Nonlinear Dynamics and Systems Theory, 12 (2) (2012) 145-156

Homoclinic Orbits for a Class of Second Order Hamiltonian Systems

A. Benhassine and M. Timoumi 2

Dpt of Mathematics, Faculty of Sciences 5000 Monastir. Tunisia

Received: January 15, 2010; Revised: March 19, 2012

Abstract: A new result for existence of homoclinic orbits is obtained for the second order Hamiltonian systems $\ddot{x}(t)+V'(t,x(t))=f(t)$, where $t \in \mathbb{R}$, $x \in \mathbb{R}^N$, $V \in C^1(\mathbb{R} \times \mathbb{R}^N,\mathbb{R})$, V(t,x) = -K(t,x) + W(t,x) is *T*-periodic in t, T > 0 and $f : \mathbb{R} \longrightarrow \mathbb{R}^N$ is a continuous bounded function, under an assumption weaker than the so-called Ambrosetti–Rabinowitz-type condition.

Keywords: homoclinic orbits; Hamiltonian systems; critical point; diagonal method.

Mathematics Subject Classification (2010): 34C37, 35A15, 37J45.

1 Introduction

In this paper we are concerned with the study of the existence of homoclinic solutions for second order time-dependent Hamiltonian systems of the type

$$\ddot{x}(t) + V'(t, x(t)) = f(t), \tag{HS}$$

where $x = (x_1, ..., x_N), V \in C^1(\mathbb{R} \times \mathbb{R}^N, \mathbb{R}), V'(t, x) = \frac{\partial V}{\partial x}(t, x)$ and $f : \mathbb{R} \longrightarrow \mathbb{R}^N$ is a continuous function. Here, as usual, we say that a solution x of (HS) is homoclinic $(to \ 0)$ if $x(t) \to 0$ as $t \to \pm \infty$. In addition x is called nontrivial if $x \neq 0$.

The existence of homoclinic solutions for (HS) has been extensively investigated in many papers via the critical point theory, see [8, 11]. These results were obtained under the fact that the potential V is of the type

$$V(t,x) = -\frac{1}{2}L(t)x.x + W(t,x),$$

where $L \in C(\mathbb{R}, \mathbb{R}^{N^2})$ is a symmetric matrix-valued function and $W \in C^1(\mathbb{R} \times \mathbb{R}^N, \mathbb{R})$.

^{*} Corresponding author: mailto:m_timoumi@yahoo.com

^{© 2012} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 145

Recently, in [2], Izydorek and Janczewska have studied the existence of such solutions when the potential V is of the form

$$V(t,x) = -K(t,x) + W(t,x),$$

where $K, W \in C^1(\mathbb{R} \times \mathbb{R}^N, \mathbb{R})$. Precisely, they established the following result.

Theorem 1.1 Assume that V and f satisfy the conditions $(V_1) V(t,x) = -K(t,x) + W(t,x)$, where $K, W : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ are C^1 -maps, T-periodic with respect to t, T > 0, (V_2) there are constants $b_1, b_2 > 0$ such that $b_1 |x|^2 \leq K(t,x) \leq b_2 |x|^2$ for all $(t,x) \in$

 (V_2) there are constants $b_1, b_2 > 0$ such that $b_1 |x|^2 \leq K(t, x) \leq b_2 |x|^2$ for all $(t, x) \in \mathbb{R} \times \mathbb{R}^N$,

 (V_3) for all $(t,x) \in \mathbb{R} \times \mathbb{R}^N$, $K(t,x) \le K'(t,x).x \le 2K(t,x)$,

 (V_4) $W'(t,x) = o(|x|), as |x| \to 0$ uniformly with respect to t,

(V₅) there is a constant $\mu > 2$ such that $0 < \mu W(t, x) \le W'(t, x).x$ for every $t \in \mathbb{R}$ and $x \in \mathbb{R}^N \setminus \{0\},\$

$$(V_6)$$
 $f : \mathbb{R} \to \mathbb{R}^N$ is a bounded continuous function,

 (V_7) $\bar{b}_1 = \min\{1, 2b_1\} > 2M$ and $\left(\int_{\mathbb{R}} |f(t)|^2 dt\right)^{1/2} \leq \frac{\beta}{2C}$, where $0 < \beta < \bar{b}_1 - 2M$, $M = \sup\{W(t, x) \ t \in [0, T], x \in \mathbb{R}^N, |x| = 1\}$ and C is a positive Sobolev constant defined in [2]. Then the system (HS) possesses a nontrivial homoclinic solution.

Here and in the following x.y denotes the inner product of $x, y \in \mathbb{R}^N$ and |.| denotes the associated norm.

The so-called Ambrosetti–Rabinowitz-type condition (V_5) appears frequently in the studying of existence of homoclinic solutions for (HS). The goal of this work is to prove that Theorem 1.1 still holds if (V_5) is replaced by a weaker condition. The motivation for the paper comes mainly from a paper by An [14], in which he dealt with the existence of periodic solutions for (HS) with a condition weaker than (V_5) .

