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Abstract: Production and construction asymmetry of railway vehicles in the pres-
ence of multiple track irregularities on the rail influences the time flow of the wheel. It
has an influence on wheel and rail wear defects, especially on driving safety. Produc-
tion and construction asymmetry was found during the experimental investigation
of the basic parameters of mechanical properties of a double-axel freight wagon of
Smmps type. This was an impulse for a systematic investigation of the influence
of production and construction asymmetry on the vertical dynamic of complex me-
chanical systems, such as a railway vehicle. The current contribution introduces a
methodology of analytical solution of the influence of production and construction
asymmetry on the vertical dynamic response of a double-axel freight wagon in the
presence of multiple track irregularities. Measured field data were used to validate
the model.
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1 Introduction

This paper was successfully presented at the conference of Dynamic Systems Theory in
Lodz, Poland, 2013. In the present paper, an analytical method to study the effects of
production and construction asymmetry on the vertical vibration response of a railway
wagon in the presence of multiple track irregularities and their consequences is presented.
A review of published material on the subject revealed that many analyses [18] have
been made from which general conclusions regarding the dynamic behavior of complex
mechanical systems were drawn. The fundamentals of this subject are covered in detail in
[3], and will not be treated here. The reader is referred to [4,5,12] for further background.

Investigation of the influence of asymmetry on ground vehicles as a simple model was
introduced in 1925 and today it is mostly used as a textbook example in vibration of
mechanical system with two degrees of freedom [2, 5]. The full vehicle model dealing
with the influence of production and construction asymmetry on the vertical vibration
response of a railway wagon in the presence of multiple track irregularities is rarely de-
scribed in literatures. Therefore, it is the intention of this work to extend preceding
analysis by introducing the effect of production and construction asymmetry on the ver-
tical vibration response of complex mechanical systems under multiple track excitations.
In this paper a double-axel freight wagon modeled as a 9 DOF three-dimensional system
intended for the investigation of the effect of production and construction asymmetry
on vertical vibration response in the presence of multiple track irregularities and their
consequences is presented.

2 Literature Review

In analyzing the interaction between the train and the track, the vehicle system can be
modeled as one-dimensional, two-dimensional, or three-dimensional model. The simplest
vehicle model is a single degree of freedom (DOF) one-dimensional model, which considers
a single wheel with static force representing the static load due to the car-body and
bogie where the contact between the wheel and rail is maintained by either linear or non-
linear spring. This model has been applied in a number of published studies concerned
with dynamic wheel-rail interaction; see for example [9]. The single DOF is considered
sufficient for high frequency vibration analysis considering the interaction between the
wheel and rail with surface irregularities. However, this model is insufficient to analyze
the contributions due to pitch and roll motions of the vehicle on wheel-rail impact load or
to investigate the effect of multiple defects in different wheel-sets and/or multiple surface
irregularities on the rail.

Alternatively, two-dimensional models that include half of the car-body and two bo-
gies and four wheel-sets have been most widely formulated and applied for studies on
wheel-rail interactions. Nielsen and Igeland [17], developed a four-DOF two-dimensional
pitch plane model in order to study the influence of wheel and rail imperfections on
vehicle-track interaction. This model has been further employed by Dong [15] and
Cai [16] in order to simulate the vehicle-track interaction under wheel defects. Sev-
eral two-dimensional vehicle models have also been formulated with 10-14 DOF that
consist of half bogie and a quarter of the car-body weight and include the pitch motion
of both the car-body and bogie [13, 14]. Such a model would be sufficient to analyze
the dynamic interaction between the leading and trailing bogie and wheels and effect of
the cross wheel defects. However, contributions due to either pitch or roll motion of the
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car-body and bogies have to be neglected in such models.

