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On Parameterized Lyapunov and Control Lyapunov Functions for

Discrete-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

M. Lazar and R.H. Gielen

Act-and-Wait Controller for Continuous-Time Systems With Random

Feedback Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Bo Li, Xiaona Song and Junjie Zhao

Acceleration Control in Nonlinear Vibrating Systems Based on

Damped Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

V. Pilipchuk

Existence and Uniqueness of a Solution of Fisher-KKP Type

Reaction Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Abdur Raheem

On Stability Conditions of Singularly Perturbed Nonlinear Lur’e

Discrete-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B. Sfaihi, M. Benrejeb and P. Borne

Founded by A.A. Martynyuk in 2001.

Registered in Ukraine Number: KB 5267 / 04.07.2001.



NONLINEAR DYNAMICS AND SYSTEMS THEORY

An International Journal of Research and Surveys

Impact Factor from SCOPUS for 2011: SNIP – 0.84, RIP – 0.77

Nonlinear Dynamics and Systems Theory (ISSN 1562–8353 (Print), ISSN 1813–
7385 (Online)) is an international journal published under the auspices of the S.P. Timo-
shenko Institute of Mechanics of National Academy of Sciences of Ukraine and Curtin
University of Technology (Perth, Australia). It aims to publish high quality original
scientific papers and surveys in areas of nonlinear dynamics and systems theory and
their real world applications.

AIMS AND SCOPE

Nonlinear Dynamics and Systems Theory is a multidisciplinary journal. It pub-
lishes papers focusing on proofs of important theorems as well as papers presenting new
ideas and new theory, conjectures, numerical algorithms and physical experiments in
areas related to nonlinear dynamics and systems theory. Papers that deal with theo-
retical aspects of nonlinear dynamics and/or systems theory should contain significant
mathematical results with an indication of their possible applications. Papers that em-
phasize applications should contain new mathematical models of real world phenomena
and/or description of engineering problems. They should include rigorous analysis of
data used and results obtained. Papers that integrate and interrelate ideas and methods
of nonlinear dynamics and systems theory will be particularly welcomed. This journal
and the individual contributions published therein are protected under the copyright by
International InforMath Publishing Group.

PUBLICATION AND SUBSCRIPTION INFORMATION

Nonlinear Dynamics and Systems Theory will have 4 issues in 2013,
printed in hard copy (ISSN 1562–8353) and available online (ISSN 1813–7385),
by InforMath Publishing Group, Nesterov str., 3, Institute of Mechanics, Kiev,
MSP 680, Ukraine, 03057. Subscription prices are available upon request from
the Publisher (mailto:anmart@stability.kiev.ua), SWETS Information Services
B.V. (mailto:Operation-Academic@nl.swets.com), EBSCO Information Services
(mailto:journals@ebsco.com), or website of the Journal: http://e-ndst.kiev.ua.
Subscriptions are accepted on a calendar year basis. Issues are sent by airmail to all
countries of the world. Claims for missing issues should be made within six months of
the date of dispatch.

ABSTRACTING AND INDEXING SERVICES

Papers published in this journal are indexed or abstracted in: Mathematical Reviews /
MathSciNet, Zentralblatt MATH / Mathematics Abstracts, PASCAL database (INIST–
CNRS) and SCOPUS.

mailto:anmart@stability.kiev.ua
mailto:Operation-Academic@nl.swets.com
mailto:journals@ebsco.com
http://e-ndst.kiev.ua


Nonlinear Dynamics and Systems Theory, 13 (2) (2013) 107–113

PERSONAGE IN SCIENCE

Academician A.M. Samoilenko

On His 75th Birthday

A.A. Boichuk 1, A.G. Mazko 1, A.A. Martynyuk 2∗ and M.O. Perestyuk 3

1 Institute of Mathematics National Academy of Science of Ukraine,

Tereschenkivska Str. 3, Kyiv, 01601, Ukraine
2 Institute of Mechanics National Academy of Science of Ukraine,

Nesterov Str. 3, Kyiv, 03057, Ukraine
3 Taras Shevchenko National University of Kyiv, 01601, 64 Volodymyrska Str., Kyiv, Ukraine

Received: January 8, 2013; Revised: April 8, 2013

The paper contains biographical data and a survey of scientific achievements of Ana-

toly Mykhailovych Samoilenko, a prominent expert in the field of differential equations.

1 Brief Biography of A.M. Samoilenko

Anatoly Mykhailovych Samoilenko was born on January 2, 1938 in the village of Poti-
ivka (Zhytomyr Region, Ukraine) to the family of Mykhailo Grygorovych and Mariya
Vasylivna Samoilenko. Somewhat later, his family moved to the city of Malyn (Zhyto-
myr Region).

In 1955, he finished school and entered the Geological Faculty of the Shevchenko Kyiv
State University. Quite soon he understood that mathematics is his vocation and contin-
ued his education at the Faculty of Mechanics and Mathematics of the same university
and graduated from this faculty with honors in 1960.

By the invitation of Academician Yu.O. Mitropolsky, Anatoly Samoilenko entered a
the post-graduate course at the Institute of Mathematics of the Ukrainian Academy of
Sciences, where he became a member of the Krylov–Bogolyubov Kyiv Scientific School.
In 1961, he published his first scientific works. In 1963, he defended his Candidate–Degree
Thesis “Application of Asymptotic Methods to the Investigation of Nonlinear Differential
Equations with Irregular Right-Hand Sides.”

In 1965, A.M. Samoilenko started his pedagogic career at the Chair of Differential
Equations of the Shevchenko Kyiv State University.

∗ Corresponding author: mailto:center@inmech.kiev.ua

c© 2013 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua107
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For a fairly short period of four years, he prepared and defended (in 1967) his
Doctoral-Degree Thesis “Some Problems of Periodic and Quasiperiodic Systems.”

In 1963–1974, A.M. Samoilenko worked at the Kyiv Institute of Mathematics. In
1974, he received the academic title of professor and headed the Chair of Integral and
Differential Equations at the Kyiv University, where he was a teacher of a great number of
future scientists. Many of his former students are now well known throughout the world.
Together with his colleagues from the Chair of Integral and Differential Equations, he
prepared a series of textbooks on the theory of differential equations. Several editions
of these textbooks were published, and they still remain popular in Ukraine and in the
countries of the former USSR.

In 1978, Prof. Samoilenko was elected to become a Corresponding Member of the
Academy of Sciences of the Ukrainian SSR.

In 1987, he returned to the Institute of Mathematics, where he headed the Department
of Ordinary Differential Equations.

In 1988, he was elected by the staff of the Institute to become the Director of the
Institute, and he occupies this position up to now.

In 1995, Prof. Samoilenko was elected to become a Full Member of the Ukrainian
National Academy of Sciences.

In 1997, he became the Editor-in-Chief of the “Nonlinear Oscillations” journal
founded on his initiative.

In 1998–2011, he also headed the Chair of Differential Equations at the “Kyiv Poly-
technic Institute” National Technical University of Ukraine. Under his guidance, re-
searchers of the Institute of Mathematics started to teach students at this chair, and its
scientific life was significantly intensified.

Since 2006, he works as the Academician-Secretary of the Department of Mathematics
of the Ukrainian National Academy of Sciences.

Academician Samoilenko is the author of more than 600 scientific works, including
30 monographs and 15 textbooks. Most of his works are translated into English and
other languages. He is a member of the editorial boards of several Ukrainian and foreign
journals. As an excellent teacher, he gives much attention to training highly qualified
scientific personnel. Among his disciples, there are 33 Doctors and Candidates of Science
in Physics and Mathematics. They successfully work in numerous mathematical centers
throughout the world. He is also deeply involved in the social life. His activities are
aimed at the support of young Ukrainian mathematicians and talented children.

Tremendous scientific achievements of A.M. Samoilenko are explained by his great
mathematical talent and persistence and efficiency in his work.

A significant role in his life is played by his strong family. His wife, Lypa Hryhorivna,
also a scientific researcher, worked for many years at the Institute of Cybernetics of the
Ukrainian National Academy of Sciences. His son is a talented geneticist, and the father
of two children.

We wish Academician Samoilenko good health, family happiness, creative inspiration,
and subsequent successes in his scientific work.

2 Main Scientific Interests

2.1 Theory of invariant manifolds of differential systems

The notion of the Green function of the problem of invariant torus for the linear exten-
sion of a dynamical system on the torus introduced by A.M. Samoilenko at the Fifth
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International Conference on Nonlinear Oscillations in Kyiv and investigated in detail in
his work [6] appeared to be extremely fruitful and gave a new impetus to the development
of various aspects of the theory of perturbations and stability of toroidal manifolds. In
the mathematical literature, this notion is known as the “Green–Samoilenko function.”
This name was introduced by a Moldavian mathematician I.U. Bronshtein. A survey of
the main subsequent results in the field of toroidal manifolds of autonomous differential
systems can be found in the monograph [XI].

The works of A.M. Samoilenko in the theory of multifrequency oscillations made an
important contribution to this theory and opened new directions in their investigation
and development. In the works written with V.L. Kulyk, the authors developed the
theory of alternating Lyapunov functions for the investigation of the solutions of linear
autonomous differential systems bounded on the entire axis and linear extensions of
dynamical systems on the torus. The results obtained in this field were generalized,
together with Yu.V. Teplinskii, to the case of countable systems and, together with
O.M. Stanzhitskii, to the case of stochastic differential equations.

2.2 Asymptotic methods of nonlinear mechanics

Continuing the investigations of M.M. Krylov, M.M. Bogolyubov, A.M. Kolmogorov,
V.I. Arnold, J. Moser, and Yu.O. Mitropolsky, A.M. Samoilenko proposed a modifica-
tion of the asymptotic method of successive changes of variables, which was called the
“method of accelerated convergence” in 1969 in the monograph [I]. In [9], together with
Yu.O. Mitropolsky, he generalized the asymptotic averaging method and established suf-
ficient conditions for the “averaging” operator under which the asymptotic solutions are
separated into naturally varying and slowly varying components. The theory has been
further developed, in particular, in his joint works with R.I. Petryshyn.

2.3 Nonlinear boundary-value problems

In 1965–1966, the papers [2, 3] were published, in which an original method was proposed
for the determination of periodic solutions of ordinary differential systems. In subsequent
publications, the Soviet mathematicians called it “the Samoilenko numerical-analytic
method.” Later, in joint works with M.I. Ronto, V.I. Trofimchuk, and their disciples,
this method was generalized to a broad class of boundary-value problems.

On the basis of the theory of generalized inverse operators, A.M. Samoilenko, to-
gether with O.A. Boichuk, developed the theory of Fredholm boundary-value problems
for differential equations, delay equations, impulsive equations, and singularly perturbed
systems. The obtained results are presented in the monograph [XXIX]. This theory
was later developed for the determination of solutions, bounded on the entire real axis,
for systems of differential and difference equations under the condition of dichotomy on
semiaxes for the corresponding homogeneous system.

2.4 Theory of impulsive differential systems

Apparently, the best-known series of works of A.M. Samoilenko is devoted to the the-
ory of impulsive differential equations. This field of investigations is traditionally as-
sociated with the Kiev Mathematical School. As early as 1937, M.M. Krylov and
M.M. Bogolyubov showed that asymptotic methods of nonlinear mechanics can be effi-
ciently applied to impulsive equations. However, the systematic study of these prob-
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lems is associated with the name of A.M. Samoilenko. The first scientific paper of
A.M. Samoilenko, published in 1961, was devoted to these problems. In 1967, in the
joint work [4], A.D. Myshkis and A.M. Samoilenko formulated general theorems on the
existence of solutions and their extendability and also on the uniqueness of a solution of
the Cauchy problem for impulsive systems. In 1987, the monograph of A.M. Samoilenko
and M.O. Perestyuk (complemented and translated into English in 1995 [XVI]) became
the first monograph in the world literature in which fundamental results of the theory of
impulsive systems were presented.

2.5 Integrability of dynamical systems on symplectic manifolds

A.M. Samoilenko and Ya.A. Prykarpatsky proposed and described new analytic and
topological-geometric approaches to the problem of imbedding of integral manifolds for
completely integrable dynamical systems and their perturbations. The main results are
presented in the monograph [XXV].

2.6 Linear theory of ordinary differential equations

In 2011, the paper [21] was published, in which A.M. Samoilenko considered problems of
the linear theory of systems of ordinary differential equations related to the investigation
of invariant hyperplanes of these systems, the notion of equivalence for these systems,
and the Floquet–Lyapunov theory for periodic systems of linear equations. In particular,
a new Floquet-type formula was proposed for periodic systems.

2.7 Theory of functions

In 1968, the paper [5] was published, in which A.M. Samoilenko solved a problem posed
by V.I. Arnold, namely, he gave a purely analytic proof of the equivalence of a smooth
function and its Taylor polynomial in a neighborhood of a critical point of finite type.
This investigation was continued in the paper [20] published in 2007. The local behavior
of smooth functions in the neighborhoods of their regular and critical points was inves-
tigated, and theorems on the average values of the considered functions of the type of
the Lagrange theorem on finite increments were proved. The symmetry of the derivative
of an analytic function in a neighborhood of its multiple zero was also studied, and new
statements of the Weierstrass preparation theorem related to the critical point of a func-
tion of finite smoothness were proved. The nongradient vector field in the neighborhood
of the critical point was determined, and one critical case of stability of the equilibrium
position of a nonlinear system was considered.

3 Participation in Scientific Institutions and Editorial Boards

A.M. Samoilenko is a full member of the National Academy of Sciences of Ukraine and
the European Academy of Sciences, a foreign member of the Academy of Sciences of the
Republic of Tajikistan, and a member of the Ukrainian Mathematical Society and the
American Mathematical Society. He is the editor-in-chief of the journals “Ukrains’kyi
Matematychnyi Zhurnal,” “Neliniini Kolyvannya,” and “Ukrains’kyi Matematychnyi Vis-
nyk” and a member of the editorial boards of the journals “Dopovidi Natsional’noi
Akademii Nauk Ukrainy,” “U Sviti Matematyky,” “Nonlinear Mathematical Physics,”
“Memoirs on Differential Equations and Mathematical Physics,” etc.
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4 Awards

A.M. Samoilenko was awarded the Order of Friendship of Peoples (1984), the third class
Order of Merit (2003), the fifth class Order of Prince Yaroslav the Wise (2008), and a
Certificate of Honor of the Presidium of the Supreme Soviet of Ukraine (1987). He was
also awarded the State Prize of Ukraine in the Field of Science and Engineering (1985,
1996), the State Prize of Ukraine in the Field of Education (2012), M. Ostrovsky Prize
(1968), M. Krylov Prize (1981), M. Bogolyubov Prize (1998), M. Lavrent’ev Prize (2000),
M. Ostrogradsky Prize (2004), Yu. Mitropolsky Prize (2010), and the titles of a “Soros
Professor” (1998) and an Honored Scientist of Ukraine (1998).

5 List of Monographs of A.M. Samoilenko
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Abstract: In this paper, we elaborate new methods for model-order reduction of
linear time invariant (LTI) and time variant (LTV) systems by using orthogonal func-
tions. These techniques which can be efficiently applied in SISO (single-input single-
output) and MIMO (multi-input multi-output) cases are based on the projection of
the system parameters and variables on an orthogonal functions basis. The useful
properties of the orthogonal functions basis such as operational matrices combined
with the Kronecker product permit the conversion of the system differential equations
into algebraic ones allowing the determination of the reduced model parameters.
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1 Introduction

In all engineering fields, an accurate modeling is necessary to have good results in control
and analysis of complex systems. If the system is internally complex, the use of modern
control techniques such as optimal control, µ-synthesis or robust control may lead to a
controller having a comparable order as the considered system. In order to study, simulate
and control those systems and to avoid time consuming in computing procedures, it is
convenient and sometimes necessary to reduce their complexity, preserving the input-
output behavior.

The primary problem of interest in model reduction is the efficient computation of an
accurate low-order model approximating a given dynamical system. The low-order model
must match the original one in some sense. However, the conditions of accuracy, speed,
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stability and low order cannot always be reached at the same time. The model-order
reduction (MOR) reaches far from electrical engineering and touches various disciples
of science and engineering fields such as aerospace science [1, 2], chemical processes [3],
protection of civil structures, modeling of biological systems [4], power systems [47] and
mechanical engineering [5].

So far, the main MOR techniques were introduced and developed for linear systems
and precisely LTI systems and were lately extended to LTV systems and nonlinear sys-
tems [6, 7]. The main MOR methods fall into three classes [8]:

– Singular Value Decomposition (SVD) or Gramian-based methods including optimal
Hankel MOR [9, 10], and balanced truncation realization first introduced by Moore [11]
and improved during the last decades [12–14].

– Krylov subspace-based methods [15] including techniques based on Lanczos proce-
dure [16, 17] or Arnoldi algorithm [18,19].

– Proper orthogonal decomposition (POD) or Karhunen-Loève expansion [2, 20].

Many recent techniques give an alternative to these classical methods such as the
MOR by least squares [21] and using LMIs [22]. The MOR techniques for LTI systems
were later extended to modeling linear time varying (LTV) systems [7, 23, 24].

In this paper, we introduce new analytic methods for model-order reduction (MOR)
of linear time invariant (LTI) and time variant (LTV) systems starting from a state
space realization or a transfer function system description. Those approaches using
the orthogonal functions as a tool of approximation can be applied not only for SISO
systems but also for the MIMO ones. This paper is organized as follows: in Section 2,
the orthogonal functions are presented with their interesting properties. The dynamical
systems description by orthogonal functions is introduced in Section 3. The proposed
methods for model order reduction of LTI and LTV systems using orthogonal functions
are derived in Section 4. The last section is devoted to simulation examples to emphasize
the effectiveness of the presented approaches.

2 Orthogonal Functions for Dynamical Systems Description

In recent decades, the approximation of time functions by orthogonal functions has been
considered by many researchers to solve modeling and control problems [48]. The main
characteristic of this technique is that it reduces the differential equations to algebraic
ones, thus greatly simplifying the problem.

This approach originated from the use of Walsh [25] and block-pulse [26] functions was
later extended to orthogonal polynomial series such as the Laguerre [27], the Chebychev
[28], the Hermite [29] and the Legendre polynomials [30]. They were also used with
nonlinear systems [31] and for PID control of LTI [32] and LTV systems [33]. The
development in Fourier or Taylor polynomial series can give convenient results but their
quick convergence is not always guaranteed or their use can be sometimes inadequate.

2.1 Orthogonal functions and properties

2.1.1 Approximation using orthogonal functions

Orthogonal functions were introduced in the field of system control because of their
interesting properties as a sharp tool of approximation. Given Φ = {φi(t), i ∈ N} a set
of functions defined over a certain interval [a, b]. Any function f(t) absolutely integrable
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over [a, b] can be developed as follows

f(t) =

∞∑

i=0

fiφi(t), (1)

where fi =

∫ b

a

w(t)f(t)φi(t) dt , for i ∈ N, w(t) is a positive and integrable function as

the weighting function of the scalar product. For practical use, the development (1) is
truncated up to an order N , thus giving the following time approximation of the function

f(t) ∼=

N−1∑

i=0

fiφi(t) = FT
NΦN (t) (2)

with

FN =
[
f0 f1 . . . fN−1

]T
, ΦN (t) =

[
φ0(t) φ1(t) . . . φN−1(t)

]T
,

where ΦN (t) is the vector of the orthogonal functions basis. The coefficients fi and the
orthogonal functions {φi(t), i ∈ N} have the particularity to minimize the error:

ε =

∫ b

a

(

f(t)−

N−1∑

i=0

fi φi(t)

)2

dt. (3)

The orthogonal functions obey the orthogonality relation

< φi(t), φj(t) >=

∫ b

a

w(t)φi(t)φj(t) dt = δij ci, (4)

where δij is the Kronecker delta. If ci = 1, then the functions are not only orthogonal,
but orthonormal.

2.1.2 Shifted definition interval

If the function f(t) is defined over an interval [t0, tf ] and the orthogonal functions φi(t)
over the interval [a, b], we can shift the defining domain by considering the functions :

∀i ∈ N, ψi(t) = φi

(
t− µ

λ

)

with t ∈ [t0, tf ], λ =
t0 − tf

a− b
and µ =

atf − bt0

a− b
.

The functions ψi(t), ∀i ∈ N are also orthogonal over [t0, tf ] with the weighting function

w′(t) = w(
t − µ

λ
).

2.1.3 Matrix functions approximation

A time dependent matrix function A(t) ∈ R
n×m given by A(t) = [aij(t)] where aij(t)

are integrable over an interval [a, b]. The matrix A(t) can be developed into orthogonal
functions series with a truncation to an order N under the following relation

A(t) ∼=

N−1∑

i=0

ANiφi(t), (5)

where ANi ∈ R
n×m for i ∈ {0, 1, . . . , N − 1} are matrices with constant coefficients.
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2.1.4 Operational matrix of integration

The operational matrix of integration is a constant coefficient function PN ∈ R
N×N

verifying the integral property of the orthogonal functions basis vector ΦN (t):

∫

· · ·

∫ t

α
︸ ︷︷ ︸

k times

ΦN (t) dtk ∼= P k
NΦN (t). (6)

Clearly, the form of PN depends on the particular choice of the basis vector ΦN(t).

2.1.5 Operational matrix of product

The operational vectors of product Kij [35] have constant coefficients and verify the
property:

∀ i, j ∈ {0, 1, · · · , N − 1}, φi(t)φj(t) ∼= KT
ijΦN (t). (7)

From the relationship (7), we can readily get the operational matrix of product:

MiN =






KT
0i

...
KT

N−1,i




 (8)

that allows the approximation

φi(t)ΦN (t) ∼=MiNΦN (t). (9)

2.1.6 Legendre polynomials

The Legendre polynomials may have advantages over other orthogonal functions. This
was shown by way of examples [30] where Legendre polynomials converge to the exact
solution of a differential equation faster than the other types of orthogonal functions, such
as, for example, Walsh functions, Hermite and Laguerre polynomials. The Legendre
polynomials are defined for the time interval x ∈ [−1, 1] and they have the following
analytical form given by the Olinde-Rodrigues formula [36]:

Ln(x) =
1

2nn!

dn(x2 − 1)n

dxn
. (10)

Using the above expression for Ln(x), one may readily determine the first few Legendre
polynomials : L0(x) = 1, L1(x) = x, ... .

The Legendre polynomials are also given by the recursive formula [34]:

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x). (11)

The polynomials Li(x) form a complete set and are orthogonal [30] with

∫ 1

−1

Li(x)Lj(x)dx =
2

2i+ 1
δij . (12)
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2.1.7 Shifted Legendre polynomials

For practical use of Legendre polynomials in the time interval t ∈ [0, tf ], it is necessary
to shift the defining domain of Legendre polynomials from the interval [−1, 1] to [0, tf ]
through the variable transformation:

x =
2t

tf
− 1, 0 ≤ t ≤ tf . (13)

Thus, the shifted Legendre polynomials si(t) (∀i ∈ N) for 0 ≤ t ≤ tf are thus given by

sn+1(t) =
2n+ 1

n+ 1

2t− tf

tf
sn(t)−

n

n+ 1
sn−1(t) (14)

with s0(t) = 1 and s1(t) =
2t

tf
− 1.