Definition 1.1 A vector field v defined on \mathbb{R}^N is called positive if v(x).x > 0 for all $x \in \mathbb{R}^N \setminus \{0\}$. We call v a normalized positive vector field if v is positive, linear and satisfies the following condition:

$$v(x).x = x.x, \ \forall \ x \in \mathbb{R}^N.$$

Consider the following assumptions:

 (V'_3) there exists normalized positive vector field v such that for all $(t, x) \in \mathbb{R} \times \mathbb{R}^N$

$$K(t,x) \le K'(t,x).v(x) \le 2K(t,x),$$

 (V_5') there exists constant $\mu > 2$ such that for every $t \in \mathbb{R}$ and $x \in \mathbb{R}^N \setminus \{0\}$

$$0 < \mu W(t, x) \le W'(t, x) \cdot v(x).$$

The main result of this paper is as follows.

Theorem 1.2 Assume that V and f satisfy (V_1) , (V_2) , (V_3) , (V_4) , (V_5) , (V_6) , (V_7) and the following assumption:

$$W(t,x) \le M |x|^{\mu}, \ \forall \ t \in \mathbb{R}, \ \forall |x| \le 1.$$

$$(V_8)$$

Then the system (HS) possesses a nontrivial homoclinic solution.

It is obvious that if v(x) = x, then (V'_3) becomes (V_3) and (V'_5) becomes (V_5) . Consider the following examples.

Example 1.1 Let $\theta(x)$ be the argument of $x = (\xi_1, \xi_2) \in \mathbb{R}^2 \setminus \{0\}$ defined by

$$\theta(x) = \begin{cases} \arctan(\frac{\xi_2}{\xi_1}), & \text{if } \xi_1 > 0, \xi_2 \ge 0, \\ \frac{\pi}{2}, & \text{if } \xi_1 = 0, \xi_2 > 0, \\ \arctan(\frac{\xi_2}{\xi_1}) + \pi, & \text{if } \xi_1 < 0, \\ \frac{3\pi}{2}, & \text{if } \xi_1 = 0, \xi_2 < 0, \\ \arctan(\frac{\xi_2}{\xi_1}) + 2\pi, & \text{if } \xi_1 > 0, \xi_2 < 0 \end{cases}$$

Define a function $K \in C^1(\mathbb{R} \times \mathbb{R}^2, \mathbb{R})$ as follows:

$$K(t,x) = \begin{cases} \frac{|x|^2}{exp(2\sin 4(\ln|x|+\theta(x)))}, & ifx \neq 0, \\ 0, & if \ x = 0. \end{cases}$$

Define a normalized positive vector field v by $v(x) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} x$. An easy computation shows that K satisfies (V_2) and (V'_3) .

Example 1.2 For any $\mu > 2$, define a function $W \in C^1(\mathbb{R} \times \mathbb{R}^2, \mathbb{R})$ as follows:

$$W(t,x) = \begin{cases} \frac{|x|^{\mu}}{exp(\mu(2+\sin 4(\ln|x|+\theta(x))))}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

A direct computation (see [14]) shows that W satisfies (V_4) , (V'_5) and (V_8) . Moreover, W does not satisfy (V_5) .

In order to obtain homoclinic solution of (HS), we consider a sequence of systems of differential equations:

$$\ddot{x}(t) + V'(t, x(t)) = f_k(t), \qquad (HS_k)$$

where $f_k : \mathbb{R} \to \mathbb{R}^N$ is a 2kT-periodic extension of f to the interval $[-kT, kT[, k \in \mathbb{N}]$. We will prove the existence of a homoclinic solution of (HS) as the limit of the 2kT-periodic solution of (HS_k) as in [2,8].

2 Preliminaries

For each $k \in \mathbb{N}$, let $E_k = W_{2kT}^{1,2}(\mathbb{R}, \mathbb{R}^N)$ denote the Hilbert space of 2kT-periodic functions from \mathbb{R} into \mathbb{R}^N under the norm

$$||x||_{E_k} = \left(\int_{-kT}^{kT} (|\dot{x}(t)|^2 + |x(t)|^2) dt\right)^{1/2},$$

and let $L^2_{2kT}(\mathbb{R},\mathbb{R}^N)$ denote the Hilbert space of 2kT-periodic functions from \mathbb{R} into \mathbb{R}^N under the norm

$$||x||_{L^{2}_{2kT}} = \left(\int_{-kT}^{kT} |x(t)|^{2} dt\right)^{\frac{1}{2}}.$$

