Homoclinic Orbits for a Class of Second Order Hamiltonian Systems

A. Benhassine and M. Timoumi ${ }^{2}$
Dpt of Mathematics, Faculty of Sciences 5000 Monastir. Tunisia
】
Received: January 15, 2010; Revised: March 19, 2012

Abstract

A new result for existence of homoclinic orbits is obtained for the second order Hamiltonian systems $\ddot{x}(t)+V^{\prime}(t, x(t))=f(t)$, where $t \in \mathbb{R}, x \in \mathbb{R}^{N}, V \in C^{1}(\mathbb{R} \times$ $\left.\mathbb{R}^{N}, \mathbb{R}\right), V(t, x)=-K(t, x)+W(t, x)$ is T-periodic in $t, T>0$ and $f: \mathbb{R} \longrightarrow \mathbb{R}^{N}$ is a continuous bounded function, under an assumption weaker than the so-called Ambrosetti-Rabinowitz-type condition.

Keywords: homoclinic orbits; Hamiltonian systems; critical point; diagonal method.
Mathematics Subject Classification (2010): 34C37, 35A15, 37 J 45.

1 Introduction

In this paper we are concerned with the study of the existence of homoclinic solutions for second order time-dependent Hamiltonian systems of the type

$$
\begin{equation*}
\ddot{x}(t)+V^{\prime}(t, x(t))=f(t), \tag{HS}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{N}\right), V \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{N}, \mathbb{R}\right), V^{\prime}(t, x)=\frac{\partial V}{\partial x}(t, x)$ and $f: \mathbb{R} \longrightarrow \mathbb{R}^{N}$ is a continuous function. Here, as usual, we say that a solution x of $(H S)$ is homoclinic (to 0) if $x(t) \rightarrow 0$ as $t \rightarrow \pm \infty$. In addition x is called nontrivial if $x \not \equiv 0$.

The existence of homoclinic solutions for $(H S)$ has been extensively investigated in many papers via the critical point theory, see $[8,11]$. These results were obtained under the fact that the potential V is of the type

$$
V(t, x)=-\frac{1}{2} L(t) x \cdot x+W(t, x)
$$

where $L \in C\left(\mathbb{R}, \mathbb{R}^{N^{2}}\right)$ is a symmetric matrix-valued function and $W \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{N}, \mathbb{R}\right)$.

[^0]Recently, in [2], Izydorek and Janczewska have studied the existence of such solutions when the potential V is of the form

$$
V(t, x)=-K(t, x)+W(t, x)
$$

where $K, W \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{N}, \mathbb{R}\right)$. Precisely, they established the following result.
Theorem 1.1 Assume that V and f satisfy the conditions
$\left(V_{1}\right) V(t, x)=-K(t, x)+W(t, x)$, where $K, W: \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are C^{1}-maps, T-periodic with respect to $t, T>0$,
$\left(V_{2}\right)$ there are constants $b_{1}, b_{2}>0$ such that $b_{1}|x|^{2} \leq K(t, x) \leq b_{2}|x|^{2}$ for all $(t, x) \in$ $\mathbb{R} \times \mathbb{R}^{N}$,
$\left(V_{3}\right)$ for all $(t, x) \in \mathbb{R} \times \mathbb{R}^{N}, K(t, x) \leq K^{\prime}(t, x) . x \leq 2 K(t, x)$,
$\left(V_{4}\right) W^{\prime}(t, x)=o(|x|)$, as $|x| \rightarrow 0$ uniformly with respect to t,
$\left(V_{5}\right)$ there is a constant $\mu>2$ such that $0<\mu W(t, x) \leq W^{\prime}(t, x)$.x for every $t \in \mathbb{R}$ and $x \in \mathbb{R}^{N} \backslash\{0\}$,
$\left(V_{6}\right) f: \mathbb{R} \rightarrow \mathbb{R}^{N}$ is a bounded continuous function,
$\left(V_{7}\right) \bar{b}_{1}=\min \left\{1,2 b_{1}\right\}>2 M$ and $\left(\int_{\mathbb{R}}|f(t)|^{2} d t\right)^{1 / 2} \leq \frac{\beta}{2 C}$, where $0<\beta<\bar{b}_{1}-2 M, M=$ $\sup \left\{W(t, x) t \in[0, T], x \in \mathbb{R}^{N},|x|=1\right\}$ and C is a positive Sobolev constant defined in [2]. Then the system $(H S)$ possesses a nontrivial homoclinic solution.

Here and in the following $x . y$ denotes the inner product of $x, y \in \mathbb{R}^{N}$ and |.| denotes the associated norm.

The so-called Ambrosetti-Rabinowitz-type condition $\left(V_{5}\right)$ appears frequently in the studying of existence of homoclinic solutions for $(H S)$. The goal of this work is to prove that Theorem 1.1 still holds if $\left(V_{5}\right)$ is replaced by a weaker condition. The motivation for the paper comes mainly from a paper by An [14], in which he dealt with the existence of periodic solutions for $(H S)$ with a condition weaker than $\left(V_{5}\right)$.

Definition 1.1 A vector field v defined on \mathbb{R}^{N} is called positive if $v(x) . x>0$ for all $x \in \mathbb{R}^{N} \backslash\{0\}$. We call v a normalized positive vector field if v is positive, linear and satisfies the following condition:

$$
\begin{equation*}
v(x) \cdot x=x \cdot x, \forall x \in \mathbb{R}^{N} . \tag{1}
\end{equation*}
$$

Consider the following assumptions:
$\left(V_{3}^{\prime}\right)$ there exists normalized positive vector field v such that for all $(t, x) \in \mathbb{R} \times \mathbb{R}^{N}$

$$
K(t, x) \leq K^{\prime}(t, x) \cdot v(x) \leq 2 K(t, x)
$$

$\left(V_{5}^{\prime}\right)$ there exists constant $\mu>2$ such that for every $t \in \mathbb{R}$ and $x \in \mathbb{R}^{N} \backslash\{0\}$

$$
0<\mu W(t, x) \leq W^{\prime}(t, x) \cdot v(x)
$$

The main result of this paper is as follows.
Theorem 1.2 Assume that V and f satisfy $\left(V_{1}\right),\left(V_{2}\right),\left(V_{3}^{\prime}\right),\left(V_{4}\right),\left(V_{5}^{\prime}\right),\left(V_{6}\right),\left(V_{7}\right)$ and the following assumption:

$$
\begin{equation*}
W(t, x) \leq M|x|^{\mu}, \forall t \in \mathbb{R}, \quad \forall|x| \leq 1 \tag{8}
\end{equation*}
$$

Then the system (HS) possesses a nontrivial homoclinic solution.

It is obvious that if $v(x)=x$, then $\left(V_{3}^{\prime}\right)$ becomes $\left(V_{3}\right)$ and $\left(V_{5}^{\prime}\right)$ becomes $\left(V_{5}\right)$. Consider the following examples.