It is apparent that polynomials sn(t) also constitute a complete set and are orthogonal
[37] with

∫ tf

0

si(t)sj(t) dt =
tf

2i+ 1
δij . (15)

Any time function f(t) that is absolutely integrable on the time interval [0, tf ] may be
expanded into shifted Legendre series as follows

f(t) =

∞∑

i=0

fisi(t), (16)

where [38]

fi =
2i+ 1

tf

∫ tf

0

f(t)si(t) dt. (17)

If equation (16) is truncated up to its first N terms, then it may be written as

f(t) ∼=

N−1∑

i=0

fisi(t) = FT
NSN (t) (18)

with FN =
[
f0 f1 . . . fN−1

]T
and SN (t) =

[
s0(t) s1(t) . . . sN−1(t)

]T
.

The shifted Legendre polynomials and coefficients fi, (i = 0, 1, . . . , N − 1) have the
particularity to minimize the integral squared-error:

ε =

∫ tf

0

(

f(t)−

N−1∑

i=0

fisi(t)

)2

dt. (19)

2.1.8 Operational matrix of integration

Since the shifted Legendre polynomials si(t), (i = 0, 1, . . . ) satisfy [34] the differential
equation:

si(t) =
tf

2(2i+ 1)

[
dsi+1

dt
−
dsi−1

dt

]

(20)
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and si(0) = (−1)i , it can be easily shown that the integrals of si(t), (i = 0, 1, . . . ) are
given by

∫ t

0

si(τ)dτ =

{
tf
2 [s1(t)− s0(t)] , for i = 0,

tf
2(2i+1) [si+1(t)− si−1(t)] , for i > 0.

(21)

From equation (21) we can obtain the integral of truncated shifted Legendre vector as
follows ∫ t

0

SN (τ)dτ ∼= PNSN (t), (22)

where PN is the constant operational matrix of integration given in [39] and [40].

3 Dynamical systems description using orthogonal functions

3.1 LTI systems described by a transfer function

Given a linear time invariant system described by a transfer function:

Y (s)

U(s)
=
b0 + b1s+ ...+ bms

m

a0 + a1s+ ...+ ansn
(23)

with m ≤ n, or a linear differential equation in time domain with constant coefficients,
the input u(t) and the output y(t):

a0y(t) + a1y
′(t) · · ·+ any

(n)(t) = b0u(t) + b1u
′(t) · · ·+ bmu

(m)(t). (24)

Upon integration of both sides of equation (24) n times, we have:

a0

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n times

y(τ)dτn + a1

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n−1 times

y(τ)dτn−1 + · · ·+ any(t) =

b0

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n times

u(τ)dτn + b1

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n−1 times

u(τ)dτn−1 + · · ·+ bm

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n−m times

u(τ)dτn−m.

(25)

The projection of the input u(t) and the output y(t) on an orthogonal functions basis
with truncated developments to an order N over a time interval [0, tf ] yields:

y(t) ∼= YNΦN (t), (26)

u(t) ∼= UNΦN(t), (27)

where YN and UN are constant coefficient vectors.
By introducing the projections (26) and (27) in equation (25) and considering the

case where the initial conditions are equal to zero, we obtain the relation

a0YN

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n times

ΦN (τ)dτn + a1YN

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n−1 times

ΦN (τ)dτn−1 + · · ·+ any(t) =

b0UN

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n times

ΦN (τ)dτn + · · ·+ bmUN

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n−m times

ΦN (τ)dτn−m.

(28)
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In the case where the initial conditions are different from zero, they can be projected on
the orthogonal basis and then integrated in the equation (28). By using the operational
matrix of integration and the property (6), the equation (28) yields:

YN
(
a0P

n
N + a1P

n−1
N · · ·+ anIN

)
ΦN (t) =

UN

(
b0P

n
N + b1P

n−1
N + · · ·+ bmP

n−m
N

)
ΦN (t).

(29)

This equality is available for all time t ∈ [0, tf ] then the simplification by ΦN (t) in the
equality (29) leads to the following description of the considered system:

YN M = UN T or YN = UN T M
−1 (30)

with

M = a0P
n
N + a1P

n−1
N + ...+ anIN , (31)

T = b0P
n
N + b1P

n−1
N + ...+ bmP

n−m
N .

3.2 LTI systems described by a state representation

Consider a linear time invariant (LTI) MIMO system given by the following state real-
ization: {

Ẋ(t) = A X(t) +B U(t), X(0) = 0,
Y (t) = C X(t), t ∈ [0, tf ],

(32)

with the state vector X(t) ∈ R
n, the inputs vector U(t) ∈ R

m and the output one
Y (t) ∈ R

p. The matrices A, B, and C have respectively the dimensions n × n, n ×m

and p× n. The integration of the state equation (32) with zero initial conditions gives:

X(t) = A

∫ t

0

X(τ)dτ +B

∫ t

0

U(τ)dτ . (33)

The projection of the state vector X(t), the input U and the output Y , on an orthogonal
basis functions {ϕi(t), i ∈ {0, 1, . . . , N − 1}} with a truncated development to an order
N over the interval [0, tf ] leads to:

X(t) ∼= XNΦN (t), (34)

U(t) ∼= UNΦN (t), (35)

Y (t) ∼= YNΦN (t), (36)

where the matricesXN and UN are constant coefficients matrices. With the developments
(34) and 35), the integrated state equation (33) can be written under the following form

XNΦN (t) = A

∫ t

0

XNΦN (τ)dτ +B

∫ t

0

UNΦN (τ)dτ . (37)

The use of the operational matrix of integration that approximates the integration of the
orthogonal basis vector ΦN (t):

∫ t

0

ΦN (τ) dτ ∼= PN ΦN (t) (38)
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leads to the relation:

XN ΦN (t) = A XN PNΦN (t) +B UN PN ΦN (t). (39)

Simplifying by the orthogonal functions basis vector ΦN (t) yields:

XN − A XN PN = B UN PN . (40)

For rearranging the equation (40), we use the V ec operator [41] that reshapes a matrix
by stacking its columns into a long vector. This vector denoted by V ec(A) is associated
with a matrix A and has the following property:

V ec(E F G) =
(
GT ⊗ E

)
V ec(F ), (41)

where E, F and G are matrices having appropriate dimensions and ⊗ is the Kronecker
product.

Mathematically, let R = [rij ] ∈ R
m×n and W = [wij ] ∈ R

p×q, the Kronecker product
of R and W , denoted by R⊗W ∈ R

mp×nq is defined by [41]:

R⊗W =








r11W r12W . . . r1nW

r21W r21W . . . r2nW
...

...
...

...
rm1W rm1W . . . rmnW







. (42)

By applying the property (41) to the equation (40), we get the following algebraic relation

V ec(XN ) =
[
In×N −

(
PT
N ⊗A

)]
−1 (

PT
N ⊗B

)
V ec(UN ) (43)

and in the same way, the output relation in (32) can be written as:

V ec(YN ) = (IN ⊗ C)V ec(XN ). (44)

3.3 LTV systems described by a state representation

In this section, we consider the linear time varying (LTV) systems described by the
following state space realization

{

Ẋ(t) = A(t) X(t) +B(t) U(t),
Y (t) = C(t) X(t),

(45)

with A(t), B(t) and C(t) varying in time t with respective dimensions n× n, n×m and
p× n. The expressions of matrices A(t), B(t) and C(t) are supposed to be known with:

A(t) =





a11(t) . . . a1n(t)
. . . . . . . . .

an1(t) . . . ann(t)



 , B(t) =






b1(t)
...

bn(t)




 , C(t) =

[
c1(t) . . . cn(t)

]
.

Notice that this state description can be derived from an input-output LTV differ-
ential equation. A technique of LTV systems identification was proposed in [42]. The
integration of the state equation gives:

X(t) =

∫ t

0

A(τ)X(τ)dτ +

∫ t

0

B(τ)U(τ)dτ . (46)
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By exploiting the matrix functions approximation (5), the variable in time parameters of
the system can be projected into th orthogonal basis and then written under the form:

A(t) ∼=

N−1∑

i=0

ANi ϕi(t), (47)

B(t) ∼=

N−1∑

i=0

BNi ϕi(t), (48)

C(t) ∼=

N−1∑

i=0

CNi ϕi(t), (49)

where ANi, BNi and CNi are constant coefficients matrices having respectively the same
dimensions as A(t), B(t) and C(t).

With the same projections (34), (35) and (36) of the state vector, the input vector
and the output vector, the equation (46) becomes:

XN ΦN (t) =

∫ t

0

N−1∑

i=0

AiNφi(τ)XNΦN (τ)dτ +

∫ t

0

N−1∑

i=0

BiNφi(τ)UNΦN (τ)dτ . (50)

The orthogonal functions φi(t) are scalar functions, so:

XN ΦN (t) =

∫ t

0

N−1∑

i=0

AiNXNφi(τ)ΦN (τ)dτ +

∫ t

0

N−1∑

i=0

BiNUNφi(τ)ΦN .(τ)dτ (51)

By using the operational matrix of product [35] and the property (9), one has:

XN ΦN (t) =

∫ tf

0

N−1∑

i=0

AiNXNMiNΦN (t)dt+

∫ tf

0

N−1∑

i=0

BiNUNMiNΦN (t)dt (52)

and with the operational matrix of integration [39, 40], it comes out:

XN ΦN (t) =

N−1∑

i=0

AiNXNMiNPNΦN (t) +

N−1∑

i=0

BiNUNMiNPNΦN (t). (53)

We can simplify by the orthogonal function basis vector and eliminate the time depending
parameters in the equation (53). The application of the property of the V ec operator
(41) yields:

[

In×N −

(
N−1∑

i=0

(MiNPN )
T
⊗AiN

)]

V ec (XN ) =
(

N−1∑

i=0

(MiNPN )
T
⊗BiN

)

V ec (UN )

(54)

or
V ec (XN ) = G

−1
H V ec (UN) (55)

with the constant matrices

G = In×N −

(
N−1∑

i=0

(MiNPN )
T
⊗AiN

)

, H =

N−1∑

i=0

(MiNPN )
T
⊗BiN .
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On the other hand, we have

Y (t) ∼= YN ΦN (t) =

N−1∑

i=0

CiN φi(t)XNΦN (t) ∼=

N−1∑

i=0

CiN XN MiNΦN (t). (56)

The application of the V ec operator yields:

V ec(YN ) =

(
N−1∑

i=0

MT
iN ⊗ CiN

)

V ec (XN ) . (57)

4 Model-order reduction (MOR) using orthogonal functions

4.1 MOR with a transfer function representation

Consider a linear time invariant system described by the transfer function (23). The order
of reduction can be chosen by the Hankel singular values. The reduced-order model have
an order k and the following transfer function:

Yr(p)

U(p)
=

d0 + d1p+ ...+ dlp
l

c0 + c1p+ ...+ cq−1pq−1 + pq
(58)

with l ≤ q < n. The input-output differential equation of the reduced order system will
be written as:

c0yr(t) + c1y
′

r(t) · · ·+ cq−1y
(q−1)
r (t) + y(q)r (t) = d0u(t) + d1u

′(t) · · ·+ dlu
(l)(t), (59)

where u(t) is the input and yr(t) is the output of the reduced order system.
The description of the reduced order system by orthogonal functions will have an

analogue form to (30), given by the following relation:

YrN = UNTr M
−1
r , (60)

where Mr(c0, . . . , cq−1) = c0P
q
N + c1P

q−1
N + ... + cq−1PN + IN and Tr(d0, . . . , dl) =

d0P
q
N + d1P

q−1
N + ...+ dlP

q−l
N are matrices depending on the parameters of the reduced

order system and PN the operational matrix of integration depending of the chosen
orthogonal functions basis.

The reduced-order system is computed such that it has a similar input-output dy-
namical behavior to the original system for all inputs u(t). When projected into the
orthogonal functions basis, this condition yields:

YN ΦN (t) = YrN ΦN (t) ⇔ YN = YrN . (61)

The developments (60) and (30) lead to:

UNTM
−1 = UNTrM

−1
r , (62)

where T and M are constant matrices depending on the known parameters of the original
system and the operational matrix of integration PN given by (31).

The relation (62) must be verified for any input u(t) (i.e. to any UN ). Therefore, we
can formulate the equality (62) as:

TM
−1
(

c0P
q
N + c1P

q−1
N + ...+ cq−1PN + IN

)

= d0P
q
N + d1P

q−1
N + ...+ dlP

q−l
N (63)
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or
(

d0P
q
N + d1P

q−1
N + ...+ dlP

q−l
N

)

− TM
−1
(

c0P
q
N + c1P

q−1
N + ...+ cq−1PN

)

= TM
−1.

(64)

Let Θ be the vector of reduced order system parameters:

ΘT =
[
d0 d1 · · · dl c0 · · · cq−1

]
, (65)

A =
[
Al Ar

]
with

Al =
[

V ec(P q
N ) V ec(P q−1

N ) · · · V ec(P q−l
N )

]
,

Ar =
[
V ec(−TM

−1P
q
N ) · · · V ec(−TM

−1PN )
]
,

and

B = V ec(TM−1).

Then the equation (64) can be written as

A Θ = B. (66)

The vector of the unknown parameters Θ are derived by means of least square resolution

Θ = (AT
A)−1

A
T
B. (67)

Remark 4.1 Extension to the MIMO LTI system case.
For MIMO LTI system described by a transfer matrix

H(s) =





H11(s) · · · H1p(s)
· · · · · · · · ·

Hk1(s) · · · Hkp(s)



 (68)

the order reduction of H(s) can be led by considering the order reduction of each par-
tial transfer function Hij(s) between the i-input and j-output. Note that the reduced
order choice of each transmittance Hij(s) can be made using the Hankel singular values
technique [44].

4.2 Model order reduction with a state space LTI realization

Consider a linear time invariant (LTI) system described by the state realization (32).
We are searching for a reduced order system having an order r < n and the following
realization {

Ẋr(t) = Ar Xr(t) +Br U(t),
Yr(t) = Cr Xr(t).

(69)

Using the orthogonal functions (43) for the reduced-order model description, one obtains:

V ec(XNr) =
[
Ir×N −

(
PT
N ⊗Ar

)]−1 (
PT
N ⊗Br

)
V ec(UN ). (70)
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The reduced system is computed such that it has the same dynamical output as the
original system for any input U(t). This condition is equivalent to

Y = Yr or C X = Cr Xr. (71)

By projecting the relation (71) in the orthogonal functions basis, one has:

CXNΦN (t) = CrXNrΦN (t). (72)

The simplification by the vector of orthogonal functions ΦN (t) and the application of the
V ec operator yields:

(IN ⊗ C)V ec(XN ) = (IN ⊗ Cr)V ec(XNr). (73)

With combination by substitution of the equations (43), (70) and (73), we obtain the
relation

(IN ⊗ C)(In×N − PT
N ⊗A)−1(PT

N ⊗B)V ec(UN ) =
(IN ⊗ Cr)(Ir×N − PT

N ⊗Ar)
−1(PT

N ⊗Br)V ec(UN).
(74)

The relation (74) must be verified to get a convenient reduced system for any input U
(i.e. for any matrix UN ΦN (t)). Therefore, it gives the following equation which must
be verified by the parameters of the reduced system:

(IN ⊗C)(In×N −PT
N ⊗A)−1(PT

N ⊗B) = (IN ⊗Cr)(Ir×N −PT
N ⊗Ar)

−1(PT
N ⊗Br). (75)

The parameters of the reduced system with the realization (Ar, Br, Cr) derived [45] by
minimizing the norm ξ of the difference between both parts of the equation (75). This
unconstrained minimization can be led by using the functions of the optimization tools
or genetic algorithms. Then, the reduced model determination is brought back to the
following optimization problem: derive Ar, Br and Cr such that they minimize:

ξ =

∥
∥
∥
∥

(IN ⊗ C)(In×N − PT
N ⊗A)−1(PT

N ⊗B)
−(IN ⊗ Cr)(Ir×N − PT

N ⊗Ar)
−1(PT

N ⊗Br)

∥
∥
∥
∥
. (76)

4.3 Model order reduction of LTV systems

In this section, we consider the order model reduction of the LTV systems defined by
the realization (45). The reduced order system is taken equal to r and the state space
description of the reduced system is the following:

{
˙̃
X(t) = Ã(t) X̃(t) + B̃(t) U(t),

Ỹ (t) = C̃(t) X̃(t),
(77)

with Ã(t), B̃(t) and C̃(t) varying in time with respective dimensions r × r, r ×m and
p × r. The description of the original system (45) using an orthogonal functions basis
ΦN (t) is given by the relations (55) and (57).

In the same manner, the variable in time parameters of the reduced LTV system will
be defined by their projections on the orthogonal functions basis truncated to an order
N :

Ã(t) ∼=

N−1∑

i=0

ÃNi ϕi(t), B̃(t) ∼=

N−1∑

i=0

B̃Ni ϕi(t), C̃(t) ∼=

N−1∑

i=0

C̃Ni ϕi(t), (78)
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where ÃNi, B̃Ni and C̃Ni are constant with the same dimensions as Ã(t), B̃(t) and C̃(t).
Then, the description of the reduced-order model using the orthogonal functions basis
can be written as:

[

Ir×N −

(
N−1∑

i=0

(MiNPN )
T
⊗ ÃiN

)]

V ec
(

X̃N

)

=
(

N−1∑

i=0

(MiNPN )
T
⊗ B̃iN

)

V ec (UN )

(79)

and

V ec(ỸN ) =

(
N−1∑

i=0

MT
iN ⊗ C̃iN

)

V ec
(

X̃N

)

. (80)

The equalization between the original system and the reduced system outputs can be
expressed by the following relation : ỸN = YN which can be written as

(
N−1∑

i=0

MT
iN ⊗ CiN

)

V ec (XN ) =

(
N−1∑

i=0

MT
iN ⊗ C̃iN

)

V ec
(

X̃N

)

. (81)

The substitution in (81) of V ec(XN ) and V ec(X̃N ) by their expressions (55) and (79)
yields the following equality:

(
N−1∑

i=0

MT
iN ⊗ CiN

)

G
−1

HV ec (UN ) =
(

N−1∑

i=0

MT
iN ⊗ C̃iN

)

Q

(
N−1∑

i=0

(MiNPN )
T
⊗ B̃iN

)

V ec (UN ) ,

(82)

where Q =

[

Ir×N −

(
N−1∑

i=0

(MiNPN )
T
⊗ ÃiN

)]−1

. This relation must be verified for any

input U(t). Then, one obtains:
(

N−1∑

i=0

MT
iN ⊗ CiN

)

G
−1

H =

(
N−1∑

i=0

MT
iN ⊗ C̃iN

)[

Ir×N −
N−1∑

i=0

(MiNPN )
T
⊗ ÃiN

]−1(
N−1∑

i=0

(MiNPN )
T
⊗ B̃iN

)

(83)
with the constant matrices

G = In×N −

(
N−1∑

i=0

(MiNPN )
T
⊗AiN

)

, H =

N−1∑

i=0

(MiNPN )
T
⊗BiN .

The parameters of the reduced order system ÃiN , B̃iN and C̃iN can be derived by
the minimization of the norm of the difference between both sides of the equation (83).
Thus, the problem of the reduced model determination can be formulated as follows:
determine ÃiN , B̃iN and C̃iN in order to minimize

ξ =

∥
∥
∥
∥
∥
∥
∥
∥

(
N−1∑

i=0

MT
iN ⊗ CiN

)

G
−1

H

−

(
N−1∑

i=0

MT
iN ⊗ C̃iN

)

Q

(
N−1∑

i=0

(MiNPN )T ⊗ B̃iN

)

∥
∥
∥
∥
∥
∥
∥
∥

. (84)
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Remark 4.2 Stability of the reduced model.
The reduced-order model is determined such that the error between its output vector and
that of the original full-order system is minimized regardless the input signals. When the
time horizon of approximation is sufficiently large to take in consideration the transient
response and the steady state, then one may conclude that if the original system is stable,
the reduced order one will be also stable.

Remark 4.3 Number of the orthogonal basis functions.
The accuracy and validity of the reduced model depend on the number of the orthogonal
basis functions. The higher is the number of the basis functions, the more accurate is
the obtained reduced order model. However, the size of the matrices interfering in the
computation of the reduced order parameters and the calculus time cost increase with
respect to the orthogonal basis dimension. Thus, the number of the basis functions is
generally chosen such that it satisfies a compromise between the accuracy of the searched
model and the computational constraints.

5 Simulation study

In order to illustrate the availability of the developed approaches for system order re-
duction, we consider in this section different examples of high order systems that we will
reduce using a set of shifted Legendre polynomials with order N = 16 as an orthogonal
functions basis.

5.1 LTI SISO system example

We consider the LTI system studied in [46] and given by the following transfer function

G(s) = s4+35s3+291s2+1093s+1700
s9+9s8+66s7+294s6+1029s5+2541s4+4689s3+5856s2+4620s+1700 . (85)

The order reduction of this system has been led by both approaches developed in
paragraph 4.1 using the transfer function representation and paragraph 4.2 using the
state space description. The reduced order is taken r = 3.

The first approach yields the following reduced transfer function:

Hr(p) =
0.3298 s2 − 1.713 s+ 3.232

s3 + 3.05 s2 + 4.992 s+ 3.232

and by the second approach technique, we obtain the reduced state space description
(32) with

Ar =





0.01032 1.349 8.391
0.08643 −0.1717 3.45
−0.5394 0.07006 −2.741



, Br =





3.508
3.375
−1.235



,

Cr =
[
2.338 1.138 9.559

]
.

Figure 1 shows the step responses of the original system (85) and the reduced systems
(by transfer function and by state space methods). It appears from these simulations
that the behavior of the reduced models obtained by the developed methods in this paper
is very close to that of the original system which shows the availability of the proposed
techniques. This property can also be verified with different inputs applied to the reduced
order model.
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Figure 1: Step responses of the original system order n = 9 and reduced order models r = 3
obtained by the proposed techniques : starting from a state space realization and from a transfer
function.

5.2 LTI MIMO system example: CD player

The proposed technique using orthogonal functions has been applied to the model of a
CD player. This example is widely treated in many papers concerning MOR [49]. The
considered model of CD player describes the dynamics between the lens actuator and
the radial arm position as shown in Figure 2 and it is obtained using finite element
approximation. Detailed description can be found in [50].

disc

motor

radial arm

optical pick-up

Figure 2: CD player model. Source [50].