Furthermore, let $L^{\infty}_{2kT}(\mathbb{R},\mathbb{R}^N)$ be the space of 2kT-periodic essentially bounded measurable functions from \mathbb{R} into \mathbb{R}^N under the norm

$$||x||_{L^{\infty}_{2kT}} = ess \sup \{|x(t)| : t \in [-kT, kT]\}.$$

Let $\phi_k : E_k \to \mathbb{R}$ be defined by

$$\phi_k(x) = \int_{-kT}^{kT} \left[\frac{1}{2} \left| \dot{x}(t) \right|^2 + K(t, x(t)) - W(t, x(t)) + f_k(t) \cdot x(t) \right] dt.$$
(2.1)

It is well known that $\phi_k \in C^1(E_k, \mathbb{R})$ and for all $x, y \in E_k$

$$\phi_k'(x)y = \int_{-kT}^{kT} \left[\dot{x}(t).\dot{y}(t) + K'(t,x(t)).y(t) - W'(t,x(t)).y(t) + f_k(t).y(t) \right] dt.$$
(2.2)

Moreover, the critical points of ϕ_k in E_k are exactly the classical 2kT-periodic solution of (HS_k) (see [6,9]). We will obtain a critical point of ϕ_k by using the following Mountain Pass Theorem.

Theorem 2.1 [8] Let E be a real Banach space and $\phi \in C^1(E, \mathbb{R})$ satisfying the Palais-Smale condition. If ϕ satisfies the following conditions: (i) $\phi(0) = 0$,

(ii) there exist constants $\rho, \alpha > 0$ such that $\phi_{/\partial B_{\rho}(0)} \ge \alpha$, (iii) there exist $e \in E \setminus \overline{B}_{\rho}(0)$ such that $\phi(e) \le 0$. Then ϕ possesses a critical value $c \ge \alpha$ given by $c = \inf_{g \in \Gamma} \max_{s \in [0,1]} \phi(g(s))$, where

 $\Gamma = \left\{g \in C([0,1],E) : g(0) = 0, g(1) = e\right\}.$

Lemma 2.1 [2] Let $x : \mathbb{R} \to \mathbb{R}^N$ be a continuous mapping such that $\dot{x} \in L^2_{loc}(\mathbb{R}, \mathbb{R}^N)$. For every $t \in \mathbb{R}$ the following inequality holds:

$$|x(t)| \le \sqrt{2} \left(\int_{t-\frac{1}{2}}^{t+\frac{1}{2}} (|\dot{x}(s)|^2 + |x(s)|^2) ds \right)^{1/2},$$

where $L^2_{loc}(\mathbb{R}, \mathbb{R}^N)$ denotes the space of locally square integrable functions from \mathbb{R} into \mathbb{R}^N .

Lemma 2.2 [14] Denote by φ_s the flow of the linear vector field v with property (v_1) , then

$$|\varphi_s x| = e^s |x|, \forall s \in \mathbb{R}, \forall x \in \mathbb{R}^N.$$

Lemma 2.3 There exist $a_1, a_2 > 0$ such that

$$W(t,x) \ge a_1 |x|^{\mu} - a_2, \forall t \in \mathbb{R}, \forall x \in \mathbb{R}^N.$$
(2.3)

Proof. Denote by S^{N-1} the unit sphere in \mathbb{R}^N . For any $x \in \mathbb{R}^N \setminus \{0\}$, since

$$\frac{d}{ds}(|\varphi_s x|^2) = 2\varphi_s x.v(\varphi_s(x)) > 0,$$

 $(|\varphi_s x|^2)$ is increasing in s. Hence, there exist $s \in \mathbb{R}$ and $\xi \in S^{N-1}$ such that $x = \varphi_s \xi$ (see[13] for details). Since $|x| = |\varphi_s \xi| = e^s$, by (V'_5) we have

$$\frac{d}{ds}[W(t,\varphi_s\xi)] = W'(t,\varphi_s\xi).v(\varphi_s\xi) \ge \mu W(t,\varphi_s\xi) > 0, \forall s, t \in \mathbb{R}.$$
(2.4)

Let R > 0, integrating (2.4) over $[\ln R, s]$ we obtain

$$\int_{\ln R}^{s} \frac{\frac{d}{dl} [W(t,\varphi_l\xi)]}{W(t,\varphi_l\xi)} dl \ge \mu s - \mu \ln R.$$

By (V'_5) the quantity $a_1 = \inf_{t \in \mathbb{R}, |x|=R} (W(t,x)) R^{-\mu}$ is strictly positive and

$$W(t,x) \ge a_1 |x|^{\mu}, \forall |x| \ge R, \forall t \in \mathbb{R}.$$

Let $a_2 = \sup_{t \in \mathbb{R}, |x| \leq R} W(t, x)$, then (2.3) holds. \Box Let v be the normalized positive vector field in (V'_3) and (V'_5) of Theorem 1.2. Then v is an invertible linear operator from \mathbb{R}^N to \mathbb{R}^N . Let $a = \frac{1}{\|v^{-1}\|}, b = \|v\|$, where $\|v\|$ and $\|v^{-1}\|$ are operator norms. For any $x \in \mathbb{R}^N$, one has

$$a |x| \le |v(x)| \le b |x|$$
. (2.5)

Define a vector field \tilde{v} on E_k by

$$(\tilde{v}(x))(t) = v(x(t)).$$
 (2.6)

Using condition (v_1) and a direct computation we have the following Lemma.

