Faculty of Automotive and Construction
Machinery Engineering and Department of Materials Science and Engineering, Warsaw
University of Technology. The material has been described by the third row of the
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Figure 4: Series of compression curves set experimentally. Ogden’s models.

Figure 5: Series of compression curves set experimentally. Polynomial- Mooney-
Rivlin model.

Figure 6: Series of compression curves set experimentally. Reduced Polynomial-Neo-
Hookean model.

Ogden’s model [1]. The coefficients of Ogden’s material impact attenuator model, used
in the simulation, are presented in Table 1.

For modeling foam, we can modify the Ogden’s model with the introduction of real
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i µi αi Di

1 -1062310,50 7,701 8,6448
2 781324,564 8,0848 0
3 776736,53 -11,4395 0

Table 1: Description of the foam properties of the third row Ogden’s model – coefficients.

exponent in the second part of the equation which describes the volume deformations (in
this case, they are also non-linear dependances) (Table 2). In the calculations using the
FEM application we can choose the hyperelastic model, for which the set of properties
have been described.

i µi αi Di

1 -832131,49 16,20948 8,935334
2 831230,727 16,21166 0
3 -2528968,43 -1,172925 0

Table 2: Description of the foam properties of the hyperfoam model – coefficients.

To select the model which reflects the actual behavior of the material for which
we carry out experimental studies, the results from both studies should be compared
(compare the results with the results of experimental tests of the numerical model).
For the materials considered, series of comparisons have been made for different types
of models. The final results of the process revealed that the most consistent stresses
waveforms in the real and numerical studies have occurred for the Ogden’s model.

4 Conclusions

The results of the analyses allow us to conclude that the testing methodology and impact
simulation of element (pedestrian protection element) and test samples can assess the
effectiveness of the protection of pedestrians and assessment of hyperelastic materials
and composites with the gas phase. Research has shown that during the tests the energy
dissipation is followed by the foam elements. The study of these documents and the
existing elements of pedestrian protection is very important because it not only makes
it possible to determine the extent to which we can protect the victims of accidents, but
also reduce the consequences of such accidents. Detailed research and analysis allow us to
see what events occur during a crash in the applied material. Model foam structures take
into account the phenomenon of energy dissipation. The nature of the energy dissipation
phenomena varies with the speed of deformation. Such dependencies are determined by
numerical simulation of deformation. To build the model, the information on the manner
of their production emanate from the achievements of material engineering.

It is important to analyze the problems occurring at the interface between the contact
surface and within the material at the contact surfaces of the hyperdeformable element
(foamed structure) with other structural elements made of steel or other materials. This
thesis affords us the ability to integrate aspects of material engineering in the making
of foam structures to the mechanics of materials and structural strength (evaluation of
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elastic and plastic properties in terms of high-speed deformation) and the operation of
vehicles in the range of passive safety. Compression tests of executed samples of the
material were carried out to develop models that correspond to the material used. This
thesis further contributes to the development of the use of Finite Element Method to
simulate rapidly-variable loads - possible methods are not yet fully exploited. The tests
are considered to expand the applicability of modern construction materials, plastic and
composites. Completed studies are not possible without the correct description of the
properties of this type of materials. The use of well-known models for hyperelastic
materials: reduced polynomial, Ogden’s and non-linear models, allows us to have the
correct description of the properties of the tested materials. Isotropic materials are
analyzed in the theory of hyperelasticity, which presupposes the existence of the positive
features of elasticity and specific energy of the natural state of the body. It will consider
any form of deformation of the body for large deformations and processes that take
into account the thermal effects during manufacturing. Models materials together with
modifications may be used to evaluate the energy absorption, proposed to be used in the
description of the simulation performed using the program Abaqus. For the materials
considered the relationship between stresses and strains, which are dependent on the
material properties can be determined. The use of the modified Ogden’s model makes it
possible to accurately determine the description of the material, which makes it possible
to increase the accuracy and effectiveness of the simulation. The carried out research
allow for an even better way to make a selection of the material and its properties.
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Abstract: The primary objective of this study is to examine a human/mammal
circulatory system. Considering structures and operating rules of a natural, biologi-
cal circulatory system one can easily state that it is possible to create an analogous
hydromechanical dynamic system. Noting the similarities and taking into account
blood and vessels features there is a mathematical model given that includes dif-
ferential equations of the fluid mechanics. Additionally a stand/analog consisted of
hydraulic and electronics elements is presented. A prototype of the circulatory system
is proposed with a construction of the heart as a bicapsular pumping unit powered
by external pneumatic system. Solving the equations describing biological system,
gives opportunities to examine some external and internal risk factors, model input
signals and activity under different conditions.
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1 Introduction

Considering anatomy and operating principles of biological human/mammal circulatory
system (cardiovascular system) one can state that structurally it should be regarded as a
hydro-mechanical closed-loop system. Because of the fact that anatomically, considered
system is well-examined structure with application of a wide range of fields of science
devoted to it (see [4-6]), we are able to exploit available knowledge combining with
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mechanics to create both simulation and mathematical system and laboratory structure,
which yields possibility to make a comparison of numerical and experimental results.

Analyzing the state of knowledge regarding the mentioned problem and owing to the
results presented in reference [7], the functional analysis of the biological circulatory sys-
tem has been carried out to develop hydraulic system scheme. The proposed hydraulic
system dynamics is governed by ordinary differential equations. An important feature
of presented model is an oscillating forcing function that refers to the periodic signal
of the heartbeat with the highlighted following phases of the heart muscle contractions.
According to the biological data, selected parameters have been empirically estimated
that characterize the mechanical properties (see [3]) of the system (the vascular elas-
ticity, the flow resistance, the viscosity of a hydraulic fluid, the stroke volume) while
checking the reliability of the results against the statistical data for the interesting phys-
ical quantities of the circulatory system. It seems to be obvious that the complexity of
the biological structure of the vascular system carries implications in terms of structural
simplification of the laboratory. An enormous number of small body capillary vessels
or bronchioles capillary net and their branches, where gas exchange occurs, additionally
the strict connection with opened lymphatic system is structurally an issue not to wade.
To get the highly comparative to natural flow conditions there were implemented both
the flow direction and resistance control hydraulic components. Moreover, because of
the fact that one of the most significant natural blood vessels properties elasticity, has
to be considered, the rigid hydraulic hoses were complemented by adjustable, vulnerable
capsules so that the ripple of the blood vessels can be reflected during the operation of
the system (including different venous and arteria compliance). The artificial heart con-
struction (pump) was also proposed as a pneumatically controlled bicapsular, diaphragm
pumping unit whereby the greatest structural and functional similarity to anatomical
system was obtained. The hydraulic structure was expanded by a measurement system
using absolute pressure sensors and measurement data acquisition module. Thanks to
this construction, we are able to keep up with changes of the measured relevant values.

The creation of a complete simulation model and developing laboratory rig by another
mechanical components gives possibility to examine the system behaviour under various
conditions meaning input pattern signal disorders and changes (heart rythm). More-
over, it is also possible to generate artificial pathological conditions such as for example
ventricular tachycardia or cardiac arrhythmias.

2 Simulation Model

2.1 The hydro-mechanical model basis

The following assumptions are used while carrying out the analysis of the working fluid
flow in the considered closed system:

• the working fluid in the system is incompressible;

• differences in elevation as it flows in a horizontal arrangement do not exist;

• mass forces (inertial forces) do not affect the movement of the fluid;

• the flow is laminar.

It can be concluded that in the proposed model, the only physical factor causing the
movement of the fluid is external, pressure forcing signal (eg, the pressure generated by
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the movement of the piston pump). It is convenient, therefore, to describe the flow in
the system, using the mass conservation principle (indestructibility of matter).

As shown in Figure 1, we can write the law of conservation of mass in the analytical
form for the volume V, and the surrounding control surface S:

dm

dt
=

∫ ∫

S

ρvNdA, (1)

where m is the fluid mass contained in the volume V , ρ is the fluid density, vN is the
velocity vector, normal to the element of the control surface dS.

Figure 1: Model of fluid volume area.

Because in the real system, important for the analysis, flows through hydraulic el-
ements (throttle valves, leakage, fluid supply elements, the hydraulic casing and fluid
compliance, the volume changes of the cylinder-source of the fluid motion) are modeled
as discrete object/elements, we are able to use the discrete instead of continuous model.
As a result of the discretization of the model (see Figure 1), the equation (1) takes the
following form:

dm

dt
=

n
∑

i=1

ρυNi∆Ai, (2)

This is the datum form of the equation, and after some trivial transformations (see
[1]) the mass elementary flows balance equation is obtained:

n
∑

i=1

Qi = ±Aẋ+ (C0 + C0
p

E
+

V0

E
± A

E
x)ṗ, (3)

where: dotted x and p in the notation given are respectively dx
dt

and dp

dt
, A is the cylinder

working surface, x is the movement coordinate of the piston, C0 is coefficient of compli-
ance of the deformable elements in the system, p is a pressure, V0 is the initial volume
of the fluid, E is the Young’s modulus of the hydraulic fluid.

Of course, the applied notation of either ’+’ or ’-’ in a component of the equation
is based on the direction of the forcing flow (in the present case the hydraulic cylinder
piston movement direction). Other terms of the equation express the elementary flows
associated with the deformation of both the elements and medium.
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Figure 2: The physical model of the hydro-mechanical system [1].

2.2 The human cardiovascular system versus hydro-mechanical model

The diagram of the physical model of the hydro-mechanical system (shown in Figure 2)
can be easily applied to a biological system of blood circulation in the human body. It
should be emphasized that the circulatory system is a closed-loop system so the overall
balance of mass elementary flows must be zero.

Figure 3: Hydro-mechanical model of the human circulatory system.

In order to simulate the respective mechanical properties of components of the human
circulatory system, the model includes some important quantities that describe selected
parameters (according to [3]). Referring to Figure 3, the chosen values follow:

• CSV – reduced, average compliance of body system veins;

• CPV – reduced, average compliance of pulmonary veins;

• CSA – reduced, average compliance of body system arteries;

• CPA – reduced, average compliance of pulmonary arteries;

• RSY S – reduced flow resistance through internal organs and body system capillaries;

• RPUL – reduced flow resistance through pulmonary vessels.

In the developed model (Figure 3), there is the clear separation of the two subcircuits
(analogous to a biological system - the small and large circulatory system). Because both
subcircuits are powered by a dual-chamber pumping unit (by assumption) that simulate
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human heart, there are necessary elements which separate both circuits and perform
biological function of the atria and vessels valves that are simply return one-way valves
operating on the logical scheme based on the forcing cylinder movement direction. Since
each of the four valves (two for each chamber) can have two states: ’open’ or ’closed’,
they act as hydraulic return valves and from the mathematical point of view we can
easily describe their operation by using the indicator function of the piston velocity

Figure 4: Valves states depending on the cylinder movement direction.

Of course, there are three cases that must be taken into account during the operation
of the system (Figure 4). If the pressure cylinder is fixed, the system has no flow, and
the valves v1, v2, v3 and v4 are closed (Figure 4a). In two other cases (Figure 4b,c), one
of the pairs of valves in each chamber will remain open to allow flow in a closed system.

An important issue is the forcing (cadency/timing) function with the course corre-
sponding to the various stages (phases) of contraction of the heart muscle. The cylinder
motion, and thus the cyclic velocity changes which determine the flow control, is enforced
by a periodic function with three phases distinguished: pause, diastole - atrial contrac-
tion, systole - ventricular contraction. Distribution of the following phases in the one
time period of the function has a significant impact on the speed of the cylinder, and
consequently on the waveform of the pressure pulsations in the system.