The full-order model of the CD player is LTI MIMO having 120 states, 2 inputs and
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2 outputs [21]. Gugercin and Antoulas proposed a reduced model having an order r = 12
by considering the system as LTI SISO. Chu and al. [51] reduced the LTI MIMO model
to an order r = 12. The proposed technique has been applied to the full-order MIMO
model and the reduction order is chosen to r = 10. The simulation of the error between
the step responses of the original model and the reduced order ones obtained by the
following techniques:
– The proposed technique using a shifted Legendre polynomials basis truncated to an
order 10 on the time domain [0, 50s],
– Balanced Hankel based (HMR) model reduction via square root method,
– Stochastic model truncation via Schur method (BST),
shows that the proposed reduction technique using orthogonal functions gives a minimal
error converging to zero and the behavior of the obtained reduced model is close to the
original 120-states full-model for any control input.

5.3 LTV system example

We consider now the LTV SISO system described by the state space realization (45) with

A(t) =







0 1 0 0
0 0 1 0
0 0 0 1

−1 + e−t −2 + 1
8t −3− 0.7 cos(−0.01t) −2 + 0.5 cos(t)






,

B(t) =







0
0
0

1 + 0.15 cos(1.2t− 0.5)






, C(t) =

[
1 0 0 0

]
.

The variable in time system parameters are projected on the orthogonal functions basis.
The obtained matrices AiN ∈ R

4×4, i ∈ {0, 1, . . . , 15} and vectors BiN ∈ R
4×1, i ∈

{0, 1, . . . , 15} resulting from this truncated development to the order 16, are used for
computing the reduced order LTV model as shown in Section 4.3. The reduced order is
chosen equal 2 (r = 2).

Figure 3 represents the time plot of the variable in time parameters of the reduced
order model. Figure 4 shows that the step response of the reduced-order model (order
r = 2) is close to the original system with order n = 4.

6 Conclusion

In this paper, new approaches have been introduced for the model order reduction of LTI
and LTV systems using orthogonal functions as a tool of approximation. The proposed
techniques can be applied to the order simplification of models defined either by an input-
output relation or a state representation. Indeed, the projection of the input, the output
and system variables on an orthogonal functions basis and the use of the operational
matrices of integration and product have permitted the conversion of the system model
from differential equations to algebraic ones. The minimization of the difference between
the algebraic original system description and the algebraic reduced model have allowed
the determination of the reduced order parameters.

Notice that the proposed order reduction techniques constitute an important contri-
bution in the field of dynamical model simplification. These techniques come to reinforce
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Figure 3: Time plots of the reduced order LTV system parameters obtained by the proposed
technique.
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Figure 4: Step responses of the original LTV system, the projected system into Legendre
shifted polynomials and the reduced order LTV model.

the existing approaches, especially in the case of LTV systems where only few methods
with limited efficiency are published on the order reduction subject.

Finally, let us point out that the presented results in this paper are concerned with
linear systems in both cases : time invariant and time variant parameters. However, it
seems that they can be extended to some classes of nonlinear systems as bilinear systems.
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This subject will be considered in our further works.
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and Techniques de Lille, Flandres Artois (1990).

[32] Ayadi, B. and Benhadj Braiek, N. MIMO PID Controllers synthesis using orthogonal func-
tions. In: IFAC 16th World Congress. International Federation of Automatic Control,
Prague, Czech Republic, July 2005.

[33] Ayadi, B. and Benhadj Braiek, N. Commande PID des systèmes linéaires à temps variant
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1 Introduction

The stability problem of nonlinear time-varying systems has attracted the attention of
several authors and has produced many important results [8], [11], [12], [13] and [14]
and the references therein. The problem of state trajectory control for nonlinear systems
by output feedback has received much attention. For systems with non-periodically
time-varying parameters, an output feedback control design is proposed in [4] for linear
time-varying systems based on the gradient algorithm. In [5], a new design is proposed for
the state feedback control of multivariable linear time-varying systems. The new design
is based on inversion state transformation and a forward differential Riccati equation.

The condition that we impose on the globally stabilizing state feedback control law is
that it does not vanish asymptotically for large values. Then, we will give a separation
principle based on analysis results for cascaded systems, as done for instance in [1] ,
[2], [3], [6], [7], [9] and [10]. However, in contrast to [11] we stress that our results will
be formulated for time-varying systems and hence are applicable to tracking problems.
Moreover as mentioned above, in [15] the author imposes the more restrictive assumption
ISS. Our cascades criteria lead to milder conditions.

The main contribution of this paper is the separation principle of nonlinear systems
by a linear output feedback under a generalized conditions. A practical stability approach
is obtained. Furthermore, we give an example to show the applicability of our result
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2 General Definitions

We consider the system

ẋ(t) = F (t, x), x(t0) = x0, (1)

where t ∈ R+, x ∈ R
n is the state. The function F : [0,+∞[×R

n −→ R
n is piecewise

continuous in t and locally Lipschitz in x.

We now introduce the notions of uniform boundedness and uniform ultimate bound-
edness of a trajectory of (1) (see [8]).

Definition 2.1 The system (1) is uniformly bounded if for all R1 > 0, there exists a
R2 = R2(R1) > 0, such that for all t0 ≥ 0

‖x0‖ ≤ R1 ⇒ ‖x(t)‖ ≤ R2, ∀t ≥ t0.

Definition 2.2 The system (1) is uniformly ultimately bounded if there exists R > 0,
such that for all R1 > 0, there exists a T = T (R1), such that for all t0 ≥ 0

‖x0‖ ≤ R1 ⇒ ‖x(t)‖ ≤ R, ∀t ≥ t0 + T.

Let r ≥ 0 and Br = {x ∈ R
n/‖x‖ ≤ r}. First, we give the definition of uniform

stability and uniform attractivity of Br.

Definition 2.3 (Uniform stability of Br) (i) Br is uniformly stable if for all ε > r,

there exists δ = δ(ε) > 0, such that for all t0 ≥ 0

‖x0‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0.

(ii) Br is globally uniformly stable if it is uniformly stable and the solutions of system
(1) are globally uniformly bounded.

Definition 2.4 (Uniform attractivity of Br) Br is globally uniformly attractive, if
for all ε > r and c > 0, there exists T (ε, c) > 0, such that for all t0 ≥ 0

‖x(t)‖ < ε, ∀t ≥ t0 + T (ε, c), ‖x0‖ < c.

Definition 2.5 The system (1) is globally uniformly practically asymptotically sta-
ble if there exists r ≥ 0, such that Br is globally uniformly stable and globally uniformly
attractive.

Definition 2.6 Br is globally uniformly exponentially stable if there exist γ > 0 and
k ≥ 0, such that for all t0 ∈ R+ and x0 ∈ R

n

‖x(t)‖ ≤ k‖x0‖ exp(−γ(t− t0)) + r.

The system (1) is globally practically uniformly exponentially stable if there exists r > 0,
such that Br is globally uniformly exponentially stable.
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3 Basic Results

We consider now the following dynamical system

{

ẋ(t) = A(t)x(t) +B(t)u(t) + f(t, x(t)),

y(t) = C(t)x(t),
(2)

where x(t) ∈ R
n is the system state, y(t) ∈ R

p is the system output, u(t) ∈ R
m is the

control input and A(t) ∈ R
n×n, B(t) ∈ R

n×m, C(t) ∈ R
p×n are matrices whose elements

are bounded continuous or piecewise continuous functions of time. The function f(t, x)
is continuous, locally Lipschitz in x and there exists a non negative constant f0, such
that

‖f(t, 0)‖ ≤ f0, ∀t ≥ 0.

The corresponding nominal system is described by

{

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t),
(3)

3.1 Stabilization

We prove in this subsection the stabilization of system (2) by a state feedback control
candidate. It is assumed that the system (3) is uniformly controllable (see [5]).

Definition 3.1 The pair (A(t), B(t)) is uniformly controllable if there exist ∆ and
another constant α depending on ∆, such that the controllability grammian I(t −∆, t)
satisfies

I(t−∆, t) =

∫ t

t−∆

ψ(t−∆, τ)B(τ)BT (τ)ψT (t−∆, τ)dτ ≥ αI > 0,

in which ψ(t, τ) is the state transition matrix A(t) and is defined by

∂ψ(t, t0)

∂t
= A(t)ψ(t, t0), ψ(t, t) = I,

ψ(t, t0)ψ(t0, s) = ψ(t, s)

and
ψ(t0, t) = ψ−1(t, t0).

We find from [5] the state feedback gain K(t), such that the control input

u(t) = K(t)x(t) (4)

with
K(t) = R−1

1 (t)B
T
(t)P (t),

where P (t) is the solution of the forward differential Riccatti equation

Ṗ (t) = −A
T
(t)P (t)− P (t)A(t) +R1(t)− P (t)B(t)R−1

2 (t)B
T
(t)P (t), P (0) = P0 > 0,

(5)
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in which
A(t) = −T (x)A(t)T−1(x), B(t) = T (x)B(t),

with

T (x) = I − 2
x(t)xT (t)

xT (t)x(t)
,

R1(t) > 0, R2(t) > 0 and R1(t), R2(t), R
−1
1 (t), R−1

2 (t) are all uniformly bounded.

Proposition 3.1 (see [6]) Consider the system (3) and the state feedback control (4)
and (5), if the system (3) is uniformly controllable, the closed-loop system is globally
exponentially stable.

Notice that, the system (3) in closed-loop with the linear feedback u(t) = K(t)x(t)
is globally exponentially stable, then from [6] we have for all positive definite symmetric
matrix Q1(t),

Q1(t) ≥ c1I > 0, ∀t ≥ 0,

there exists a positive definite symmetric matrix P1(t),

0 < c2I < P1(t) < c3I, ∀t ≥ 0,

which satisfies

AT
K(t)P1(t) + P1(t)AK(t) + Ṗ1(t) = −Q1(t), where AK(t) = A(t) +B(t)K(t). (6)

Now, we prove the global practical uniform stabilizability of (2). We shall suppose
the following.
(A1) Assume that

‖f(t, x)− f(t, y)‖ ≤ γ(t)‖x− y‖+ δ(t) + ε, ∀t ≥ 0, ∀ x, y ∈ R
n, (7)

where γ : R+ −→ R and δ : R+ −→ R are continuous non-negative functions with

∫ +∞

0

γ(s) ds ≤Mγ < +∞

and ∫ +∞

0

δ2(s) ds ≤Mδ < +∞.

Theorem 3.1 Under assumption (A1), the system (3) in closed-loop with the linear
feedback u(t) = K(t)x(t) is globally practically uniformly exponentially stable.

Proof. Let us consider the Lyapunov function V (t, x(t)) = xT (t)P1(t)x(t). The
derivative of V along the trajectories of system (2) is given by

V̇ (t, x(t)) ≤ −

(
c1

c3
−

2c3γ(t)

c2

)

V (t, x(t)) + 2
c3
√
c2
(δ(t) + f0 + ε)

√

V (t, x(t)).

Use the following change v(t) =
√

V (t, x(t)). Then, v(t) satisfies the following estimation

v(t) ≤ v(t0)e
−

∫ t

t0

α(s) ds
+

c3
√
c2






∫ t

t0

(δ(s) + f0 + ε)e

∫ s

t0

α(τ) dτ
ds




 e

−

∫ t

t0

α(s) ds
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with

α(t) =
c1

2c3
−
c3γ(t)

c2
·

A simple computation shows that,






∫ t

t0

(δ(s) + f0 + ε)e

∫ s

t0

α(τ) dτ
ds




 e

−

∫ t

t0

α(s) ds
≤

(√

c3Mδ

c1
+ 2(f0 + ε)

c3

c1

)

e

c3Mγ

c2 .

Thus, we obtain

v(t) ≤ v(t0)e

c3Mγ

c2 e
−

c1

2c3
(t− t0)

+
c3
√
c2

(√

c3Mδ

c1
+ 2(f0 + ε)

c3

c1

)

e

c3Mγ

c2 .

It follows that

‖x(t)‖ ≤

√
c3

c2
e

c3Mγ

c2 ‖x0‖e
−

c1

2c3
(t− t0)

+
c3

c2

(√

c3Mδ

c1
+ 2(f0 + ε)

c3

c1

)

e

c3Mγ

c2 .

This implies the global uniform exponential stability of Bκ with

κ =
c3

c2

(√

c3Mδ

c1
+ 2(f0 + ε)

c3

c1

)

e

c3Mγ

c2 .

Hence, the system (2) in closed-loop with the linear feedback u(t) = K(t)x(t) is globally
practically uniformly exponentially stable.✷

3.2 Conception of the observer

For the concept of observer, we aim at simplifying the design of this system by exploiting
the linear form of the nominal system. The system (3) is assumed to be uniformly
observable (see [5]).

Definition 3.2 The pair (A(t), C(t)) is uniformly observable if there exist ∆ and
another constant α depending on ∆, such that the observability grammian J(t − ∆, t)
satisfies

J(t−∆, t) =

∫ t

t−∆

ψ(t−∆, τ)C(τ)CT (τ)ψT (t−∆, τ)dτ ≥ αI > 0,

in which ψ(t, τ) is the state transition matrix A(t).

Definition 3.3 (Practical exponential observer) A practical exponential ob-
server for (2) is a dynamical system which has the following form

˙̂x(t) = F (t, x̂(t), u(t))− L(t)(C(t)x̂(t)− y(t)), (8)

where L(t) is the gain matrix and the error equation with e(t) = x̂(t)− x(t), is given by

ė(t) = F (t, x̂(t), u(t))− F (t, x(t), u(t)) − L(t)C(t)e(t) (9)
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a Luenberger observer which is expected to produce an estimation of the state in the
sense of global practical exponential stability. It means that, the system (9) is globally
practically uniformly exponentially stable and the following estimation holds:

‖e(t)‖ ≤ λ1‖e(t0)‖ e
−λ2(t− t0) + r, ∀ t ≥ t0,

with λ1, λ2, r > 0.

To design an observer, we shall consider the system

˙̂x = A(t)x̂(t) +B(t)u(t) + f(t, x̂(t)) − L(t)(C(t)x̂(t)− y(t)), (10)

where x̂(t) is the state estimate of x(t) and L(t) ∈ R
n×p is the observer feedback gain

to be determined so that x̂(t) tends to x(t) exponentially. One such design is the well
known Kalman filter design ( [3]), in which the observer feedback gain L(t) is chosen as

L(t) = Q(t)CT (t)V −1
2 (t), (11)

where Q(t) satisfies a forward differential Riccati equation

Q̇(t) = A(t)Q(t)+Q(t)AT (t)+V1(t)−Q(t)CT (t)V −1
2 (t)C(t)Q(t), Q(0) = Q0 > 0, (12)

in which V1(t) > 0, V2(t) > 0 and V1(t), V2(t), V
−1
1 (t), V −1

2 (t) are all uniformly bounded.
The error equation is given by

ė(t) = ˙̂x(t)− ẋ(t) = (A(t) − L(t)C(t))e(t) + f(t, x̂(t))− f(t, x(t)). (13)

Proposition 3.2 (see [9]) Consider the system (3) and the observer (11) and (12).
If (A(t), C(t)) is uniformly observable, the closed-loop system is globally exponentially
stable.

Notice that, if the system (3) in closed-loop with the observer (11) and (12) is globally
uniformly exponentially stable, then for all positive definite symmetric matrix Q2(t),

Q2(t) ≥ b1I > 0, ∀t ≥ 0,

there exists a positive definite symmetric matrix P2(t),

0 < b2I < P2(t) < b3I, ∀t ≥ 0,

which satisfies

AT
L(t)P2(t) + P2(t)AL(t) + Ṗ2(t) = −Q2(t), where AL(t) = A(t)− L(t)C(t). (14)

Theorem 3.2 Under assumption (A1), the system (10) is a practical exponential
observer for the system (2).

Proof. Let us consider the Lyapunov function Y (t, e(t)) = eT (t)P2(t)e(t). The deriva-
tive of Y along the trajectories of system (13) is given by

Ẏ (t, e(t)) ≤ −

(
b1

b3
−

2b3
b2
γ(t)

)

Y (t, e(t)) + 2
b3
√
b2
(δ(t) + ε)

√

Y (t, e(t)).
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Use the following change y(t) =
√

Y (t, e(t)). Then, y(t) satisfies the following estimation

y(t) ≤ y(t0)e
−

∫ t

t0

β(s) ds
+

b3
√
b2






∫ t

t0

(δ(s) + ε)e

∫ s

t0

β(τ) dτ
ds




 e

−

∫ t

t0

β(s) ds

with

β(t) =
b1

2b3
−
b3γ(t)

b2
·

A simple computation shows that,






∫ t

t0

(δ(s) + ε)e

∫ s

t0

β(τ) dτ
ds




 e

−

∫ t

t0

β(s) ds
≤

(√

b3Mδ

b1
+ 2ε

b3

b1

)

e

b3Mγ

b2 .

Thus, we obtain

y(t) ≤ y(t0)e

b3Mγ

b2 e
−

b1

2b3
(t− t0)

+
b3
√
b2

(√

b3Mδ

b1
+ 2ε

b3

b1

)

e

b3Mγ

b2 .

Hence,

‖e(t)‖ ≤

√

b3

b2
e

b3Mγ

b2 ‖e(t0)‖e
−

b1

2b3
(t− t0)

+
b3

b2

(√

b3Mδ

b1
+ 2ε

b3

b1

)

e

b3Mγ

b2 .

This implies the global uniform exponential stability of Bη with

η =
b3

b2

(√

b3Mδ

b1
+ 2ε

b3

b1

)

e

b3Mγ

b2 .

We deduce that, the system (13) is globally practically exponentially stable. Hence, the
system (10) is a practical exponential observer for the system (2).✷

3.3 Separation principle

Now, we obtain a separation principle for (2). We consider the system (2) controlled by
the linear feedback control u(t) = K(t)x̂(t) and estimated with the observer (10).

Theorem 3.3 Under assumption (A1), the system

{
˙̂x(t) = A(t)x̂(t) +B(t)u(t) + f(t, x̂(t)) − L(t)C(t)e(t),

ė(t) = (A(t)− L(t)C(t))e(t) + f(t, x̂(t))− f(t, x(t)),
(15)

is globally practically uniformly exponentially stable.
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Proof. In order to study the stabilization problem via an observer, we consider the
system

˙̂x(t) = ψ(t, x̂(t))− L(t)C(t)e(t), (16)

where
ψ(t, x̂(t)) = (A(t) +B(t)K(t))x̂(t) + f(t, x̂(t)).

Let us consider the Lyapunov function v(t, x̂(t)) =
√

x̂T (t)P1(t)x̂(t), which satisfies

√
c2‖x̂(t)‖ ≤ v(t, x̂(t)) ≤

√
c3‖x̂(t)‖,

∂v

∂t
(t, x̂(t)) +

∂v

∂x̂(t)
ψ(t, x̂(t)) ≤ −α(t)v(t, x̂(t)) +

c3
√
c2
(δ(t) + f0 + ε)

and ∥
∥
∥
∥

∂v

∂x̂
(t, x̂(t))

∥
∥
∥
∥
≤

c3
√
c2
,

where

α(t) =
c1

2c3
−
c3γ(t)

c2
·

The derivative of v along the trajectories of system (16) is given by

v̇(t, x̂(t)) ≤ −α(t)v(t, x̂(t)) +
c3
√
c2

(δ(t) + f0 + ε)

+
c3
√
c2

‖L(t)C(t)‖






√

b3

b2
e

b3Mγ

b2 ‖e(t0)‖e
−

b1

2b3
(t− t0)

+
b3

b2

(√

b3Mδ

b1
+ 2ε

b3

b1

)

e

b3Mγ

b2




 .

Since L(t)C(t) is bounded for all t ≥ t0, then there exists R1 > 0, such that

‖L(t)C(t)‖ ≤ R1, ∀t ≥ t0 ≥ 0.

Then

v̇(t, x̂(t)) ≤ −α(t)v(t, x̂(t)) + λ‖e(t0)‖e
−

b1

2b3
(t− t0)

+
c3
√
c2
δ(t) +R

with

λ =
c3
√
c2
R1

√

b3

b2
e

b3Mγ

b2

and

R =
c3
√
c2
(f0 + ε) +

b3c3

b2
√
c2
R1

(√

b3Mδ

b1
+ 2ε

b3

b1

)

e

b3Mγ

b2 .

Using the following change

y(t) = v(t)e

∫ t

t0

α(s) ds
,
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we obtain

y(t) ≤ y(t0) +
c3
√
c2

∫ t

t0

δ(s)e

∫ s

t0

α(τ) dτ
ds+ λ‖e(t0)‖

∫ t

t0

e
−

b1

2b3
(s− t0)

e

∫ s

t0

α(τ) dτ
ds

+R

∫ t

t0

e

∫ s

t0

α(τ) dτ
ds.

Then

v(t) ≤ v(t0)e
−

∫ t

t0

α(s) ds
+

c3
√
c2






∫ t

t0

δ(s)e

∫ s

t0

α(τ) dτ
ds




 e

−

∫ t

t0

α(s) ds

+ λ‖e(t0)‖






∫ t

t0

e
−

b1

2b3
(s− t0)

e

∫ s

t0

α(τ) dτ
ds




 e

−

∫ t

t0

α(s) ds

+R






∫ t

t0

e

∫ s

t0

α(τ) dτ
ds




 e

−

∫ t

t0

α(s) ds
.

A simple computation shows that

v(t) ≤ v(t0)e

c3Mγ

c2 e
−

c1

2c3
(t− t0)

+
c3
√
c2

√

c3Mδ

c1
e

c3Mγ

c2

+ λ‖e(t0)‖
2b3c3

c1b3 − b1c3
e

c3Mγ

c2 e
−

b1

2b3
(t− t0)

+ 2
Rc3

c1
·

Let

θ = min

(
c1

2c3
,
b1

2b3

)

·

Then

v(t) ≤
√
c3‖x̂0‖e

c3Mγ

c2 e−θ(t− t0) +
2λb3c3

c1b3 − b1c3
e

c3Mγ

c2 ‖e(t0)‖ e
−θ(t− t0)

+
c3
√
c2

√

c3Mδ

c1
e

c3Mγ

c2 + 2
Rc3

c1
·

Let

k = max

(
√
c3,

2λb3c3
c1b3 − b1c3

)

.

Hence,

‖x̂(t)‖ ≤
k

√
c2
e

c3Mγ

c2 (‖x̂0‖+ ‖e(t0)‖) e
−θ(t− t0) +

c3

c2

√

c3Mδ

c1
e

c3Mγ

c2 + 2
Rc3

c1
√
c2
·

Then, the cascade system (15) is globally practically uniformly exponentially stable. ✷
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Example 3.1 Consider the system

{

ẋ(t) = A(t)x(t) +B(t)u(t) + f(t, x(t)),

y(t) = C(t)x(t)
(17)

with x(t) = (x1(t), x2(t))
T ,

A(t) =

(
0 0
0 −1

)

, B(t) =

(
1

e−2t

)

,

C(t) =
(
1 e−2t

)

and

f(t, x(t)) = e−ktx(t) +

(
1
0

)

, k > 0.

The proposed control (4) is then applied to the system with the following design param-
eters P (0) = I, R1(t) = I, R2(t) = I in (5). The matrix P (t) is calculated by solving the
Ricatti equation (5). The function f(t, x(t)) is continuous and satisfies assumption (A1)
because

∫ +∞

0

e−kt =
1

k
, k > 0.