Example 1.1 Let $\theta(x)$ be the argument of $x=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2} \backslash\{0\}$ defined by

$$
\theta(x)=\left\{\begin{array}{l}
\arctan \left(\frac{\xi_{2}}{\xi_{1}}\right), \text { if } \xi_{1}>0, \xi_{2} \geq 0 \\
\frac{\pi}{2}, \text { if } \xi_{1}=0, \xi_{2}>0 \\
\arctan \left(\frac{\xi_{2}}{\xi_{1}}\right)+\pi, \text { if } \xi_{1}<0 \\
\frac{3 \pi}{2}, \text { if } \xi_{1}=0, \xi_{2}<0 \\
\arctan \left(\frac{\xi_{2}}{\xi_{1}}\right)+2 \pi, \text { if } \xi_{1}>0, \xi_{2}<0
\end{array}\right.
$$

Define a function $K \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{2}, \mathbb{R}\right)$ as follows:

$$
K(t, x)=\left\{\begin{array}{l}
\frac{|x|^{2}}{\exp (2 \sin 4(\ln |x|+\theta(x)))}, \text { if } x \neq 0 \\
0, \text { if } x=0
\end{array}\right.
$$

Define a normalized positive vector field v by $v(x)=\left(\begin{array}{ll}1 & 1 \\ -1 & 1\end{array}\right) x$. An easy computation shows that K satisfies $\left(V_{2}\right)$ and $\left(V_{3}^{\prime}\right)$.

Example 1.2 For any $\mu>2$, define a function $W \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{2}, \mathbb{R}\right)$ as follows:

$$
W(t, x)=\left\{\begin{array}{l}
\frac{|x|^{\mu}}{\exp (\mu(2+\sin 4(\ln |x|+\theta(x))))}, \text { if } x \neq 0 \\
0, \text { if } x=0
\end{array}\right.
$$

A direct computation (see [14]) shows that W satisfies $\left(V_{4}\right),\left(V_{5}^{\prime}\right)$ and $\left(V_{8}\right)$. Moreover, W does not satisfy $\left(V_{5}\right)$.

In order to obtain homoclinic solution of $(H S)$, we consider a sequence of systems of differential equations:

$$
\begin{equation*}
\ddot{x}(t)+V^{\prime}(t, x(t))=f_{k}(t) \tag{k}
\end{equation*}
$$

where $f_{k}: \mathbb{R} \rightarrow \mathbb{R}^{N}$ is a $2 k T$-periodic extension of f to the interval $[-k T, k T[, k \in \mathbb{N}$. We will prove the existence of a homoclinic solution of $(H S)$ as the limit of the $2 k T$-periodic solution of $\left(H S_{k}\right)$ as in $[2,8]$.

2 Preliminaries

For each $k \in \mathbb{N}$, let $E_{k}=W_{2 k T}^{1,2}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ denote the Hilbert space of $2 k T$-periodic functions from \mathbb{R} into \mathbb{R}^{N} under the norm

$$
\|x\|_{E_{k}}=\left(\int_{-k T}^{k T}\left(|\dot{x}(t)|^{2}+|x(t)|^{2}\right) d t\right)^{1 / 2}
$$

and let $L_{2 k T}^{2}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ denote the Hilbert space of $2 k T$-periodic functions from \mathbb{R} into \mathbb{R}^{N} under the norm

$$
\|x\|_{L_{2 k T}^{2}}=\left(\int_{-k T}^{k T}|x(t)|^{2} d t\right)^{\frac{1}{2}}
$$

Furthermore, let $L_{2 k T}^{\infty}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ be the space of $2 k T$-periodic essentially bounded measurable functions from \mathbb{R} into \mathbb{R}^{N} under the norm

$$
\|x\|_{L_{2 k T}^{\infty}}=e s s \sup \{|x(t)|: t \in[-k T, k T]\} .
$$

Let $\phi_{k}: E_{k} \rightarrow \mathbb{R}$ be defined by

$$
\begin{equation*}
\phi_{k}(x)=\int_{-k T}^{k T}\left[\frac{1}{2}|\dot{x}(t)|^{2}+K(t, x(t))-W(t, x(t))+f_{k}(t) \cdot x(t)\right] d t \tag{2.1}
\end{equation*}
$$

It is well known that $\phi_{k} \in C^{1}\left(E_{k}, \mathbb{R}\right)$ and for all $x, y \in E_{k}$

$$
\begin{equation*}
\phi_{k}^{\prime}(x) y=\int_{-k T}^{k T}\left[\dot{x}(t) \cdot \dot{y}(t)+K^{\prime}(t, x(t)) \cdot y(t)-W^{\prime}(t, x(t)) \cdot y(t)+f_{k}(t) \cdot y(t)\right] d t . \tag{2.2}
\end{equation*}
$$

Moreover, the critical points of ϕ_{k} in E_{k} are exactly the classical $2 k T$-periodic solution of $\left(H S_{k}\right)$ (see $\left.[6,9]\right)$. We will obtain a critical point of ϕ_{k} by using the following Mountain Pass Theorem.

Theorem 2.1 [8] Let E be a real Banach space and $\phi \in C^{1}(E, \mathbb{R})$ satisfying the Palais-Smale condition. If ϕ satisfies the following conditions:
(i) $\phi(0)=0$,
(ii) there exist constants $\rho, \alpha>0$ such that $\phi_{/ \partial B_{\rho}(0)} \geq \alpha$,
(iii) there exist $e \in E \backslash \bar{B}_{\rho}(0)$ such that $\phi(e) \leq 0$.

Then ϕ possesses a critical value $c \geq \alpha$ given by $c=\inf _{g \in \Gamma} \max _{s \in[0,1]} \phi(g(s))$, where $\Gamma=\{g \in C([0,1], E): g(0)=0, g(1)=e\}$.

Lemma 2.1 [2] Let $x: \mathbb{R} \rightarrow \mathbb{R}^{N}$ be a continuous mapping such that $\dot{x} \in L_{\text {loc }}^{2}\left(\mathbb{R}, \mathbb{R}^{N}\right)$. For every $t \in \mathbb{R}$ the following inequality holds:

$$
|x(t)| \leq \sqrt{2}\left(\int_{t-\frac{1}{2}}^{t+\frac{1}{2}}\left(|\dot{x}(s)|^{2}+|x(s)|^{2}\right) d s\right)^{1 / 2}
$$

where $L_{\text {loc }}^{2}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ denotes the space of locally square integrable functions from \mathbb{R} into \mathbb{R}^{N}.