Obviously the nature of the excitation shown (Figure 5) can be disrupted by changing
the period or duration of the different phases, thereby simulating changes in heart rate or
some pathological cardiac states. Excitation function can be expressed as some conversion
of a sinusoidal function, and it may have the form as given:

f(t) = − sin(t)[sgn(sin(t)) + 1] + 1. (4)

Closely related to the function of the excitation is the velocity of the piston and thus the
status of the valves in the chambers (Figure 4). The dynamics of a hydraulic closed
structure (Figure 3) is governed by a system of four equations of elementary mass flow
balance in the selected points shown in Figure 3. The number 1 indicates the point at
which the flow in body system veins is being balanced. As the 2-nd we estabilished the
system of the pulmonary arteries, as 3-rd pulmonary venous system and 4-th the body
system arteries. The equations follow:

(p4 − p1) · RSY S = ACY L · ẋ ·











−1 for ẋ < 0

0 for ẋ > 0

0 for ẋ = 0

+ CSV · ṗ1, (5)

− (p2 − p3) ·RPUL = ACY L · ẋ ·











1 for ẋ > 0

0 for ẋ < 0

0 for ẋ = 0

+ CPA · ṗ2, (6)
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Figure 5: The forcing cadency function waveform.

Figure 6: An example piston velocity waveform (a) and corresponding states of the valves (b).

(p2 − p3) ·RPUL = ACY L · ẋ ·











−1 for ẋ < 0

0 for ẋ > 0

0 for ẋ = 0

+ CPV · ṗ3, (7)
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− (p4 − p1) ·RSY S = ACY L · ẋ ·











1 for ẋ > 0

0 for ẋ < 0

0 for ẋ = 0

+ CSA · ṗ4. (8)

The left side of each equation contains the flow associated with the pressure difference
on both sides of the point at which there is an increased flow resistance. The right side is
reduced and simplified sum written for equation (3) of the elementary mass flow balance,
wherein the first component of the total flow is associated with the movement of the
piston with a working area and stroke defined. The second component is associated with
compliance of hydraulic lines (blood vessels) system. Contained in brace bracket element
is the mentioned pump piston velocity indicator, which describes the valves operations
mathematically depending on the sign of the velocity. All equations (5) – (8) are coupled
in pairs due to the construction of the entire system consisting of two sealed subsystems
with a common pumping unit, with the work of which a common element is linked for
all equations. It can be said that the simplified model of hydro-mechanical circulatory
system has a common element in the form of heart unit that binds the entire differential
equations system.

2.3 The numerical simulation results

The system dynamics equations (5) – (8) form the basis of the simulation model. They
have been implemented as a block diagram in the SciLab Xcos system. Each of the de-
scribed features, including timed transformed sine function and the pump piston velocity
indicator is mapped to the system as a model block components associated with each
other by signal connections.

Because of the fact that the essential element for the assessment of cardiovascular
efficiency is the pressure in the blood vessels, the analyzed output signals of the system
are arterial and venous pressures calculated for the given points of the system (Figure
3). Moreover, it is convenient to calculate fluid flows for each point mentioned that
constitute a particular addend in equations given. By selecting appropriate coefficients of
the equations of dynamics, based on biological data for compliance and flow resistance, it
was possible to obtain pressure waveforms similar to real data (Table 1). It is obvious that
selected human physiological conditions are considered, moreover the obtained results of
the simulation are closely linked with the body system physiological state assumed in
advance (heart rate, symmetry or asymmetry of pumping chambers operation, the length
of the following phase in the cycle).
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Table 1: The biological data of significant circulatory system parameters.

Resting heart rate 1.1 [Hz] (66 beats per minute)
Body system veins pressure 2/0 [mmHg]
SYSTOLIC/DIASTOLIC p1
Body system arteries pressure 120/70 [mmHg]
SYSTOLIC/DIASTOLIC p4

Resting pressures Pulmonary veins pressure 5/0 [mmHg]
SYSTOLIC/DIASTOLIC p3
Pulmonary arteries pressure 15-25/8 [mmHg]
SYSTOLIC/DIASTOLIC p2

Blood vessels compliance (veins to arteries) CV

CA
≈ 20

Blood flow resistance (system to pulmonary) RSY S

RPUL
≈ 10

Stroke volume (average) VSTR ≈ 80[ml] = 80[cm3]

The numerical simulation results are presented, as the most significant pressure (Fig-
ure 7-10) and flow (Figures 11–15) waveforms and at selected points of the hydro –
mechanical structure (Figure 3). For comparison purposes, the absolute pressure values
are given in units of [mmHg], which are typical for the medical description. Because of
the fact that flows in particular points are relatively small, they are presented in units
of [cm3/sec].

Figure 7: An example resting pressure waveform for a body system arterial structure.

Figure 8: An example resting pressure waveform for a body system venous structure.
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Figure 9: An example resting pressure waveform for a pulmonary arterial structure.

Figure 10: An example resting pressure waveform for a pulmonary venous structure.

Figure 11: An example fluid volume flow waveform for a body system venous structure.

Figure 12: An example fluid volume flow waveform for a pulmonary arterial structure.
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Figure 13: An example fluid volume flow waveform for a pulmonary venous structure.

Figure 14: An example fluid volume flow waveform for a body system arterial structure.

Figure 15: An example fluid volume flow waveforms for the flow occurence caused by the piston
movement: a) return movement direction ’-’; b) right movement direction ’+’.
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Analysis of the exemplary pressure waveforms, shown in Figures 7-10, allows to de-
tect similarities for the extreme pressure values in each waveform in comparison with
biological data. Additionally, a common noticeable thing for both pressure and volume
flow charts is a pulsation of each variables that is strictly connected with a pumping
element operating phases. It has to be emphasize that fluid volume flow ”-” sign (below
zero point line) means that the fluid outflows from the particular point (on the other
hand ”+” sign represents fluid inflow). It should not be considered as a fluid movement
direction changes, because it is stable by assumption. Observe that the described model
is approximately idealized, which means that mechanical parameters used in the model
were averaged and reduced to the selected points. The correctness of the simulation
results consists in appropriate assumption of the hydro-mechanical structure operation,
at this stage the numerical value is of the secondary importance.

Figure 16: The scheme diagram of the pneumo-hydraulic structure: I – the right ventricle of
the pumping unit, II – the left ventricle of the pumping unit, III – the compliance tank of the
body venous system, IV – the compliance tank of the body arterial system, V – the compliance
tank of the pulmonary arterial system, VI – the compliance tank of the pulmonary venous
system, VII – pneumatic control system of the pumping unit operation, VIII – the electronic
timing system (pattern generator).

3 The Experimental System Description

On the basis of the hydro-mechanical model shown in Figure 3, the laboratory rig was
designed to achieve the flow effect for the proposed system. In contrast to the model
system, the experimental rig is based on pneumatic and hydraulic structures combination,
which optimally reflects the kind of work of the cardiac muscle and blood vessels. Figure
16 presents the schematic construction of the so far described measurement system.

Compared to the simulation model, structurally the dual mechanical pumping cylin-
der was replaced by diaphragm pneumo-hydraulic chambers. Deformable membrane
separates the hydraulic and pneumatic parts. The increase in air pressure of the pneu-
matic system – setting the pneumatic valves to the open state by the electronic timing
unit causes the deformation of the latex membrane, and thus the fluid flow in the system.
The fluent and frictionless membranes movement reflects cardiac muscle operation in a
better way. Furthermore, marked as III, IV, V and VI (see Figure 16) regulated compli-
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ance tanks imitate respective blood vessels parameters. The system was also expanded
by throttle valves corresponding to the flow resistance for the following: RRL – blood
flow resistance of the right lung, RLL – blood flow resistance of the left lung, RBS – blood
flow resistance of the body vascular system. Moreover, in order to follow the pressure
changes in the interesting points (indicated in Figure 16 as 1, 2, 3, 4) corresponding to
the simulation model points four pressure sensors connected to the data acquisition unit
were provided. Figure 17 shows the prototype laboratory appearance which is the first
trial version being developed successively.

In order to check the quality and trend of measured pressure signals, there were
some example, trial data registered in LabView environment which are shown below
in Figure 18. Because of the fact that none of appropriate system parameters was se-
lected/calculated at this stage, the resulting pressure waveforms should be regarded as
trial and their accuracy should be evaluated only in terms of trend/course quality. It
should be noted that the pressure waveforms in the recorded time period correspond
to the subsequent pumping cycles (heart rate). Highly clear pressure signal pulsation
may correspond to a systolic and diastolic pressure state. The experimental rig does not
give an opportunity for tracking a volume flow values, so the comparison of this variable
signal with simulation results was neglected at this stage. By calculating appropriate pa-
rameters for each hydraulic and pneumo-hydraulic laboratory components, we are able
to obtain the correct pressure waveforms including also numerical values.

Figure 17: The operating part of the laboratory unit.

4 Summary

Starting from the basic laws of mechanics and taking into account certain simplifications
and assumptions connected with the properties and phenomena occurring in the system,
we are able to provide a mathematical description of almost any system. The really big
challenge is trying to move a perfect biological system to the level of its corresponding
mechanical analogue. Although a huge degree of complexity of the human cardiovascular
system requires numerous simplifications, however, as it was shown it is possible to create
a closed-loop hydraulic circuit and the simulation model that correspond to anatomical
indeed. Interactive simulation model developed in any computing environment is only a
general description of the purpose object. The main focus of the analysis on the further
level is the appropriate parameters selection in order to obtain specific simulation and
measurement results [2]. Further exploration of the simulation model and improving the
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Figure 18: Trial, pressure waveforms recorded for selected points (Figure 11): a) in the point
4, b) in the point 1, c) in the point 3, d) in the point 2.

experimental laboratory will better define the operation of the system, and thus will give
the possibility of a more reliable comparison of operating a closed hydraulic system in
terms of biological circulatory system.
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Abstract: This paper includes results of investigations of real six-legged robot.
By the name of hexapod we call a robot that walks on six legs. Due to specific
construction of legs, each leg has 3 degrees of freedom, prototype constructed by us
allows to model gait of reptiles and insects. Presented system of rotation angle of each
of the cells (servos) allows to analyze every single type of the movement. Applied
measurement system allows also to measure current, and use it for calculation of
power generated by motor. It allows to calculate power necessary for each type of
the robot movement. Applied mathematical model allows for identification and check
of the angular velocity, acceleration and moments generated by each of the robot
cells separately. As a result it is possible to determine quality coefficients of different
gait patterns of the robot, i.e. maximal speed or maximal load depending on the
number of working legs. Obtained results were confronted with theoretical model of
differential equations regulating gait of our hexapod.

Keywords: hexapod, control, servo, gait, micro control.

Mathematics Subject Classification (2010): 70E60.

1 Introduction

Nowadays mobile robotics is based mainly on the wheeled devices [1]. Due to the diffi-
culties in the construction and control walking robots are much less common. Also, the
equations used to describe the movements of the robot are less complicated for wheeled
robots than in the case of the devices with legs [1]. However, due to the rapid develop-
ment of technology, miniaturization and continuous growth of microcontroller produc-
tivity, robots with legs appear more and more frequently. Due to the desire to expand
knowledge of the human gait most of robots subjected to the analysis are anthropomor-
phic, therefore in literature test results and structures of the two-legged robots are most
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common (i.e. see [2]). However, as far as we know there is no research on robots multi
revenues in the six-legged.