We conclude that the system (2) can be globally practically uniformly exponentially
stable. The observer feedback gain L(t) is chosen as (11) by solving the Riccati equation
(12). We conclude that the system (10) is a practical exponential observer for the system
(17). Thus, Theorem 3.3 is satisfied. We conclude that, the system (15) is globally
uniformly practically exponentially stable.

4 Conclusion

This paper presents a separation principle for a class of nonlinear controls systems. It is
shown that the system can be globally exponentially stabilizable by means of an estimated
state feedback control given by an observer design.
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Médéa, Quartier Aind’heb 26000, Médéa, Algérie
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Abstract: Artificial intelligent systems are widely used in control applications. The
proposed techniques controller of Induction Motor are used to reduce torque and flux
ripples producing by the hysteresis comparators in the conventional DTC at very
low speed. In addition the proposed speed controllers are presented in this paper
to guarantee that the motor speed converges very well to the desired speed. The
simulation results confirm the validity of the proposed techniques.

Keywords: ANN; DTC; fuzzy logic; PI; IM; speed controller.
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1 Introduction

Induction motors have been widely applied in industry because of the advantages of
simple construction, ruggedness, reliability, low cost, and minimum maintenance. The
recent challenge is to apply induction motors to precision servo machines such as robots
and NC machines. The problem arises from the load variation during the motion of the
motor [3]. The apparition of the field oriented control (FOC) made induction machine
drives a major candidate in high performance motion control applications. However, the
complexity of field oriented algorithms led to the development in recent years of many
studies to find out different solutions for the induction motor control having the features
of precise and quick torque response [4]. Direct torque control (DTC) of induction
machines (IM) is a powerful control method for motor drives. Featuring a direct control
of the stator flux and torque instead of the conventional current control technique, it
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provides a systematic solution to improve operating characteristics of the motor and
the voltage inverter source [1, 5]. It has emerged over the last decade to become one
possible alternative to the well-known Vector Control of Induction Machines. Its main
characteristic is the good performance, obtaining results as good as the classical vector
control but with several advantages based on its simpler structure and control diagram [6].
In addition, direct torque control minimizes the use of machine parameters, so it is very
little sensible to the parameters variation [7]. Several solutions with modified DTC are
presented in the literature. Due to its simple structure, DTC can be easily integrated
with an artificial intelligence control strategy [8]. The fuzzy logic solution of flux and
torque control is given in [9, 13] During years, many solutions have focused to reduce
high level of torque and flux ripples producing by the hysteresis comparators in the
traditional DTC. Both open and closed loop speed and position estimators are widely
used in literature [8]. This paper investigates the control by neural network and fuzzy
logic in order to reduce torque ripples and to compare the traditional DTC with DTC
based on Artificial Intelligent systems (DTAIC) with and without speed regulation.

2 Direct Torque Control Strategy

Direct torque control (DTC) of induction motors has aroused significant interest among
researchers looking for an efficient and high performance ac motor drive [10].

Figure 1: Schematic diagram of CDTC strategy.

The scheme of the classical DTC (Figure 1) consists of two hysteresis controllers.
Stator flux controller defines the time duration of the active voltage vectors, which moves
the stator flux along the reference trajectory, and torque controller determinates the time
duration of the inverter zero states, which keep the motor torque in the defined range
by hysteresis value tolerance band. Finally, in every sampling time the voltage vector
selection block defines the inverter switching state (SA, SB, SC), which reduces the
instantaneous flux and torque errors.

3 Estimated Torque and Flux

In the DTC, the stator flux vector is estimated by taking the integral of difference between
the input voltage and the voltage drop across the stator resistance given by [11].

The component α and β of vector ϕs can be obtained:

ϕsα =

∫ t

0

(Vsα−Risα) dt, ϕsβ =

∫ t

0

(Vsβ−Risβ) dt. (1)
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Stator flux amplitude and phase angle are calculated in expression (2):

ϕs =
√

ϕ2
sα + ϕ2

sβ argϕs = arctan
(ϕsβ

ϕsα

)

. (2)

Once the two components of flux are obtained, the electromagnetic torque can be
estimated from the relationship cited below:

Te =
3

2
p(ϕsαisβ − ϕsβisα). (3)

4 Proposed DTAIC

To resolve torque ripple problem, this paper propose a direct torque control based on ar-
tificial intelligent of induction motor to replace the hysteresis comparators and switching
table in open loop and artificial intelligent speed controller to replace the PI controller
in closed loop as shown Figure 2.

Figure 2: Schematic diagram of DTC-PMSM control.

The proposed IA has three inputs:

1. Flux linkage errors: The error of flux linkage Eϕ is related value of stator’s
flux ϕ∗

s and real value of stator’s ϕs,

Eϕs
= ϕ∗

s − ϕs. (4)

2. Electromagnetic torque errors: Error of torque ETe is related to desired
torque value T ∗

e and real torque value Te,

ETe = T ∗

e − Te. (5)

3. Angle of flux linkage θs: The angle of flux linkage θs is an angle between
stator’s flux Φs and a reference axis is defined by the equation

θs = arctan
(ϕsβ

ϕsα

)

. (6)

The output is: 1. The Boolean switching controls (Sa, Sb, Sc).
So we have three controllers based on artificial intelligent as fuzzy, neural fuzzy and

neural networks.
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4.1 Fuzzy controller

Fuzzy control is a way for controlling a system without the need of knowing the plant
mathematic model. It uses the experience of people’s knowledge to form its control rule
base [12]. The fuzzy logic controller is comprised of fuzzification part, fuzzy inference
part and defuzzification part [13].

Figure 3: Membership distribution of fuzzy variable.

Fuzzification: The fuzzification is the process of a mapping from measured or esti-
mated input to corresponding fuzzy set in the universe of discourse as shown in Figure
3.

Fuzzy inference: The fuzzy reasoning used is Mamdani’s method. The fuzzy control
rule-base is shown in Table I.

Deffuzification: The Mamdani’s minimum operation rule is used as the interface
method and, the output obtained by the center of gravity method used for defuzzification.

P Z N P Z N

PL V1 V2 V2 PL V1 V1 V2

PS V1 V2 V3 PS V1 V2 V2

ZE - - - ZE - - -

NS V6 - V4 NS

NL

V5 - V4

NL V6 V5 V5 V5 V5 V4

Table 1: Set of fuzzy rules.

4.2 Neural fuzzy controller

Artificial Neural Networks (ANNs) tend to imitate the human learning process in a very
limited way by a computer program or electronic circuit. The ANNs do not require
the mathematical model of the system [14], they just use experimental or simulated
input/output data to be trained.

The Neural Fuzzy proposed in this paper based on desired fuzzy output, consists of
three input nodes (torque error, flux error and stator flux angle); one hidden layer and
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an output layer with three neurons with (3-11-3).

4.3 Neural network controller

The third proposed controller is composed of three principal layers: the input layer, the
hidden layer and the output layer, as shown Figure 4 with 10 neurons in hidden layer.

Figure 4: Architecture of neural network controller.

5 Proposed Speed Controller Based on Artificial Intelligent (AI)

The motor speed can be controlled indirectly by controlling the torque with a traditional
controller such as PI or controller based on Artificial Intelligent including Fuzzy Logic
and Neural Networks.

So this paper presents direct torque control of induction motor based on AI in closed
loop, under transient and steady state uncertainties caused by the variation in load
torque, the proposed speed controllers are PI, Fuzzy Logic, Neural Fuzzy logic and Neural
networks.

5.1 The Proportional Integral (PI) controllers

The PI controller for the above system can be expressed as

u = Kpe(t) + ki

∫

e(t)dt, (7)

where Kp and Ki are the proportional and integral gain constants [15]. The speed error
e(k) and △e(k) are defined as:

e(k) = ω∗

r (k)− ωr(k), (8)

∆e(k) = e(k + 1)− e(k). (9)
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5.2 Fuzzy controller

The input linguistic variables speed error e(k), change in speed error △e(k) and output
linguistic variable u(k) membership functions will be divided into seven fuzzy sets with
the linguistic values NL (negative large), NM (negative medium), NS (negative small),
ZE (zero), PS (positive small), PM (positive medium), PL (positive large) respectively
and are given in Table 2.

Figure 5: Membership functions of the Fuzzy controller.

e PL PM PS ZE NS NM NL
∆e
PL PL PL PL PL PM PS ZE
PM PL PL PL PM PS ZE NS
PS PL PL PM PS ZE NS NM
ZE PL PM PS ZE NS NM NL
NS PM PS ZE NS NM NL NL
NM PS ZE NS NM NL NL NL
NL ZE NS NM NL NL NL NL

Table 2: Fuzzy control table.

5.3 Neural fuzzy controller

This proposed controller is obtained by learning ANN controller based on data in-
puts/outputs of fuzzy controller cited below, the NF controller has two inputs/one output
(error and variation error of speed rotor/ torque command) as shown in Figure 6 and
the hidden layer contains 25 neuron.

5.4 Neural network

The controller presented in this section has also two inputs/one output and one hidden
layer (Figure 7) contains 20 neurons. The sum squared error falls under 5.34.e-5 after
2201 iterations.
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Figure 6: Basic structure of neural fuzzy speed controller.

Figure 7: Basic structure of neural speed controller.

6 Simulation Result

A simulation configured SIMULINK environment has been carried out for the evaluation
of the proposed system. The parameters of the induction motors used in this study are
shown in Table 3.

Parameters of IM setting
P Power 1.5 Kw
Rs Stator resistance 4.85 Ohm
Rr rotor resistance 4.85 Ohm
j Inertia 0.031Kg.m2
f frequency 50Hz
P Poles 2

Table 3: Parameters of IM setting.

The constant load torque of 10Nm and a constant flux of 1.1Wb were used, Figure
8 shows comparison between fuzzy (DTFLC), neural fuzzy (DTNFC), neural network
(DTNNC) and traditional DTC (CDTC), in this figure the stator current is nearly si-
nusoidal and stator flux trajectory is evidently circular. It can be seen that the torque
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and flux ripple is significantly reduced by using fuzzy logic controller compared to neural
network, neural fuzzy logic and traditional controller in open loop, we have nearly the
same remarks in closed loop, the estimated values of electromagnetic torque and stator
flux track the references with load torque applied (10Nm) as shown (Figure 9, Figure 10
and Figure 11) and the ripple in torque, current and flux is less by using fuzzy controller
compared to the others controller in Figure 11 the rotor speed flow the reference quickly
and without overshoot by using neural and neural based on fuzzy logic. We find finally
that the neural speed controller based on fuzzy logic gives better performances.

Figure 8: Responses of flux, torque and stator current with a load torque applied.

Figure 9: Torque response.
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Figure 10: Rotor speed response.

Figure 11: Stator flux response.

7 Conclusion

This paper presents comparative study of DTC-IM with and without speed controller
based on artificial intelligent system such as fuzzy logic, neural network and neural fuzzy
logic.

The obtained simulation results show good performance of proposed methods which
are better than conventional method. The motor reaches the reference speed rapidly and
without overshoot, load disturbances are rapidly rejected; torque and flux ripples are
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significantly attenuated.

References
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Abstract: This paper deals with the existence and synthesis of parameterized-
(control) Lyapunov functions (p-(C)LFs) for discrete-time nonlinear systems that
are possibly subject to constraints. A p-LF is obtained by associating a finite set of
parameters to a standard LF. A set-valued map, which generates admissible sets of
parameters, is defined such that the corresponding p-LF enjoys standard Lyapunov
properties. It is demonstrated that the so-obtained p-LFs offer non-conservative sta-
bility analysis conditions, even when Lyapunov functions with a particular structure,
such as quadratic forms, are considered. Furthermore, possible methods for synthe-
sizing p-CLFs are discussed. These methods require solving on-line a low-complexity
convex optimization problem.

Keywords: difference equations; asymptotic stability; Lyapunov methods; convex

optimization.
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1 Introduction

The problems considered in this paper are stability analysis and stabilizing controller
synthesis via Lyapunov methods for discrete-time nonlinear systems that are possibly
subject to constraints. It is well known that such methods rely on the existence and
construction of a proper Lyapunov function (LF) [8, 11, 12, 19] and control Lyapunov
function (CLF) [1,9,24], respectively. Unfortunately, the construction of LFs for general
nonlinear systems is a very challenging problem. In particular, even linear systems with
hard state/input constraints pose a non-trivial challenge to finding a non-conservative
LF. As such, it would be desirable to identify a non-conservative class of Lyapunov
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functions that leads to a tractable implementation for nonlinear systems. As our interest
lies mainly within the discrete-time domain, the following brief account of advances in
Lyapunov methods is restricted to discrete-time systems.

For unconstrained linear systems, existence of a LF with a fixed structure (e.g.,
quadratic or polyhedral) and parameter set (e.g., common weight matrix for all states)
is necessary and sufficient for stability. However, when constraints are present, the un-
constrained solution usually provides a conservative domain of attraction. Moreover,
when other classes of nonlinear systems are considered, such as systems with polytopic
uncertainty, piecewise affine (PWA) or switched systems, existence of a fixed LF with
a common set of parameters is known to be conservative. For such relevant classes of
nonlinear systems it was already shown that enriching the set of admissible parameters
for the Lyapunov weight matrix leads to a less conservative LF, even when the structure
of the LF is fixed. For example, parameter dependent quadratic Lyapunov functions
were constructed in [6] for uncertain linear systems by parameterizing the weight ma-
trix of a quadratic LF as a function of the uncertain parameter. This idea was further
used to construct switched quadratic LFs for switched systems in [7]. For recent results
on parameter dependent Lyapunov functions for uncertain linear systems we refer the
interested reader to [23], [4] and the references therein. A different type of relaxation
was developed for PWA systems in [13]. To deal with a switching law defined by a
state-space partition, the weight matrix of a quadratic LF was allowed to have different
values (within a finite set of admissible matrices), which yielded a piecewise quadratic
(PWQ) LF. More recently, a method to synthesize trajectory-dependent time-variant
CLFs defined using the infinity norm was proposed in [18].

This paper continues on this line of research and proposes a definition of a parame-
terized LF (p-LF), without a fixed structure, that is applicable to general discrete-time
nonlinear systems. The term parameterized LF denotes the fact that the LF candidate
is endowed with a set of parameters, not necessarily structured in a particular form (e.g.,
a matrix of certain dimensions), which can take multiple values within an admissible
set that depends on each state. As such, the Lyapunov conditions for stability can be
formulated in terms of the set valued map that generates an admissible set of parameters
for each state. In contrast to the set-up of [18], the conditions that define a p-LF are
time-invariant. The non-conservatism of the proposed p-LFs, even with a fixed structure,
is indicated by a converse theorem, which establishes that exponentially stable nonlinear
systems always admit a p-quadratic LF. A corresponding definition of a parameterized
control Lyapunov function (p-CLF) is also provided, which leads to several possibilities
for synthesizing trajectory-dependent stabilizing control laws. Furthermore, it is shown
that for p-quadratic-CLFs and input affine nonlinear systems, a synthesis solution based
on solving on-line a single low-complexity semi-definite program (SDP) can be obtained,
under the assumption of recursive feasibility.

2 Preliminaries

Let R, R+, Z and Z+ denote the field of real numbers, the set of non-negative reals,
the set of integer numbers and the set of non-negative integers, respectively. For every
c ∈ R and Π ⊆ R define Π≥c := {k ∈ Π | k ≥ c} and similarly Π≤c, RΠ := R ∩ Π
and ZΠ := Z ∩ Π. For a set S ⊆ R

n, let int(S) denote the interior of S. A polyhedron
(or a polyhedral set) in R

n is a set obtained as the intersection of a finite number of
open and/or closed half-spaces. A polytope is a closed and bounded polyhedron. For a
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vector x ∈ R
n, [x]i denotes the i-th element of x and ‖ · ‖ denotes an arbitrary p-norm,

p ∈ Z≥1 ∪ ∞. Let ‖x‖∞ := maxi=1,...,n |[x]i| and ‖x‖2 :=
√∑n

i=1
|[x]i|2, where | · |

denotes the absolute value. In ∈ R
n×n denotes the n-th dimensional identity matrix.

For a symmetric matrix Z ∈ R
n×n let Z ≻ 0(� 0) denote that Z is positive definite

(semi-definite). Moreover, ∗ is used to denote the symmetric part of a matrix. For the
definition of class K, K∞ and KL functions we refer the reader to [11].

Next, consider the discrete-time autonomous system

x(k + 1) = Φ(x(k)), k ∈ Z+, (1)

where x(k) ∈ R
n is the state at the discrete-time instant k and Φ : Rn → R

n is an
arbitrary map with Φ(0) = 0.

Definition 2.1 Let λ ∈ R[0,1]. We call a set X ⊆ R
n λ-contractive (or shortly,

contractive) for system (1) if for all x ∈ X it holds that Φ(x) ∈ λX. When this property
holds with λ = 1 we call X a positively invariant (PI) set.

Definition 2.2 Let X with 0 ∈ int(X) be a subset of R
n. We call system (1)

asymptotically stable in X, or shortly, AS(X), if there exists a KL-function β(·, ·) such
that, for each x(0) ∈ X it holds that the corresponding state trajectory of (1) satisfies
‖x(k)‖ ≤ β(‖x(0)‖, k), ∀k ∈ Z+. We call system (1) exponentially stable in X, or shortly,
ES(X), if β(s, k) := θµks for some θ ∈ R≥1, µ ∈ R[0,1).

Theorem 2.1 [11,14] Let X ⊆ R
n be a PI set for (1) with 0 ∈ int(X). Furthermore,

let α1, α2 ∈ K∞, ρ ∈ R[0,1) and let V : Rn → R+ be a function such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ X, (2a)

V (Φ(x)) ≤ ρV (x), ∀x ∈ X. (2b)

Then system (1) is AS(X).

A function V that satisfies (2) is called a Lyapunov function and ρ is called the rate
of decrease of V . Notice that in discrete-time, continuity of the dynamics or Lyapunov
function is not necessary (except at the origin) for stability, as pointed out in [14]. As
such, in what follows we do not explicitly require this property. However, as pointed out
recently in [17], one must take additional precautions with respect to inherent robustness,
when discontinuous Lyapunov functions are involved.

3 Parameterized Lyapunov Functions

Let P denote a set of parameter sets, where each parameter set (or element of P) contains a
finite number of parameters with an arbitrary structure, e.g., a parameter set or element
in P can be a matrix of certain fixed dimensions. Let us now define a function V :
R

n×P → R+, which is zero at zero for all elements in P. Next, let (P1, P2) ∈ P×P =: P2

and consider the following inequalities for some x ∈ X:

α1(‖x‖) ≤ V (x, P1) ≤ α2(‖x‖), (3a)

V (Φ(x), P2) ≤ ρV (x, P1). (3b)

Consider the set-valued map P : Rn
⇒ P× P,

P(x) := {(P1, P2) ∈ P
2 | (3a) and (3b) hold}. (4)
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For any x ∈ X, P(x) 6= ∅ denotes the fact that there exists at least one pair (P1, P2) ∈ P
2

that satisfies (3). To distinguish between the two outputs of P we will use [P(x)]1 and
[P(x)]2 to denote the sets where the first and the second component of a pair (P1, P2) ∈ P

2

that satisfies (3) take values, respectively. [P(x)]• denotes an element of P(x). With a
slight abuse of notation we will use P (x) to denote any P1 ∈ [P(x)]1.

Definition 3.1 A function V (x, P (x)) with P (x) ∈ [P(x)]1 is called a parameterized
Lyapunov function (p-LF) in X ⊆ R

n for system (1) if

P(x) 6= ∅, ∀x ∈ X, (5a)

[P(x)]2 ∩ [P(Φ(x))]1 6= ∅, ∀x ∈ X. (5b)

Theorem 3.1 Let X ⊆ R
n be a PI set for (1) with 0 ∈ int(X). Suppose that system

(1) admits a parameterized Lyapunov function in X. Then system (1) is AS(X).

Proof. The claim is proven using standard arguments [8,11,14]. From (5a) we obtain
that for all x ∈ X

α1(‖x‖) ≤ V (x, P (x)) ≤ α2(‖x‖), ∀P (x) ∈ [P(x)]1.

From (5b) we obtain that for all x ∈ X there exists at least one pair (P (x), P2) ∈ P(x)
such that P2 ∈ [P(Φ(x))]1, which yields that

V (Φ(x), P (Φ(x))) − ρV (x, P (x)) ≤ 0, ∀x ∈ X,

with P (Φ(x)) = P2 ∈ [P(Φ(x))]1 and P (x) ∈ [P(x)]1. As X is a PI set, the above
inequality can be applied recursively for any trajectory {x(k)}k∈Z+

with x(0) ∈ X, which
yields:

α1(‖x(k + 1)‖) ≤ V (Φ(x(k)), P (Φ(x(k))))

≤ ρk+1V (x(0), P (x(0))) ≤ ρk+1α2(‖x(0)‖),

for all x(0) ∈ X. Hence, ‖x(k)‖ ≤ β(‖x(0)‖, k) for all x(0) ∈ X, where β(s, k) :=
α−1
1 (ρkα2(s)) ∈ KL, which completes the proof. ✷

To illustrate the relaxation with respect to existing approaches, consider the case
when one adds a particular structure to the parameter set P and the candidate p-LF. As
such, let us consider p-quadratic-LFs, defined as V (x, P (x)) := x⊤P (x)x, P (x) ∈ [P(x)]1,
P(x) ⊆ P

2 for all x, where P ⊆ R
n×n. Consider now the case of a PWA system with

a fixed switching law defined by a partition of the state-space, i.e., {Ωj}j∈S , with S
a finite set of indices, and let P := {Pi}i∈S , Pi ∈ R

n×n for all i ∈ S. If one sets
P(x) := {(Pi, Pj)} for all (x,Φ(x)) ∈ Ωi × Ωj and imposes (3a) for all x ∈ Ωj and
(3b) for all (x,Φ(x)) ∈ Ωi × Ωj , (i, j) ∈ S × S, one obtains a PWQ Lyapunov function
with an S-procedure relaxation [13], as a particular case of a p-quadratic-LF. Similarly,
it can be shown that quadratic periodic Lyapunov functions [3] are a particular case
of p-quadratic-LFs. Moreover, it can be shown that parameter dependent Lyapunov
functions form a particular type of p-LFs, by allowing the map P to depend on both
the state and the uncertain parameter. It would be interesting to further relate p-LFs
with polynomial Lyapunov functions, which can be obtained if P (x) is allowed to be
a particular polynomial of x. Then, the map P(x) would assign the coefficients of the
polynomial. As the relation to polynomial LFs is beyond the scope of this paper, we will
not pursue it any further.
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The following converse result reveals the non-conservatism of p-LFs, even when a
particular structure is imposed. We will consider two of the most popular type of
structures for candidate LFs, i.e., p-quadratic-LFs and p-polyhedral-LFs, defined as
V (x, P (x)) := ‖P (x)x‖∞, P (x) ∈ [P(x)]1, P(x) ⊆ P

2 for all x, where P ⊆ R
r×n

(r ∈ Z≥n). Let N denote an arbitrary neighborhood of the origin (i.e., a bounded
set with a non-empty interior that contains the origin in its interior).