Three-dimensional vehicle models have been developed incorporating a full or half
of the car-body, two bogies and two wheel-sets. Such models permit dynamic coupling
between the leading and trailing bogies. Sun et al. [10] developed a comprehensive
three-dimensional vehicle model in order to study lateral and vertical dynamics of the
wagon-track system [11]. Such a model provides all the advantages of roll, pitch plane
models and is quite adequate for the investigation of the influences of coupled vertical,
the pitch and lateral dynamics of the vehicle [7]. The pitch and roll motions of the car-
body and bogie that could enhance the wheel-rail impact force caused by the wheel and
rail irregularities can be adequately investigated. However, the effects of production and
construction asymmetry on the vertical vibration response in the presence of multiple
track irregularities and their consequences have never been investigated with this full
three-dimensional vehicle model. Therefore it is the intension of this paper to introduce
an analytical method to solve vertical vibration response of complex mechanical system
with multi-DOF. This method is limited to vertical vibration responses only.

3 Railway Vehicle Model

In the present paper an analytical model of a railway vehicle was developed as illustrated
in Figure 1. The model consists of a car body, two bogie frames and four wheel-sets.
The car body is modeled as a rigid body having a mass m, and having moment of inertia
Jx and Jy about the transverse and longitudinal centroidal horizontal axes, respectively.
While the bogie frames are considered as rigid bodies with m1 and m2, with moment of
inertia Jx1 and Jy1 for the front bogie and similarly rear bogie having moment of inertia
Jx2 and Jy2 about the transverse and longitudinal centroidal horizontal axes, respectively.
The springs in the primary and secondary suspension system are characterized by spring
stiffness constant kjki and damping coefficient bjki, where j = 1, 2, quadrant k = 1,
2, 3, 4 and spring position orders i = 1, ..., n. Assuming small vertical motion and
the vehicle car body to be rigid, its motion may be described by the relative vertical
displacement wt and rotations about the main longitudinal horizontal axis ϕx and about
main the transverse horizontal axis ϕy. Likewise, the motions of the two bogie frames
are described by w1, ϕx1, ϕy2 for the front bogie frame and w2, ϕx2, ϕy2 for the rear
bogie frame each about their centroidal. The railway wagon is thus represented by a 9
DOF mechanical system.

4 Analytical Method and Solution

A number of analytical solutions to vehicle dynamic response have been developed in
the past. Some authors have considered the mechanical analog of the DNA base pair
oscillations to analysis rotational oscillations of a DNA fragment in detail, see [8]. To
facilitate analyse, it is essential to reduce the complex vehicle vibrating system to its
simplest elements. At the same time, careful judgment is called for to avoid assumptions
that are not in accord with the basic realities of the situation. Hence with this point in
mind, in the present paper the analytical solution of the railway vehicle is considered to
be a system of three rigid bodies with 9 degrees of freedom coupled by spring-damper
elements with the consideration of linear viscous damping, as shown in Figure 2.

The equations of motion for the railway model considered in this paper are derived
from the Lagrange equation of motion and therefore it is necessary to determine the
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Figure 1: The analytical model.

kinetic energy Ek, potential energy Ep and Rayleigh dissipation function Rd of the me-
chanical system. The vectors of generalized coordinates system are given as

qj(t) = [w,w1, w2, ϕx, ϕy, ϕx1, ϕy1, ϕx2, ϕy2]
T , q̇j(t), q̈j(t). (1)

The kinetic energy:

Ek =
1

2
mẇ2 +

1

2

(

Jxϕ̇x
2 + Jyϕ̇y

2 − 2Dxyϕ̇xϕ̇y

)

+ Ek1 + Ek2, (2)

where
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1

2
m1ẇ1

2 +
1

2
Jx1 ˙ϕx1

2 +
1

2
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2, Ek2 =
1

2
m2ẇ2

2 +
1

2
Jx2 ˙ϕx2

2 +
1

2
Jy2 ˙ϕy2

2.

To determine the potential energy of the mechanical system, it is necessary to deter-
mine the displacements, marked by Ajki, of the individual springs in the primary and
secondary suspension system wjki characterized by spring stiffness constant kjki, where
j = 1, 2, quadrant k = 1, 2, 3, 4 and spring position orders i = 1, ..., n.