In this paper, we present the results of real prototype of the six-legged (Hexapod)
robot. Hexapod is a mobile robot, that is a vehicle equipped with electric motors by
means of which it is capable of walking on its feet. In our case it is a design resembling
insects (see Figure 1) and it moves using 18 engines. To maintain the balance only three
legs are required, however for walking four are necessary. Additional two legs allow some
leeway in walking and increase the reliability of the robot movements. Robot control is
via a mobile phone equipped with a specially designed program that uses the serial data
and Bluetooth networks. Originally developed software allows one to send movement
data and then receive the information gathered by the sensors. Our robot is equipped
with a wireless color camera with microphone, which is placed on the tail and is also
controlled using a mobile phone. A special electronic system based on the ATmega128
microcontroller with 6 channels with pulse module which is programmable resolution
from 2 to 16 bits, but now uses only two 16-bit channels to control 24 servos, enables
separation of servo control signals.

Figure 1: View of the built walking six-feet mobile robot (hexapod).

Robot is equipped with a system for measurement of the rotation angle for each of the
servos, what enables analysis of the individual movements. It also provides possibility of
measurement of current through the motors, what can be used for approximation of the
energy necessary for each type of the movements.

Pulse-width modulation (PWM), which is suplied to the controler of the servo has
a constant frequency 50Hz and duration varying in a range of 0-13% (0-2,5MS), what
allows to control all eight servos using single signal PWM, as shown in Figure 3.

According to equation (1), constructed robot can realize up to 11! different types of
movements, what was initial point of the investigations of different gait possibilities.

N = (2k − 1)!, (1)

where k denotes number of the legs, and N represents number of the movement types.
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Figure 2: Block diagram of the servo.

Figure 3: Division of the PWM control signal in dependence of designated servo.

2 Limbs Construction

Construction of the robot’s leg is based on the classical kinematic scheme of the insect.
This pattern was chosen for its versatility and possibility to apply for investigations of
the gait of both arthropods and reptiles. Moreover, chosen construction enables also to
overcome wider range of the obstacles than in case of application of reptile or mammal
kinematics. Figure 4 presents the scheme of the kinematic systems of mammals, reptiles
and insects.

Figure 4: Possible configurations of robot legs.
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Presented in Figure 5 scheme of the robot’s leg is composed of three rotary cells (A, B,
C) and three arms (of lengths l1, l2, l3). The first cell (A) is attached to the robot’s body
and is perpendicular to its surface, what allows for forward-backward movements. Next
cell is attached to the arm of length l1. This cell is responsible for up-down movement.
Cell C is attached to the end of the arm of length l2 in such a way, that its rotation axis
is parallel to the axis of rotation of the cell B. To cell C attached is also additional arm,
that serves as foot.

Figure 5: Scheme of the robot arm.

Figure 6: The kinematic scheme and arrangement of the coordinates.

Introduction of the articulated variables yields kinematic scheme of the robot’s arm
presented in Fig. 6. It is easy to notice, that it is similar to articulated scheme of the
anthropomorphic manipulators (OOO). Application of the Denavit-Hartenberg theory
allows for easy determination of the location of the end of the arm with respect to its
attachment point and, what follows, for description of the gait sequences.
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Θi−1 λi−1 li−1 αi−1

0 − 1 Θ1 0 −l1 90◦

1 − 2 Θ2 0 −l2 0◦

2 − 3 Θ3 0 −l3 0◦

Table 1: Denavit-Hartenberg data (li - distance from the axis of Zi to Zi+1 measured along
the axis Xi; αi - angle between the axes Zi and Zi+1 measured about Xi; λi - distance from the
axis Xi−1 to Xi measured along Zi; Θi - angle between the axes Xi−1 and Xi measured about
Zi) .

Table 1 presents dependence between variables necessary for transition between co-
ordinate systems. It was applied to derive the following matrices governing transition of
variables between cells:

A0−1 =









cos Θ1 0 sin Θ1 −l1 cos Θ1

sin Θ1 0 − cos Θ1 −l1 sin Θ1

0 1 0 0
0 0 0 1









, (2)

A1−2 =









cos Θ2 − sin Θ2 0 −l2 cos Θ2

sin Θ2 cos Θ2 0 −l2 sin Θ2

0 0 1 0
0 0 0 1









, (3)

A2−3 =









cos Θ3 − sin Θ3 0 l3 cos Θ3

sin Θ3 cos Θ3 0 l3 sin Θ3

0 0 1 0
0 0 0 1









. (4)

The following transfer matrix (5) allows for mathematical description of the location
of the end of the limb with respect to the coordinate system of attachment limb plane
(it was calculated using Denavit-Hartenberg theory as a product of equations (2)–(4)):

T0−3 = A0−1 ∗ A1−2 ∗ A2−3 =






cθ1(cθ2cθ3 − sθ2sθ3)

sθ1(cθ2cθ3 − sθ2sθ3

cθ2cθ3 + sθ2sθ3

0

cθ1(cθ2cθ3 − sθ2cθ3)

−sθ1(cθ2cθ3 + sθ2cθ3)

cθ2cθ3 + sθ2sθ3

0

sθ1

−cθ1

0

0

cθ1(l3(cθ2cθ3 − sθ2sθ3) − l1 − l2cθ2

sθ1(l3(cθ2cθ3 + sθ2sθ3) − l1 − l2sθ2

l3(cθ2sθ3 + sθ2cθ3) − l2sθ2

1






. (5)

3 Research and Analysis of Operation Servo

In order to carry out preliminary research on the robot gait and qualitative factors
to determine the energy consumption, walking speed and capacity, it is necessary to
analyze work of the applied servos. Servos characteristic, being an integral nature of the
actuator exhibits dynamics that does not interfere with the regulation, but introduces
non-linearity. It implies the use of proportional equalizers (P controller) with high gain.

Observe that integrating characteristics of the actuator ensures theoretically zero
static error. High gain in the main control line improves monitoring of the system after
changes in pattern but it reduces the stability margin. It can be partially corrected by
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a proportionally-derivational controller (PD), that plays a role of the corrector. Control
module of the servo works with frequency 50 Hz, current provided to motor can be treated
as a signal with constant frequency and varying duration, as shown in Figure 7. It can
be noted, that in dependence on the load applied to the motor in servo, there is change
in the duration of the current signal. Maximal current consumption by single servo is
about 1,5 A with provided voltage 6 V.

Figure 7: Change in the filling of a servos power signal for, low load on the servo(a), and high
load on the servo(b).

In order to conduct research on robot gait, it is necessary to convert the signal with
variable duration to analog continuous signal. For this purpose, a low-pass filter was
constructed on the basis of a resistor and capacitor (RC). Unfiltered signal is shown in
Figure 8a while the effect of the filter application is presented in Figure 8b.

Figure 8: Conversion of the variable signal (a) to analog signal filling (b).

Introduction of signal filtration enabled to develop characteristics of dependence of the
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current drawn by a servo from the moment generated on the output of the transmission.
The results of the servos tests for variable load are presented in Figure 9. The graph
shows that with the load increase the current consumption by the motor also increases.
It can be seen that the increase in torque increases the motor current consumption up
to a value of 1.5 A. As can be seen in Figure 9, when generating the maximum torque
by the servo there occurs an increase of the current drawn by the motor from the value
1A up to 1.5 A.

Figure 9: Measurement of intensity of the load servo.

With robot gait sequence as mentioned before, the robot having six legs is able to
perform 11! different sequences of gait. First preliminary analysis has been subjected
to a sequence of gait based on the movements of earth-boring dung beetle (Geotrupes
stercorarius), because it has the same number of limbs as the constructed prototype
robot. Constructed gait models are based on living organisms, what allows the analysis
of movements created by millions of years of evolution. The quality of gait can be charac-
terized by the use of qualitative indicators, such as minimum energy consumption, high
speed and high performance. However, it is not always possible to get gait sequence that
meets all the quality parameters. Therefore, analysis of relationships between different
characteristics allows to choose the best solution for given situation.

The easiest way to present robots gait is to record the entire sequence (see Table 2).
For simplicity, we assume that the first link takes only three positions and the second
and third cells adopt the same angular position. Assumed positions are described below:

(i) the positions of movement for the first cell: 1 – Maximum withdrawal; 2 – middle
position, 3 – maximum move forward;

(ii) the positions of movement of the second and third cell: 1 – maximum height, 2 –
feet on the ground.

The legs move in pairs – the first motion is performed by legs 1 and 4, then 2 and
6, and finally 3 and 5. Data presented in table show that the movement of the robot is
sequential, and always takes place in the same order. There are a number of limitations
associated with the construction of the robot. The main limitation is the length of the
movement depending on the dimension of the first robot arm and it is associated mainly
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Figure 10: Order of robot limbs.

with the potential legs collisions.

Figure 11: Measurement of the intensity of the load for a) servo 1, b) servo 2, c) servo 3.

Measurement of the intensity of the load for a) servo 1, b) servo 2, c) servo 3. In
order to calculate the linear velocity of the end point of the robot leg, there should be
introduced manipulator Jacobian. It is matrix JN

0
dimensions of 6xN , where N is the

number of segments of the kinematic system [8]. Such Jacobian may be introduced by
the equation:

[

ϑN
0

ωN
0

]

= JN
0

q̇, (6)

where: ϑN
0 is a vector of linear velocity of the endpoint of the kinematic system in basic

coordinate system (point of the foot attachment to the body), ωN
0

is the angular velocity
vector for the end of a kinematic system in the basic coordinate system and q̇ is velocity
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Leg 1
Cell 1 1 1 2 2 3 3 3 1 1
Cell 2, 3 1 1 1 1 1 1 2 2 1
Leg 2
Cell 1 1 1 2 2 3 3 3 1 1
Cell 2, 3 1 1 1 2 2 1 1 1 1
Leg 3
Cell 1 1 1 2 2 3 3 3 1 1
Cell 2, 3 2 2 1 1 1 1 1 1 1
Leg 4
Cell 1 1 1 2 2 3 3 3 1 1
Cell 2, 3 1 1 1 1 1 1 2 2 1
Leg 5
Cell 1 1 1 2 2 3 3 3 1 1
Cell 2,3 2 2 1 1 1 1 1 1 1
Leg 6
Cell 1 1 1 2 2 3 3 3 1 1
Cell 2, 3 1 1 1 2 2 1 1 1 1

Table 2: Record of robot gait sequence.

vector in each of the joint in a natural coordinate system. For each component, q̇ consists
of the angular velocities (ωi) in the case of joint rotation or linear velocities (ϑi) in the
case of prismatic joints.

According to equation (6) the Jacobian is composed of the elements for the calcula-
tion of both linear and angular velocities. Therefore, introduced are the following two
Jacobian parts: Jω (the angular velocity) and Jϑ (for flow velocity):

JN
0

=

[

Jϑ

Jω

]

. (7)

To apply this definition to our data, it is necessary to define Zi as a unit vector in the
Z axis for the i-th component of the system in relation to the basic coordinate system,
and Oi as a vector derived from the basic coordinate system (O0) to the i-th element of
the coordinate system (Oi).

Figure 12: Measurement of the intensity of the load for comparison of the load for all three
servos in one leg.

Figure 12 presents the analysis of walking robot in time with respect to the rotation
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angle of the servo and power consumption for all three cells in the one leg. Basing on
equation (6) it is possible to numerically calculate that the theoretical speed of walking
robot is approximately 0,006 m/s and a theoretical average power consumption is of the
order of 0.6 A/h (0.0002 A/s). The obtained theoretical results were compared with the
measured values, and the differences between real and calculated values were in a range
of 6-10%.