Assumption 3.1 There exists a positively invariant neighborhood of the origin N
such that system (1) admits a p-quadratic-LF (p-polyhedral-LF) in N .

The above assumption is reasonable, as most nonlinear systems can be approximated
around the origin by a linear system, PWA system or a polytopic difference inclusion
and then one can use the above indicated results to obtain a local p-quadratic-LF. Next,
suppose that system (1) is either ES(X) or AS(X) and, as such, by a standard converse
theorem, see, e.g., Theorem 1 in [12] or Lemma 4 in [20] (AS) and Theorem 2 (ES) in [12],
it admits a Lyapunov function in X. Notice that the above-mentioned converse theorems
require AS(Rn). In what follows we implicitly assume that these results can be applied
to an invariant subset X of Rn.

Let V1 denote a LF established by a converse theorem and let VL(x, PL(x)) with
PL(x) ∈ [PL(x)]1 for some PL(x) ⊆ P

2 denote a p-quadratic-LF (or p-polyhedral-LF) in
N .

Theorem 3.2 Let X ⊆ R
n be a PI set for (1) with 0 ∈ int(X).

(i) Suppose that system (1) is ES(X). Then, there exists a p-quadratic-LF in X for
system (1).

(ii) Suppose that system (1) is AS(X), Assumption 3.1 holds and there exists a c ∈
R(0,1] such that V1(x) ≥ cVL(x, PL(x)) for all x ∈ N and all PL(x) ∈ [PL(x)]1. Then,
there exists a p-quadratic-LF (p-polyhedral-LF) in X for system (1).

Proof. Let us begin with the proof of (i). As system (1) is ES(X), by Theorem 2 in
[12] it admits a standard Lyapunov function V1 that satisfies (2) for all x ∈ X. Moreover,
V1 satisfies (2a) with α1(s) := s2 and α2(s) := ls2 for some l ∈ R≥1. Using this function
define

P(x) :=

{(
V1(x)

‖x‖22
In,

V1(Φ(x))

‖Φ(x)‖22
In

)}

, ∀x ∈ X. (6)

Note that Φ(x) ∈ X for all x ∈ X and

l =
α2(‖x‖)

‖x‖22
≥

V1(x)

‖x‖22
≥

α1(‖x‖)

‖x‖22
= 1, ∀x ∈ X.

Thus, P(x) is well-defined for all x ∈ X. Observing that the candidate p-quadratic-LF
V (x, P (x)) := x⊤P (x)x with P (x) ∈ [P(x)]1 satisfies V (x, P (x)) = V1(x) for all x ∈ X

and V1 is a LF in X for system (1) completes the proof.
Consider now hypothesis (ii). As system (1) is AS(X), by Theorem 1 in [12] it admits

a standard Lyapunov function V1 that satisfies (2) for all x ∈ X. Using this function

define P̄ (x) := V1(x)

‖x‖2

2

In for a p-quadratic-LF, or P̄ (x) := V1(x)

‖x‖
∞

In for a p-polyhedral-LF.

Note that, as V1(x)

‖x‖2

2

≤ α2(‖x‖)

‖x‖2

2

for all x ∈ X and N is bounded and contains the origin

in its interior, V1(x)

‖x‖2

2

is well defined for all x ∈ X \ N =: XN . Similarly, V1(x)

‖x‖
∞

is well
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defined for all x ∈ XN . Next, consider the candidate p-quadratic-LF (p-polyhedral-LF)
V (x, P (x)) = x⊤P (x)x (V (x, P (x)) = ‖P (x)x‖∞), where P (x) ∈ [P(x)]1 and

P(x) :=







cPL(x), ∀(x,Φ(x)) ∈ N 2,

{(P̄ (x), c[PL(Φ(x))]1)}, ∀(x,Φ(x)) ∈ XN ×N ,

{(P̄ (x), P̄ (Φ(x)))}, ∀(x,Φ(x)) ∈ (XN )2.

(7)

Then, for all (x,Φ(x)) ∈ (XN )2, as V (x, P (x)) = V1(x) for all x ∈ XN , (2b) yields

V (Φ(x), P (Φ(x))) − ρV (x, P (x)) = V1(Φ(x)) − ρV1(x) ≤ 0.

Moreover, for all (x,Φ(x)) ∈ XN ×N , (2b) also yields

V (Φ(x), P (Φ(x))) − ρV (x, P (x))

= cVL(Φ(x), PL(Φ(x))) − ρV1(x)

≤ V1(Φ(x)) − ρV1(x) ≤ 0,

for all PL(Φ(x)) ∈ [PL(Φ(x))]1. As N is a PI set for system (1), the last case to be
analyzed is when (x,Φ(x)) ∈ N 2. Then

V (Φ(x),P (Φ(x))) − ρV (x, P (x))

= c(VL(Φ(x), PL(Φ(x))) − ρVL(x, PL(x))) ≤ 0,

where PL(x) ∈ [PL(x)]1 for all x ∈ N . Thus, we conclude that V (x, P (x)) with P (x) ∈
[P(x)]1 for all x ∈ X and P(x) as defined in (7) satisfies

V (Φ(x), P (Φ(x))) − ρV (x, P (x)), ∀x ∈ X.

Observing that

α1,L(‖x‖) ≤ VL(x, PL(x)) ≤ α2,L(‖x‖), ∀x ∈ N ,

for some α1,L, α2,L ∈ K∞, yields that

α1,p(‖x‖) ≤ V (x, P (x)) ≤ α2,p(‖x‖), ∀x ∈ X,

where α1,p(s) := min(α1(s), cα1,L(s)) ∈ K∞ and α2,p(s) := α2(s) ∈ K∞. This fur-
ther implies that V (x, P (x)) (i.e., the constructed p-quadratic-LF or p-polyhedral-LF
candidate) satisfies the conditions of Definition 3.1, which completes the proof. ✷

For clarity of exposition, in this section we have considered discrete-time systems of
the form (1) that are described by a difference equation. However, all the developed
results apply mutatis mutandis to the case when Φ(x) is a compact and non-empty
set-valued map and yield strong asymptotic stability in X (i.e., AS(X) for all possible
trajectories generated by the set-valued map). Then, the converse theorem in [10] should
be used instead of the ones in [12]. In the next section we will deal with a difference
equation that involves a set-valued control input and refer to the results established in
this section, as in fact, these results hold for difference inclusions as well.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (2) (2013) 157–169 163

4 Parameterized Control Lyapunov Functions

Consider the discrete-time system

x(k + 1) = φ(x(k), u(k)), k ∈ Z+, (8)

where x(k) ∈ X ⊆ R
n is the state, u(k) ∈ U ⊆ R

m is the input, φ : Rn × R
m → R

n is an
arbitrary map with φ(0, 0) = 0 and X, U contain the origin in their interior.

Definition 4.1 We call a set X ⊆ R
n constrained control invariant with respect to

U (CCI(X,U)) for system (8) if for all x ∈ X, ∃u ∈ U such that φ(x, u) ∈ X.

Assumption 4.1 X ⊆ R
n is a CCI(X,U) set for the discrete-time system (8).

Notice that the above assumption is made only for ease of exposition. If X is not a
CCI(X,U), the results simply apply for the largest subset of X with this property.

Next, consider the following inequalities corresponding to (3) for some x ∈ X:

α1(‖x‖) ≤ V (x, P1) ≤ α2(‖x‖), (9a)

V (φ(x, u), P2) ≤ ρV (x, P1). (9b)

Consider the set-valued map P : Rn
⇒ P× P,

P(x) := {(P1, P2) ∈ P
2 | ∃u ∈ U s.t. (9) holds}. (10)

Furthermore, let π : Rn × P× P ⇒ U denote

π(x, [P(x)]•) := {u ∈ U | (9) holds for [P(x)]•}.

Definition 4.2 A function V (x, P (x)) with P (x) ∈ [P(x)]1 is called a parameterized
control Lyapunov function (p-CLF) in X for system (8) if

P(x) 6= ∅, ∀x ∈ X, (11a)

∃[P(x)]• ∈ P(x), ∃u ∈ π(x, [P(x)]•) s.t.

[P(x)]2 ∩ [P(φ(x, u))]1 6= ∅, ∀x ∈ X. (11b)

In what follows we will focus on the synthesis of p-CLFs. Although these methods
will also provide useful insights for stability analysis via synthesis of p-LFs, exploring
this path further is beyond the scope of this paper.

Next, we will formulate an optimization problem to be solved on-line that yields
a trajectory-dependent p-CLF (td-p-CLF). By trajectory-dependent we mean that the
computed sequence of parameter sets {P (x(k))}k∈Z+

, with P (x(k)) ∈ [P(x(k))]1 for all
k ∈ Z+, will only be valid along the trajectory {x(k)}k∈Z+

. The advantage of this
approach is that the non-conservatism of a p-CLF is preserved. The challenge, which
is common to all optimization based controllers, is to guarantee recursive feasibility.
Unfortunately, the problem of constructing a set of a priori verifiable conditions for
recursive feasibility is non-trivial and it is not solved in this paper. Instead, we propose
a heuristic solution for attaining recursive feasibility, which requires minimization of the
decrease rate of the td-p-CLF. Simulations conducted on several challenging case studies
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indicate that not enforcing a steep decrease of the p-CLF is beneficial in terms of recursive
feasibility. This is in contrast with the classical CLF approach of [1], where the optimal
decrease is required.

Let the structure, e.g., p-quadratic-CLF, the set of parameter sets P, the functions
α1, α2 and the rate of decrease ρ ∈ R[0,1) of an arbitrary candidate p-CLF V be specified.

Problem 4.1 Let x(k) ∈ X be known at each k ∈ Z+. Let x+(k) := φ(x(k), u(k))
for all k ∈ Z+ and consider the following inequalities:

x+(k) ∈ X, u(k) ∈ U, (12a)

α1(‖x(k)‖) ≤ V (x(k), P (x(k))) ≤ α2(‖x(k)‖), (12b)

α1(‖x
+(k)‖) ≤ V (x+(k), P (x+(k))) ≤ α2(‖x

+(k)‖), (12c)

V (x+(k), P (x+(k))) ≤ ρV (x(k), P (x(k))). (12d)

If k = 0 find a u(0) ∈ U and a (P (x+(0)), P (x(0))) ∈ P
2 that satisfy (12). If k ∈ Z≥1

set P (x(k)) = P (x+(k − 1)) and find a u(k) ∈ U and a P (x+(k)) ∈ P that satisfy
(12a)-(12c)-(12d). ✷

In the above problem, x+(k) can be interpreted as the one-step ahead prediction
calculated at time k ∈ Z+ using the measured state x(k), the input u(k) and the plant
model φ(·, ·). Obviously, in the ideal case x+(k − 1) = x(k) and then the assignment
P (x(k)) = P (x+(k − 1)) becomes redundant. However, this assignment plays a very
important role if a perturbation w ∈ R

n acts on state x+(k − 1), which yields x(k) =
x+(k−1)+w. In this case, by setting P (x(k)) = P (x+(k−1)), one can exploit continuity
of V (·, P (x+(k − 1))) in its first argument to establish inherent input to state stability
[11, 17].

Next, let us propose a cost function that penalizes the decrease of the p-CLF. Let
x+ := φ(x, u) and let φ̄(x) := {φ(x, u) | u ∈ π(x, [P(x)]•), [P(x)]• ∈ P(x)}. Further-
more, suppose that we augment Problem 4.1 with the following cost function that guides
the choice of (u(k), P (x+(k))). For any known x(k) ∈ X and P (x(k)) = P (x+(k − 1)),
k ∈ Z≥1, consider the cost function

J(x(k), u(k), P (x+(k))) := ρV (x(k), P (x(k))) − V (x+(k), P (x+(k))) (13)

and let

(u∗(k), P ∗(x+(k))) := arg inf
u∈π(x(k),[P(x(k))]

•
),P∈[P(x(k))]2

J(x(k), u, P )

denote the corresponding infimizer. Notice that due to (12d) J is bounded by zero from
below and thus, the infimum is a minimum. For brevity we assume the minimum is
attainable, which is true if V and φ are continuous in both arguments, respectively, and
π(x(k), [P(x(k))]•) ⊆ U, [P(x(k))]2 ⊆ P are compact sets for all k ∈ Z+, and unique.
Alternatively, one can always infimize J over u ∈ U and P ∈ P, for some known compact
sets U and P. Several examples are presented in the next section, which illustrate the
benefits of augmenting Problem 4.1 with the cost J , as defined in (13).

Remark 4.1 The p-CLFs defined in this section, along with the corresponding syn-
thesis problem, i.e., Problem 4.1, bring a significant relaxation with respect to the trajec-
tory dependent time-variant CLF construction proposed in [18]. The conditions imposed
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on the td-CLF therein translate into P1 = P2 for all (P1, P2) ∈ P(x), for all x ∈ X.
With respect to Problem 4.1 these conditions would require that for each k ∈ Z+,
P (x+(k)) = P (x(k)), which is obviously more conservative. It should be mentioned
that the benefit of the conditions in [18] is that the corresponding Problem 4.1 can be
rendered tractable for a polyhedral V as well. ✷

It is also worth to point out that the concept of a state-dependent Riccati equation [5]
can be related to a particular setting of the proposed parameterized Lyapunov inequality,
i.e., to a corresponding parameterized Lyapunov equation.

4.1 Synthesis of p-quadratic-CLFs

In what follows we will restrict our attention to input affine nonlinear systems, i.e.,

φ(x, u) := f(x) + g(x)u (14)

for some f : Rn → R
n and g : Rn → R

n×m with f(0) = 0. Also, we will consider
p-quadratic-CLF candidates of the form V : Rn × P → R+,

V (x, P (x)) = x⊤P (x)x, P (x) ∈ [P(x)]1, P(x) ⊆ P
2,

where P = R
n×n. Notice that such a function satisfies V (0, P ) = 0 for all P ∈ P, but

it does not already satisfy (9a). Next, we will present an LMI based formulation of
Problem 4.1. Let γ ∈ R>0 and Γ ∈ R≥γ denote positive constants and suppose that X

and U are polytopes. As such, constraint (12a) becomes a set of linear inequalities in
u(k) for each x(k), k ∈ Z+. So, we will only focus on fulfillment of the inequalities (12b),
(12c) and (12d). Consider now the following inequalities

x(k)⊤(P (x(k)) − γIn)x(k) ≥ 0,

x(k)⊤(ΓIn − P (x(k)))x(k) ≥ 0, (15a)

Z(k)− Γ−1In � 0, γ−1In − Z(k) � 0, (15b)
(

ρx(k)⊤P (x(k))x(k) ∗
f(x(k)) + g(x(k))u(k) Z(k)

)

� 0. (15c)

Lemma 4.1 Let k ∈ Z+ and let x(k) ∈ X, γ,Γ and ρ be known. Suppose that
{u(k), P (x(k)), Z(k)} are a feasible solution of the LMI (15). Then, V (x(k), P (x(k))) =
x(k)⊤P (x(k))x(k), P (x+(k)) = Z−1(k) and u(k) are a feasible solution of (12b), (12c)
and (12d) with α1(s) := γs2 and α2(s) := Γs2.

Proof. Notice that (15a) is equivalent to (12b) for the specified α1, α2 and, by
applying the Schur complement to (15c) one obtains (12d). (15b) yields that ΓIn �
P (x+(k)) = Z−1(k) � γIn. Thus, (12c) holds for the specified α1, α2, which completes
the proof. ✷

The advantage of the solution of Lemma 4.1 is that (15c) offers a translation of the
decreasing condition (12d) that does not introduce any conservatism. However, (15c)
yields P (x+(k)) � 0, which is not necessary for (12c) to hold.

Notice that the resulting receding horizon control law is stabilizing only if the cor-
responding optimization problem is recursively feasible. In that respect, minimization
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of the cost (13) is advised. For example, using some non-trivial facts about positive
semi-definite matrices it can be proven that by adding the LMI

ε(k)In+1 −

(
ρx(k)⊤P (x(k))x(k) ∗

f(x(k)) + g(x(k))u(k) Z(k)

)

� 0

to (15) and minimizing ε(k) at each k ∈ Z+, minimization of the cost J in (13) is attained.

5 Illustrative Examples

In this section we present several examples of nonlinear systems that pose a non-trivial
challenge to the problem of synthesizing a stabilizing control law. For each exam-
ple we will provide a plot of the state trajectory and of the sub-level sets {z ∈ R

n |
V (z, P (x(k))) ≤ 1}k∈Z+

in Figure 1 and Figure 2, respectively.

Example 5.1 The first example consists of an uncertain linear system defined by

x(k + 1) =

(
0 −1
1 0

)

x(k) +

(
δ(k)
1

)

u(k), k ∈ Z+,

where δ(k) ∈ R[−c,c] for all k ∈ Z+ (c ∈ R>0) is an unknown time-varying parameter. If
c ≤ 1, the system admits a quadratic CLF. However, for any c > 1, this no longer holds,
i.e., this system exhibits an infinite gap in the existence of a (robust) quadratic CLF.
However, the uncertain system does admit a parameter dependent quadratic CLF, which
can be computed as shown in [6], but the implementation of the corresponding control
law requires knowledge of δ(k), for all k ∈ Z+. To design a stabilizing controller for the
above system with c = 1.15 we made use of (15). The following constants were chosen:
γ = 0.01, Γ = 100, ρ = 0.99. In (15c) we made use of the extreme realizations δ(k) = 1.15
and δ(k) = −1.15 for all k ∈ Z+. Notice that this is sufficient for (15c) to hold for all
δ(k) ∈ R[−c,c]. To optimize convergence, we added the one-step cost J1 +J to (15), with

J1(x(k), u(k)) := x+(k)⊤Qx+(k) (Q = I2) and J defined as in (13), which still allows
a conversion into a SDP. Only the extreme realizations of δ(k) were used to implement
minimization of the above cost. A state trajectory plot obtained for x(0) = [4 − 4]⊤ is
given in Figure 1.

Example 5.2 The second example is taken from [14,18] and it consists of a piecewise
linear system that does not admit a common quadratic or PWQ CLF. For brevity, we
refer to the above references for the numerical details regarding the system. As shown
in [14] the problem of computing such a CLF requires solving a bilinear matrix inequality.
To design a stabilizing controller for this system we made use of (15). The following
constants were chosen: γ = 0.01, Γ = 100, ρ = 0.9. The cost J as defined in (13) was
added to (15). A state trajectory plot obtained for x(0) = [5 − 5]⊤ is given in Figure 1.

Example 5.3 The third example is taken from [15] and it consists of a nonlinear
system subject to state and input constraints. This system corresponds to (8)-(14) with
X = {x ∈ R

2 | ‖x‖∞ ≤ 5}, U = {u ∈ R | |u| ≤ 1} and

f(x) =

(
[x]1 + 0.7[x]2 + ([x]2)

2

[x]2

)

, g(x) =

(
0.245 + sin([x]2)

0.7

)

.
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Figure 1: Simulation results – State trajectories.

Figure 2: Simulation results – Evolution in time of the sub-level sets of V .
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To design a stabilizing controller for this system we made use of (15). The following
constants were chosen: γ = 0.01, Γ = 100, ρ = 0.8. To optimize convergence and
improve feasibility, we added the cost J1+J to (15). A state trajectory plot obtained for
x(0) = [5 0]⊤, which lies on the boundary of X, is given in Figure 1. Notice that input
and state constraints are fulfilled at all times. In [15], a non-monotone CLF with a fixed
parameter set was employed to stabilize the system for a similar initial condition.

6 Conclusions

This paper has provided results on existence and preliminary results on synthesis of
parameterized-(control) Lyapunov functions for discrete-time nonlinear systems that are
possibly subject to constraints. A p-LF was defined by assigning a finite set of parameters
to a standard LF, which can take different values for each state. It was demonstrated
that the so-obtained p-LFs offer non-conservative stability analysis conditions, even when
Lyapunov functions with a particular structure, such as quadratic forms, are considered.
Furthermore, a method for synthesizing p-CLFs for discrete-time nonlinear systems was
proposed. It was shown that this method can be implemented by solving on-line a
single low-complexity semi-definite program. Deriving a priori verifiable conditions under
which the developed synthesis method yields a recursively feasible optimization problem
makes the object of future research.
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[21] Raković, S. V. Minkowski Algebra and Banach Contraction Principle in Set Invariance for
Linear Discrete Time Systems. In: Proceedings of 46th IEEE Conference on Decision and

Control, CDC 2007, New Orleans, LA, USA, December 2007.

[22] Schneider, R. Convex bodies: The Brunn-Minkowski theory. Cambridge University Press,
Cambridge, England, 1993, Encyclopedia of Mathematics and its Applications, Vol. 44.

[23] Seiler, P., Topcu, U., Packard, A. and Balas, G. Parameter-dependent Lyapunov functions
for linear systems with constant uncertainties. IEEE Transactions on Automatic Control

54 (10) (2009) 2410–2416.

[24] Sontag, E. D. A Lyapunov-like characterization of asymptotic controllability. SIAM Journal

of Control and Optimization 21 (1983) 462–471.





Nonlinear Dynamics and Systems Theory, 13 (2) (2013) 171–179

Act-and-Wait Control Theory for Continuous-Time

Systems with Random Feedback Delays

Bo Li1, Xiaona Song2∗ and Junjie Zhao1

1 School of Automation, Nanjing University of Science and Technology,

Nanjing 210094, China
2 Electronic and Information Engineering College, Henan University of Science and

Technology, Luoyang 471003, China

Received: May 15, 2012; Revised: March 20, 2013
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1 Introduction

Pole placement method is a very important tool in control theory [3], which is used in
stabilizing plants and improving the performance of the controlled systems [16]. In the
real situations, instability and poor performance of system are often led by time delay
in the feedback loop of control systems. Many researchers have studied various kinds of
delay systems [9, 19, 20, 22, 23]. Classic pole placement technique is well developed and
common when it is applied to the systems without delay, while it is complex and crucial
in delayed systems [5, 14]. In delayed systems the number of poles to be controlled is
much larger than the degrees of freedom in the controller [13], so classical pole placement
techniques of ordinary -differential equations can not be applied for delayed systems.

Periodic control method has shown advantages in stabilizing linear time-invariant
(LTI) systems [18]. Several papers have been published which have used periodic feedback
controller to control systems. Recently much attention [2, 10] has been attracted to the
stabilization of continuous LTI systems with feedback delays by applying a periodic
controller. In [15] it has been shown that the output feedback controller was used to
make the system stable, which contains a periodic gain related to a cosine function.

On the other hand, lots of literature in which the stabilization problems of systems
were studied by using act-and-wait concept [4, 6–8, 11, 21] focuses on this problem. The
scholar in [4] made a comparison between the act-and-wait control and Intermittent
control. Other researchers in [6–8,11,21] used the act-and-control mechanism to deal with
the stabilization problems in different system, such as LTI systems, robotics systems,
chaotic oscillator systems, and so on. In this approach the controller is periodically
switched on (act) and off (wait). If the duration of waiting (switched off) time is longer
than time delays in a system, then the problem about stabilization of the system is
simplified to pole placement.