Points Vertical displacements Constant stiffness
A111 w111 = w1 (t)− y111ϕx1 (t) + x111ϕy1 (t)− h111 k111
A121 w121 = w1 (t)− y121ϕx1 (t) + x121ϕy1 (t)− h121 k121
A131 w131 = w1 (t)− y131ϕx1 (t) + x131ϕy1 (t)− h131 k131
A141 w141 = w1 (t)− y141ϕx1 (t) + x141ϕy1 (t)− h141 k141

Table 1: Front bogie (m1) for j = 1.
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Points Vertical displacements Constant stiffness
A211 w211 = w2 (t)− y211ϕx2 (t) + x211ϕy2 (t)− h211 k211
A221 w221 = w2 (t)− y221ϕx2 (t) + x221ϕy2 (t)− h221 k221
A231 w231 = w2 (t)− y231ϕx2 (t) + x231ϕy2 (t)− h231 k231
A241 w241 = w2 (t)− y241ϕx2 (t) + x241ϕy2 (t)− h241 k241

Table 2: Rear bogie (m2) for j = 2.

In case of the car body (m), with the point marked by Bjki, their coordinates xjki, yjki,
j = 0, k = 1, 2 respectively, i = 1, 4 and the kjki individual springs as shown in Figure
2, are:

Points Vertical displacements Const. stiff.
B011 w011 = w (t)− y011ϕx (t) + x011ϕy (t)− w1 + (y011 + ey)ϕx1 k011
B014 w014 = w (t)− y014ϕx (t) + x014ϕy (t)− w1 + (y014 + ey)ϕx1 k014
B021 w021 = w (t)− y021ϕx (t) + x021ϕy (t)− w2 + (y021 + ey)ϕx2 k021
B024 w024 = w (t)− y024ϕx (t) + x024ϕy (t)− w2 + (y024 + ey)ϕx2 k024

Table 3: Car body (m).

The potential energy is:
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1
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4
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The Rayleigh dissipation function is:

Rd =
1
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4
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1
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The equations of motion for the railway model considered in this paper are derived
from the Lagrange equation of motion (5). By substituting equations (2), (3) and (4)
into equation (5) and after the derivation of equation (5) we have

d

dt

(

∂Ek

∂q̇j

)

−
∂Ek

∂qj
+

∂Ep

∂qj
+

∂Rd

∂q̇j
= Qj (5)

for j=1, ..., p=9. According to [1] and [4], in the time domain the equations of motion
for this system may be obtained in the general form as

Mq̈ (t) +Bq̇ (t) +Kq (t) = Qj (t) , (6)

where M is the mass matrix, B is the damping matrix, K is the stiffness matrix and for
generalization, all elements of matrix B and K are considered not to equal zero.

qj(t) = [w,w1, w2, ϕx, ϕy, ϕx1, ϕy1, ϕx2, ϕy2]
T
, q̇j(t), q̈j(t)

are the vectors of the generalized coordinates and Qj (t) is the vector of the generalized
kinematic excitation functions. After dividing equation (6) by the respective diagonal
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element of the mass matrix M and after the Laplace transformation for the zero initial
conditions q (0) and q̇ (0), the system of differential equations is transformed to the system
of algebraic equations

Gq̄ (s) = f̄ (s) , (7)

where s is the parameter of transformation, q̄ (s) and f̄ (s) are the vectors of the gener-
alized coordinates q (t) and forces f (t). It holds for the elements of the matrix G:

gij = s2 + βijs+ κij , for i = j,
gij = −δijs

2 + βijs+ κij , for i 6= j and for i = 4, 6, 8 and j = i+ 1,
gij = βijs+ κij , for i 6= j and for i = 5, 7, 9

and j = i− 1 for i = 3, ..., 9 and j = 1, ..., 9,,

where δ12 = −
Dxy

Jx
and δ21 = −

Dxy

Jy
are the elements representing the influence of asym-

metric distribution of the sprung mass.
For solving the system of algebraic equations (7), it is possible due to small number

of equations, to apply the Cramer rule [1] as follows

q̄j (s) =

n/2
∑

i=1

(−1)
j+i

f̄i (s)
Dji (s)

D (s)
, j = 1, 2, ..., n/2, n = 18. (8)