4 Conclusions

Conducted simulations show similar theoretical and measurement results, leading to the
conclusion that they are correctly performed. Preliminary results enable to determine the
power consumption of working actuator. On the other hand, servo analysis is applied for
determination of the speed of basic biologically inspired gait. As shown in Figure 11, the
most loaded is servo 2. Further research on the robots potential movement possibilities
will increase knowledge in this field and will allow for a better understanding of insects
gait. This may lead to a better understanding of the advantages and disadvantages of
each of the gait sequences and help to create an optimal solution for the most six-legged
robots in dependence on their application.
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a mechanical system and the trajectory requirements for tracking control is exposed
through the use of a simple example. It is shown that given a set of constraints,
d’Alembert’s principle corresponds to the problem of finding the optimal tracking
control of a mechanical system for a specific control cost function that Nature seems
to choose. Furthermore, the general equations for constrained motion of mechanical
systems that do not obey d’Alembert’s principle yield, through this duality, the entire
set of continuous controllers that permit exact tracking of the trajectory requirements.
The way Nature seems to handle the tracking control problem of highly nonlinear
systems suggests ways in which we can develop new control methods that do not make
any approximations and/or linearizations related to the nonlinear system dynamics,
or its controllers. More general control costs are used and Nature’s approach is
thereby extended to general control problems.
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1 Introduction

Sir Isaac Newton described the field of mechanics in his preface to the Principia in the
following words [1]:

“In this sense rational mechanics will be the science of motions resulting from any forces

whatsoever, and the forces required to produce any motions, accurately proposed and

demonstrated.”

Today, while the first part of Newton’s definition of mechanics has become our usual
understanding of this field, the second part is usually relegated primarily to the field of
control theory. Indeed, the problem that Newton famously solved was a control problem:
the determination of the forces required to be acting on the planets so that their motions
obey the observed motions described by Kepler’s first two laws.

To illustrate the view point of Newton, let us consider an elementary example, the
problem of finding the equations of motion of a spherical pendulum like the one shown
in Figure 1. The problem of finding the equation of motion of this simple system, which
consists of a particle of mass m constrained to move so that it is always at a fixed
distance, L, from its fixed point of support, O, in a nonuniform gravitational field, can
alternatively be looked at from the dual stand-point of tracking control.

Figure 1: A spherical pendulum.

Consider a particle of mass m moving in a nonuniform gravitational field; it is now
required to determine the control force that needs to be applied to this particle so that
it is constrained to lie, at each instant of time t, on the sphere S2 defined by the relation

ϕ(x, y, z, t) := x2(t) + y2(t) + z2(t)− L2 = 0. (1)

We will show that this control problem can be handily approached using the theory of
constrained motion of mechanical systems. Let us denote the 3 by 1 vector (the 3-vector)

q := [x y z]
T
. Clearly, the equation of motion of the particle as it freely moves in the

nonuniform gravitational field in which the acceleration due to gravity at any point is
g(x, y, z, t) (see Figure 1), is simply given by the equation

M q̈(t) := m I3 q̈
T = [0 mg(x, y, z, t) 0]

T
:= Q, (2)
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where I3 is the 3 by 3 identity matrix. The acceleration of the particle at any time t,
can be written as the 3-vector a(q, t) = [0 g 0]

T
. [From here on, we shall drop the

arguments of the various quantities, unless needed for clarity.] We shall refer to equation
(2) as the unconstrained (or uncontrolled) equation of motion for the mechanical system.
A control theorist may prefer to call the equation a description of the ‘plant’ whose
trajectories need to be controlled so that they satisfy the control requirement stated in
(1). In order to achieve this, an additional force will need to be applied to the particle
so that its acceleration is altered from a(q, t), and its equation of motion now becomes

M q̈ = Q+QC . (3)

This additional force, QC , which is a 3-vector, that needs to be applied to the con-
strained system can be viewed as the force of constraint that ensures that equation (1)
is satisfied. It can also, from a dual perspective, be seen as the control force that must
be applied to the system described by (2), so that it satisfies the trajectory requirement
(1) that is imposed on it.

The initial conditions q(0), and q̇(0) whose components could be chosen arbitrarily
in the case of system (2) can no longer be chosen arbitrarily. Instead, the components of
q(t) must satisfy relation (1) at each instant of time (and hence also at the initial time);
also, the components of q̇(t) must satisfy the relation

x(t) ẋ(t) + y(t) ẏ(t) + z(t) ż(t) = 0, (4)

at each instant of time (and hence also at the initial time). Equation (4) is obtained by
differentiating equation (1) with respect to time. One may want to further differentiate
equation (4) to obtain the relation

x(t) ẍ(t) + y(t) ÿ(t) + z(t) z̈(t) = −ẋ2(t)− ẏ2(t)− ż2(t), (5)

which can be written in matrix-vector form as

A q̈ = b, (6)

where A := [x y z]
T
, and b = −ẋ2(t) − ẏ2(t) − ż2(t). We note that for a given set of

initial conditions that satisfy equations (1) and (4) at t = 0, equation (6) is equivalent to
equation (1). This simple example thus illustrates the connections between the problem
of constrained motion and the problem of tracking control. Specifically, we find the
following analogous concepts given in Table 1. As we go along, we will extend and refine

Analytical Dynamics Control Theory

Unconstrained System Uncontrolled System, or Plant

Constrained System Controlled System

Constraints Trajectory Requirements

Constraint Force Control Force, or Control

Table 1: Analogous Concepts in Analytical Dynamics and Control Theory.
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this preliminary table. In what follows, we will move back and forth between these dual
concepts, allowing ourselves to be aided in our understanding of constrained motion to
expose new insights into trajectory control, and vice versa.

2 General Constrained Mechanical Systems and the Trajectory Control

Problem

Our spherical pendulum problem is an illustrative ‘toy problem’ created simply to provide
some insights into the connections that we are trying to establish. The problem could,
of course, have been made considerably more challenging by requiring that the point of
support, O, move over a surface say φ(q, q̇, t) = 0, and/or requiring that the pendulum’s
length varies in a prescribed manner so that L(t) = f(q, q̇, t). We can now frame the
general problem of constrained motion in analytical dynamics as follows:

1. Consider an unconstrained (uncontrolled) nonlinear nonautonomous mechanical
system described by the equation

M(q, t) q̈ = Q(q, q̇, t),

q(0) = q0 and q̇(0) = q̇0,
(7)

where M is a positive definite n by n matrix, and q is an n-vector,

2. We require this system to satisfy the m consistent constraints (trajectory require-
ments) given by the relations

φi(q, t) = 0, i = 1, 2, ..., h, (8)

and
ψi(q, q̇, t) = 0, i = h+ 1, h+ 2, ...,m. (9)

3. We need to find a constraint (control) force, QC , so that the constrained (controlled)
system described by

M(q, t) q̈ = Q(q, q̇, t) +QC(q, q̇, t),

q(0) = q0 and, q̇(0) = q̇0,
(10)

exactly satisfies trajectory requirements (8) and (9).

We shall assume that q0 and q̇0 satisfy the trajectory requirements (8) and (9) at
time t = 0. Later on, we will relax this condition. We define the acceleration of the
uncontrolled (unconstrained) system by

a(q, q̇, t) =M−1(q, t)Q(q, q̇, t). (11)

Also, assuming sufficient smoothness, we can differentiate the h equations in the set
(8) twice with respect to time (as we just did in our toy problem, see (5)), and the (m−h)
equations in the set (9) once with respect to time, to obtain the relation

A(q, q̇, t) q̈ = b(q, q̇, t), (12)

where A is an m by n matrix of rank k. Each row of the matrix A corresponds to one of
the trajectory requirements in the sets (8) or (9).
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3 The Control Force QC

Having now laid out some of the underlying concepts relevant to the duality between the
problem of constrained motion and the problem of tracking control, let us concentrate
in this section on how one might determine the control force QC . Before we embark on
this, it might be worthwhile going back to our toy problem and investigating if such a
force QC indeed exists, so that the trajectory requirement (1) is always satisfied, and if
so, whether it can be uniquely found. That such a force QC exists, is obvious, because
we know the equation of motion of a pendulum and so we know that a right hand side for
equation (3) exists so that the constraint (1) is exactly satisfied for all time, given that
the initial conditions satisfy the constraints. So there most-likely exists a control that is
Lipschitz continuous, as we require in mechanics so that the solution of (3) is unique and
it concurs with practical observations of the motions of a pendulum. Our next question
is then, can QC be uniquely found ?

Unfortunately, not ! For the spherical pendulum, at each instant of time, we have
the following six unknowns: the three components of the 3-vector q̈, and the three com-
ponents of the 3-vector QC . At each instant of time, starting with a given state (q, q̇)
of the system, we have the three equations given by the set in (3) and an additional
equation of constraint (1) (or alternately (6)) – a total of 4 equations. The number of
unknowns exceeds the number of equations by two, and hence, at each instant of time,
the problem of finding the 6 unknowns (accelerations and control forces) of the system is
underdetermined ! To get them uniquely we would need to have two more independent
equations. Moving to our dual vision of the problem as one of trajectory control, there
must then be an infinity of control forces (controllers) QC that can exactly track the
trajectory expressed by equation (1) !

However, the equation of motion of a spherical pendulum, which satisfies the con-
straint (trajectory requirement), is unique – hence QC is unique – and its motion pretty
well agrees with what is in fact physically observed. So clearly, Nature must then be
picking the constraint force (control force) QC in such a manner so as to satisfy some
additional criterion – one which somehow yields the (additional) two missing equations,
and yields a unique answer for the control force !

3.1 D’Alembert’s and Guass’s principle, and the cost function

Flipping back to our understanding of constrained motion, we may then ask, how does
Nature pick the constraint forceQC so that the motion of our spherical pendulum matches
our physical observations ? This is a problem that was first attacked by d’Alembert, and
later on, more generally, by Lagrange [2]. Lagrange came up with the precise statement
of what is today called d’Alembert’s principle or prescription. D’Alembert’s prescription
is as follows:

The constraint force QC is such that for all vectors v(t) 6= 0 that satisfy the relation

Av = 0, Nature seems to require that vTQC = 0.

The nonzero vectors v that satisfy the relation Av = 0 are called virtual displace-
ments, and the quantity WC = vTQC is referred to as the total work done by the forces
of constraint under virtual displacements. And this prescription, somewhat miraculously
– for any general mechanical system – generates the correct number of additional equa-
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tions so that the constraint force QC in equation (10) can be uniquely found at each
instant of time!

To see how this works for our spherical pendulum, observe that the rank of our matrix
A in (6) is 1, and so the null space of this 1 by 3 matrix is 2. Thus at each time t, there
are two linearly independent 3-vectors v1 and v2 that satisfy the relation Av = 0 which
we can find. D’Alembert’s prescription then requires that v1

TQC = 0, and v2
TQC = 0.

These two additional equations used with the four equations (the three equations in set
(3) and equation (6)) that we had previously, yield the six equations needed for finding
the six unknowns – q̈ and QC – at each instant of time. What is more astonishing is that
d’Alembert’s prescription yields the constraint force QC which when used in equation
(10) yields the motion, q(t), of the mechanical system that is fairly close, in numerous
situations, to what is actually observed in the physical world; hence, its enormous value
in modeling physical systems.

To summarize, we cannot, in general, determine the constraint force QC uniquely.
D’Alembert’s principle generates additional equations (exactly the right number) to give
us a unique QC at each instant of time, which causes the constrained system to move in a
manner that is in concert with physical observations. It turns out that this prescription
of d’Alembert regarding the constraint force QC is exactly the same as the following
condition on the constraint (control) force QC from the dual viewpoint [3]. This condi-
tion, called Gauss’s Principle, is the following: From all those control (constraint) forces
QC that can exactly satisfy the trajectory requirements (8) and (9), Nature chooses that
control force QC that minimizes the control cost given by

J(t) = [QC(q, q̇, t)]
T
M−1(q, t)QC(q, q̇, t) =

∥

∥QC
∥

∥

2

M−1 (13)

at each instant of time. As seen from (13), J(t) is simply the square of the weighted L2

norm of the control force, QC .