Lemma 2.2 [14] Denote by φ_{s} the flow of the linear vector field v with property $\left(v_{1}\right)$, then

$$
\left|\varphi_{s} x\right|=e^{s}|x|, \forall s \in \mathbb{R}, \forall x \in \mathbb{R}^{N}
$$

Lemma 2.3 There exist $a_{1}, a_{2}>0$ such that

$$
\begin{equation*}
W(t, x) \geq a_{1}|x|^{\mu}-a_{2}, \forall t \in \mathbb{R}, \forall x \in \mathbb{R}^{N} \tag{2.3}
\end{equation*}
$$

Proof. Denote by S^{N-1} the unit sphere in \mathbb{R}^{N}. For any $x \in \mathbb{R}^{N} \backslash\{0\}$, since

$$
\frac{d}{d s}\left(\left|\varphi_{s} x\right|^{2}\right)=2 \varphi_{s} x \cdot v\left(\varphi_{s}(x)\right)>0
$$

$\left(\left|\varphi_{s} x\right|^{2}\right)$ is increasing in s. Hence, there exist $s \in \mathbb{R}$ and $\xi \in S^{N-1}$ such that $x=\varphi_{s} \xi$ (see[13] for details). Since $|x|=\left|\varphi_{s} \xi\right|=e^{s}$, by (V_{5}^{\prime}) we have

$$
\begin{equation*}
\frac{d}{d s}\left[W\left(t, \varphi_{s} \xi\right)\right]=W^{\prime}\left(t, \varphi_{s} \xi\right) \cdot v\left(\varphi_{s} \xi\right) \geq \mu W\left(t, \varphi_{s} \xi\right)>0, \forall s, t \in \mathbb{R} \tag{2.4}
\end{equation*}
$$

Let $R>0$, integrating (2.4) over $[\ln R, s]$ we obtain

$$
\int_{\ln R}^{s} \frac{\frac{d}{d l}\left[W\left(t, \varphi_{l} \xi\right)\right]}{W\left(t, \varphi_{l} \xi\right)} d l \geq \mu s-\mu \ln R .
$$

By $\left(V_{5}^{\prime}\right)$ the quantity $a_{1}=\inf _{t \in \mathbb{R},|x|=R}(W(t, x)) R^{-\mu}$ is strictly positive and

$$
W(t, x) \geq a_{1}|x|^{\mu}, \forall|x| \geq R, \forall t \in \mathbb{R}
$$

Let $a_{2}=\sup _{t \in \mathbb{R},|x| \leq R} W(t, x)$, then (2.3) holds.Let v be the normalized positive vector field in $\left(V_{3}^{\prime}\right)$ and $\left(V_{5}^{\prime}\right)$ of Theorem 1.2. Then v is an invertible linear operator from \mathbb{R}^{N} to \mathbb{R}^{N}. Let $a=\frac{1}{\left\|v^{-1}\right\|}, b=\|v\|$, where $\|v\|$ and $\left\|v^{-1}\right\|$ are operator norms. For any $x \in \mathbb{R}^{N}$, one has

$$
\begin{equation*}
a|x| \leq|v(x)| \leq b|x| \tag{2.5}
\end{equation*}
$$

Define a vector field \tilde{v} on E_{k} by

$$
\begin{equation*}
(\tilde{v}(x))(t)=v(x(t)) \tag{2.6}
\end{equation*}
$$

Using condition $\left(v_{1}\right)$ and a direct computation we have the following Lemma.
Lemma 2.4 For any $x \in E_{k}$, there hold

$$
\begin{gather*}
\int_{-k T}^{k T}|\dot{x}(t)|^{2} d t=\int_{-k T}^{k T} \dot{x}(t) \cdot \overbrace{\tilde{v}(x)}^{i}(t) d t . \tag{2.7}\\
a\|x\|_{E_{k}} \leq\|\tilde{v}(x)\|_{E_{k}} \leq b\|x\|_{E_{k}} . \tag{2.8}
\end{gather*}
$$

Lemma 2.5 Let $Y:[0,+\infty[\rightarrow[0,+\infty[$ be given as follows

$$
Y(s)=\left\{\begin{array}{l}
\max _{t \in[0, T], 0<|x| \leq s} \frac{W^{\prime}(t, x) \cdot v(x)}{|x|^{2}}, s>0 \\
0, s=0
\end{array}\right.
$$

Then Y is continuous, nondecreasing, $Y(s)>0$ for $s>0$ and $Y(s) \rightarrow+\infty$ as $s \rightarrow+\infty$.
It is easy to prove this lemma by applying $\left(V_{4}\right),\left(V_{5}^{\prime}\right),\left(V_{8}\right),(2.3)$ and (2.5).
Remark 2.1 Assumptions $\left(V_{4}\right),\left(V_{5}^{\prime}\right),\left(V_{8}\right)$ and (2.5) imply that $W(t, x)=o\left(|x|^{2}\right)$ as $x \rightarrow 0$ uniformly for $t \in[0, T]$ and $W(t, 0)=0, W^{\prime}(t, 0)=0$. Moreover, from $\left(V_{2}\right)$ and $\left(V_{3}^{\prime}\right)$ we conclude that $K(t, 0)=0, K^{\prime}(t, 0)=0$.

3 Proof of Theorem 1.2

Let $\gamma_{k}: E_{k} \rightarrow[0,+\infty[$ be given by

$$
\begin{equation*}
\gamma_{k}(x)=\left(\int_{-k T}^{k T}\left[|\dot{x}(t)|^{2}+2 K(t, x(t))\right] d t\right)^{1 / 2} \tag{3.1}
\end{equation*}
$$

Let $\bar{b}_{2}=\max \left\{1,2 b_{2}\right\}$, by $\left(V_{2}\right)$ we have

$$
\begin{equation*}
\bar{b}_{1}\|x\|_{E_{k}}^{2} \leq \gamma_{k}^{2}(x) \leq \bar{b}_{2}\|x\|_{E_{k}}^{2} \tag{3.2}
\end{equation*}
$$

By (2.1) and (3.1) we have:

$$
\begin{equation*}
\phi_{k}(x)=\frac{1}{2} \gamma_{k}^{2}(x)-\int_{-k T}^{k T} W(t, x(t)) d t+\int_{-k T}^{k T} f_{k}(t) \cdot x(t) d t \tag{3.3}
\end{equation*}
$$

Moreover, using (V_{3}^{\prime}), (2.6) and (2.7) we obtain

$$
\begin{gather*}
\phi_{k}^{\prime}(x) \cdot \tilde{v}(x) \leq \int_{-k T}^{k T}\left(|\dot{x}(t)|^{2}+2 K(t, x(t))\right) d t \\
-\int_{-k T}^{k T} W^{\prime}(t, x(t)) \cdot v(x(t)) d t+\int_{-k T}^{k T} f_{k}(t) \cdot v(x(t)) d t \\
=\gamma_{k}^{2}(x)-\int_{-k T}^{k T} W^{\prime}(t, x(t)) \cdot v(x(t)) d t+\int_{-k T}^{k T} f_{k}(t) \cdot v(x(t)) d t . \tag{3.4}
\end{gather*}
$$

Lemma 3.1 Assume that V and f satisfy $\left(V_{1}\right),\left(V_{2}\right),\left(V_{3}^{\prime}\right),\left(V_{4}\right),\left(V_{5}^{\prime}\right)$, and $\left(V_{6}\right)-\left(V_{8}\right)$. Then for every $k \in \mathbb{N}$ the system $\left(H S_{k}\right)$ possesses a $2 k T$-periodic solution $x_{k} \in E_{k}$.