This method is suitable regarding the process of obtaining the vector of the general-
ized coordinates q(t) by the inverse transformation. In order to determine the original
qj(t) of the corresponding image q̄j(s) it is necessary to transform equation (8) to the
form of convolution integral. Therefore, it is necessary to find the poles of the char-
acteristic polynomial D(s) of equation (8) [1]. The poles are supposed to be in the
form of complex conjugates si = −Resk ± Imsk, for k= 1,2,..., n/2. To evaluate the
poles of the characteristic equation D(s), it is necessary to equate the polynomial in the
form of the product of the quadratic polynomials using the product of the roots factors
s2 + pks + rr, for k= 1,2,..., n/2. The polynomial responding to the sub-determinant
Dji(s) is determined using the same algorithm.

In order to determine the original qj(t) of the corresponding image q̄j(s) it is suitable
to transform equation (8) to the form of convolution. Therefore it is possible to transfer
the ratio of the determinants in equation (8) to the sum of partial fractions in the form

Dij (s)

D (s)
=

n/2
∑

r=1

[

(Kji,rs+ Lji,r)
n/2
∏
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(
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)
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=
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, (9)

where the constants Kji,r and Lji,r for j= 1,2,..., n/2, i= 1,2,..., n/2, r= 1,2,..., n/2, can
be determine from the condition of the coefficients equality of the identical powers of the
parameter s in the numerator of the fractional equation (9). By substituting equation
(9) into equation (8) for the determination of the image of the generalized coordinates
q̄(s), for j= 1,2,..., n/2, the latter can be modified as follows

q̄j (s) =

n/2
∑

i=1

(−1)
j+i

f̄i (s)

n/2
∑

k=1

Kji,ks+ Lji,k
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. (10)
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After inverse transformation of equation (10) for the function of the generalized coor-
dinate qj(t), for j = 1, 2, 3,..., 9, the form of the sum of convolution integrals is obtained
as follows

qj (t) =
9

∑

i=1

(−1)j+i
9

∑

k=1

[G1 +G2] , (11)

where

G1 = Kji,k

t
∫

0

Fi (τ) e
−βk(t−τ)cos [Ωk (t− τ)] dτ,

G2 =
Lji,k − βkKji,k

Ωk

t
∫

0

Fi (τ) e
−βk(t−τ)sin [Ωk (t− τ)] dτ.

Equation (11) shows the solution for a linear viscous damped mechanical system,
where j-th component of vector of generalized coordinates qj(t) is the sum of convolution
integrals, multiplied by i-th generalized kinematic excitation elements Fi(t) designated
by the product of spring constant and height of the road or rail surface unevenness and
by product of damping coefficient bjik, and time derivative of height contact place of the
m-index wheel at specific crossing velocity, to the k-th harmonic component with its own
natural frequency Ωk. Kjik and Ljik are unknown coefficients of amplitude, depending
on the mechanical properties of the system under consideration. Vector components of
the kinematic excitation function Fi(t) are given in the range of 0 ≤ t.

5 Production and Construction Asymmetry of the Mechanical System

In this paper asymmetry of the distributed sprung mass of the railway vehicle is simulated
as shown in Figure 2, where Figure 2a shows the symmetrical case, where T = C,
ex = ey = 0 and Figure 2b shows the asymmetrical case, where T 6= C, ex 6= 0 and ey 6= 0.
The position of the external weight placed on the surface of the wagon introduces weight
eccentricities due to the uneven distribution of the sprung mass of the mechanical system.
This effect causes the center of mass to be arbitrarily positioned so that no symmetry
exists in the system, as a result of this the system center of mass T is shifted along the
x-axis and y-axis directions with respect to the system’s geometrical center. Meanwhile,
Figure 2 shows the arrangement of rail defects as kinematic excitations; Figure 2c shows
the symmetrical arrangement of the multiple track irregularities on the track, while
Figure 2d shows the asymmetrical arrangement of rail defects. Meanwhile Figure 3 shows
different cases of asymmetry and the arrangement of the multiple track irregularities
(kinematic excitation) on both rails. In this paper the multiple track irregularities are
modeled as a unit step function.