This paper discussed the act-and-wait controller applied to linear n-dimensional or-
der system with random feedback delay. In general case, the n-dimensional system with
feedback delay has infinite number of poles, which is hard to handle by the finite con-
trol parameters. As introduced in this paper, we can make the infinite poles of the
n-dimensional system with random feedback delay reduce to n-dimensional one. The
act-and-wait control mechanism means that the controller can periodically switch off
and switch on, so the stability properties of the system can be described by n eigenvalues
decided by an N × N monodromy matrix. It’s assumed that the duration of waiting is
larger than the maximum feedback delay.

2 Problem Statement

Consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input, and A ∈ R
n×n and B ∈ R

n×m

are given constant matrices. Firstly, we consider the autonomous delayed state feedback
controller

u(t) = Dx(t− τr), (2)

where D ∈ R
m×n is a constant matrix and τr is the random delay of state feedback.

Because of the noise, information transmission, online data processing, computation, the



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (2) (2013) 171–179 173

problem of application of actuator and so on, delays always occur in feedback control,
which are hardly eliminated or tuned during the control design. In general case, the
delay is not a fixed parameter of the system with the changing of the environment. The
range of random delay can often be estimated before designing the controller. In this
paper, we assumed that τr is random non-negative integer, i.e. 0 ≤ τr ≤ τmax, where
τmax is the maximum delay.

By using controller (2), system (1) yields the closed-loop equation:

ẋ(t) = Ax(t) +BDx(t− τr). (3)

There is an infinite number of characteristic roots in the transcendental characteristic
equation with the random time delay:

det(λI −A−BDe−τλ) = 0. (4)

When all the poles of this system are located in the left half of the complex plane, the
system will be asymptotically stable. Poles optimization method was used to deal with
this type of problem [1, 17].

For the given system matrices A, B and random feedback delay τr, we want to find
an appropriate parameters matrix D in order to get satisfied control effect. The specialty
of this feedback delay system is that an infinite poles should be placed by use of finite
control parameters from D. As introduced in the first section of this paper, a special
case of periodic feedback controller called act-and-wait controller will be studied here.

3 Act-and-Wait Mechanism

The form of the act-and-wait controller is

u(t) = g(t)Dx(t− τr), (5)

where g(t) is the T-periodic switching function, which is defined as

g(t) =

{
0, [0, tw),
1, [tw, T ].

(6)

In the above function, tw represents the switched off period of the controller, and ta
represents the switched on period of the controller. The whole period is

T = tw + ta, (7)

By using the act-and-wait controller (5), the system (1) can be written as

ẋ(t) = Ax(t) +BDg(t)x(t − τr). (8)

In the classic control stability theory, this system with act-and-wait controller will be
stable if all the eigenvalues of the transcendental characteristic equation are located in
the left half of the complex plane. Now the stable problem is how to find the appropriate
control parameters, such as tw, ta, and control matrix D. In this paper, in order to
stabilize the system we focus on the optimization of feedback gain matrix D.

When tw is smaller than τr, the characteristic equation will still have infinite poles. If
tw ≥ τr, the monodromy operator of system equation (8) can be presented as an N ×N

matrix.
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Assumed that tw ≥ τr, there are still two cases here which will be discussed separately
below.

(a) 0 < ta ≤ τr; Without loss of generality, the first period of the controller will be
studied here. When t ∈ [0, tw) and g(t) = 0, the system equation with the initial state
x(0) can be given as

x(t) = eAtx0 t ∈ [0, tw). (9)

When t ∈ [tw, T ), then the controller is switched on (g(t) = 1). In other words, the
delayed term is active in system

ẋ(t) = Ax(t) +BDeA(s−τ)x(0). (10)

The initial state of ordinary differential equation (10) is x(tw) = eAtwx(0). Solve the
equation (10), it is derived that

x(T ) =
(

eAT +

∫ T

tw

eA(T−s)BDeA(s−τ)

ds
)

x(0). (11)

Let

Φ = eAT +

∫ T

tw

eA(T−s)BDeA(s−τ)

ds, (12)

where Φ is the transition matrix of the system with N eigenvalues during the acting time
of the controller. This means that all the other eigenvalues of the monodromy matrix of
(8) are zeros but n eigenvalues in Φ. Actually, Φ is the monodromy matrix of the system.

(b) ta > τr; Assumed that ta is between kτr and (k + 1)τr, so the transition matrix
Φ can be obtained by step-by-step integration over every succeeding small interval. For
example, the situation about k = 1 will be discussed below. Firstly, the solution over
[0, tw) can be determined similarity to equation (8), then the N ×N monodromy matrix
can be obtained by the piecewise integration over the consecutive interval [0, tw), [tw, tw+
τ), [tw + τr, T ):

Φ = eAT +

∫ T

tw

eA(T−s)BDeA(s−τ)

ds

+

∫ T

tw+τ

eA(T−s1)BD

∫ s1−τ

tw

eA(s1−s2−τ)BDeA(s2−τ)ds1ds2. (13)

In this way, n eigenvalues of Φ can be placed using the control parameters D, so that the
stability of the system can be achieved. But with the company of increasing of the k, the
monodromy matrix becomes more and more complex. Because Φ depends nonlinearly
on the control parameters D, it’s impossible that arbitrary pole placement of the Φ can
be obtained. Therefore, the simply case(ta ≤ τr) was studied here, and a simulation of
the pole optimization of this case was shown in the next section.
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4 Simulation

There is a second-order system with delayed feedback described by (1), (5), and (6). In
the system:

A =

[
0 1
a 0

]

, B =

[
0
1

]

,

D =

[
−d1
−d2

]

, τ ∈ {1, 0.9, 0.8} .

If an autonomous controller is used in the system, then the characteristic equation is

λ2 − a+ d1e
−λ + d2λe

−λ = 0. (14)

The number of poles is infinite, so the poles can’t be arbitrarily placed using the only
two parameters d1 and d2.

So we discussed this system with act-and-wait controller when a = 0 and a = −4
are applied in system matrix A. Optimal control parameters will be investigated for the
act-and-wait case with tw = 1.2 and ta = 0.3.

1. When a = 0. Actually this system is a feedback stabilized double integrator with
input delay. When the act-and-wait controller is used with tw = 1.2s, ta = 0.3s. The
delay called τr which belongs to {1 0.9 0.8}is a random variable. In order to study the
performance of the system with different control parameters, the monodromy matrices
are calculated separately with different delays 1s, 0.9s, 0.8s. Firstly, we assume that the
delay τr is 1s, then the system can be presented by the 2× 2 monodromy matrix

A =

[
1− 0.045d1 1.5− 0.0135d1 − 0.045d2
−0.3d1 1− 0.105d1 − 0.3d2

]

given by (10). It can be seen that the pole placement problem is now reduced to the
placement of the two eigenvalues of Φ using the D called feedback matrix. By using the
appropriate D, the both eigenvalues of the Φ can be moved to zero. By calculating the
Φ, it can be obtained that these optimal parameters are d1 = 2.2157 and d2 = 5.5588.
The simulation is shown in Figure 1. It can be seen that the system with act-and-wait
controller actually converges to zero within period 2T .

In the same way, the optimal parameters for τr = 0.9s and τr = 0.8s can be achieved:

D(τr=0.9) =

[
−2.2146
−5.3377

]T

,

D(τr=0.8) =

[
−2.2157
−5.1157

]T

.

And the simulations are shown in Figures 2 and 3. In Figures 1–3, it implies that the
system can converge to zero with the random delay. In period 2T the system stops at
zero completing the deadbeat convergence.

2. When a = 4. In this situation, system matrix A is unstable. Because of the
complexity of the system, it can’t be stabilized using an autonomous controller since
a > 2. If the act-and-wait control mechanism is applied with tw = 1.2s and ta = 0.3s,
then we can achieve the monodromy matrix (15). For simplicity, only the situation Φ
with τr = 1 is calculated and shown.
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Figure 1. d1 = 2.2157; d2 = 5.5588 (τ= 1s).
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Figure 2. d1 = 2.2146; d2 = 5.3377 (τ= 0.9s).

By applying the act-and-wait controller, the system can be stabilized, and both eigen-
values can be moved to the origin. With this condition d1 = 7.4635 and d2 = 9.8639 can
be obtained. In Figure 4 it can be seen that the state x1(t) and x2(t) converges to zero at
about 10.5s. It’s explicit that the state x1(t) and x2(t) grows very quickly in wait period
in which the controller is switched off. But the growing tendency of x1(t) and x2(t) is
restrained in act period. The system is stabilized after several periods of the controller.

In order to show the stability region of the system, the decay ratio ρ = eRe(λ1) is
introduced, where λ1 is rightmost eigenvalue in the pole in the roots figure. In other
words, this means Re(λ1) ≥ Re(λi), i = 2, 3, ...,∞. This decay ratio is a measure of the
average error decay over a unit period, since |x(t + 1)| ≤ ρ|x(t)|. Figure 6 shows the
stable region of the LTI system with random delay (a = 0).

5 Conclusions

In this paper, we consider the stability problem in a continuous LTI system with random
feedback delays. In the simulation part, a second-order linear time-invariant system with
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Figure 3. d1 = 2.2157; d2 = 5.1157. (τ= 0.8s).
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Figure 4. State of the system (a = 4).

random feedback delay is introduced to verify availability of the act-and-wait controller.
By applying the periodic controller the monodromy matrix only have 2 eigenvalues which
are easily placed to original by the control parameters. And the periodic controller can
still stabilize the system in some cases while the autonomous one can’t work.

Generally speaking, large gain in the controller can result in quick convergence, but
continued large gain input may make the system become unstable. So in a control period,
large gain can only be used in the acting period. In this way, the controller can keep
higher performance and the stability. In the future research work, the algorithm about
how to design control parameters and how to select the period of the controller should
be investigated in order to obtain optimal performance of the system.
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Abstract: A discrete time control algorithm using the damped least squares is intro-
duced for acceleration and energy exchange controls in nonlinear vibrating systems.
It is shown that the damping constant of least squares and sampling time step of the
controller must be inversely related to insure that vanishing the time step has little
effect on the results. The algorithm is illustrated on two linearly coupled Duffing
oscillators near the 1:1 internal resonance. In particular, it is shown that varying the
dissipation ratio of one of the two oscillators can significantly suppress the nonlinear
beat phenomenon.

Keywords: damped least squares; acceleration control.

Mathematics Subject Classification (2010): 34H05.

1 Introduction

The damped least squares is a simple but effective analytical manipulation that helps to
avoid singularity in practical minimization and control algorithms. It is also known as
Levenberg-Marquardt method [11]. In order to illustrate the idea in simple terms, let us
consider the minimization problem

‖E −Aδu‖2 → min, (1)

where E ∈ Rn is a given vector, the notation ‖...‖ indicates the Euclidean norm in
Rn, A is typically a Jacobian matrix of n rows and m columns, and δu ∈ Rm is an
unknown minimization vector. Although a formal solution of this problem is given by
δu = (ATA)−1ATE, the matrix product ATA may appear to be singular so that no
unique solution is possible. This fact usually points to multiple possibilities of achieving
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the same result unless specific conditions are imposed on the vector δu. The idea of
damped least squares is to avoid such conditioning by adding one more quadratic form
to the left hand side of expression (1) as follows

‖E −Aδu‖
2
+ λ ‖δu‖

2
→ min, (2)

where λ is a positive scalar number, which is often called damping constant ; note that
the term ‘damping’ has no relation to the physical damping or energy dissipation effects
in vibrating systems usually characterized by damping ratios.

Now the inverse matrix includes the damping constant λ which can provide the
uniqueness of solution given by

δu = (ATA+ λI)−1ATE, (3)

where I is n× n identity matrix.
Different arguments are discussed in the literature regarding the use of damped least

squares and best choice for the damping parameter λ [1], [2], [3], [4], [6], [7], [9], [10],
[15], [16], [17], [23], [24]. In particular, it was noticed that the parameter λ may affect
convergence properties of the corresponding algorithms. The parameter λ can be used
also for other reason such as shifting the solution δu into desired area in Rm. In this case,
the meaning of λ is rather close to that of Lagrangian multiplier imposing constraints on
control inputs.

In case of dynamical systems, when all the quantities in (2) may depend on time, a
continuous time analogue of (2) can be written in the integral form

min
δu

∫ T

0

(‖E −Aδu‖
2
+ λ ‖δu‖

2
)dt, (4)

where the interval of integration is manipulated as needed, for instance, T can be equal
to sampling time of the controller [12].

However, in the present work, a discrete time algorithm based on the damped least
squares solution (3), which is used locally at every sample time tn, is introduced. Such
algorithm appears to be essentially discrete namely using different time step h may lead
to different results. Nevertheless, if the parameters λ and h are coupled by some condition
then the control input and system response show no significant dependence on the time
step.

A motivation for the present work is as follows. In order to comply with the standard
tool of dynamical systems dealing with differential equations, the methods of control are
often formulated in continuous time by silently assuming that a discrete time analogous
is easy to obtain one way or another whenever it is needed for practical reasons. For
instance, data acquisition cards and on-board computers of ground vehicles usually ac-
quire and process data once per 0.01 sec. Typically, based on the information, which
is known about the system dynamic states and control inputs by the time instance tn,
the computer must calculate control adjustments for the next active time instance, tn+1.
The corresponding computational time should not therefore exceed tn+1 − tn = 0.01
sec. Generally speaking, it is possible to memorize snapshots of the dynamic states and
control inputs at some of the previous times {..., tn−2, tn−1}. However, increasing the
volume of input data may complicate the code and, as a result, slow down the calculation
process. Therefore, let us assume that updates for the control inputs are obtained by
processing the system states, controls, and target states given only at the current time
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instance, tn. The corresponding algorithm can be built on the system model described
by its differential equations of motion and some rule for minimizing the deviation (error)
of the current dynamic states from the target. Recall that, in the present work, such
a rule will be defined according to the damped least squares (2). Illustrating physical
example of two linearly coupled Duffing oscillators is considered. It is shown that the
corresponding algorithm, which is naturally designed and effectively working in discrete
time, may face a problem of transition to the continuous time limit.

2 Problem Formulation

Consider the dynamical system
ẍ = f(x, ẋ, t, u), (5)

where x = x(t) ∈ Rn is the system position (configuration) vector, the overdot indicates
derivative with respect to time t, the right-hand side f ∈ Rn represents a vector-function
that may be interpreted as a force per unit mass of the system, and u = u(t) ∈ Rm is a
control vector, whose dimension may differ from that of the positional vector x so that
generally n 6= m.

In common words, the purpose of control u(t) is to keep the acceleration ẍ(t) of
system (5) as close as possible to the target ẍ∗(t). The term ‘close’ will be interpreted
below through a specifically designed target function of the following error vector

E(t) = ẍ∗(t) − ẍ(t). (6)

As discussed in Introduction, for practical implementations, the problem must be
formulated in terms of the discrete time {tk} as follows. Let xk = x(tk), ẋk = ẋ(tk), and
uk = u(tk) are observed at some time instance tk. The corresponding target acceleration,
ẍ∗

k = ẍ∗(tk), is assumed to be known. Then, taking into account (5) and (6), gives the
following error at the same time instance

Ek = ẍ∗

k − f(xk, ẋk, tk, uk). (7)

Now the purpose of control is to minimize the following target function

Pk =
1

2
ET

k WkEk (8)

=
1

2
[ẍ∗

k − f(xk, ẋk, tk, uk)]
TWk[ẍ

∗

k − f(xk, ẋk, tk, uk)],

where Wk is n× n diagonal weight matrix whose elements are positive or at least non-
negative functions of the system states, Wk = W (xk, ẋk, tk).

Note that all the quantities in expression (8) represent a snapshot of the system at
t = tk while including no data from the previous time step tk−1. Since the control vector
uk cannot be already changed at time tk then quantity Pk is out of control at time tk.
In other words expression (8) summarizes all what is observed now, at the time instance
tk. The question is how to adjust the control vector u for the next step tk+1 based on
the information included in (8) while the system state at t = tk+1 is yet unknown, and
no information from the previous times {..., tn−2, tn−1} is available.

Let us represent such an update for the control vector in the form

uk+1 = uk + δuk, (9)
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were δuk is an unknown adjustment of the control input.
Replacing uk in (8) by (9) and taking into account that

f(xk, ẋk, tk, uk+1) = f(xk, ẋk, tk, uk) +Akδuk +O(‖δuk‖
2
), (10)

Ak = ∂f(xk, ẋk, tk, uk)/∂uk,

gives

Pk =
1

2
(Ek −Akδuk)

TWk(Ek −Akδuk), (11)

where Ak is the Jacobian matrix of n rows and m columns.
Although the replacement uk by uk+1 in (10) may look artificial, this is how the update

rule for the control vector u is actually defined here. Namely, if uk did not provide a
minimum for Pk(ẍ

∗

k, xk, ẋk, tk, uk), then let us minimize Pk(ẍ
∗

k, xk, ẋk, tk, uk + δuk) with
respect to δuk and then apply the adjusted vector (9) at least the next time, tn+1.
Assuming that the variation δuk is small, in other words, uk is still close enough to the
minimum, expansion (10) is applied. Now the problem is formulated as a minimization
of the quadratic form (11) with respect to the adjustment δuk. However, what often
happens practically is that function (11) has no unique minimum so that equation

dPk

dδuk

= 0 (12)

has no unique solution. In addition, even if the unique solution does exist, it may not
satisfy some conditions imposed on the control input due to the physical specifics of
actuators. As a result, some constraint conditions may appear to be necessary to impose
on the variation of control adjustment, δuk. However, the presence of constraints would
drastically complicate the problem. Instead, the target function (11) can be modified in
order to move solution δuk into the allowed domain. For that reason, let us generalize
function (11) as

Pk =
1

2
(Ek −Akδuk)

TWk(Ek −Akδuk)

+
1

2
(Bk + Ckδuk)

TΛk(Bk + Ckδuk), (13)

where Λk = Λ(xk, ẋk, tk) is a diagonal regularization matrix, Bk = B(xk, ẋk, tk) is a
vector-function of n elements, and Ck = C(xk, ẋk, tk) is a matrix of n rows and m

columns.
Note that the structure of new function (13) is a generalization of (2). Substituting

(13) in (12), gives a linear set of equations in the matrix form whose solution δuk brings
relationship (9) to the form

uk+1 = uk + (AT
k WkAk + CT

k ΛkCk)
−1(AT

k WkEk − CT
k ΛkBk). (14)

The entire discrete time system is obtained by adding a discrete version of the dy-
namical system (5) to (14) . Assuming that the time step is fixed, tk+1− tk = h, a simple
discrete version can be obtained by means of Euler explicit scheme as follows

xk+1 = xk + hvk,

vk+1 = vk + hf(xk, vk, tk, uk). (15)
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Finally, equations (14) and (15) represent a discrete time dynamical system, whose
motion should follow the target acceleration ẍ∗

k = ẍ∗(tk).
It will be shown in the next section that the structure of equation (14) does not allow

for the transition to continuous limit of the entire dynamic system (14) through (15),
unless some specific assumption are imposed on the parameters in order to guarantee
that δuk = O(h) as h → 0.

3 Illustrating Example

The algorithm, which is designed in the previous section, is applied now to a two-degrees-
of-freedom nonlinear vibrating system for an active control of the energy exchange (non-
linear beats) between the two oscillators. The problem of passive control of energy
flows in vibrating systems is of great interest [22], and it is actively discussed from the
standpoint of nonlinear beat phenomena [14]. The beating phenomenon takes place when
frequencies of the corresponding linear oscillators are either equal or at least close enough
to each other.

For illustrating purposes, let us consider two unit-mass Duffing oscillators of the
same linear stiffness K coupled by the linear spring of stiffness γ. The system position
is described by the vector-function of coordinates, x(t) = (x1(t), x2(t))

T . Introducing
the parameters Ω = (γ +K)1/2 and ε = γ/(γ +K), brings the differential equations of
motion to the form

ẋ1 = v1,

ẋ2 = v2,

v̇1 = −2ζΩv1 − Ω2x1 + ε(Ω2x2 − αx3

1
) ≡ f1(x1, x2, v1), (16)

v̇2 = −2uΩv2 − Ω2x2 + ε(Ω2x1 − αx3

2
) ≡ f2(x1, x2, v2, u),

where α is a positive parameter, ζ and u are damping ratios of the first and the second
oscillators, respectively; the damping ratio u, which is explicitly shown as an argument
of the function f2(x1, x2, v2, u), will be considered as a control input.

The problem now is to find such variable damping ratio u = u(t) under which the
second oscillator accelerates as close as possible to the given (target) acceleration, ẍ∗

2
(t).

Following the discussion of the previous section, let us consider the problem in the
discrete time {tk}. In order to avoid confusion, the iterator k will be separated from
the vector component indexes by coma, for instance, xk = (x1,k, x2,k)

T . Since only the
second mass acceleration is of interest and the system under consideration includes only
one control input u, then, assuming the weights to be constant, gives

Wk =

[
0 0
0 1

]

, Ak =
∂

∂uk

[
f1,k
f2,k

]

,

where f1,k ≡ f1(x1,k, x2,k, v1,k) and f2,k ≡ f2(x1,k, x2,k, v2,k, uk), and other matrix terms
become scalar quantities, say, Λk = λ, Bk = b, and Ck = 1. The unities in Wk and Ck

can always be achieved by re-scaling the target function and parameters λ and b. Note
that re-scaling the target function by a constant factor has no effect on the solution of
equation (12).

As mentioned in Introduction, the damping (dissipation) ratio should not be confused with the
damping coefficient λ.
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As a result, the target function (13) takes the form

Pk =
1

2

(

ẍ∗

2,k − f2,k −
∂f2,k

∂uk

δuk

)2

+
λ

2
(b+ δuk)

2. (17)

In this case, equation (12) represents a single linear equation with respect to the scalar
control adjustment, δuk. Substituting the corresponding solution in (14) and taking into
account (15), gives the discrete time dynamical system

uk+1 = uk −
(f2,k − ẍ∗

2,k)(∂f2,k/∂uk) + λb

(∂f2,k/∂uk)2 + λ
(18)

and

x1,k+1 = x1,k + hv1,k,

x2,k+1 = x2,k + hv2,k,

v1,k+1 = v1,k + hf1,k, (19)

v2,k+1 = v2,k + hf2,k.