Proof. It is clear that $\phi_{k}(0)=0$. We show that ϕ_{k} satisfies the Palais-Smale condition. Assume that $\left(x_{j}\right)_{j \in \mathbb{N}} \subset E_{k}$ is a sequence such that $\left(\phi_{k}\left(x_{j}\right)\right)_{j \in \mathbb{N}}$ is bounded and $\phi_{k}^{\prime}\left(x_{j}\right) \rightarrow 0$ as $j \rightarrow+\infty$. Then there exists a constant $C_{k}>0$ such that

$$
\begin{equation*}
\left|\phi_{k}\left(x_{j}\right)\right| \leq C_{k}, \quad\left\|\phi_{k}^{\prime}\left(x_{j}\right)\right\|_{E_{k}^{*}} \leq C_{k} \tag{3.5}
\end{equation*}
$$

for every $j \in \mathbb{N}$. By (3.3) and $\left(V_{5}^{\prime}\right)$ we have

$$
\begin{equation*}
\gamma_{k}^{2}\left(x_{j}\right) \leq 2 \phi_{k}\left(x_{j}\right)+\frac{2}{\mu} \int_{-k T}^{k T} W^{\prime}(t, x(t)) \cdot v(x(t)) d t-2 \int_{-k T}^{k T} f_{k}(t) \cdot x_{j}(t) d t \tag{3.6}
\end{equation*}
$$

From (3.4) and (3.6) we obtain

$$
\begin{equation*}
\left(1-\frac{2}{\mu}\right) \gamma_{k}^{2}\left(x_{j}\right) \leq 2 \phi_{k}\left(x_{j}\right)-\frac{2}{\mu} \phi_{k}^{\prime}\left(x_{j}\right) \tilde{v}\left(x_{j}\right)-2 \int_{-k T}^{k T} f_{k}(t) \cdot x_{j}(t) d t+\frac{2}{\mu} \int_{-k T}^{k T} f_{k}(t) \cdot v\left(x_{j}(t)\right) d t . \tag{3.7}
\end{equation*}
$$

By (2.8), (3.2) and (3.7) we have

$$
\begin{gather*}
\left(1-\frac{2}{\mu}\right) \bar{b}_{1}\left\|x_{j}\right\|_{E_{k}}^{2} \leq 2 \phi_{k}\left(x_{j}\right)+\frac{2}{\mu}\left\|\phi_{k}^{\prime}\left(x_{j}\right)\right\|_{E_{k}^{*}} b\left\|x_{j}\right\|_{E_{k}}+2\left(\int_{-k T}^{k T}\left|f_{k}(t)\right|^{2} d t\right)^{\frac{1}{2}}\left\|x_{j}\right\|_{E_{k}} \\
+\frac{2}{\mu}\left(\int_{-k T}^{k T}\left|f_{k}(t)\right|^{2} d t\right)^{\frac{1}{2}} b\left\|x_{j}\right\|_{E_{k}} \tag{3.8}
\end{gather*}
$$

From (3.5), (3.8) and (V_{7}) we obtain

$$
\begin{equation*}
\left(1-\frac{2}{\mu}\right) \bar{b}_{1}\left\|x_{j}\right\|_{E_{k}}^{2}-\frac{2 C_{k}}{\mu} b\left\|x_{j}\right\|_{E_{k}}-\left(2+\frac{2 b}{\mu}\right) \frac{\beta}{2 C}\left\|x_{j}\right\|_{E_{k}}-2 C_{k} \leq 0 \tag{3.9}
\end{equation*}
$$

Since $\mu>2$, (3.9) shows that $\left(x_{j}\right)_{j \in \mathbb{N}}$ is bounded in E_{k}. In a similar way to Proposition 4.3 in [6], we can prove that $\left(x_{j}\right)_{j \in \mathbb{N}}$ has a convergent subsequence in E_{k}. Hence, ϕ_{k} satisfies the Palais-Smale condition.

Now, let us show that there exist constants $\rho, \alpha>0$ independent of k such that ϕ_{k} satisfies the assumption (ii) of Theorem 2.1 with these constants. Let $x \in E_{k}$ such that $0<\|x\|_{L_{2 k T}^{\infty}} \leq 1$. By $\left(V_{8}\right)$ we have

$$
\begin{equation*}
\int_{-k T}^{k T} W(t, x(t)) d t \leq M \int_{-k T}^{k T}|x(t)|^{2} d t \leq M\|x\|_{E_{k}}^{2} \tag{3.10}
\end{equation*}
$$

From (3.2), (3.10) and (V_{7}) we have

$$
\begin{align*}
& \phi_{k}(x) \geq \frac{1}{2} \bar{b}_{1}\|x\|_{E_{k}}^{2}-M\|x\|_{E_{k}}^{2}-\left\|f_{k}\right\|_{L_{2 k T}^{2}}\|x\|_{L_{2 k T}^{2}} \\
& \quad \geq \frac{1}{2} \bar{b}_{1}\|x\|_{E_{k}}^{2}-M\|x\|_{E_{k}}^{2}-\frac{\beta}{2 C}\|x\|_{L_{2 k T}^{2}} \\
& \geq \frac{1}{2}\left(\bar{b}_{1}-\beta-2 M\right)\|x\|_{E_{k}}^{2}+\frac{\beta}{2}\|x\|_{E_{k}}^{2}-\frac{\beta}{2 C}\|x\|_{E_{k}} . \tag{3.11}
\end{align*}
$$

Note that $\left(V_{7}\right)$ implies $\bar{b}_{1}-\beta-2 M>0$. Set

$$
\rho=\frac{1}{C}, \alpha=\frac{\bar{b}_{1}-\beta-2 M}{2 C^{2}}
$$

(3.11) shows that $\|x\|_{E_{k}}=\rho$ implies that $\phi_{k}(x) \geq \alpha$ for $k \in \mathbb{N}$. Finally, it remains to show that ϕ_{k} satisfies assumption (iii) of Theorem 2.1. By the use of (3.2), (3.3) and (2.3), for every $r \in \mathbb{R} \backslash\{0\}$ and $x \in E_{k} \backslash\{0\}$, the following inequality holds:

$$
\begin{equation*}
\phi_{k}(r x) \leq \frac{\bar{b}_{2} r^{2}}{2}\|x\|_{E_{k}}^{2}-a_{1}|r|^{\mu} \int_{-k T}^{k T}|x(t)|^{\mu} d t+|r|\left\|f_{k}\right\|_{L_{2 k T}^{2}}\|x\|_{L_{2 k T}^{2}}+2 k T a_{2} \tag{3.12}
\end{equation*}
$$