So we see that d’Alembert’s prescription in mechanics – a prescription that causes
mathematical models of constrained mechanical system to suitably predict the physically
observed motions of these systems – has a dual that says that Nature appears to be
constantly solving an optimal control problem, minimizing the cost function J(t) given

in (13). But unlike most control engineers today, who would prefer to minimize
∫ T

0
J(t)dt,

where T is some final time over which the control is executed, Nature seems to do this
minimization at each instant of time. Also, the so-called weighting matrix that she uses
in the cost function is M−1. This is indeed clever! For example, imagine a multi-body
system, with several masses, that is described by equation (7). Say we want to control
this system so that it satisfies some given trajectory requirements given by relations (8)
and (9). Realizing that the larger masses require larger forces to be exerted on them to
cause them to move, Nature attempts to satisfy these requirements (constraints) on this
multi-body system, by being in favor of applying forces to the smaller masses – hence,
the weighting by the matrix M−1.

We have so far only considered the properties of the constraint force QC , without
answering the question: what is it? Can one find it explicitly, in closed form? We do
that next.
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3.2 Closed form solution to the optimal tracking control problem for nonlin-

ear, nonautonomous mechanical systems using the theory of constrained

motion

The problem of finding the constraint force QC that Nature uses has a long and varied
history. The problem was first formulated by Lagrange [2], and has been worked on by
numerous scientists and engineers [3–9]. A simple expression for the explicit form of the
control force was obtained in 1992, and it is given by [10]

QC = −M1/2(AM−1/2)
+
(Aa− b), (14)

where X+ denotes the Moore-Penrose inverse of the matrix X [11, 12]. The equation of
motion of the constrained system, which may be thought of as the fundamental equation
of mechanics, can thus be explicitly written in extensio, using relation (10), as

M(q, t) q̈ = Q(q, q̇, t) +QC(q, q̇, t), (15)

where

QC(q, q̇, t) = −M1/2(q, t)[A(q, q̇, t)M−1/2(q, t)]
+
[A(q, q̇, t)a(q, q̇, t)− b(q, q̇, t)].

What now might be gleaned from a controls point of view from relation (15)? First, we
observe that a(q, q̇, t) (see equation (11)) is the acceleration of the uncontrolled (uncon-
strained) system. However, to track the given trajectory described by the set of equations
(8) and (9), the acceleration of the system needs to satisfy the trajectory requirement
(12). Hence, the extent to which the acceleration, a, of the uncontrolled system does not
satisfy this trajectory requirement is simply

e(q, q̇, t) := [A(q, q̇, t)a(q, q̇, t)− b(q, q̇, t)]. (16)

This is in fact the error in the satisfaction of the trajectory constraint at time t by the
acceleration (at that time) of the uncontrolled system. The expression for QC above says
that this error signal is fed back to the system (7), just the way a modern-day control
engineer might want to do negative feedback control! We also observe that Nature seems
to choose a control gain matrix whose elements are, in general, highly nonlinear functions
of q, q̇, and t. It is given explicitly by

K(q, q̇, t) :=M1/2(q, t)[A(q, q̇, t)M−1/2(q, t)]
+
. (17)

Thus the control methodology used by Nature, so that the uncontrolled system (7)
exactly tracks the trajectory requirements stated in sets (8) and (9), can be encapsulated
by the relation

M(q, t) q̈ = Q(q, q̇, t)−K(q, q̇, t)e(q, q̇, t), (18)

where K is the gain matrix and e is the error signal. Lastly, we point out that Nature
appears to use an error signal for its feedback control law that is related to accelerations,
and not to displacements, nor to velocities, or to integrals of the displacement, as is
commonly done in control theory. She appears to be basing her feedback on ensuring
that the accelerations of the controlled system satisfy the trajectory requirement given
in (12); and yet, cleverly enough, as seen from the expression for the feedback error e in
(16), she involves only the state (q, q̇) of the mechanical system. The tracking controller
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given by equation (18) is not only optimal in that it minimizes the cost J(t) given in
(13), but it yields exact tracking; for, the set of equations (8) and (9) are the integrals
of motion of the nonlinear system described by (15) (or, (18)). The minimal control cost
at each instant of time is explicitly given by

J(t) = [QC ]
T
M−1QC =

∥

∥

∥
(AM−1/2)

+
(Aa− b)

∥

∥

∥

2

. (19)

As mentioned before, the closed form expression in equation (14) for the control force
QC that nature uses satisfies the trajectory requirements. She gets this unique control
force by minimizing the control cost J(t) given in (13), which is simply the square of
the weighted L2 norm of control force, QC . Nature picks the weighting matrix to be
the positive definite matrix M−1(q, t) and thereby produces control forces that are in
conformity with the physically observed motions of constrained systems. However, what
if the control engineer wants to use a different weighting matrix in his cost function?
Namely, suppose (s)he wants to minimize at each instant of time the cost

J(t) = [QC(q, q̇, t)]
T
N(q, t) QC(q, q̇, t) =

∥

∥ Q C
∥

∥

2

N
, (20)

where N(q, t) is a positive definite matrix. Using our dual perspective, this may also
be thought of as a generalization of Gauss’s Principle (in mechanics), wherein we use a
weighting matrix in our control cost minimization that may be different from M−1. It
turns out that the unique control that minimizes this control cost is given (instead of
equation (14)) by [14]

QC = −N(q, t)
−1/2

A+
N (Aa− b) = −N−1M−1AT [A(MNM)

−1
AT ]

+
(Aa− b), (21)

where AN = A(q, q̇, t)M(q, t)
−1
N(q, t)

−1/2
. There is one last point that is worth men-

tioning. We had assumed that the initial conditions of the controlled system satisfy the
trajectory requirements (8) and (9). What if the initial conditions do not lie on the
so-called manifold described by the trajectory requirements? If one is close to the tra-
jectory manifold, then instead of thinking of the trajectory requirements (8) and (9) as
φi(q, t) = 0 and ψi(q, q̇, t) = 0, one could consider the trajectory requirement as [13]

φ̈+Σφ̇+Kφ = 0, and ψ̇ = −Λψ, (22)

where φ and ψ are h- and (m − h)-vectors that contain the φi’s and ψj ’s respectively.
The matrices Σ, K, and Λ can be chosen so that the solutions φ and ψ to the equations
(22) tend to zero asymptotically as t→ ∞, so that the constraints φi = 0 and ψi = 0 are
ultimately satisfied. These equations lead to trajectory requirements which can again be
stated in the form of Equation (12), and the control force is again given explicitly by
equation (21)! The parameters that are used in the matrices Σ, K, and Λ control the
rate and nature of convergence of the trajectories of the dynamical system towards the
manifolds, φi(q, t) = 0 and ψi(q, q̇, t) = 0.

To illustrate the nature of this control force, let us go back to our toy problem
of controlling a mass m in a time varying gravity field so that it lies on the surface
ϕ(x, y, z, t) := x2(t) + y2(t) + z2(t) − L2 = 0. The uncontrolled equation of motion is

given by (2) in which M and Q are defined, and a = M−1Q = [0 g(x, y, z, t) 0]
T
. We

use the constraint equation

ϕ̈+ cϕ̇+ kϕ = 0, c > 0, k > 0, (23)
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whose solution as t → ∞ is ϕ = 0. Denoting, as before, q := [x y z]
T
, this constraint

can be rewritten as

Aq̈ = [x y z] q̈T = −q̇T q̇ − cq̇T q − (k/2)(qT q − L2) := b. (24)

Knowing M,Q,A, b, equation (21) then gives

QC=− mN−1

(AN−1AT )
qT {gy + q̇T q̇ + cq̇T q +

k

2
(qT q − L2)}, (25)

where N is a user-specified positive definite matrix. We note that the control is nonlinear
and no approximations related to the nonlinear nature of the ‘plant’ are made. No a priori

assumptions (such as a linear PD controller) are made about the controller either, and
the control minimizes the control cost given in (20) at each instant of time.

Flipping back to analytical dynamics, our closed form equation given by (15) for
the constrained motion of the system (10) presupposes that d’Alembert’s prescription is
valid for every mechanical system. What if it isn’t? Constraint forces that do not obey
d’Alembert’s prescription are called nonideal, and often such systems are referred to as
systems with nonideal constraints.

3.3 Mechanical systems with nonideal constraints and the set of controllers

for exact trajectory control

The difficulty of incorporating systems with nonideal constraints into the framework of
Lagrangian mechanics – though such systems are fairly commonplace in the physical
world – arises because of the following two main reasons:

1. We need to have the specification of constraints to be general enough so as to
encompass problems of practical utility.

2. The specification must, in order to comply with physical observations, yield the
accelerations of the constrained systems uniquely when using the math-ware of
analytical dynamics that has been developed over the last 250 years.

It is for this reason that most texts and treatises on mechanics summarily dispatch these
systems beyond their boundaries, early on in their treatments of analytical dynamics
(see [15] and [16]).

The main problem is how to modify and extend d’Alembert’s principle. One way of
doing this would be to extend d’Alembert’s prescription to say that at each instant of

time, the work done by the force of constraint is prescribed for the specific system at hand.
Such a principle would then state that [17]:

For any virtual displacement v(t) at time t, the work done by the

force of constraint WC := vTQC is prescribed to be equal to vTC(q, q̇, t),
(26)

where the n-vector C(q, q̇, t) is prescribed by the mechanician for the given, specific
system being modeled. The prescription of C can be done through experimentation,
and/or by analogy with other systems, or otherwise. At any given instant of time t, WC

can be positive, negative, or zero; this allows the possibility that energy can be fed into
the system at the constraint, or it can be removed at the constraint. When C ≡ 0 for
all time t, this extension of d’Alembert’s principle reverts to d’Alembert’s prescription.
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For any sufficiently smooth C, one can find the explicit equation of motion for such
a constrained system that satisfies exactly the constraint requirements (8) and (9) (or
alternately (12)). Dropping the arguments of the various quantities, the equation is [17]

M q̈ = Q−M1/2B+(Aa− b) +M1/2(I −B+B)M−1/2C := Q+QC , (27)

where B(q, q̇, t) = A(q, q̇, t)M(q, t)
−1/2

. We notice that the first two terms on the right
hand side of the first equality in equation (27) are identical to those on the right hand
side of equation (15), the nonideal nature of the constraint force having simply added
an additional term on the right hand side, for any given prescribed smooth function
C(q, q̇, t). By choosing the Lipschitz continuous function C(q, q̇, t) arbitrarily, equation
(27) provides all the possible Lipschitz continuous controllers [17] that can make the
uncontrolled system (7) exactly track the trajectory requirements specified by equations
(8) and (9). Clearly, the second and third members on the right hand side in the first
equality of (27) are M -orthogonal, and so

J(t) =
∥

∥B+(Aa− b)
∥

∥

2
+

∥

∥

∥
(I −B+B)M−1/2C

∥

∥

∥

2

.

The addition of the second term on the right hand side increases the cost from its
optimal value of ‖B+(Aa− b)‖2 to that now provided. As before, more generally, when
the weighting matrix in the control cost is N instead of M−1 the explicit control that
causes system (10) to exactly satisfy the trajectory requirements (8) and (9) is given in
closed form by [14],

QC = −N(q, t)
−1/2

A+
N (Aa− b) +N−1/2(I −A+

NAN )M−1/2C (28)

for arbitrary continuous functions C(q, q̇, t) and the equation of motion becomes

M q̈ = Q−N−1/2A+
N (Aa− b) +N−1/2(I −A+

NAN )M−1/2C := Q+QC . (29)

The second and third members in the first equality above are now N -orthogonal and
the control cost now becomes

J(t) =
∥

∥QC
∥

∥

2

N
=

∥

∥A+
N (Aa− b)

∥

∥

2
+

∥

∥

∥
(I −A+

NAN )M−1/2C
∥

∥

∥

2

. (30)

We can now expand Table 1 to expose the various analogous concepts that we have
developed (see Table 2).