Let us assume now that the target acceleration ẍ∗

2
is zero, in other words, the purpose

of control is to minimize acceleration of the second oscillator at any sample time tk as
much as possible. Let us set still arbitrary parameter b also to zero. Then the target
function (17) and dynamical system (18) and (19) take the form

Pk =
1

2

[

f2(x1,k, x2,k, v2,k, uk) +
∂f2(x1,k, x2,k, v2,k, uk)

∂uk

δuk

]2

+
λ

2
(δuk)

2, (20)

uk+1 = uk +
2Ωv2,k

4Ω2v2
2,k + λ

f2(x1,k, x2,k, v2,k, uk),

x1,k+1 = x1,k + hv1,k,

x2,k+1 = x2,k + hv2,k, (21)

v1,k+1 = v1,k + hf1(x1,k, x2,k, v1,k),

v2,k+1 = v2,k + hf2(x1,k, x2,k, v2,k, uk),

where the functions f1 and f2 are defined in (16).
As follows from the first equation in (21), transition to the continuous time limit for

the entire system (21) would be possible under the condition that

2Ωv2,k
4Ω2v2

2,k + λ
= O(h), as h → 0. (22)

Condition (22) can be satisfied by assuming that Ω = O(h). Such an assumption,
however, makes little if any physical sense. As an alternative choice, the condition
λ = O(h−1) can be imposed by setting, for instance,

λh = λ0, (23)

where λ0 remains finite as h → 0.
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However, condition (23) essentially shifts the weight on control to the second term of
the target function (17) so that the function asymptotically takes the form

Pk ≃
λ0

2h
(δuk)

2, as h → 0. (24)

Such a target function leads to the solution δuk = 0, which effectively eliminates the
control equation. In other words, the iterative algorithm seems to be essentially discrete.
As a result, the control input uk, generated by the first equation in (21), depends upon
sampling time interval h. Let us illustrate this observation by implementing the iterations
(21) under the fixed set of parameters, ε = 0.1, Ω = 1.0, α = 1.5, ζ = 0.025, and initial
conditions, u0 = 0.025, x1,0 = 1.0, x2,0 = 0.1, v1,0 = v2,0 = 0. The values to vary are
two different sampling time intervals, h = 0.01 and h = 0.001, and three different values
of the damping constant, λ = 0.1, λ = 1.0, and λ = 10.0. For comparison reason, Figure
1 shows time histories of the system coordinates under the fixed control variable u = ζ.
This (no control) case corresponds to free vibrations of the model (16) whose dynamics
represent a typical beat-wise decaying energy exchange between the two oscillators. As
mentioned at the beginning of this section, the beats are due to the 1:1 resonance in
the generating system (ε = 0, u = ζ = 0); more details on non-linear features of this
phenomenon, the related analytical tools, and literature overview can be found in [20]
and [14]. In particular, the standard averaging method was applied to the no damping
case of system (16) in [20].

Figure 1: No control beat dynamics with the decaying energy exchange between two Duffing’s
oscillators; u = ζ = 0.025.

Now the problem is to suppress the beat phenomenon by preventing the energy flow
from the first oscillator into the second oscillator. As follows from Figures 2 through
5, such a goal can be achieved by varying the damping ratio of the second oscillator,
{uk}, during the vibration process according to the algorithm (21) ⋆ . First, the diagrams
in Figures 2 and 3 confirm that the sampling time interval h represents an essential
parameter of the entire control loop. In particular, decreasing the sampling interval from
h = 0.01 to h = 0.001 effectively increases the strength of the control; compare fragments

⋆ Note that, although the algorithm is designed to suppress accelerations of the second oscillator,
acceleration and energy levels of vibrating systems are related.
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(b) in Figures 2 and 3. However, if such decrease of the sampling time is accompanied
by the increase of λ according to condition (23), then the strength of control remains
practically unchanged; compare now fragments (b) in Figures 2 and 4. As follows from
fragments (a) in Figures 2 and 4, the above modification of both parameters, h and λ,
also brings some difference in the system response during the interval 80 < t < 150, but
this is rather due to numerical effect of the time step.

Figure 2: Beat suppression under the time increment h = 0.01 and weight parameter λ = 1.0:
(a) the system response, (b) control input - the damping ratio of second oscillator.

Finally, analyzing the diagrams in Figures 3 and 5, shows that reducing the parameter
λ as many as ten times under the fixed time step h leads to a significant increase of the
control input {uk} with a minor effect on the system response though. Therefore the
parameter λ can be used for the purpose of satisfying some constraint conditions on the
control inputs {uk} in case such conditions are due to physical limits of the corresponding
actuators. In addition, let us show that parameter λ may affect the convergence of
algorithm (21) based on the following convergence criterion [18]:

For a fixed point z∗ to be a point of attraction of the algorithm zk+1 = G(zk) a

sufficient condition is that the Jacobian matrix of G at the point z∗ has all its eigenvalues

numerically less than 1, and a necessary condition is that they are numerically at most 1.

The geometric rate of convergence is the numerically largest eigenvalue of this Jacobian.

Applying this criterion to the algorithm (21) at zero point, gives that one of the
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Figure 3: Beat suppression under the reduced time increment h = 0.001 and the same weight
parameter λ = 1.0: (a) the system response, (b) control input - the damping ratio of second
oscillator.

eigenvalues is always zero, q0 = 0, whereas another four eigenvalues, qi (i = 1, ..., 4) are
proportional to the time step, qi = hpi, where the coefficients pi are given by the roots
of algebraic equation

p4 + 2ζΩp3 + 2Ω2p2 + 2ζΩ3p+ (1− ε2)Ω4 = 0. (25)

As follows from (25), the damping coefficient λ has no influence on the convergence
condition near the equilibrium point, and the convergence can always be achieved under
a small enough time step h. Nevertheless, the damping coefficient may appear to affect
the convergence away from the equilibrium point. In this case, analytical estimates for
eigen values of the Jacobian become technically complicated unless ε = 0, when four of
the five eigenvalues vanish as h → 0, except one eigenvalue, which is estimated by

q = −

(

1 +
λ

4Ω2v2
2

)
−1

. (26)

This root gives q → q0 = 0 as v2 → 0. However, when v2 6= 0, equation (26) gives the
estimate 0 < q ≤ 1 as ∞ > λ ≥ 0. Therefore, only the necessary convergence condition
is satisfied for λ = 0.
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Figure 4: Beat suppression under the reduced time increment h = 0.001 but increased weight
parameter λ = 10.0: (a) the system response, (b) control input - the damping ratio of second
oscillator.

4 Conclusions

In this work, a discrete time control algorithm for nonlinear vibrating systems using the
damped least squares is introduced. It is shown that the corresponding damping constant
λ and sampling time step h must be coupled by the condition λh = constant in order to
preserve the result of calculation when varying the time step. In particular, the above
condition prohibits a direct transition to the continuos time limit. This conclusion and
other specifics of the algorithm are illustrated on the nonlinear two-degrees-of-freedom
vibrating system in the neighborhood of 1:1 resonance. It is shown that the dissipation
ratio of one of the two oscillators can be controlled in such way that prevents the energy
exchange (beats) between the oscillators. From practical standpoint, controlling the
dissipation ratio can be implemented by using devices based on the physical properties
of magnetorheological fluids (MRF) [8], [19]. In particular, different MRF dampers are
suggested to use for semi-active ride controls of ground vehicles and seismic response
reduction.
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Figure 5: Beat suppression under the reduced time increment h = 0.001 and vanishing weight
parameter λ = 0.1: (a) the system response, (b) control input - the damping ratio of second
oscillator.
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1 Introduction

In this paper we concerned with the following reaction diffusion equation of KPP-Fisher
type with Dirichlet boundary conditions:

∂u

∂t
=

∂2u

∂x2
+ ku(t, x)[1 − u(t, x)] + f(t, x), t ∈ (0, T ], x ∈ (0, π), (1)

u(x, 0) = u0(x), x ∈ (0, π), (2)

u(0, t) = u(π, t) = 0, t ∈ (0, T ], (3)

where k is a positive constant and u0 ∈ L2(0, π).
Since 1930, various classical types of initial boundary value problem have been investi-

gated by many authors using the method of semidiscretization; see for instance [11,15,16]
and references therein.

The method of semidescretization in time is a very efficient tool in the study of
an approximate solution and its convergence to the solution of the problem. In this
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method we replace the time derivative by the corresponding difference quotients giving
rise to a system of time independent operator equations. With the help of the theory
of semigroups, these systems are guaranteed to have unique solutions. An approximate
solution to the given problem is defined in terms of the solutions of these time independent
systems. After proving a priori estimates for the approximate solution, the convergence
of the approximate solution to a unique strong solution is established.

In this paper my aim is to apply the method of semidiscretization to a reaction
diffusion equation of KPP-Fisher type with Dirichlet boundary conditions. Fisher-KKP
equations are most simple case of nonlinear reaction diffusion equation that was first
shown to have traveling wave front by Fisher [18].

This work is motivated by the work of Fisher [18], in which he has considered the
Fisher-KKP type reaction diffusion equation:

∂u

∂t
= ru(t, x)

[

1−
u(t, x)

K

]

+D
∂2u

∂x2
,

where r and D are positive parameters.
Dubey [3], has established the existence and uniqueness of a strong solution for the

following nonlinear nonlocal functional differential equation in a Banach X, using the
method of semidiscretization:

u′(t) +Au(t) = f(t, u(t), ut), t ∈ (0, T ],

h(u0) = φ on [−τ, 0],

where 0 < T < ∞, φ ∈ C0 := C([−τ, 0];X), τ > 0, the nonlinear operator A is
singlevalued and m-accretive defined from the domain D(A) ⊂ X into X , the nonlinear
map f is defined from [0, T ]×X×C0 := C([−τ, 0];X) into X , the map h is defined from
C0 into C0. For u ∈ CT := C([−τ, T ];X), function ut ∈ C0 is given by ut(s) = u(t+s) for
s ∈ [−τ, 0]. Here Ct := C([−τ, t];X) for t ∈ [0, T ] is the Banach space of all continuous
functions from [−τ, t] into X endowed with the supremum norm

‖φ‖t = sup
−τ≤η≤t

‖φ(η)‖, φ ∈ Ct.

Bouziani, Merchri [17] and Lakoud, Chaoui [14] have applied the method of semidis-
cretization to integrodifferential equations, and prove the existence and uniqueness of a
weak solution. For the application of method of semidiscretization to delayed cooperation
diffusion system with Dirichlet boundary conditions, we refer readers to [19]. For the
more applications of Rothe method to integrodifferential equations, parabolic problems,
hyperbolic problems, we refer readers to [9, 10, 12, 13] and references therein.

By literature, it is clear that method of semidiscretization is applicable in many
physical, mathematical, biological problems modeled by partial differential equations.

The plan of the rest paper is as follows. In Section 2, we state some basic results
and definitions that will be used in the next sections. In Section 3, we state the main
result. In the last section, we state and prove all the lemmas that are required to prove
the main result and at the end of this section, we prove the main result.

2 Preliminaries

We define
BR(0) = {u ∈ L2(0, π) : ‖u‖ ≤ R}.
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Now we define a function F : (0, T ]×BR(0) → BR(0) by

F (t, χ)(x) = kχ[1− χ](x) + f(t, x).

Consider that H := L2[0, π] is the real Hilbert space of all real-valued square-integrable
functions on the interval [0, π], let the linear operator A be defined by

D(A) := {u ∈ H : u′′ ∈ H,u(0) = u(π) = 0}, Au = −u′′.

Then we know that −A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0 of
contractions in H .

If we identify u : (0, T ] → H , by u(t)(x) = u(t, x), and f : (0, T ] → H by f(t)(x) =
f(t, x), then (1)-(3) reduce to:

∂u(t)

∂t
+ Au(t) = F (t, u(t)), (4)

u(0) = u0. (5)

Lemma 2.1 There exists a constant LF (R) > 0 such that

‖F (t, χ1)− F (t, χ2)‖ ≤ LF (R)‖χ1 − χ2‖,

for all χ1, χ2 ∈ BR(0), t ∈ (0, T ].

Proof. Now for any χ1, χ2 ∈ BR(0) and t ∈ (0, T ], we have

‖F (t, χ1)− F (t, χ2)‖
2

2

=

∫ π

0

|F (t, χ1)(x)− F (t, χ2)(x)|
2dx

=

∫ π

0

|kχ1(1 − χ1)(x) − kχ2(1− χ2)(x)|
2dx

≤ k2
∫ π

0

(|χ1(x)− χ2(x)|
2 + |χ2

2
(x)− χ2

1
(x)|2)dx

≤ k2
∫ π

0

|χ1(x) − χ2(x)|
2(1 + |χ1(x) + χ2(x)|

2)dx

≤ k2
∫ π

0

|χ1(x) − χ2(x)|
2dx

∫ π

0

(1 + |χ1(x) + χ2(x)|
2)dx

≤ k2‖χ1 − χ2‖
2

2
(π + ‖χ1 + χ2‖

2)

≤ k2(π + 2R2)‖χ1 − χ2‖
2

2
.

This implies that

‖F (t, χ1)− F (t, χ2)‖2 ≤ L′

F (R)‖χ1 − χ2‖2,

where L′

F (R) = k
√
π + 2R2. ✷

Lemma 2.2 If f satisfies a Lipschitz-like condition, i.e., there exists a constant k1 >

0 such that

‖f(t)− f(s)‖ ≤ k1 | t− s |, ∀t, s ∈ (0, T ],

then F also satisfies a Lipschitz condition in (0, T ], i.e.,

‖F (t, χ)− F (s, χ)‖ ≤ k1 | t− s |, ∀t, s ∈ (0, T ].
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Remark 2.1 From Lemma 2.1 and Lemma 2.2, we conclude that F satisfies a local
Lipschitz condition, i.e., there exists a constant LF (R) > 0 such that

‖F (t, χ1)− F (s, χ2)‖ ≤ LF (R)[|t− s|+ ‖χ1 − χ2‖2], ∀t, s ∈ (0, T ], ∀χ1, χ2 ∈ BR(0).

Definition 2.1 Let X be a Banach space and let X∗ be its dual. For every x ∈ X

we define the duality map J as:

J(x) = {x∗ : x∗ ∈ X∗ and (x∗, x) = ‖x‖2 = ‖x∗‖2},

where (x∗, x) denotes the value of x∗ at x.

Lemma 2.3 ( [1], Theorem 1.4.3) If −A is the infinitesimal generator of a C0-

semigroup of contractions then A is m-accretive, i.e.,

(Au, J(u)) ≥ 0 for u ∈ D(A),

where J is the duality mapping and R(I + λA) = X for λ > 0, I is the identity operator

on X and R(.) is the range of an operator.

Lemma 2.4 ( [2], Lemma 2.5(a)) If −A is the infinitesimal generator of a C0-

semigroup of contractions, Xn ∈ D(A), n = 1, 2, 3, ....., Xn → u ∈ H and ‖AXn‖ are

bounded, then u ∈ D(A) and AXn ⇀ Au.

A function u ∈ C([0, T ], H) such that

u(t) = S(t)u0 +

∫ t

0

S(t− s)F (s, u(s))ds, if t ∈ [0, T ].

is called a mild solution of (4)-(5).

By a strong solution of (4)-(5) we mean a function u ∈ C([0, T ], X) such that u(t) ∈
D(A) for a.e. t ∈ [0, T ], u is differentiable a.e. on [0, T ] and

u′(t) +Au(t) = F (t, u(t)), a.e. t ∈ [0, T ].

3 Main Result

Theorem 3.1 Under the conditions of Lemma 2.1 and Lemma 2.2, problem (4)-(5)

has a unique strong solution on the interval [0, t0], 0 < t0 < T which can be uniquely

continued either on [0,T], or on the maximal interval of existence [0, tmax[, 0 < tmax ≤ T.

If 0 < tmax < T, then

lim
t↑tmax

‖u(t)‖ = ∞.

We will prove this result by using the method of semidiscretization.
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4 Discretization and A priori Estimates

To apply the method of semidiscretization we divide the interval [0, t0] into the subinter-
vals of length hn = t0

n
and replace (4) and (5) by the following approximate equations

un
j − un

j−1

hn

+Aun
j = F (tnj , u

n
j−1

), (6)

un
0

= u0. (7)

Existence of a unique un
j ∈ H, satisfying (6) and (7) is a consequence of Lemma 2.3.

Now we construct Rothe’s sequence

un(t) = un
j−1

+
un
j − un

j−1

hn

(t− tnj ), t ∈ [tnj−1
, tnj ]. (8)

Also, we construct a sequence of step functions:

Xn(t) =

{
u0, if t = 0,
un
j , if t ∈ (tnj−1

, tnj ].
(9)

Now we state and prove the following two lemmas which are required to prove the
main result.

Lemma 4.1 There exists a constant C1 (independent of n, j and hn) such that ‖un
j −

u0‖ ≤ C1 (note that here C1 is a generic constant that may have different value in the

same discussion).

Proof. Substituting j = 1 in (6), we get

un
1
− un

0

hn

+Aun
1
= F (tn

1
, un

0
).

Subtracting Au0 from both sides and applying J(un
1
− u0) on both sides, we get

(
un
1
− u0

hn

, J(un
1
− u0)

)

+ (A(un
1
− u0), J(u

n
1
− u0)) = (F (tn

1
, u0), J(u

n
1
− u0))

−(Au0, J(u
n
1
− u0)).

Using Lemma 2.3 and the definition of duality map, we get

1

hn

‖un
1
− u0‖

2 ≤ ‖F (tn
1
, u0)‖‖u

n
1
− u0‖+ ‖Au0‖‖u

n
1
− u0‖

=⇒ ‖un
1
− u0‖ ≤ hn[‖F (tn

1
, u0)‖+ ‖Au0‖].

Using Remark 2.1, we can obtain

‖F (tn
1
, u0)‖ ≤ ‖F (tn

1
, u0)− F (0, u0)‖+ ‖F (0, u0)‖

≤ LF (R)|tn
1
|+ ‖F (0, u0)‖

≤ LF (R)t0 + ‖F (0, u0)‖.
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Using the above inequality, we get

‖un
1
− u0‖ ≤ hn[LF (R)t0 + ‖F (0, u0)‖+ ‖Au0‖]

≤ t0[LF (R)t0 + ‖F (0, u0)‖+ ‖Au0‖] = C1.

To prove this lemma, we will use induction method, for this we assume that

‖un
i − u0‖ ≤ C1, i = 1, · · · , j − 1.

We have to show that

‖un
j − u0‖ ≤ C1.

Subtracting Au0 from both sides of (6), and applying J(un
j − u0), we get

(
un
j − u0

hn

, J(un
j − u0)

)

+ (A(un
j − u0), J(u

n
j − u0))

=

(
un
j−1

− u0

hn

, J(un
j − u0)

)

+ (F (tnj , u
n
j−1

), J(un
j − u0))− (Au0, J(u

n
j − u0)).

Using Lemma 2.3 and the definition of duality map, we get

1

hn

‖un
j − u0‖

2 ≤
1

hn

‖un
j−1

− u0‖‖u
n
j − u0‖+ ‖F (tnj , u

n
j−1

)‖‖un
j − u0‖

+‖Au0‖‖u
n
j − u0‖

=⇒ ‖un
j − u0‖ ≤ ‖un

j−1
− u0‖+ hn[‖F (tnj , u

n
j−1

)‖ + ‖Au0‖].

By using induction hypothesis, we obtain

‖un
j − u0‖ ≤ C1 + t0[‖F (tnj , u

n
j−1

)‖ + ‖Au0‖].

Using Remark 2.1, we get

‖F (tnj , u
n
j−1

)‖ ≤ ‖F (tnj , u
n
j−1

)− F (0, u0)‖+ ‖F (0, u0)‖

≤ LF (R)[|tnj |+ ‖un
j−1

− u0‖] + ‖F (0, u0)‖

≤ LF (R)[t0 + C1] + ‖F (0, u0)‖.

Using the above inequality, we get

‖un
j − u0‖ ≤ C1 + t0[LF (R)(t0 + C1) + ‖F (0, u0)‖ +Au0].

This completes the proof of the lemma. ✷

Lemma 4.2 There exists a constant C2 (independent of n, j and hn) such that
∥
∥
∥
un

j
−un

j−1

hn

∥
∥
∥ ≤ C2 (note that here C2 is a generic constant that may have different value

in the same discussion).

Proof. As in the previous lemma, we can show that
∥
∥
∥
∥

un
1
− un

0

hn

∥
∥
∥
∥
≤ [LF (R)t0 + ‖F (0, u0)‖+ ‖Au0‖].
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We will prove this result by induction. For this we assume that
∥
∥
∥
∥

un
i − un

i−1

hn

∥
∥
∥
∥
≤ C2, i = 1, · · · , j − 1.

We have to show that
∥
∥
∥
∥

un
j − un

j−1

hn

∥
∥
∥
∥
≤ C2.

Subtracting from (6) the same equation written for j − 1, and applying J(un
j − un

j−1
) on

both sides, we get
(
un
j − un

j−1

hn

, J(un
j − un

j−1
)

)

≤

(
un
j−1

− un
j−2

hn

, J(un
j − un

j−1
)

)

+(F (tnj , u
n
j−1

)− F (tnj−1
, un

j−2
), J(un

j − un
j−1

)).

Using Lemma 2.3 and the definition of duality map, we get
∥
∥
∥
∥

un
j − un

j−1

hn

∥
∥
∥
∥
≤

∥
∥
∥
∥

un
j−1

− un
j−2

hn

∥
∥
∥
∥
+ ‖F (tnj , u

n
j−1

)− F (tnj−1
, un

j−2
)‖.

By using induction hypothesis, we get
∥
∥
∥
∥

un
j − un

j−1

hn

∥
∥
∥
∥
≤ C2 + ‖F (tnj , u

n
j−1

)− F (tnj−1
, un

j−2
)‖.

By using Remark 2.1, we get

‖F (tnj , u
n
j−1

)− F (tnj−1
, un

j−2
)‖ ≤ LF (R)[t0 + C2hn]

≤ LF (R)[t0 + C2t0].

Using the above inequality, we get
∥
∥
∥
∥

un
j − un

j−1

hn

∥
∥
∥
∥
≤ C2 + LF (R)[t0 + C2t0].

This completes the proof of the lemma. ✷

Remark 4.1 By using Lemma 4.1 and Lemma 4.2, we conclude that sequence
{un(t)} is uniformly Lipschitz continuous and un(t)−Xn(t) → 0, as n → ∞, t ∈ (0, t0].

If we denote that
fn(t) = F (tnj , u

n
j−1

),

and using (8) and (9), then (4) reduces to:

d−

dt
Un(t) +AXn(t) = fn(t), t ∈ (0, t0], (10)

where d−

dt
denotes the left derivative in (0, t0].

Also, for t ∈ (0, t0], we have

∫ t

0

AXn(s)ds = u0 − Un(t) +

∫ t

0

fn(s)ds. (11)

Next we prove the convergence of Un to u in C([0, t0], H).
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Lemma 4.3 ( [3], Lemma 3.4) There exists u ∈ C([0, t0], H), such that Un → u

in C([0, t0], H) as n → ∞. Moreover, u is Lipschitz continuous on [0, t0].

Remark 4.2 Clearly Xn(t) ∈ D(A), for each n. As un(t) − Xn(t) → 0 as n →
∞, Xn(t) → u(t) ∈ H. Also ‖AXn‖ are bounded therefore by Lemma 2.4, it is clear
that AXn ⇀ Au.