Lemma 2.4 For any $x \in E_k$, there hold

$$\int_{-kT}^{kT} |\dot{x}(t)|^2 dt = \int_{-kT}^{kT} \dot{x}(t) \cdot \dot{\tilde{v}(x)}(t) dt.$$
(2.7)

$$a \|x\|_{E_k} \le \|\tilde{v}(x)\|_{E_k} \le b \|x\|_{E_k}.$$
(2.8)

Lemma 2.5 Let $Y : [0, +\infty[\rightarrow [0, +\infty[$ be given as follows

$$Y(s) = \begin{cases} \max_{t \in [0,T], 0 < |x| \le s} \frac{W'(t,x) \cdot v(x)}{|x|^2}, \ s > 0, \\ 0, \ s = 0. \end{cases}$$

Then Y is continuous, nondecreasing, Y(s) > 0 for s > 0 and $Y(s) \to +\infty$ as $s \to +\infty$.

It is easy to prove this lemma by applying $(V_4), (V'_5), (V_8), (2.3)$ and (2.5).

Remark 2.1 Assumptions $(V_4), (V'_5), (V_8)$ and (2.5) imply that $W(t, x) = o(|x|^2)$ as $x \to 0$ uniformly for $t \in [0, T]$ and W(t, 0) = 0, W'(t, 0) = 0. Moreover, from (V_2) and (V'_3) we conclude that K(t, 0) = 0, K'(t, 0) = 0.

3 Proof of Theorem 1.2

Let $\gamma_k: E_k \to [0, +\infty]$ be given by

$$\gamma_k(x) = \left(\int_{-kT}^{kT} \left[|\dot{x}(t)|^2 + 2K(t, x(t)) \right] dt \right)^{1/2}.$$
(3.1)

Let $\bar{b}_2 = \max\{1, 2b_2\}$, by (V_2) we have

$$\bar{b}_1 \|x\|_{E_k}^2 \le \gamma_k^2(x) \le \bar{b}_2 \|x\|_{E_k}^2.$$
(3.2)

By (2.1) and (3.1) we have:

$$\phi_k(x) = \frac{1}{2}\gamma_k^2(x) - \int_{-kT}^{kT} W(t, x(t))dt + \int_{-kT}^{kT} f_k(t).x(t)dt.$$
(3.3)

Moreover, using (V'_3) , (2.6) and (2.7) we obtain

$$\phi_{k}'(x).\tilde{v}(x) \leq \int_{-kT}^{kT} \left(|\dot{x}(t)|^{2} + 2K(t, x(t)) \right) dt$$
$$-\int_{-kT}^{kT} W'(t, x(t)).v(x(t))dt + \int_{-kT}^{kT} f_{k}(t).v(x(t))dt$$
$$= \gamma_{k}^{2}(x) - \int_{-kT}^{kT} W'(t, x(t)).v(x(t))dt + \int_{-kT}^{kT} f_{k}(t).v(x(t))dt.$$
(3.4)

Lemma 3.1 Assume that V and f satisfy (V_1) , (V_2) , (V_3) , (V_4) , (V_5) , and $(V_6)-(V_8)$. Then for every $k \in \mathbb{N}$ the system (HS_k) possesses a 2kT-periodic solution $x_k \in E_k$.

Proof. It is clear that $\phi_k(0) = 0$. We show that ϕ_k satisfies the Palais-Smale condition. Assume that $(x_j)_{j\in\mathbb{N}} \subset E_k$ is a sequence such that $(\phi_k(x_j))_{j\in\mathbb{N}}$ is bounded and $\phi'_k(x_j) \to 0$ as $j \to +\infty$. Then there exists a constant $C_k > 0$ such that

$$|\phi_k(x_j)| \le C_k, \quad \|\phi'_k(x_j)\|_{E_k^*} \le C_k,$$
(3.5)

for every $j \in \mathbb{N}$. By (3.3) and (V'_5) we have

$$\gamma_k^2(x_j) \le 2\phi_k(x_j) + \frac{2}{\mu} \int_{-kT}^{kT} W'(t, x(t)) . v(x(t)) dt - 2 \int_{-kT}^{kT} f_k(t) . x_j(t) dt.$$
(3.6)

From (3.4) and (3.6) we obtain

$$(1 - \frac{2}{\mu})\gamma_k^2(x_j) \le 2\phi_k(x_j) - \frac{2}{\mu}\phi_k'(x_j)\tilde{v}(x_j) - 2\int_{-kT}^{kT} f_k(t).x_j(t)dt + \frac{2}{\mu}\int_{-kT}^{kT} f_k(t).v(x_j(t))dt.$$
(3.7)