6 Experimental Tests

Experimental tests were done on a four-axel freight wagon of Smmps type. The railway
freight wagon was modified in a way to be in accordance with the requirements of the
analytical model derivate in Section 2. The original bogies were removed from the wagon
and replaced by another bogie of Y25 type from a passenger freight car. The outer springs
of the primary spring system of these bogie frames were removed and secondary spring
system, consisting of three springs was fitted to the bogie frames. The bogie frames were
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Figure 2: The analytical - symmetry and asymmetrical model, (a) Symmetrical and (b) asym-
metrical distribution of the sprung mass (c) Symmetrical and (d) asymmetrical of multiple track
irregularities.

Figure 3: Symmetric and asymmetric model.

fixed to the wagon by means of wire ropes net to keep the car body in equilibrium, see
Figure 4 and Figure 5 respectively.

Figure 4: Secondary spring system.
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Figure 5: Connection of bogie frame to car body.

6.1 Test procedures

The vertical vibration responses of the freight wagon were done as follows:

• The freight wagon loaded as illustrated in Table 1 was towed by a shunting loco-
motive to move over track irregularities. The locomotive was connected to the car
body with a wire rope. The wedge blocks stimulated the Heaviside unit function.

• The measurements were sensed by means of HBM amplifiers, signals went through
the low-pass filter 32 kHz into the digital-to-analogue system DAS 48.

• Each test was repeated 2 – 3 times. A total of 89 tests were measured. Twenty
quantities were measured during the tests – the bogie frames relative vertical vi-
bration response with respect to the axel-box (9 sensors), car body relative vertical
vibration response with respect to the front and the rear bogie frames (4 sensors),
vertical acceleration of the car body (5 sensors) and finally, acceleration of the bogie
frames (2 sensors). The purpose of these tests was to determine and record time
histories of relative vertical vibration response of the freight wagon in the pres-
ences of production and construction asymmetry and multiple general kinematic
excitations to verify the theoretical model in Section 2.

7 Analytical Solutions

Two types of analysis were performed in this paper in order to investigate the effects of
production and construction asymmetry on the vertical vibration response of the railway
vehicle in the presence of multiple track irregularities. The first analysis was done for
simulated analytical data set and the second was for experimental data to validate the
analytical model. The analytical data was processed using a MatLab code, which was
written specifically for this investigation. In regard of large amount of collected data, it
was not possible to process and include all the results into this one investigation report,
because of its very limited extent. Therefore, the present work comprises only general
conclusions. Figure 6, shows the analytical results processed using a MatLab code for
the symmetrical (a) and asymmetrical (b) distribution of the sprung mass running over
uneven track irregularities (d), as shown in Figure 2. The results showed the expected



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (1) (2015) 32–42 41

trends of vertical vibration response of the model with no definite cut off between stable
and unstable behavior.

Figure 6: Vertical dynamic response due to a single unit step on all wheels on the right side of
the wagon.

8 Validation of the Developed Model

The developed model has been validated using the experimental data reported by
J.Soukup and J.V olek, see [1] for more detail. The parameters employed in the sim-
ulation are obtained from reported studies [6]. The comparisons between the responses
obtained by the developed model in Section 4 with that of the reported study are shown
in Figure 7. The results showed expected trends of vertical vibration response in the pres-
ence of production and construction asymmetry of the mechanical system. It is quite
evident, that good agreement with a 9DOF vehicle model has been achieved, but several
limitations of the model have been identified. The significance of these limitations is cur-
rently being investigated with more additional degrees of freedom. It can be concluded
that, the influence of production and construction asymmetry on the vertical vibration
response in the presence of multiple track irregularities is obvious. Hence detail analysis
of this phenomenon is a necessity in railway vehicle design process.

Figure 7: The comparisons between the responses obtained by the developed model with that
of the reported study.

9 Conclusion

The present paper confirmed the influence of production and construction asymmetry
of railway vehicle in the presence of multiple track irregularities inputs. In regard to
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the large amount of collected data, it was not possible to process and include all the
results into this one investigation report, because of its very limited extent. Therefore,
the present work comprises only general conclusions.
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