Take $X \in E_{1}$ such that $X(\pm T)=0$. Since $\mu>2$ and $a_{1}>0$, (3.12) implies that there exists $r_{0} \in \mathbb{R} \backslash\{0\}$ such that $\left\|r_{0} X\right\|_{E_{1}}>\rho$ and $\phi_{1}\left(r_{0} X\right)<0$. Set $e_{1}(t)=r_{0} X(t)$ and

$$
e_{k}(t)=\left\{\begin{array}{l}
e_{1}(t),|t| \leq T \tag{3.13}\\
0, T<|t| \leq k T
\end{array}\right.
$$

for $k>0$. Then $e_{k} \in E_{k},\left\|e_{k}\right\|_{E_{k}}=\left\|e_{1}\right\|_{E_{1}}>\rho$ and $\phi_{k}\left(e_{k}\right)=\phi_{1}\left(e_{1}\right)<0$ for every $k \in \mathbb{N}$. By Theorem 2.1, ϕ_{k} possesses a critical value $c_{k} \geq \alpha$ given by

$$
\begin{equation*}
c_{k}=\inf _{g \in \Gamma_{k}} \max _{s \in[0,1]} \phi_{k}(g(s)), \tag{3.14}
\end{equation*}
$$

where $\Gamma_{k}=\left\{g \in C\left([0,1], E_{k}\right): g(0)=0, g(1)=e_{k}\right\}$. Hence, for every $k \in \mathbb{N}$, there exists $x_{k} \in E_{k}$ such that

$$
\begin{equation*}
\phi_{k}\left(x_{k}\right)=c_{k}, \phi_{k}^{\prime}\left(x_{k}\right)=0 . \tag{3.15}
\end{equation*}
$$

The function x_{k} is a desired classical $2 k T$-periodic solution of $\left(H S_{k}\right)$ for $k \in \mathbb{N}$. Since $c_{k}>0, x_{k}$ is a nontrivial solution even if $f_{k}(t)=0$.

Lemma 3.2 Let $x_{k} \in E_{k}$ be a solution of system $\left(H S_{k}\right)$ satisfying (3.15). Then there exists a positive constant M_{1} independent of k such that

$$
\begin{equation*}
\left\|x_{k}\right\|_{L_{2 k T}^{\infty}} \leq M_{1}, \quad \forall k \in \mathbb{N} . \tag{3.16}
\end{equation*}
$$

Proof. For $k \in \mathbb{N}$, let $g_{k}:[0,1] \rightarrow E_{k}$ be a curve given by $g_{k}(s)=s e_{k}$, where e_{k} is defined by (3.13). Then $g_{k} \in \Gamma_{k}$ and $\phi_{k}\left(g_{k}(s)\right)=\phi_{1}\left(g_{1}(s)\right)$ for all $k \in \mathbb{N}$ and $s \in[0,1]$. Therefore, by (3.14)

$$
\begin{equation*}
c_{k} \leq \max _{s \in[0,1]} \phi_{1}\left(g_{1}(s)\right) \equiv M_{0}, \forall k \in \mathbb{N} \tag{3.17}
\end{equation*}
$$

where M_{0} is independent of k. Since $\phi_{k}^{\prime}\left(x_{k}\right)=0$, we get from (2.7), (3.3), (V_{3}^{\prime}) and $\left(V_{5}^{\prime}\right)$

$$
\begin{gathered}
c_{k}=\phi_{k}\left(x_{k}\right)-\frac{1}{2} \phi_{k}^{\prime}\left(x_{k}\right) \cdot \tilde{v}\left(x_{k}\right) \\
\geq\left(\frac{\mu}{2}-1\right) \int_{-k T}^{k T} W\left(t, x_{k}(t)\right) d t+\int_{-k T}^{k T} f_{k}(t) \cdot x_{k}(t) d t-\frac{1}{2} \int_{-k T}^{k T} f_{k}(t) \cdot v\left(x_{k}(t)\right) d t
\end{gathered}
$$

and hence
$\int_{-k T}^{k T} W\left(t, x_{k}(t)\right) d t \leq \frac{2}{\mu-2} c_{k}-\frac{2}{\mu-2} \int_{-k T}^{k T} f_{k}(t) \cdot x_{k}(t) d t+\frac{1}{\mu-2} \int_{-k T}^{k T} f_{k}(t) \cdot v\left(x_{k}(t)\right) d t$.
Combining (3.18) with (2.8), (3.2), (3.17) and (V_{7}) we obtain

$$
\begin{equation*}
\frac{\bar{b}_{1}}{2}\left\|x_{k}\right\|_{E_{k}}^{2} \leq \frac{\mu M_{0}}{\mu-2}+\frac{\beta(\mu+b)}{2 C(\mu-2)}\left\|x_{k}\right\|_{E_{k}} . \tag{3.19}
\end{equation*}
$$

Since $\bar{b}_{1}>0$ and all coefficients of (3.19) are independent of k, we see that there exist $M_{1}^{\prime}>0$ independent of k such that

$$
\begin{equation*}
\left\|x_{k}\right\|_{E_{k}} \leq M_{1}^{\prime}, \forall k \in \mathbb{N} \tag{3.20}
\end{equation*}
$$

which, together with [2, Proposition 1.1] impliy that (3.16) holds.
Let $C_{l o c}^{p}\left(\mathbb{R}, \mathbb{R}^{N}\right)$, where $p \in \mathbb{N}$, denotes the space of C^{p} functions from \mathbb{R} into \mathbb{R}^{N} under the topology of almost uniformly convergence of functions and all derivatives up to the order p.

Lemma 3.3 Let $x_{k} \in E_{k}$ be a solution of system $\left(H S_{k}\right)$ satisfying (3.16). Then there exists a subsequence $\left(x_{k_{m}}\right)$ of $\left(x_{k}\right)_{k \in \mathbb{N}}$ convergent to a certain $x_{0} \in C^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ in $C_{l o c}^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$.