By (2.8), (3.2) and (3.7) we have

$$(1 - \frac{2}{\mu})\bar{b}_{1} \|x_{j}\|_{E_{k}}^{2} \leq 2\phi_{k}(x_{j}) + \frac{2}{\mu} \|\phi_{k}'(x_{j})\|_{E_{k}^{*}} b \|x_{j}\|_{E_{k}} + 2\left(\int_{-kT}^{kT} |f_{k}(t)|^{2} dt\right)^{\frac{1}{2}} \|x_{j}\|_{E_{k}} + \frac{2}{\mu} \left(\int_{-kT}^{kT} |f_{k}(t)|^{2} dt\right)^{\frac{1}{2}} b \|x_{j}\|_{E_{k}}.$$

$$(3.8)$$

From (3.5), (3.8) and (V_7) we obtain

$$(1 - \frac{2}{\mu})\bar{b}_1 \|x_j\|_{E_k}^2 - \frac{2C_k}{\mu}b\|x_j\|_{E_k} - (2 + \frac{2b}{\mu})\frac{\beta}{2C}\|x_j\|_{E_k} - 2C_k \le 0.$$
(3.9)

Since $\mu > 2$, (3.9) shows that $(x_j)_{j \in \mathbb{N}}$ is bounded in E_k . In a similar way to Proposition 4.3 in [6], we can prove that $(x_j)_{j \in \mathbb{N}}$ has a convergent subsequence in E_k . Hence, ϕ_k satisfies the Palais-Smale condition.

Now, let us show that there exist constants $\rho, \alpha > 0$ independent of k such that ϕ_k satisfies the assumption (*ii*) of Theorem 2.1 with these constants. Let $x \in E_k$ such that $0 < \|x\|_{L^{\infty}_{2kT}} \leq 1$. By (V₈) we have

$$\int_{-kT}^{kT} W(t, x(t)) dt \le M \int_{-kT}^{kT} |x(t)|^2 dt \le M \|x\|_{E_k}^2.$$
(3.10)

From (3.2), (3.10) and (V_7) we have

$$\phi_{k}(x) \geq \frac{1}{2}\bar{b}_{1} \|x\|_{E_{k}}^{2} - M \|x\|_{E_{k}}^{2} - \|f_{k}\|_{L_{2kT}^{2}} \|x\|_{L_{2kT}^{2}}$$

$$\geq \frac{1}{2}\bar{b}_{1} \|x\|_{E_{k}}^{2} - M \|x\|_{E_{k}}^{2} - \frac{\beta}{2C} \|x\|_{L_{2kT}^{2}}$$

$$\geq \frac{1}{2}(\bar{b}_{1} - \beta - 2M) \|x\|_{E_{k}}^{2} + \frac{\beta}{2} \|x\|_{E_{k}}^{2} - \frac{\beta}{2C} \|x\|_{E_{k}}.$$
(3.11)

Note that (V_7) implies $\bar{b}_1 - \beta - 2M > 0$. Set

$$\rho = \frac{1}{C}, \ \alpha = \frac{\overline{b}_1 - \beta - 2M}{2C^2},$$

(3.11) shows that $||x||_{E_k} = \rho$ implies that $\phi_k(x) \ge \alpha$ for $k \in \mathbb{N}$. Finally, it remains to show that ϕ_k satisfies assumption (*iii*) of Theorem 2.1. By the use of (3.2), (3.3) and (2.3), for every $r \in \mathbb{R} \setminus \{0\}$ and $x \in E_k \setminus \{0\}$, the following inequality holds:

$$\phi_k(rx) \le \frac{\bar{b}_2 r^2}{2} \left\| x \right\|_{E_k}^2 - a_1 \left| r \right|^{\mu} \int_{-kT}^{kT} \left| x(t) \right|^{\mu} dt + \left| r \right| \left\| f_k \right\|_{L^2_{2kT}} \left\| x \right\|_{L^2_{2kT}} + 2kTa_2.$$
(3.12)

Take $X \in E_1$ such that $X(\pm T) = 0$. Since $\mu > 2$ and $a_1 > 0$, (3.12) implies that there exists $r_0 \in \mathbb{R} \setminus \{0\}$ such that $\|r_0 X\|_{E_1} > \rho$ and $\phi_1(r_0 X) < 0$. Set $e_1(t) = r_0 X(t)$ and

$$e_k(t) = \begin{cases} e_1(t), \ |t| \le T\\ 0, \ T < |t| \le kT \end{cases}$$
(3.13)

for k > 0. Then $e_k \in E_k$, $||e_k||_{E_k} = ||e_1||_{E_1} > \rho$ and $\phi_k(e_k) = \phi_1(e_1) < 0$ for every $k \in \mathbb{N}$. By Theorem 2.1, ϕ_k possesses a critical value $c_k \ge \alpha$ given by

$$c_k = \inf_{g \in \Gamma_k} \max_{s \in [0,1]} \phi_k(g(s)), \tag{3.14}$$

where $\Gamma_k = \{g \in C([0, 1], E_k) : g(0) = 0, g(1) = e_k\}$. Hence, for every $k \in \mathbb{N}$, there exists $x_k \in E_k$ such that

$$\phi_k(x_k) = c_k, \ \phi'_k(x_k) = 0.$$
 (3.15)