4 Example

In this section, we provide an example that utilizes the connections we have developed
between analytical dynamics and control of nonlinear systems.

Energy control of nonlinear mechanical systems has become important nowadays and
various energy harvesting schemes are being developed. We consider here the problem
of energy control of a highly nonlinear mechanical system and approach it by using
the connections that have been developed in the previous sections between analytical
dynamics and control. The fundamental equation of mechanics (equations (14) and
(15)) is used to obtain the explicit nonlinear control force required to achieve the desired
energy control.
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Analytical Dynamics Control Theory

Unconstrained System
M(q, t) q̈ = Q(q, q̇, t)

Uncontrolled System, or Plant
M(q, t) q̈ = Q(q, q̇, t)

Constrained System

M(q, t) q̈ = Q(q, q̇, t) +QC(q, q̇, t)

Controlled System

M(q, t) q̈ = Q(q, q̇, t) +QC(q, q̇, t)

Constraints
φ̈+Σφ̇+Kφ = 0,

ψ̇ = −Λψ

Trajectory Requirements
φi(q, t) = 0, i = 1, 2, . . . , h

ψi(q, q̇, t) = 0, i = h+ 1, h+ 2, . . . ,m.

Gauss’s Principle (GP)

J(t) = [QC(q, q̇, t)]
T
M−1(q, t)QC(q, q̇, t)

Control Cost
T
∫

0

[QC(q, q̇, t)]
T
M−1(q, t)QC(q, q̇, t)dt

Constraint Force with GP

QC = −M1/2(AM−1/2)
+
(Aa− b)

Control Force, or Control

Optimal at EACH Instant of time Optimal over the interval of time [0,T]

Generalized Gauss’s Principle

J(t) = [QC(q, q̇, t)]
T
N(q, t)QC(q, q̇, t),

where N > 0

T
∫

0

[QC(q, q̇, t)]
T
N(q, t)QC(q, q̇, t)dt,

where N > 0

Equations of motion for Nonideal
Constraints

Mq̈ =
{

Q−N(q, t)
−1/2

A+
N (Aa− b) +

N−1/2(I −A+
NAN )M−1/2C(q, q̇, t)

}

Full set of continuous controllers
that satisfy trajectory requirements
for arbitrary continuous C(q, q̇, t).

Table 2: Analogous Concepts in Analytical Dynamics and Control Theory (detailed).

We consider a 3-DOF fixed-fixed Toda chain [18] as shown in Figure 2. Let mi denote
the mass of the i-th particle (i = 1, 2, 3) in the chain. The displacement of the mass mi

as measured from its equilibrium position is denoted by qi, and its velocity is denoted
by q̇i. Given any nonzero initial energy state, H0 of the chain, our aim is to stabilize the
chain at a different nonzero desired energy level, H∗. And to achieve this, control can
be applied to one or more of these three masses.

In the present example, we control the energy of the chain by actuating the first mass,
m1, alone. We shall impose the requirement, that the energy of the system be increased
to the desired value H∗ as a constraint on the mechanical system, and the constraint
force that will cause this constraint to be satisfied will then be the requisite control force
that would need to be applied to the mass m1. We begin with a description of the Toda
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Figure 2: A 3-DOF fixed-fixed Toda chain.

potential.

(i) Toda Potential and Spring Force: The expression for the nonlinear potential of the
Toda spring [18] is given by

u(q) =
a

b
eb q − a q − a

b
, a > 0, b > 0, (31)

whereas its exponential spring force Fs(q) can be derived from its potential as

Fs(q) = −Frestoring(q) =
∂u(q)

∂q
= a

(

eb q − 1
)

. (32)

A plot of the Toda spring potential and the Toda spring force is shown in Figures 3
and 4, respectively. For sufficiently small displacement, the spring force is approximately
linear. However, the nonlinearity of the force gains prominence as the displacement
increases. As can be inferred from Figure 4, a larger force is required to stretch the spring
by a unit distance than is required to compress it. Hence, the Toda chain considered
possesses spring elements that are stronger in tension than in compression. Such systems
arise frequently in structural sub-systems such as the stringers in suspension bridges.

Figure 3: Toda Spring Potential.
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Figure 4: Toda Spring Force.

(ii) Unconstrained System: Consider the 3-DOF fixed-fixed Toda chain as shown in Fig-
ure 2. The total energy of the chain can be written down as

H(q, q̇) =

3
∑

i = 1

[

1

2
mi q̇

2
i

]

+

3
∑

i = 0

[

ai
bi
ebi(qi+1 − qi) − ai (qi+1 − qi) − ai

bi

]

, (33)

where qo ≡ q4 ≡ 0 describe the boundary conditions of the fixed-fixed chain. The
equations of motion of the unconstrained (uncontrolled) system can be written down in
matrix form as Mq̈ = Q, or more explicitly as











m1 0 0

0 m2 0

0 0 m3





















q̈1

q̈2

q̈3











=











a1(e
b1(q2−q1) − 1) − a0(e

b0(q1) − 1)

a2(e
b2(q3−q2) − 1) − a1(e

b1(q2−q1) − 1)

a3(e
b3(−q3) − 1) − a2(e

b2(q3−q2) − 1)











. (34)

We take, for example, the initial conditions of this Toda chain to be

q1(0) = 1, q2(0) = 2, q3(0) = 1,

q̇1(0) = 2, q̇2(0) = 0, q̇3(0) = 2.
(35)

Figure 2 shows the parameter values of the masses (mi, i = 1, 2, 3) used as well
as the parameter values ai, bi, i = 0, 1, 2, 3 that characterize the four different Toda
springs. Using these parameter values and the initial conditions given in (35), the uncon-
strained equations of motion given in (34) can be numerically integrated. We note that
for all the simulations presented in this section, the equations of motion have been inte-
grated using the ‘ode45’ scheme in the Matlab environment with a relative integration
error tolerance of 10−10 and an absolute error tolerance of 10−13. Figure 5 (top) shows
a plot of the displacements of the three masses from t = 0 to t = 10 time units for the
unconstrained (uncontrolled) system.

The unconstrained Toda chain is a conservative system and the energy, being an
integral of motion, remains constant throughout the duration of the simulation (see
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Figure 5: Time history of displacements for the unconstrained system (top) and constrained
system (bottom).

Figure 6: Time history of energy of the 3-DOF Toda chain.

dotted line in Figure 6). For the parameter values chosen, the energy level of the chain is
H0 = 14.22 units. Our aim is to increase the energy of the chain to a new and different
value.

(iii) Constraints: We shall assume that we want the nonlinear Toda chain described by
equation (34) (with the parameter values as shown in Figure 2) to have an energy level
H∗ = 100 units by controlling only mass m1. In order to achieve this control objective,
we impose the following two types of constraints on the unconstrained system. The first
deals with our objective to change the energy of the system to its desired value, H∗; the
second deals with the fact that we want to achieve this by actuating just a single mass
from amongst the three masses in the chain, namely, only mass m1 (see Figure 2).
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1. Energy Control Constraint : The energy control constraint is given by

d

dt
(H(q, q̇)−H∗) + β(H(q, q̇)−H∗) = 0, (36)

where β > 0. The solution to this differential equation shows that as t → ∞,
H(q, q̇) → H∗. Notice that this constraint allows the 3-DOF Toda chain to be
started from any arbitrary initial energy state H0 (see equation (22)) so that it
reaches its desired energy state, H∗, as t→ ∞.

2. No-Control Constraints : Since no control force is to be applied to masses m2 and
m3 of the Toda chain, the second and third equations in the equation set (34) must
remain unchanged in the controlled system. Therefore, the unconstrained equations
of motion of masses m2 and m3 are themselves the constraints and guarantee that
no control is applied to either of these two masses! Thus, in addition to the energy
constraint given by (36), the unconstrained system (equation (34)) is also subjected
to the following two constraints.





m2 0

0 m3









q̈2

q̈3



 =





a2(e
b2(q3−q2) − 1) − a1(e

b1(q2−q1) − 1)

a3(e
b3(−q3) − 1) − a2(e

b2(q3−q2) − 1)



 . (37)

When this set of constraints (equations (36) and (37)) are expressed in the general
constraint matrix form of equation (12), we obtain Aq̈ = b, or more explicitly











m1q̇1 m2q̇2 m3q̇3

0 m2 0

0 0 m3





















q̈1

q̈2

q̈3











=











q̇TQ− β(H −H∗)

a2(e
b2(q3−q2) − 1) − a1(e

b1(q2−q1) − 1)

a3(e
b3(−q3) − 1) − a2(e

b2(q3−q2) − 1)











. (38)

(iv) Explicit Control Force: With the matrices M,Q,A, b at our disposal, the control

force QC can be calculated using (14) and is given by

QC(q, q̇) =











−ξo (H −H∗) m1 q̇1

0

0











, (39)

where the value of β = ξo m1 q̇
2
1 has been chosen to avoid any singularities in the control

force, which might arise when the actuated mass m1 has zero velocity. In the present
example, for illustration, the positive constant ξo has been chosen to be 0.03. The control
force (equation (39)) obtained is optimal and it minimizes the control cost given by (20)
at each instant of time, with N =M−1. Notice from equation (39) that the control force
acting on the first mass appears to make it move like a self-excited oscillator!

(v) Dynamics of Constrained System: The equations of motion of the constrained (con-
trolled) Toda chain can now be written down using equations (14) and (15), where M
and Q are given by (34), and QC is given in (39). A plot of the displacements of the
three masses of the controlled system (using the parameters shown in Figure 2), is shown
in Figure 5 (bottom) from t = 0 to t = 10 time units. A plot of the time history of the
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energy is depicted in Figure 6 for the constrained system. The solid line in the figure
shows that the application of the control force has resulted in an increase of the energy
of the 3-DOF Toda chain from an initial energy level of H0 = 14.22 units to the desired
energy level of H∗ = 100 units. Figure 7 shows a plot of the time history of the nonlinear
control force acting on the first mass to achieve the desired transition. Once the desired
energy level is attained, the control force automatically becomes zero and we make use
of the conservative nature of the chain to remain at the desired energy level for all future
time.

Figure 7: Time history of control forces acting on the 3-DOF Toda chain

It can be shown with some effort that the nonhomogeneous Toda chain that we have
considered is controllable using control on just mass m1 in the sense that the system can
be “moved” from any arbitrary energy state H0 6= 0 to any other energy state H∗ 6= 0
using the control described in (39). We don’t prove that here, since it will take us too
far afield from the central theme of this paper.

5 Conclusions and Open Problems

In this paper, we have established a connection between the problem of constrained mo-
tion and the problem of control of nonlinear mechanical systems. An example illustrating
the development of exact, closed-form energy control of a highly nonlinear multi-degree of
freedom system that utilizes this connection has been demonstrated. The developments
outlined herein form just the beginnings of a new path to our understanding of the syn-
thesis of analytical dynamics and control. Numerous open questions remain unanswered,
such as, robustness of control, extensions to multi-body dynamics and the dynamics of
continua, and applications to robotics, space systems, and fluid mechanical systems.
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Abstract: A non-standard bifurcation, similar to a transcritical one, in a model of
a bioreactor has been detected. This happens in a periodically-forced system with
restrictions on the state space. The bioreactor is periodically fed with substrate. In
the mathematical model, a periodic orbit approaches (without hitting) the restric-
tion surface as a bifurcation parameter is varied. The way the orbit approaches the
switching surface in the three-dimensional state space is such that it becomes parallel
to the restriction surface. This phenomenon is somehow analogous to a transcritical
bifurcation since another periodic orbit exists inside the restriction surface, but they
do not collide. Full model and bifurcation description are shown.