Proof. By (3.16), we know that $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a uniformly bounded sequence. Next, we will show that $\left(\dot{x}_{k}\right)_{k \in \mathbb{N}}$ and $\left(\ddot{x}_{k}\right)_{k \in \mathbb{N}}$ are also uniformly bounded sequences. Since x_{k} satisfies $\left(H S_{k}\right)$, if $t \in[-k T, k T[$ we have

$$
\begin{align*}
&\left|\ddot{x}_{k}(t)\right| \leq\left|f_{k}(t)\right|+\left|V^{\prime}\left(t, x_{k}(t)\right)\right|=|f(t)|+\left|V^{\prime}\left(t, x_{k}(t)\right)\right| \\
& \leq \sup _{t \in \mathbb{R}}|f(t)|+\sup _{(t, x) \in[0, T] \times\left[-M_{1}, M_{1}\right]}\left|V^{\prime}(t, x(t))\right|, t \in[-k T, k T[. \tag{3.21}
\end{align*}
$$

From (3.16), (3.21), (V_{1}) and $\left(V_{6}\right)$ there is $M_{2}>0$ independent of k such that

$$
\begin{equation*}
\left\|\ddot{x}_{k}\right\|_{L_{2 k T}^{\infty}} \leq M_{2}, \forall k \in \mathbb{N} . \tag{3.22}
\end{equation*}
$$

Let $i=-k,-k+1, \ldots, k-1$. By the continuity of $\dot{x}_{k}(t)$, we can choose $t_{k_{i}} \in[i T,(i+1) T]$, such that

$$
\dot{x}_{k}\left(t_{k_{i}}\right)=\frac{1}{T} \int_{i T}^{(i+1) T} \dot{x}_{k}(s) d s=\frac{1}{T}\left(x_{k}((i+1) T)-x_{k}(i T)\right),
$$

it follows that for $t \in[i T,(i+1) T], i=-k,-k+1, \ldots, k-1$

$$
\begin{aligned}
& \left|\dot{x}_{k}(t)\right|=\left|\int_{t_{k_{i}}}^{t} \ddot{x}_{k}(s) d s+\dot{x}_{k}\left(t_{k_{i}}\right)\right| \leq \int_{i T}^{(i+1) T}\left|\ddot{x}_{k}(s)\right| d s+\left|\dot{x}_{k}\left(t_{k_{i}}\right)\right| \\
& \leq M_{2} T+T^{-1}\left|x_{k}((i+1) T)-x_{k}(i T)\right| \leq M_{2} T+2 M_{1} T^{-1} \equiv M_{3} .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\left\|\dot{x}_{k}\right\|_{L_{2 k T}^{\infty}} \leq M_{3}, \forall k \in \mathbb{N} . \tag{3.23}
\end{equation*}
$$

The task is now to show that $\left(x_{k}\right)_{k \in \mathbb{N}}$ and $\left(\dot{x}_{k}\right)_{k \in \mathbb{N}}$ are equicontinuous. Of course, it suffices to prove that both sequences satisfy the Lipschitz condition with some constants independent of k. Let $k \in \mathbb{N}$ and $t, t_{0} \in \mathbb{R}$, we have by (3.23)

$$
\left|x_{k}(t)-x_{k}\left(t_{0}\right)\right|=\left|\int_{t_{0}}^{t} \dot{x}_{k}(s) d s\right| \leq\left|\int_{t_{0}}^{t}\right| \dot{x}_{k}(s)|d s| \leq M_{3}\left|t-t_{0}\right|
$$

Analogously, we have by (3.22) $\left|\dot{x}_{k}(t)-\dot{x}_{k}\left(t_{0}\right)\right| \leq M_{2}\left|t-t_{0}\right|$. For each $k \in \mathbb{N}$, set $C_{k}^{1}=$ $C^{1}\left([-k T, k T], \mathbb{R}^{N}\right)$ with the norm defined as follows:

$$
\|x\|_{C_{k}^{1}}=\max _{t \in[-k T, k T]}(|\dot{x}(t)|+|x(t)|), x \in C_{k}^{1}
$$

Now, we will show that $\left(x_{k}\right)_{k \in \mathbb{N}}$ possesses a convergent subsequence $\left(x_{k_{m}}\right)$ in $C_{l o c}^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$. First, let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be restricted to $[-T, T]$. It is clear that $\left(x_{k}\right)$ and $\left(\dot{x}_{k}\right)$ are uniformly bounded and equicontinuous. By Arzela-Ascoli theorem, there exist a subsequence (x_{k}^{1}) of $\left(x_{k}\right)_{k \in \mathbb{N} \backslash\{1\}}, x^{1} \in C\left([-T, T], \mathbb{R}^{N}\right)$ and $y^{1} \in C\left([-T, T], \mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
\left\|x_{k}^{1}-x^{1}\right\|_{C\left([-T, T], \mathbb{R}^{N}\right)} \rightarrow 0,\left\|\dot{x}_{k}^{1}-y^{1}\right\|_{C\left([-T, T], \mathbb{R}^{N}\right)} \rightarrow 0, \text { as } k \rightarrow+\infty \tag{3.24}
\end{equation*}
$$

Note that for $t \in[-T, T]$

$$
\begin{equation*}
x_{k}^{1}(t)=x_{k}^{1}(-T)+\int_{-T}^{t} \dot{x}_{k}^{1}(s) d s, k \in \mathbb{N} . \tag{3.25}
\end{equation*}
$$

Let $k \rightarrow \infty$ in (3.25) and using (3.24) we obtain

$$
\begin{equation*}
x^{1}(t)=x^{1}(-T)+\int_{-T}^{t} y^{1}(s) d s, \text { for } t \in[-T, T] \tag{3.26}
\end{equation*}
$$

which shows that $y^{1}(t)=\dot{x}^{1}(t)$ for $t \in[-T, T]$ and $x^{1} \in C_{1}^{1}$. Moreover, it follows from (3.24) that

$$
\left\|x_{k}^{1}-x^{1}\right\|_{C_{1}^{1}} \rightarrow 0, \text { as } k \rightarrow+\infty
$$

Secondly, let $\left(x_{k}^{1}\right)$ be restricted to $[-2 T, 2 T]$. It is clear that $\left(x_{k}^{1}\right)$ and ($\left.\dot{x}_{k}^{1}\right)$ are uniformly bounded and equicontinuous. Similarly as above, by Arzela-Ascoli theorem, there exist a subsequence $\left(x_{k}^{2}\right)$ of $\left(x_{k}^{1}\right)$ satisfying $x_{2} \notin\left(x_{k}^{2}\right)$ and $x^{2} \in C_{2}^{1}$ such that

$$
\left\|x_{k}^{2}-x^{2}\right\|_{C_{2}^{1}} \rightarrow 0, \text { as } k \rightarrow+\infty
$$

By repeating this procedure for all $k \in \mathbb{N}$, there exist $\left(x_{k}^{m}\right) \subset\left(x_{k}^{m-1}\right), x_{m} \notin\left(x_{k}^{m}\right)$ and $x^{m} \in C_{m}^{1}$ such that

$$
\begin{equation*}
\left\|x_{k}^{m}-x^{m}\right\|_{C_{m}^{1}} \rightarrow 0, \text { as } k \rightarrow+\infty, m=1,2, \ldots \tag{3.27}
\end{equation*}
$$