The function x_k is a desired classical 2kT-periodic solution of (HS_k) for $k \in \mathbb{N}$. Since $c_k > 0, x_k$ is a nontrivial solution even if $f_k(t) = 0$. \Box

Lemma 3.2 Let $x_k \in E_k$ be a solution of system (HS_k) satisfying (3.15). Then there exists a positive constant M_1 independent of k such that

$$\|x_k\|_{L^{\infty}_{2kT}} \le M_1, \ \forall k \in \mathbb{N}.$$

$$(3.16)$$

Proof. For $k \in \mathbb{N}$, let $g_k : [0,1] \to E_k$ be a curve given by $g_k(s) = se_k$, where e_k is defined by (3.13). Then $g_k \in \Gamma_k$ and $\phi_k(g_k(s)) = \phi_1(g_1(s))$ for all $k \in \mathbb{N}$ and $s \in [0,1]$. Therefore, by (3.14)

$$c_k \le \max_{s \in [0,1]} \phi_1(g_1(s)) \equiv M_0, \ \forall k \in \mathbb{N},$$
 (3.17)

where M_0 is independent of k. Since $\phi'_k(x_k) = 0$, we get from (2.7), (3.3), (V'_3) and (V'_5)

$$c_{k} = \phi_{k}(x_{k}) - \frac{1}{2}\phi_{k}'(x_{k}).\tilde{v}(x_{k})$$

$$\geq \left(\frac{\mu}{2} - 1\right)\int_{-kT}^{kT} W(t, x_{k}(t))dt + \int_{-kT}^{kT} f_{k}(t).x_{k}(t)dt - \frac{1}{2}\int_{-kT}^{kT} f_{k}(t).v(x_{k}(t))dt,$$

and hence

$$\int_{-kT}^{kT} W(t, x_k(t)) dt \le \frac{2}{\mu - 2} c_k - \frac{2}{\mu - 2} \int_{-kT}^{kT} f_k(t) \cdot x_k(t) dt + \frac{1}{\mu - 2} \int_{-kT}^{kT} f_k(t) \cdot v(x_k(t)) dt.$$
(3.18)

Combining (3.18) with (2.8), (3.2), (3.17) and (V_7) we obtain

$$\frac{\bar{b}_1}{2} \|x_k\|_{E_k}^2 \le \frac{\mu M_0}{\mu - 2} + \frac{\beta(\mu + b)}{2C(\mu - 2)} \|x_k\|_{E_k}.$$
(3.19)

Since $\bar{b}_1 > 0$ and all coefficients of (3.19) are independent of k, we see that there exist $M'_1 > 0$ independent of k such that

$$\|x_k\|_{E_h} \le M_1', \ \forall k \in \mathbb{N},\tag{3.20}$$

which, together with [2, Proposition 1.1] impliy that (3.16) holds. \Box

Let $C_{loc}^{p}(\mathbb{R},\mathbb{R}^{N})$, where $p \in \mathbb{N}$, denotes the space of C^{p} functions from \mathbb{R} into \mathbb{R}^{N} under the topology of almost uniformly convergence of functions and all derivatives up to the order p.

Lemma 3.3 Let $x_k \in E_k$ be a solution of system (HS_k) satisfying (3.16). Then there exists a subsequence (x_{k_m}) of $(x_k)_{k\in\mathbb{N}}$ convergent to a certain $x_0 \in C^1(\mathbb{R}, \mathbb{R}^N)$ in $C^1_{loc}(\mathbb{R}, \mathbb{R}^N)$.

Proof. By (3.16), we know that $(x_k)_{k \in \mathbb{N}}$ is a uniformly bounded sequence. Next, we will show that $(\dot{x}_k)_{k \in \mathbb{N}}$ and $(\ddot{x}_k)_{k \in \mathbb{N}}$ are also uniformly bounded sequences. Since x_k satisfies (HS_k) , if $t \in [-kT, kT]$ we have

$$\begin{aligned} |\ddot{x}_{k}(t)| &\leq |f_{k}(t)| + |V'(t, x_{k}(t))| = |f(t)| + |V'(t, x_{k}(t))| \\ &\leq \sup_{t \in \mathbb{R}} |f(t)| + \sup_{(t,x) \in [0,T] \times [-M_{1},M_{1}]} |V'(t, x(t))|, \ t \in [-kT, kT[. \end{aligned}$$
(3.21)