Keywords: bifurcation; bioreactor; periodically-forced; nonlinearity.

Mathematics Subject Classification (2010): 34C23, 34C25, 34D20, 37C27.

1 Introduction

The biological wastewater treatment uses different techniques to create optimum environ-
mental conditions that promote the removal of organic matter by using microorganisms.
One of the most common is the activated sludge system, which uses aeration for bacte-
ria [1, 2].

A least-used system, although it is a current research topic, is the Anaerobic Digestion,
which operates in the absence of oxygen. The UASB (Upflow Anaerobic Sludge Blanket,
or Upflow Anaerobic Reactor) is a type of tubular bioreactor operating in continuous
mode and in upflow. These systems have an additional advantage because they can treat
effluents with high organic load wastewater from agriculture and food industry tasks. The
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efficiency of this system is estimated to be a reduction of the COD (Chemical Oxygen
Demand) of approximately 80%. COD is the parameter used to characterize the organic
water pollution. This organic matter, in natural conditions, may be slowly biodegradable
to CO2 and H2O. It can take from several days to a few million years, depending on the
type of organic matter and biodegradation conditions. Another advantage is the energy
production (methane). This also implies a low sludge production compared to aerobic
digestion [5, 8].

1.1 Operation

In high-load reactors, UASB is one of the most used in the world. Its main advantage
is due to the fact that it retains the biomass without the need for support. It does so
through the formation of grains, which makes the reactor more economical and gives
technical advantages over other advanced reactors. In general, the success of this reactor
relies in that the grains forming the bioparticles are very active and thick. This gives the
characteristics of a compact reactor without plugging problems, and without the high
costs of traditional packaging.

Anaerobic degradation process is carried out in four stages: hydrolysis, acidogenesis,
acetogenesis and methanogenesis.

• Hydrolysis : In this stage the extracellular enzymes of fermentative bacteria are
responsible for converting the insoluble organic matter into soluble molecules. This
complex molecules breaking is carried out in order for the bacteria to digest organic
matter. This stage is very important for effluents treatment with a high content of
organic matter.

• Acidogenesis : The compounds formed in the hydrolytic stage are absorbed through
the cell wall of acidogenic bacteria. This performs an internal degradation process
through microorganisms metabolism which produces carbon dioxide, hydrogen and
volatile fatty acids (AGV).

• Acetogenesis : AGVs are converted into acetic acid through the effect of acetogenic
bacteria, which also produce hydrogen and carbon dioxide.

• Metanogenesis : At this stage, methane is produced by the activity of a group of
bacteria, which have two routes for gas generation. On the one hand, the aceto-
clastic path, where acetic acid molecules are converted into methane and carbon
dioxide. On the other hand, we have the hydrogenophilic path, where methane is
produced by a reduction reaction of carbon dioxide with hydrogen.

A complete and comprehensive model for anaerobic digestion called ”The IWA (In-
ternational Water Association) Anaerobic Digestion Model No 1 (AMD1)” features 26
state variables and 19 biological reaction schemes [6]. This model allows for standard-
ization of existing systems and is a starting point for the development of specific models.
Without losing sight of its limitations, a mathematical model can be an important tool
to understand the kinetics of the processes involved, and to develop and implement good
systems for the design and control of wastewater treatment plants.

Our model in this paper takes into account the material balance equations of three
state variables: biomass (expressed as volatile suspended solids concentration), substrate
(expressed as chemical oxygen demand COD) and volatile fatty acids (VFA). It is based
on a kinetic model unstructured and non-segregated. It considers a total reaction which
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Figure 1: Scheme of an UASB.

groups various microbial colonies within the volatile soluble solids (VSS), and substrates
involved in chemical oxygen demand (COD) [4].

2 Modeling

Round 1950, Monod suggested that the bacteria growth rate depends not only on the
microorganisms concentration, but also on the substrate concentration [3]. It is currently
accepted that conversion of soluble substrates during anaerobic stage is governed by
Monod equation, which describes this relationship in a way similar to the one proposed
for the Michaelis-Menten enzyme-substrate interaction.

µ = µmax

S

K + S
(1)

and we have

Ṡ = D(Sin − S)− Y (µmax

S

(K + S)
)X, (2)

Ẋ = D(X in − αX) + (µmax

S

(K + S)
)X. (3)

In this paper we consider the concentrations of substrate and biomass in the input
current as periodic functions like

Sin(t) = Sin(1 + β cos(ωt)), (4)

X in(t) = X in(1 + δ cos(ωt)). (5)
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Thus our final model is

Ṡ = D(Sin(1 + β cos(ωt))− S)− Y ((µmax

S

(K + S)
)X, (6)

Ẋ = D(X in(1 + δ cos(ωt))− αX) + ((µmax

S

(K + S)
)X, (7)

where S is the substrate concentration in the reactor (mg / l COD), D is the dilution
factor (d−1), Sin is the substrate concentration in the inlet stream (mg / l COD), α = 1−η
where η is the efficiency of the separator (0.93), X is the biomass concentration in the
reactor (mg / l VSS), X in is the biomass concentration in the inlet stream, µmax is the
maximum growth rate of microorganisms (d−1), K is the Monod constant, also called
half-saturation constant (kg COD/m3), β is the amplitude of the forcing function for the
substrate, δ is the amplitude of the forcing function for the biomass and finally, ω is the
frequency of the forcing functions.

Since both S and X must fulfill S ≥ 0 and X ≥ 0 for meaningful operation, we
consider X = 0 and S = 0 as restriction surfaces.

3 Analysis

We study four cases:

3.1 First case

We first consider that we have no forcing. This is, the amplitude for the forcing is zero.
Also we consider that the inflow wastewater contains biomass.

Thus we take

β = 0, δ = 0, X in = 240,

(certain values for parameters are taken from experiments in [7]).

Then, for the equilibrium points we have

D(Sin − S)− Y ((µmax

S

(K + S)
)X = 0, (8)

D(X in − αX) + ((µmax

S

(K + S)
)X = 0. (9)

After some algebraic operations we get

X = (Sin + Y X in − S)/(αY )

and thus

(µmax −Dα)S2 + (DSinα−DKα− µmaxS
in − Y µmaxX

in)S +DKαSin = 0.

The values for the parameters were taken from the experimental work in Munoz [7].
D = 3, Sin = 3000, X in = 240, µmax = 1.32, α = 0.07, Y = 3.35 and K = 5522.

Two equilibriums are obtained, but one of them is not physically possible.
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3.2 Second case

In general, the input current does not contain biomass composition. Thus we consider
now that we have no forcing and no biomass in the inflow

β = 0, δ = 0, X in = 0.

We have then

D(Sin − S)− Y ((µmax

S

(K + S)
)X = 0, (10)

D(−αX) + ((µmax

S

(K + S)
)X = 0. (11)

By inspection, we can deduce that both equations are fulfilled when X = 0, which
corresponds to bioreactor washout condition. This is bad operation for the reactor.

Also, an equilibrium point is found for

S = DKα/(µmax −Dα)

and

X = (Sinµmax −DSinα−DKα)/(Y α),

which is physically possible.

3.3 Third case

Now we consider that ω = 0, thus we do not have periodic forcing. But we still have the
effect of parameters β and δ. We also consider that wastewater has biomass. Thus,

ω = 0, X in = 240,

and the equations for the equilibrium points are

D(Sin(1 + β)− S)− Y ((µmax

S

(K + S)
)X = 0, (12)

D(X in(1 + δ)− αX) + ((µmax

S

(K + S)
)X = 0. (13)

After some algebra we get

X = (Sin(1 + β) + Y X in(1 + δ)− S)/(αY )

and then

(µmax−Dα)S2+(DSin(1+β)α−DKα−µmaxS
in(1+β)µmaxX

in(1+δ))S+DKαSin = 0.

For positive β and δ we obtain two equilibriums, but one of them is always unfeasible.
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3.4 Forth case

We consider again that we have no periodic forcing but we have influence through β and
δ. Moreover, we assume now that we have no biomass in the input flow. Thus,

ω = 0 X in = 0.

Then, the equations for the equilibrium points are

D(Sin(1 + β)− S)− Y ((µmax

S

(K + S)
)X = 0, (14)

D(−αX) + ((µmax

S

(K + S)
)X = 0. (15)

Similarly to the second case, we have an equilibrium point which corresponds to
washout condition (X = 0), and a second equilibrium at

S = DKα/(µmax −Dα)

and
X = (Sin(1 + β)µmax −DSin(1 + β)α −DKα)/(Y α),

which is physically feasible.
In summary, balance characteristics depend on the value of X in. When the input

current is present, biomass generates two equilibrium points, but only one is physically
meaningful. On the other hand, when we have no input biomass, one of the equilibrium
points corresponds to washout.

4 Numerical Results

We consider now real periodic forcing where ω 6= 0. No closed-form solutions are available
now and thus we rely on numerical simulations.

The following figures (Figs. 2–4) show waveforms, orbits in the phase space and bi-
furcation diagrams when we vary the most significant parameter, namely the dilution
factor D. The almost non-smooth point in the bifurcation diagrams is due to washout
condition. At this point, both periodic orbits (one corresponding to washout, inside the
restriction surface; and another one without touching the restriction surface) get infinitely
closer. We called this phenomenon a transcritical-like bifurcation since although there
is not really a qualitative change in the state space (and thus it is not a bifurcation), it
resembles very much a transcritical bifurcation. Moreover, from a practical view, both
orbits are indistinguishable and can be considered as if the washout orbit is the only one
which exists.

4.1 Transcritical-like bifurcation

In this subsection we describe an exotic bifurcation which is found in the system.
Namely, since in this case we have a periodic forced system, the natural phase space

is S× R
2, where S corresponds to the unit circle.

Then, as parameter D is increased, two periodic orbits, one lying in the washout
condition, with X = 0 and another one with X 6= 0 approach. The non-washout periodic
orbits aligns with the washout one as parameter D increases, and gets infinitely closer to
it. This behaviour is not generic and thus we consider it as a non-standard bifurcation
(see Figs. 5–7).
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Figure 2: Waveform for the biomass evolution when D = 5.

Figure 3: Orbit in the phase space when D = 5.

5 Conclusion

Based on dynamic analysis of the model, it was found that in general, the study of
an UASB reactor has good stability to different operating conditions, especially when
the effluent to be treated is from a leachate. This is because in this case the washout
phenomenon can occur.

The system stops working properly under washout conditions. According to the
results of different simulations, the parameters that most influence this condition are the
dilution factor D (which is related to the speed with which the effluent passes through
the reactor) and the solid – liquid – gas separator efficiency parameter α.

Numerical simulations showed that, depending on the biomass which is present in
the inflow, washout or good operations are possible. Also, when periodic forcing is
considered, periodic orbits can be found, as expected. A non-standard transcritical-like
bifurcation of periodic orbits was also found.
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Figure 4: Bifurcation diagrams for the substrate and the biomass as parameter D (dilution
time) is varied.

Figure 5: Bifurcation diagram as parameter D is varied. Two periodic orbits get infinitely
closer at a transcritical-like bifurcation point.

Figure 6: Two periodic orbits which coexist in the phase space. One of them corresponds to
washout condition since X

in = 0.
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Figure 7: Coexistence of two periodic orbits in the natural space, close to collission.
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Abstract: In this paper an analysis of equations describing single and multi-joint
muscles cooperation during movement of limb segments is presented. Additionally,
the Pareto-optimum problem is considered for the human upper limb in case of move-
ment in sagittal plane. Uncertainty of this problem and some additional physiological
restrictions such as angular range of motion or tissue tension are described. More-
over, effects of practical verification based on the video analysis of the volunteers arm
movement and its lack of reproducibility are addressed. Examination of the artificial
arm prototype shows similar behaviour to the human biological musculo-skeletal sys-
tem. Furthermore, results of comparison with those obtained by other authors are
shown.