Moreover, we have

$$
\left\|x^{m+1}-x^{m}\right\|_{C_{m}^{1}} \leq\left\|x_{k}^{m+1}-x^{m+1}\right\|_{C_{m}^{1}}+\left\|x_{k}^{m}-x^{m}\right\|_{C_{m}^{1}}+\left\|x_{k}^{m+1}-x_{k}^{m}\right\|_{C_{m}^{1}} \rightarrow 0
$$

as $k \rightarrow+\infty$, which leads to

$$
\begin{equation*}
x^{m+1}(t)=x^{m}(t), \text { for } t \in[-m T, m T], m=1,2, \ldots . \tag{3.28}
\end{equation*}
$$

Let

$$
\begin{equation*}
x_{0}(t)=x^{m}(t), \text { for } t \in[-m T, m T], m=1,2, \ldots \tag{3.29}
\end{equation*}
$$

Then $x_{0} \in C^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ and $x^{m} \rightarrow x_{0}$ as $m \rightarrow+\infty$ in $C_{l o c}^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right)$. Now take a diagonal sequence $\left(x_{k_{m}}\right)$ consisting of $x_{1}^{1}, x_{2}^{2}, x_{3}^{3}, \ldots$ (see [4]). For any $m \in \mathbb{N},\left(x_{i}^{i}\right)_{i=m}^{\infty}$ is a subsequence of $\left(x_{k}^{m}\right)_{k \in \mathbb{N}}$, so it follows from (3.27) and (3.29) that

$$
\left\|x_{i}^{i}-x_{0}\right\|_{C_{m}^{1}}=\left\|x_{i}^{i}-x^{m}\right\|_{C_{m}^{1}} \rightarrow 0, \text { as } i \rightarrow+\infty, m=1,2, \ldots
$$

That is

$$
\begin{equation*}
x_{k_{m}} \rightarrow x_{0}, \text { as } m \rightarrow+\infty \text { in } C_{l o c}^{1}\left(\mathbb{R}, \mathbb{R}^{N}\right) \tag{3.30}
\end{equation*}
$$

Lemma 3.4 The function x_{0} defined in Lemma 3.3 is the desired homoclinic solution of $(H S)$.

Proof. Firstly we will show that x_{0} satisfies $(H S)$. For every $k \in \mathbb{N}$, and $t \in \mathbb{R}$ we have by Lemma 3.1:

$$
\begin{equation*}
\ddot{x}_{k_{m}}(t)=f_{k_{m}}(t)-V^{\prime}\left(t, x_{k_{m}}(t)\right) . \tag{3.31}
\end{equation*}
$$

Take $l_{1}, l_{2} \in \mathbb{R}$ such that $l_{1}<l_{2}$. There exists $m_{0} \in \mathbb{N}$ such that for all $m>m_{0}$

$$
\begin{equation*}
\ddot{x}_{k_{m}}(t)=f(t)-V^{\prime}\left(t, x_{k_{m}}(t)\right), \forall t \in\left[l_{1}, l_{2}\right] . \tag{3.32}
\end{equation*}
$$

Integrating (3.32) from l_{1} to $t \in\left[l_{1}, l_{2}\right]$, we have

$$
\begin{equation*}
\dot{x}_{k_{m}}(t)-\dot{x}_{k_{m}}\left(l_{1}\right)=\int_{l_{1}}^{t}\left[f(s)-V^{\prime}\left(s, x_{k_{m}}(s)\right)\right] d s \tag{3.33}
\end{equation*}
$$

Since (3.30) shows that $x_{k_{m}} \rightarrow x_{0}$ uniformly on $\left[l_{1}, l_{2}\right]$ and $\dot{x}_{k_{m}} \rightarrow \dot{x}_{0}$ uniformly on $\left[l_{1}, l_{2}\right]$ as $m \rightarrow+\infty$, then by taking $m \rightarrow+\infty$ in (3.33), we get

$$
\begin{equation*}
\dot{x}_{0}(t)-\dot{x}_{0}\left(l_{1}\right)=\int_{l_{1}}^{t}\left[f(s)-V^{\prime}\left(s, x_{0}(s)\right)\right] d s, \text { for } t \in\left[l_{1}, l_{2}\right] \text {. } \tag{3.34}
\end{equation*}
$$

Since l_{1} and l_{2} are arbitrary, (3.34) shows that x_{0} is a solution of $(H S)$. Secondly, we prove that $x_{0}(t) \rightarrow 0$, as $t \rightarrow \pm \infty$. We have, from (3.20)

$$
\begin{equation*}
\int_{-k T}^{k T}\left(\left|\dot{x}_{k}(t)\right|^{2}+\left|x_{k}(t)\right|^{2}\right) d t \leq M_{1}^{\prime 2}, \forall k \in \mathbb{N} . \tag{3.35}
\end{equation*}
$$

For every $l \in \mathbb{N}$, there exists $m_{1} \in \mathbb{N}$ such that for $m>m_{1}$

$$
\begin{equation*}
\int_{-l T}^{l T}\left(\left|\dot{x}_{k_{m}}(t)\right|^{2}+\left|x_{k_{m}}(t)\right|^{2}\right) d t \leq M_{1}^{\prime 2} \tag{3.36}
\end{equation*}
$$

Let $m \rightarrow+\infty$ in (3.36) and use (3.30), it follows that for each $l \in \mathbb{N}$,

$$
\begin{equation*}
\int_{-l T}^{l T}\left(\left|\dot{x}_{0}(t)\right|^{2}+\left|x_{0}(t)\right|^{2}\right) d t \leq M_{1}^{\prime 2} \tag{3.37}
\end{equation*}
$$

Letting $l \rightarrow+\infty$ in (3.37), we obtain

$$
\begin{equation*}
\int_{-\infty}^{+\infty}\left(\left|\dot{x}_{0}(t)\right|^{2}+\left|x_{0}(t)\right|^{2}\right) d t \leq M_{1}^{\prime 2} \tag{3.38}
\end{equation*}
$$

and so

$$
\begin{equation*}
\int_{|t| \geq r}\left(\left|\dot{x}_{0}(t)\right|^{2}+\left|x_{0}(t)\right|^{2}\right) d t \rightarrow 0, \text { as } t \rightarrow \pm \infty \tag{3.39}
\end{equation*}
$$

Combining (3.39) with Lemma 2.3 we obtain our claim.
Now, we show that $\dot{x}_{0}(t) \rightarrow 0$, as $t \rightarrow \pm \infty$. To do this, observe that by Lemma 2.3

$$
\begin{equation*}
\left|\dot{x}_{0}(t)\right|^{2} \leq 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}\left(\left|x_{0}(s)\right|^{2}+\left|\dot{x}_{0}(s)\right|^{2}\right) d s+2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}\left|\ddot{x}_{0}(s)\right|^{2} d s \tag{3.40}
\end{equation*}
$$

From (3.39) and (3.40) it suffices to prove that

$$
\begin{equation*}
\int_{r}^{r+1}\left|\ddot{x}_{0}(s)\right|^{2} d s \rightarrow 0, \text { as } r \rightarrow \pm \infty . \tag{3.41}
\end{equation*}
$$

By $(H S)$ we obtain

$$
\int_{r}^{r+1}\left|\ddot{x}_{0}(s)\right|^{2} d s=\int_{r}^{r+1}\left(\left|V^{\prime}\left(s, x_{0}(s)\right)\right|^{2}+|f(s)|^{2}\right) d s-2 \int_{r}^{r+1} V^{\prime}\left(s, x_{0}(s)\right) \cdot f(s) d s
$$

Since $V^{\prime}(t, 0)=0$ for all $t \in \mathbb{R}, x_{0} \rightarrow 0$, as $t \rightarrow \pm \infty$ and $\int_{r}^{r+1}|f(s)|^{2} d s \rightarrow 0$, as $r \rightarrow \pm \infty$, then (3.41) follows.