From (3.16), (3.21), (V_1) and (V_6) there is $M_2 > 0$ independent of k such that

$$\|\ddot{x}_k\|_{L^{\infty}_{2kT}} \le M_2, \ \forall k \in \mathbb{N}.$$

$$(3.22)$$

Let i = -k, -k+1, ..., k-1. By the continuity of $\dot{x}_k(t)$, we can choose $t_{k_i} \in [iT, (i+1)T]$, such that

$$\dot{x}_k(t_{k_i}) = \frac{1}{T} \int_{iT}^{(i+1)T} \dot{x}_k(s) ds = \frac{1}{T} \left(x_k((i+1)T) - x_k(iT) \right),$$

it follows that for $t \in [iT, (i+1)T]$, i = -k, -k+1, ..., k-1

$$\begin{aligned} |\dot{x}_k(t)| &= \left| \int_{t_{k_i}}^t \ddot{x}_k(s) ds + \dot{x}_k(t_{k_i}) \right| \le \int_{iT}^{(i+1)T} |\ddot{x}_k(s)| \, ds + |\dot{x}_k(t_{k_i})| \\ &\le M_2 T + T^{-1} \left| x_k((i+1)T) - x_k(iT) \right| \le M_2 T + 2M_1 T^{-1} \equiv M_3. \end{aligned}$$

Consequently,

$$\|\dot{x}_k\|_{L^{\infty}_{2kT}} \le M_3, \ \forall k \in \mathbb{N}.$$

$$(3.23)$$

The task is now to show that $(x_k)_{k\in\mathbb{N}}$ and $(\dot{x}_k)_{k\in\mathbb{N}}$ are equicontinuous. Of course, it suffices to prove that both sequences satisfy the Lipschitz condition with some constants independent of k. Let $k \in \mathbb{N}$ and $t, t_0 \in \mathbb{R}$, we have by (3.23)

$$|x_k(t) - x_k(t_0)| = \left| \int_{t_0}^t \dot{x}_k(s) ds \right| \le \left| \int_{t_0}^t |\dot{x}_k(s)| \, ds \right| \le M_3 \, |t - t_0|$$

Analogously, we have by (3.22) $|\dot{x}_k(t) - \dot{x}_k(t_0)| \leq M_2 |t - t_0|$. For each $k \in \mathbb{N}$, set $C_k^1 = C^1([-kT, kT], \mathbb{R}^N)$ with the norm defined as follows:

$$\|x\|_{C_k^1} = \max_{t \in [-kT, kT]} (|\dot{x}(t)| + |x(t)|), \ x \in C_k^1.$$

Now, we will show that $(x_k)_{k\in\mathbb{N}}$ possesses a convergent subsequence (x_{k_m}) in $C^1_{loc}(\mathbb{R}, \mathbb{R}^N)$. First, let $(x_k)_{k\in\mathbb{N}}$ be restricted to [-T, T]. It is clear that (x_k) and (\dot{x}_k) are uniformly bounded and equicontinuous. By Arzela-Ascoli theorem, there exist a subsequence (x_k^1) of $(x_k)_{k\in\mathbb{N}\setminus\{1\}}$, $x^1 \in C([-T, T], \mathbb{R}^N)$ and $y^1 \in C([-T, T], \mathbb{R}^N)$ such that

$$\|x_k^1 - x^1\|_{C([-T,T],\mathbb{R}^N)} \to 0, \ \|\dot{x}_k^1 - y^1\|_{C([-T,T],\mathbb{R}^N)} \to 0, \ as \ k \to +\infty.$$
(3.24)

Note that for $t \in [-T, T]$

$$x_k^1(t) = x_k^1(-T) + \int_{-T}^t \dot{x}_k^1(s) ds, \ k \in \mathbb{N}.$$
(3.25)

Let $k \to \infty$ in (3.25) and using (3.24) we obtain

$$x^{1}(t) = x^{1}(-T) + \int_{-T}^{t} y^{1}(s)ds, \text{ for } t \in [-T, T]$$
(3.26)

which shows that $y^1(t) = \dot{x}^1(t)$ for $t \in [-T, T]$ and $x^1 \in C_1^1$. Moreover, it follows from (3.24) that

$$||x_k^1 - x^1||_{C_1^1} \to 0, \text{ as } k \to +\infty.$$

Secondly, let (x_k^1) be restricted to [-2T, 2T]. It is clear that (x_k^1) and (\dot{x}_k^1) are uniformly bounded and equicontinuous. Similarly as above, by Arzela-Ascoli theorem, there exist a subsequence (x_k^2) of (x_k^1) satisfying $x_2 \notin (x_k^2)$ and $x^2 \in C_2^1$ such that

$$||x_k^2 - x^2||_{C_2^1} \to 0, \ as \ k \to +\infty.$$

By repeating this procedure for all $k \in \mathbb{N}$, there exist $(x_k^m) \subset (x_k^{m-1}), x_m \notin (x_k^m)$ and $x^m \in C_m^1$ such that

$$\|x_k^m - x^m\|_{C_m^1} \to 0, \ as \ k \to +\infty, \ m = 1, 2, \dots . \tag{3.27}$$