So for every x∗ ∈ X∗ and t ∈ (0, t0], we have

∫ t

0

(AXn(s), x∗)ds = (u0, x
∗)− (Un(t), x∗) +

∫ t

0

(fn(s), x∗)ds.

Using Lemma 4.3, Remark 4.2 and the bounded convergence theorem, we obtain as
n → ∞,

∫ t

0

(Au(s), x∗)ds = (u0, x
∗)− (u(t), x∗) +

∫ t

0

(F (s, u(s)), x∗)ds. (12)

As Au(t) is Bochner integrable on [0, t0], from (12) we have

d

dt
u(t) +Au(t) = F (t, u(t)), a.e. t ∈ (0, t0]. (13)

Clearly u ∈ C([0, t0];H) and differentiable a.e. on (0, t0] with u(t) ∈ D(A) a.e. on (0, t0]
satisfying (13). Hence u is a strong solution of (6)-(7) on [0, t0].

Now we show the uniqueness of this strong solution. For this we assume that u1

and u2 are two strong solutions of (6)-(7) on the interval [0, t0]. Let u = u1 − u2

(
du(t)

dt
, J(u(t))

)

+ (A(u1(t)− u2(t)), J(u1(t)− u2(t)))

= (F (t, u1(t))− F (t, u2(t)), J(u(t))).

By Lemma 2.3 and by the definition of duality mapping, we get

d

dt
‖u(t)‖2 ≤ ‖F (t, u1(t))− F (t, u2(t))‖‖u(t)‖.

Using Lemma 2.1, we get

d

dt
‖u(t)‖2 ≤ K‖u(t)‖2.

This implies that

‖u(t)‖2 ≤ K

∫ t

0

‖u(t)‖2ds.

Applying Grownwall’s inequality, we get u ≡ 0 on [0, t0]. Hence we get a unique strong
solution on the interval [0, t0].

Strong solution u of (6)–(7) on interval [0, t0] can be extended on the larger interval
[0, t0+ δ], δ > 0 [ [1], Theorem 6.2.2]. Continuing this process, we obtain a unique strong
solution either on the whole interval or on the maximal interval of existence [0, tmax]. If
tmax < ∞, then lim

t↑tmax

‖u(t)‖ = ∞, otherwise we get contradiction [ [1], Theorem 6.1.4].
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Abstract: This paper deals with stability of discrete-time nonlinear Lur’e-type sys-
tems. Through the singular perturbations technique, the original system is reduced
to a block-diagonal form with slow and fast decoupled modes. Stability conditions of
the two-time-scale decoupled model based on Borne-Gentina practical stability crite-
rion and the use of matrices in the Benrejeb arrow form are developed and compared
with those concerning the original discrete-time system. It is shown that these results
are practical and less conservative then the existing ones. A third order system is
introduced to illustrate the efficiency of the proposed approach.
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1 Introduction

During the past several decades, the stability problem of dynamical systems has at-
tracted an immense attention in the control society. A great majority of the encountered
problems is concerned with the closed-loop behavior of feedback nonlinear systems. An
important and typical class of such systems is Lur’e-type systems introduced by Lur’e
and Postnikov [39], and described by combinations of a dynamic linear bloc and a feed-
back interconnected to a static nonlinearity, assumed to lie in a given sector. Since that,
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Lur’e systems have become an attractive research subject and have received a series of re-
sults in many relevant nonlinear engineering applications, such as mechanical, electrical,
economic and biological [55].

The original analysis was motivated by the need to understand the effect of nonlinear-
ities on control systems due to elements such as imperfect actuators or sensors that have
gain or amplification that can vary over time. Within this framework, the nonlinearities
are most commonly modeled as gain bounded or sector bounded uncertainties and the
absolute stability is analyzed via the formulation of finite system of quadratic equations.

Defined as a global asymptotic stability tolerating any nonlinear perturbations with
special constraints [57], the absolute stability problem has been the subject of extensive
research for continuous Lur’e systems [11, 15, 22, 24, 25, 31, 36, 44, 49, 50, 53]. One of the
most main results related to absolute stability has been the Popov criterion [43], which
is a graphical construction that provides a simple approach to maximize the nonlinear
sector. Popov proved that the analysis can be done in the frequency domain and the
stability is derived by Lyapunov’s direct method. The circle criterion [21,29], dealing with
time varying nonlinearity, analyzes the absolute stability via a suitable strict positive-
realness condition on the linear part and a given sector condition on the nonlinear part.
Recently, more results about the stability analysis for Lur’e systems with slope-restricted
are introduced in [3, 33, 41, 42, 48, 55], and with time-delays and model uncertainties
in [7, 17, 23, 26, 32, 51].

Because of their wide applications in many practical processes, a great number of
results in control and system theory have been extended successfully to singular sys-
tems [13]. The two-time-scale nature of such systems is exploited to decompose the
design problem into two lower-order design problems for the slow and fast modes. Some
results on singular perturbed nonlinear Lur’e systems in continuous-time are developed
in the field [13,52,54] where the stability criterion is deduced by mean of Lyapunov func-
tional method. However, the stability investigation on Lur’e type discrete time systems
is limited [31].

The paper is organized as follows. The class of discrete Lur’e-type systems will be
introduced in Section 2. In Section 3 a two-time-scale decoupling procedure for the
original Lur’e-type system based on singular perturbation technique is presented. In
Section 4 stability conditions of original Lur’e-type system and decoupled model, are
derived and compared. The synthesized results are formulated by the use of the Benrejeb
arrow form matrix and the Borne-Gentina practical stability criterion. In Section 5 the
proposed model decoupling strategy is applied to a nonlinear system of order three.
Stability conditions of original system and reduced order subsystems are developed and
discussed.

2 System Description and Problem Statement

Consider the Lur’e type discrete-time system described by state space representation
(1). The model consists of a static nonlinearity in cascade with a dynamic linear time
invariant system according to [11] and [29]:

S :







xk+1 = ALxk +BLuk,

uk = h (εk) εk,
εk = rk − CLxk,

(1)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (2) (2013) 203–216 205

where AL, BL and CL are known matrices of appropriate dimensions, xk ∈ ℜn denotes
the state vector, uk ∈ ℜ is the vector input, rk ∈ ℜ is the reference input, rk = 0 and
εk ∈ ℜ is the control error of the closed-loop system, h (.) : ℜ → ℜ represents memoryless
nonlinear matrix valued function.

The investigated Lur’e-type discrete-time system can be represented by the nonlinear
regression equation:

εk+n +

n∑

i=1

gi (εk+n−i)εk+n−i = 0, (2)

where the corresponding expression in terms of state space representation (1) becomes:

S : xk+1 = A (εk)xk (3)

with
A (εk) = AL −BLh (εk)CL, (4)

A (εk) denotes the instantaneous characteristic matrix expressed in Frobenius form as:

A (εn) =









0 · · · 0 −gn (εn)

1 0
... −gn−1 (εn)

0
. . . 0

...
0 0 1 −g1 (εn)









. (5)

In the design of complex and/or large scale systems, models are usually of high or-
der. Model reduction techniques can be used to obtain a low-order approximation of
these models, allowing for efficient analysis or control design. Many order reduction
techniques can be found in the literature: reduced order models synthesized via ag-
gregation and dominant modes approaches neglect fast stable dynamics and some of
the poorly controllable and observable slow dynamics. With the singular perturbation
method [1, 14, 35, 38, 47], both slow and fast dynamics are retained; analysis and design
problems are solved in two steps, first for the fast and then for the slow dynamics. These
methods for model reduction of nonlinear systems have in common that the stability
of the reduced-order model is not guaranteed. In the present work, model reduction
procedure, based on singular perturbation technique, for discrete Lur’e-type systems is
presented, and conditions to ensure asymptotic stability of the fast and reduced-order
decoupled subsystem as well as the original system (1) are given.

3 Two-Time-Scale Decoupling

By reordering and/or rescaling of states, let the nonlinear discrete system be structured
in the two-time-scale model:

[
x1

k+1

x2

k+1

]

=

[
A

11
A

12

A
21

A
22

] [
x1

k

x2

k

]

, (6)

where x1

k and x2

k are n1 and n2 dimensional state vectors, respectively, and the overall
system is of dimension n = n1 + n2, x

1

k ∈ ℜn1 and x2

k ∈ ℜn2 . This system is assumed
to possess a two-time-scale property, which means that the n eigenvalues of the system
can be separated into n1 slow modes and n2 stable fast modes related to x1

k, and x2

k,
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respectively. The fast subsystem x2

k, assumed to be stable, is active only during a short
initial period, after, it is negligible and the characterization of the system can be described
by its slow subsystem x1

k.
An explicit two-time-scale property of this model can be introduced by assuming that:

A∗

11
= µ−1 (A

11
− In1

) , (7)

A∗

12
= µ−1A

12
, (8)

A∗

21
= A

21
, (9)

A∗

22
= A

22
. (10)

The transformed system is expressed in the standard singular perturbation system struc-
ture [38] and [27, 28, 34, 37]:

[
x1

k+1

x2

k+1

]

=

[
In1 + µA∗

11
µA∗

12

A∗

21
A∗

22

] [
x1

k

x2

k

]

, (11)

where µ is a small positive singular perturbation parameter and det (In2
−A∗

22
) 6= 0 [47].

As µ → 0, the eigenvalues of (11) cluster into two groups and, the original system (6)
can be decoupled in slow subsystem Ss and fast subsystem Sf candidates:

Ss : xs
k+1

= (In1
+ µAs)x

s
k, (12)

Sf : x
f
k+1

= A∗

22
x
f
k , (13)

with
As = A∗

11
+A∗

12
(In2

−A∗

22
)
−1

A∗

21
, (14)

where xs ∈ ℜn1 and xf ∈ ℜn2 are, respectively, the slow and the fast subsystems state
vectors defined using a decoupling transformation [12, 40, 47], if it exists.

The slow subsystem is defined by neglecting the fast stable dynamics, which is equiv-
alent to replace the second equation of (11) by its steady-state algebraic equation. The
fast subsystem, supposed to be stable, is derived by assuming that slow variables are
constant during fast transients and µ = 0.

4 Main Results

By considering the instantaneous characteristic polynomial PS(., λ) of (1), (2) or (3):

P ( . , λ)=λn +

n∑

i=1

gi (.)λ
n−i (15)

and distinct arbitrary constant parameters αj , j = 1, 2, · · · , n − 1, αi 6= αj , ∀i 6= j, it
comes the following notations:

βj =

n−1∏

k=1
k 6=j

(αj − αk )
−1, ∀j = 1, 2, · · · , n− 1, (16)

γj(.) = −P ( . , αj), ∀j = 1, 2, · · · , n− 1, (17)
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δn(.) = −g1(.)−

n−1∑

i=1

αi. (18)

Let S be a Lur’e- type system of the form (1)-(3) and let Ss be the decoupled Lur’e-
type subsystem (12). By applying the Borne-Gentina practical stability criterion [8,9,20]
to the discrete Lur’e type systems characterized by the Benrejeb arrow form matrix [2–
6, 10, 18], we obtain the following theorems and corollary.

Theorem 4.1 The discrete nonlinear system S of the form (1) is asymptotically

stable, if there exist constant parameters αi ∈ ℜ; αi 6= αj , ∀i 6= j, such that

|αi| < 1 ∀i = 1, · · · , n− 1 (19)

and

1−
∣
∣δ

n
(·)

∣
∣−

n−1∑

j=1

∣
∣γj (·)

∣
∣ |βj | (1− |αj |)

−1
> 0. (20)

Theorem 4.2 For chosen stable fast subsystem, i.e., |αi| < 1 ∀i = n1, · · · , n−1, the
discrete nonlinear decoupled system (12) is asymptotically stable if there exist arbitrary

constant parameters αi ∈ ℜ; αi 6= αj , ∀i 6= j, such that the following conditions are

satisfied and

|αi| < 1 ∀i = 1, ..., n1 − 1, (21)

1−

∣
∣
∣
∣
∣
∣

δ
n
(·) +

n−1∑

j=n1

γj (·)βj (1− αj)
−1

∣
∣
∣
∣
∣
∣

−

n1−1∑

j=1

∣
∣γj (·)

∣
∣ |βj | (1− |αj |)

−1
> 0. (22)

Corollary 4.1 For chosen stable fast subsystem, i.e., |αi| < 1 ∀i = n1, · · · , n − 1,
the discrete nonlinear decoupled subsystem (12) (respectively the original system (1)) is

asymptotically stable if the original system (1) (respectively decoupled subsystem (12)) is

asymptotically stable and, if there exists constant parameter αi ∈ ℜ; αi 6= αj, ∀i 6= j,

such that the following conditions are satisfied







αj > 0, ∀j = 1, ..., n1 − 1,
n−1∑

i=1

αi > −g1 (.) ,

γj (.)βj > 0, ∀j = 1, ..., n1 − 1.

(23)

Proof. (Theorem 4.1) Let us consider the Lur’e-type system S of the form (1)-3). A
change of coordinate defined by:

yk = Txk (24)

with yk ∈ ℜn and

T =










0 0 · · · 0 1
1 αn−1 α2

n−1
· · · αn−1

n−1

1 αn−2 α2

n−2
· · · αn−1

n−2

...
...

... · · ·
...

1 α1 α2

1
· · · αn−1

1










. (25)
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leads to the following state space description

yk+1 = G (.) yk. (26)

Allowing the synthesis of sufficient stability conditions easy to test, the new instanta-
neous characteristic matrix G (.) is chosen to be in the arrow form [2–6,10,18], Appendix
2, as follows

G (.) = T A(.)T−1 =








δn (·) β1 · · · βn−1

γ
1
(·) α1

...
. . .

γn−1 (·) αn−1







, (27)

where βi, γi, δn and αi, ∀i = 1, 2, · · · , n− 1 are defined (16)–(18).

A pseudo-overvaluing matrix M (G (·)) of the system (26), corresponding to the use
of the vector norm (Appendix 1):

p (y) = [|y1| , |y2| , ... , |yn|]
T
, (28)

y = [y1, y2, ... , yn]
T
, for the stability study, can be obtained from the inequality:

p(yk+1) ≤ M (G (·)) p(yk) (29)

satisfied for each corresponding component; that leads to the following comparison system

zk+1 = M (G (·)) zk (30)

with

M (G (.)) =








|δn (·)| |β1| · · · |βn|
|γ

1
(·)| |α1|
...

. . .

|γn (·)| |αn|








(31)

such as: z0 = p (y0).

If the nonlinearities of the comparison nonlinear system (30) are isolated in one row of
M (G (·)), the verification of the Kotelyanski condition (Appendix 1) enables to conclude
about the stability of the original system characterized by G (·) [3, 9, 10].

It comes the following sufficient asymptotic stability condition of original system:

(In −M (G (·)))

(
1 2 . . . j

1 2 . . . j

)

> 0 ∀j = 1, . . . , n. (32)

This ends the proof of Theorem 4.1.

Proof. (Theorem 4.2) Note that the satisfaction of the condition (19), i.e. |αi| <
1, i = 1, · · · , n− 1, means that the fast system characterized by a diagonal matrix {αi},
i = n1, · · · , n− 1 is stable. Conditions |αi| < 1, i = 1, · · · , n1 − 1 are necessary to satisfy
for the reduced slow subsystem stability.

In order to synthesize the stability conditions of the two-time-scale decoupled system
S, we first, reorder the transformed nonlinear system states (3). Resulting A11, A12,
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A21 and A22 matrices are then in the form (33), where the matrix A11 is candidate to
characterize the slow subsystem of (6) and A22 the fast one:

A
11

=








δn (·) β1 · · · βn1−1

γ
1
(·) α1

...
. . .

γn1−1
(·) αn1−1







, A

12
=








βn1
· · · βn−1

0 · · · 0
...

...
0 · · · 0







,

A
21

=






γn1
(·) 0 · · · 0
...

...
...

γn−1
(·) 0 · · · 0




 , A

22
=






αn1

. . .

αn−1




 .

(33)

Arbitrary constant parameters αi, i = n1, · · · , n− 1, are chosen in concordance with the
estimation of the dynamics that we consider physically fast for the studied system.

Substituting the relations (33), (7)-(10) and (14) into (12) and (13), yields the fol-
lowing discrete slow and fast subsystems, respectively:

xs
k+1

= As (.)x
s
k,

x
f
k+1

= Afx
f
k ,

(34)

and then comparison systems, respectively:

ysk+1
= M (As (·)) y

s
k, (35)

y
f
k+1

= M (Af ) y
f
k , (36)

where As ∈ ℜn1xn1 and Af ∈ ℜn2xn2 are given by

As =










δn (.) +
n−1∑

j=n1

γj(.)βj

(1−αj)
β1 · · · βn1−1

γ1 (.) α1

...
. . .

γn1−1 (.) αn1−1










, (37)

Af =






αn1

. . .

αn−1




 , (38)

and M (As (·)) and M (Af (·)) are respectively the pseudo-overvaluing matrices of the
slow and fast subsystems (12) and (13), corresponding to the use of the vector norm (28).
By applying the practical Borne-Gentina criterion [3, 9, 10, 16] to the comparison sys-
tems (35) and (36) of (34), we deduce the stability conditions of the decoupled discrete
systems. Theorem 4.2 is then proved.

Proof. (Corollary 4.1) The proof can be easily obtained by substituting the
relations (23) in (22).

5 Illustrative Example

To show the effectiveness of the derived theorems, a numerical example is studied below.
Consider the discrete nonlinear Lur’e system described by means of the following block-
oriented nonlinear model (Figure 1), where f (.) : ℜ → ℜ is a nonlinear function, B0 (s) =
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1

D s

y0r
0
B

T

k

kf
ku

N s

Figure 1: Lur’e systems.

1−e−Ts

s
is a zero order holder, T = 0.2s the sampling time, and D (s) and N (s) are

polynomials defined by:

D (s) = s (1 + τ1s) (1 + τ2s) , (39)

N (s) = λ2s
2 + λ1s+ λ0. (40)

A state space representation (3) synthesized in the canonical Frobenius form gives:

A (εk) =





0 0 −1, 19.10−6f (εk)
1 0 −0, 13 + 0, 23.10−1f (εk)
0 1 1, 13− 1, 92f (εk)



 . (41)

By choosing α1 = 0.9 and α2 = 0.1 satisfying (19), the synthesized transformed state
space representation in the arrow form is defined by:

N (εk) =





0, 14− 0, 19f (εk) 1, 20 −1, 20
0, 69.10−1 − 0, 14f (εk) 0, 90 0
−0, 32.10−2 − 0, 37.10−3f (εk) 0 0, 10



 . (42)

Furthermore, by taking µ = 0.1, the decoupled slow and the fast subsystems are given
respectively by

Ns =

[
0, 14− 0, 19f (εk) 1, 20
0, 69.10−1 − 0, 14f (εk) 0, 90

]

,

Nf = 0, 10.
(43)

The stability conditions of the original system deduced from Theorem 4.1, are, for
chosen α1 and α2:

1− |0, 14− 0, 19f (εk)| − 12×
∣
∣0, 69.10−1 − 0, 14f (εk)

∣
∣

−1.33×
∣
∣−0, 32.10−2 − 0, 37.10−3f (εk)

∣
∣ > 0

or

− 0.01 < f (εk) < 1.05. (44)

Now, by applying Theorem 4.2, the stability conditions of the decoupled nonlinear
system (43) are:

1− |0, 14− 0, 19f (εk)| − 12×
∣
∣0, 69.10−1 − 0, 14f (εk)

∣
∣ > 0
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or

− 0.01 < f (εk) < 1.05. (45)

Furthermore, according to the corollary, if we impose the synthesized conditions (23)

{
0, 14− 0, 19f (εk) > 0,
−0, 32.10−2 − 0, 37.10−3f (εk) < 0,

(46)

we obtain

− 8.64 < f (εk) < 0.73. (47)

Consequently, the original Lur’e discrete-time system (42) and the decoupled sys-
tem (43) are asymptomatically stable for the common stability domain:

− 0.01 < f (εk) < 0.73. (48)

Stability domain (D1) of the original system (42) and the common stability domain
(D2) are introduced in Figure 2.

 

5 10-5-10

5

10

-10

-5

: D2

: D1

k

u

k
ε

k

Figure 2: Stability domains.

6 Conclusion

The problem of singular perturbed nonlinear Lur’e discrete-time systems is addressed and
a model reduction procedure based on the singular perturbation technique is introduced.
Sufficient conditions for stability of the decoupled system as well as the original nonlinear
Lur’e type discrete system( 1) are then derived. Supplementary stability conditions are
synthesized to ensure a common stability domain for the original and the decoupled
system. An example is studied to illustrate the efficiency of the proposed results.
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Appendix 1

Definition 6.1 (Vector Norm [45, 46]) Let E = ℜn be a vector space and
E1, E2, · · · , Ek be subspaces of E which verify: E = E1∪E2∪· · ·∪Ek. Let x ∈ E be an n

vector defined on E with a projection in the subspace Ei denoted by xi, xi = Pix, where
Pi is a projection operator from E into Ei, pi is a scalar norm (i = 1, · · · , k) defined on
the subspace Ei and p denotes the vector norm of dimension k and with ith component,
pi(x) = pi(xi), pi(x) : R

n → Rk
+
, where pi(xi) is a scalar norm of xi.

Lemma 6.1 (Kotelyanski [19, 30]) The real parts of the eigenvalues of matrix A,

with non negative off diagonal elements, are less than a real number µ if and only if all

those of matrix M = µIn −A are positive, with In being the n identity matrix.

When successive principal minors of matrix (−A) are positive, Kotelyanski lemma

permits to conclude on stability property of the system characterized by A.

Appendix 2

Let us consider the observable nonlinear system:

zk+1
= A (.) zk,

A (.) =









0 · · · 0 −an (.)

1 0
... −an−1 (.)

0
. . . 0

...
0 0 1 −a1 (.)









,

where ai(.) are the instantaneous characteristic polynomial PA(., λ) coefficients of A (.),
such that:

PA( . , λ) = λn +

n∑

i=1

ai(.) λ
n−i.

A change of base defined by:

ẑk = Tzk,

T =










0 0 · · · 0 1
1 αn−1 α2

n−1
· · · αn−1

n−1

1 αn−2 α2

n−2
· · · αn−1

n−2

...
...

...
...

...
1 α1 α2

1
· · · αn−1

1










,

where αj , j = 1, 2, · · · , n− 1 are distinct arbitrary constant parameters, allows the new
state matrix, denoted by F (.), to be in arrow form [2–6,10, 18]:

F (.) = T A(.)T−1 =








δn(.) β1 · · · βn−1

γ
1
(.) α1

...
. . .

γn−1
(.) αn−1
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with

βj =

n−1∏

k=1
k 6=j

(αj − αk )
−1, ∀ j = 1, 2, . . . , n− 1,

δj(.) = −PA( . , αj), ∀ j = 1, 2, . . . , n− 1,

δn(.) = −a1(.)−

n−1∑

i=1

αi.
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