Keywords: biomechanics; muscle cooperation; motion analysis.
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1 Introduction

The structure of biological systems is complex, which causes serious challenging prob-
lems in their control. The occurred imperfections, external actions on the objects under
investigations or fatigue of musculo-skeletal systems affect trajectories of motion, their
speed and precision of repetitions. It is conjectured that a movement of biological system
is not determined along one fixed trajectory. Namely, there are infinite number of admis-
sible paths of moving from one point to another one. In order to verify the hypothesis a
mathematical model of cooperation of one and multi-joint muscles of the human upper
limb during motions is proposed and analysed. This model is used to illustrate the way
of cooperation of any number of single and multi-joint flexors and extensors of an arm
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and forearm. Moreover, inability to determine exactly one trajectory, which is Pareto-
optimal solution for the existing biological limitations, is also shown. On the other hand,
it is proved that the set of admissible trajectories is narrow. Obtained theoretical results
are verified in an experiment based on the repeatability of the human arm movement.
In order to record the trajectories of movement a video analysis is used. The presented
model is also applied to analysing the human walking on the treadmill and the obtained
results are compared with earlier results concerning the issue. More sophisticated mod-
els, in this line, can be applied to analysing any system of the repeatable movement of
the human body.

2 Mathematical Description of Problem

2.1 Notation and physiological description

Let us introduce a problem of a forearm flexion undergoing following muscle actions. The
following notation is applied:

(i) m, r – one joint flexors muscles of forearm and arm, respectively;

(ii) n – two joint flexors;

(iii) o, s – one joint extensors of forearm and arm, respectively;

(iv) p – two joint extensors muscles.

Figure 1 presents an example of such system for a few of these muscles. Furthermore,
the following nomenclature is used:

Figure 1: Example of the one and two joint muscles extensors and flexors system.

(i) z(rj)a – one joint arm flexors, a ∈ (1, ..., r);

(ii) z(pj)b – one joint forearm flexors, b ∈ (1, ...,m);

(iii) z(2)c – two joint flexors, c ∈ (1, ..., n);

(iv) p(rj)d – one joint arm extensors, d ∈ (1, ..., s);
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(v) p(pj)e – one joint forearm extensors, e ∈ (1, ..., o);

(vi) p(2)f – two joint extensors, f ∈ (1, ..., p).

It is well known that contraction of the flexors causes flexion of the limb and con-
traction of the extensors causes extension assuming that they act stronger then its an-
tagonists. For a precise movement they have to cooperate in an appropriate way (see
[2-9]).

2.2 Formulation of the mathematical problem

Let us consider a forearm flexion. In this particular case the muscles zpj and z2 have to
contract, whereas the muscles ppj and p2 have to reduce their tension. If the contraction is
strong enough and not compensated by p2, then we will observe also an arm flexion, what
is undesirable in this case. To prevent this movement a contraction of prj muscles has
to occur. This will compensate a momentum of two joint muscles yielding a movement
of a forearm only. Similarly, such cooperation will happen in the case of other limbs
movements. In what follows we analyse this problem in the case of arm and forearm
movement in the sagittal plane. In the considered model it is assumed that each muscle
contributes to the creation of the momentum acting on the joint.

We define it as follows:

Mi = ri · Fi, (1)

where r means forces arm acting with respect to the joint with axis of rotation (see Figure
2). This arm is defined as a function of muscle length and limb flexion angle. Observe
that it is different for each muscle.

Figure 2: Example of defining forces arm acting on a joint.

The following forces momentum are acting on the elbow joint:

(i) flexing forearm: Mzp =
∑r

i=1 M(zpj)i +
∑n

i=1 M(z2)i;

(ii) straightening forearm: Mpp =
∑o

i=1 M(ppj)i +
∑p

i=1 M(p2)i.

On the shoulder joint the following forces momentum are acting:

(i) flexing arm: Mzr =
∑r

i=1 M(zrj)i +
∑n

i=1 M(z2)i;

(ii) straightening arm: Mpr =
∑o

i=1 M(prj)i +
∑p

i=1 M(p2)i.
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Moments of the straightening forces are defined as the product of force Fi and constant
radius block d.

Hence it follows, that sum of momentum acting on the joint are:

(i) for elbow joint: Ml = Mzp + Mpp;

(ii) for arm join: Mr = Mzr + Mpr.

A movement in one joint is caused by muscles lengths and tensions (forces) change
involved in the movement, which belong to the physiological phenomenon ([2, 4, 6]). This
means that we have to consider these equations as a system. Only in this way we can
correctly and completely describe the problem.

Introducing the following notation:

r
∑

i=1

M(zpj)i = Zp;
n
∑

i=1

M(z2)i = Z2;
r
∑

i=1

M(zrji) = Zr;

o
∑

i=1

M(ppj)i = Pp;

p
∑

i=1

M(p2)i = P2;

s
∑

i=1

M(prj)i = Pr.

(2)

The system dynamics is governed by the following system of equations:

{

Zp + Z2 + Pp + P2 = 0,

Zr + Z2 + Pr + P2 = 0.
(3)

This yields:

Zp + Pp = Zr + Pr. (4)

It can be observed that two joint muscles do not compensate a movement in an
adjacent joint. Transforming this equation into a quotient form and assuming according
to physiological behaviour that Zr + Pr 6= 0, we obtain:

Zp + Pp

Zr + Pr

= 1. (5)

From that we can observe that when the flexor forces increase, the force Pp have to
decrease or Zr + Pr have to increase.

However, this equation, with these conditions is not marked – there is infinitely many
solutions. This is reflected in the actual behaviour of the muscular system. During
movement it do not realise the ideal of one operating model. It can be explained by the
imperfection of the nervous system, muscle fatigue or other physiological or environmen-
tal reasons.

In order to obtain the best solution, optimisation methods are used, such as min-
imising the cost function of energy, assuming that individual muscles can not exceed
the maximum physiological tension. It is also possible to consider optimisation problem
based on minimising the tension σ of a muscle.

Let us consider the following Pareto minimisation problem:

{σi}, σi =
Fi

Si anat

, (6)
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where σi means i-th muscle tension and Fi denotes force generated by i-th muscle, Si anat

means anatomical cross-section area of i-th muscle.
We denote by J the following objective function:

J : Rr+m+s+o
+ =⇒ R

4
+, (7)

J(σ1, ..., σn) =

(

r
∑

i=1

σi,

r+m
∑

i=r+1

σi,

r+m+s
∑

i=r+m+1

σi,

l
∑

i=r+m+s

σi

)

, l = r + m + s + o. (8)

We minimise the function J with the following conditions:

0 ≤ σi, σi ≤ σmax, i = 1, ..., l,

r+m+s
∑

i=r+1

Siσiri(α) =

r
∑

i=1

Siσiri(α) +

l
∑

i=r+m+s

Siσiri(α),
(9)

where
r+m+s
∑

i=r+1

Siσiri(α) −
l
∑

i=r+m+s

Siσi, ri(α) = M, (10)

and M is the momentum generated by the flexors. Moreover:

σ1 = σ2 = ... = σr;

σr+1 = σr+2 = ... = σr+m;

σr+m+1 = σr+m+2 = ... = σr+m+s;

σr+m+s+1 = σr+m+s+2 = ... = σl.

M > 0.

(11)

Even if we know σi max, i = 1, ..., l, α ∈ (0, π), Si, the problem still is indeterminate,
that is there exist infinitely many solutions. For obvious reasons some of them are more
important for us than others. To choose them an additional criterion have to be added,
that is a scalar function have to be supplemented to the objective function (for example,
such as the function of the cost of energy E(σ), which limits the number of Pareto-optimal
solutions). Moreover, it is also possible to enter additional, physiological restrictions (see
Section 3), so the set of admissible solutions becomes narrower.

3 Physiological Movement Restrictions

First of these restrictions concerns the limbs range of motion, and is provided in Table
1.

This introduces restrictions on the angles of abduction/adduction, flexion/extension
and reversion/inversion of the limb or its segments. It can be combined with a stress
distribution in the individual muscle. Another physiological condition is the phenomenon
of the optimal length of the muscles and increase of tissue resistance (see for example
Figure 3) in the extreme positions of the limb or change in limb muscle an its moments
(see Figure 4). It can be seen that muscles not always work in optimal range, which
moreover does not always cover an optimal moment arm.
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Table 1: International Standard Orthopaedic Measurements Norm for an upper limb.

Joint Plane Norm
of motion International Standard

Orthopedic Measurements [deg]
Shoulder S 50-0-170

F 170-0-0
T 30-0-135

R(F90) 90-0-80
R(F0) 60-0-70

Elbow S 0-0-150
Forearm R 90-0-80

radio S 50-0-60
-carpal F 20-0-30

Figure 3: Corelation beetween muscular and capsular tension during arm movement [10].

Figure 4: Moment arm for main forearm muscles and respective weighted mean moment arm
[11].
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Overlapping of the conditions leads to a reduction of possible solutions. However, as
mentioned, the last of restrictions should make the solution possible. Not cost-effective
(energy or due to excessive stretching of tissue) will be eliminated by the central nervous
system. So there will be some narrow family of solutions. This is confirmed by the
experience, the results of which are presented in Figure 5. It is also shown experimentally,
using a prototype of artificial arm, that this argumentation is correct.

4 Practical Verification of the Problem

Figure 5: Repeatability of arm and forearm trajectories during subsequent cycles. Shoulder
(blue), elbow (red), wrist (green) and palm (violet) trajectories (an example) [1] (with permis-
sion).

Coordinates of the upper limb joints that during the test were marked with reflective
markers were determined by analysing software, specially developed for this purpose.
Markers were illuminated coaxially to the optical axis of the lens to obtain maximum of
reflectivity. The obtained results show that in studied biological systems there are no
fixed trajectories. Five volunteers were examined. Their task was to raise their arm in
the following manner:

(i) start from point on the level of their knees;
(ii) finish at a specific point above their heads;
(iii) complete the motion while sitting, without standing up;
(iv) complete the motion ten times.
Points were marked on the rack. No other restriction in arm movements were applied.

Luminescent markers were placed on the shoulder joint, elbow, wrist and small finger.
It is shown that the biological system, which is the upper limb human, does not have
well-determined trajectory.

5 Conclusions

Due to many factors (imperfections of central nervous system phenomena, onset of muscle
fatigue and other human and environmental factors), each trajectory was different. These
observations confirmed the study published in the references [8] and [9]. In the first one,
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trajectory has been studied as the dependence of the position of the wrist the and in
the second one movement were analysed in the transverse plane. It was also found that
for each of movement the strategy was different (different phases of motion at different
speeds, different bending angles of the limb). This means another work of muscles each
time, which can be an illustration of an uncertainty muscles cooperation problem (see
also [1]). For each cycle, volunteer make the movement in a slightly different manner
(different speeds, limb flexion angles, etc.). There are as many solutions as combinations
that meet a specified target. In this particular case, there are also some biological and
physiological constraints such as maximum bending angles of the joints, the maximum
force that can generate muscle action. When analysing the results, it was hypothesised
that the differences between the two depend on the state of the musculo-skeletal injuries
or illnesses completed. Paper [2] confirms the observations of muscle cooperation during
movement. The authors have presented a measurement of EMG signals, which shows
that in the case of movement in one or two joints, an activation of muscles that spanning
a stationary joint was observes.
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