Finally, we will show that if $f \equiv 0$ then $x_{0} \not \equiv 0$. For this purpose we will use the properties of Y given by (2.9). The definition of Y implies that

$$
\begin{equation*}
\int_{-k T}^{k T} W^{\prime}\left(t, x_{k}(t)\right) \cdot v\left(x_{k}(t)\right) d t \leq Y\left(\left\|x_{k}\right\|_{L_{2 k T}^{\infty}}\right)\left\|x_{k}\right\|_{E_{k}}^{2} \tag{3.42}
\end{equation*}
$$

Since $\phi_{k}^{\prime}\left(x_{k}\right) \cdot v\left(x_{k}\right)=0$, then (3.4) gives

$$
\begin{equation*}
\int_{-k T}^{k T} W^{\prime}\left(t, x_{k}(t)\right) \cdot v\left(x_{k}(t)\right) d t=\int_{-k T}^{k T}\left|\dot{x}_{k}(t)\right|^{2} d t+\int_{-k T}^{k T} K^{\prime}\left(t, x_{k}(t)\right) \cdot v\left(x_{k}(t)\right) d t . \tag{3.43}
\end{equation*}
$$

Substituting (3.43) into (3.42), and applying (V_{3}^{\prime}) and (V_{2}) we obtain

$$
Y\left(\left\|x_{k}\right\|_{\left.L_{2 k T}^{\infty}\right)}\right) \geq \min \left\{1, b_{1}\right\}\left\|x_{k}\right\|_{E_{k}}^{2}
$$

and hence

$$
\begin{equation*}
Y\left(\left\|x_{k}\right\|_{L_{2 k T}^{\infty}}\right) \geq \min \left\{1, b_{1}\right\}>0 . \tag{3.44}
\end{equation*}
$$

If $\left\|x_{k_{m}}\right\|_{L_{2 k_{m} T}^{\infty}} \rightarrow 0$, as $m \rightarrow+\infty$, we would have $Y(0) \geq \min \left\{1, b_{1}\right\}>0$, a contradiction. Passing to a subsequence of $\left(x_{k_{m}}\right)_{m \in \mathbb{N}}$ if necessary, there is $\eta>0$ such that

$$
\begin{equation*}
\left\|x_{k_{m}}\right\|_{L_{2 k_{m} T}} \geq \eta . \tag{3.45}
\end{equation*}
$$

Moreover, for all $j \in \mathbb{N}, t \mapsto x_{k_{m}, j}(t)=x_{k_{m}}(t+j T)$ is also a $2 k_{m} T$-periodic solution of $\left(H S_{k_{m}}\right)$. Hence, if the maximum of $\left|x_{k_{m}}\right|$ occurs in $h_{k_{m}} \in\left[-k_{m} T, k_{m} T\right]$ then, the maximum of $\left|x_{k_{m}, j}\right|$ occurs in $s_{k_{m}, j}=h_{k_{m}}-j T$. Then there exists a $j_{k_{m}} \in \mathbb{Z}$ such that $s_{k_{m}, j_{k_{m}}} \in[-T, T]$. Consequently,

$$
\left\|x_{k_{m}, j_{k_{m}}}\right\|_{L_{2 k_{m} T}^{\infty}}=\max _{t \in[-T, T]}\left|x_{k_{m}, j_{k_{m}}}(t)\right| .
$$

Suppose, contrary to our claim, that $x_{0}=0$. Then, by Lemma 3.3,

$$
\left\|x_{k_{m}, j_{k_{m}}}\right\|_{L_{2 k_{m} T}^{\infty}}=\max _{t \in[-T, T]}\left|x_{k_{m}, j_{k_{m}}}(t)\right| \rightarrow 0
$$

which contradicts (3.45).

References

[1] Ding, Y. and Girardi, M. Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign. Dynam. Systems. Appl. 2 (1993) 131-145.
[2] Izydorek, M. and Janczewska, J. Homoclinic solutions for a class of second order Hamiltonian systems. J. Differential Equations 2 (219) (2005) 375-389.
[3] Korman, P. and Lazer, A. C. Homoclinic orbits for a class of symmetric Hamiltonian systems, Electron. J. Differential Equations 1994 (1) (1994) 1-10.
[4] Ma, M. and Guo, Z. Homoclinic orbits and subharmonics for nonlinear second order difference equation. Nonlinear Anal. 67 (2007) 1737-1745.
[5] Martynyuk, A. A. Stability in the Models of Real World Phenomena. Nonlinear Dynamics and Systems Theory 11 (1) (2011) 7-52.
[6] Mawhin, J. and Willem, M. Critical point theory and Hamiltonian systems. Applied Mathematical Sciences, 74. Springer-Verlag, New York. 1989.
[7] Mazko, A. G. Cone inequalities and stability of dynamical systems. Nonlinear Dynamics and Systems Theory 11 (3) (2011) 303-318.
[8] Rabinowitz, P. H. Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh Sect. A 114 (1-2) (1990) 33-38.
[9] Rabinowitz, P. H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. AMS, Regional conference series in mathematics (CBMS), no. 65, 1986.
[10] Rabinowitz, P. H. and Tanaka, K. Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206 (3) (1991) 473-499.
[11] Salvatore, A. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Discrete Contin. Dyn. syst. Suppl. (2003) 778-787.
[12] Sere, E. Existence of infinitely many homoclinic orbits in Hamiltonian Systems. Math. Z. 209 (1993) 561-590.
[13] Tianqing, A. Existence of multiple periodic orbits of Hamiltonian systems on positive-type hypersurfaces in $\mathbb{R}^{2 n}$. J. Math. Anal. Appl. 278 (2003) 376-396.
[14] Tianqing, A. Periodic solutions of superlinear autonomous Hamiltonian Systems with prescribed period. J. Math. Anal. Appl. 323 (2006) 854-863.
[15] Timoumi, M. Periodic and subharmonic solutions for a Class of noncoercive superquadratic Hamiltonian Systems. Nonlinear Dynamics and Systems Theory 11 (3) (2011) 319-336.

[^0]: * Corresponding author: mailto:m_timoumi@yahoo.com