Moreover, we have

$$\left\|x^{m+1} - x^{m}\right\|_{C_{m}^{1}} \le \left\|x_{k}^{m+1} - x^{m+1}\right\|_{C_{m}^{1}} + \left\|x_{k}^{m} - x^{m}\right\|_{C_{m}^{1}} + \left\|x_{k}^{m+1} - x_{k}^{m}\right\|_{C_{m}^{1}} \to 0$$

as $k \to +\infty$, which leads to

$$x^{m+1}(t) = x^m(t), \text{ for } t \in [-mT, mT], m = 1, 2, \dots$$
 (3.28)

Let

$$x_0(t) = x^m(t), \text{ for } t \in [-mT, mT], m = 1, 2, \dots$$
 (3.29)

Then $x_0 \in C^1(\mathbb{R}, \mathbb{R}^N)$ and $x^m \to x_0$ as $m \to +\infty$ in $C^1_{loc}(\mathbb{R}, \mathbb{R}^N)$. Now take a diagonal sequence (x_{k_m}) consisting of $x_1^1, x_2^2, x_3^3, \dots$ (see [4]). For any $m \in \mathbb{N}$, $(x_i^i)_{i=m}^{\infty}$ is a subsequence of $(x_k^m)_{k \in \mathbb{N}}$, so it follows from (3.27) and (3.29) that

$$\|x_i^i - x_0\|_{C_m^1} = \|x_i^i - x^m\|_{C_m^1} \to 0, \text{ as } i \to +\infty, m = 1, 2, \dots$$

That is

$$x_{k_m} \to x_0, \text{ as } m \to +\infty \text{ in } C^1_{loc}(\mathbb{R}, \mathbb{R}^N).$$
 (3.30)

Lemma 3.4 The function x_0 defined in Lemma 3.3 is the desired homoclinic solution of (HS).

Proof. Firstly we will show that x_0 satisfies (HS). For every $k \in \mathbb{N}$, and $t \in \mathbb{R}$ we have by Lemma 3.1:

$$\ddot{x}_{k_m}(t) = f_{k_m}(t) - V'(t, x_{k_m}(t)).$$
(3.31)

Take $l_1, l_2 \in \mathbb{R}$ such that $l_1 < l_2$. There exists $m_0 \in \mathbb{N}$ such that for all $m > m_0$

$$\ddot{x}_{k_m}(t) = f(t) - V'(t, x_{k_m}(t)), \ \forall t \in [l_1, l_2].$$
(3.32)

Integrating (3.32) from l_1 to $t \in [l_1, l_2]$, we have

$$\dot{x}_{k_m}(t) - \dot{x}_{k_m}(l_1) = \int_{l_1}^t [f(s) - V'(s, x_{k_m}(s))] ds.$$
(3.33)

Since (3.30) shows that $x_{k_m} \to x_0$ uniformly on $[l_1, l_2]$ and $\dot{x}_{k_m} \to \dot{x}_0$ uniformly on $[l_1, l_2]$ as $m \to +\infty$, then by taking $m \to +\infty$ in (3.33), we get

$$\dot{x}_0(t) - \dot{x}_0(l_1) = \int_{l_1}^t [f(s) - V'(s, x_0(s))] ds, \text{ for } t \in [l_1, l_2].$$
(3.34)

Since l_1 and l_2 are arbitrary, (3.34) shows that x_0 is a solution of (HS). Secondly, we prove that $x_0(t) \to 0$, as $t \to \pm \infty$. We have, from (3.20)

$$\int_{-kT}^{kT} (|\dot{x}_k(t)|^2 + |x_k(t)|^2) dt \le M_1^{\prime 2}, \ \forall k \in \mathbb{N}.$$
(3.35)

For every $l \in \mathbb{N}$, there exists $m_1 \in \mathbb{N}$ such that for $m > m_1$

$$\int_{-lT}^{lT} (|\dot{x}_{k_m}(t)|^2 + |x_{k_m}(t)|^2) dt \le M_1^{\prime 2}.$$
(3.36)

Let $m \to +\infty$ in (3.36) and use (3.30), it follows that for each $l \in \mathbb{N}$,

$$\int_{-lT}^{lT} (|\dot{x}_0(t)|^2 + |x_0(t)|^2) dt \le M_1^{\prime 2}.$$
(3.37)

155

Letting $l \to +\infty$ in (3.37), we obtain

$$\int_{-\infty}^{+\infty} (|\dot{x}_0(t)|^2 + |x_0(t)|^2) dt \le M_1^{\prime 2}, \tag{3.38}$$

and so

$$\int_{|t|\ge r} (|\dot{x}_0(t)|^2 + |x_0(t)|^2)dt \to 0, \ as \ t \to \pm\infty.$$
(3.39)

Combining (3.39) with Lemma 2.3 we obtain our claim.

Now, we show that $\dot{x}_0(t) \to 0$, as $t \to \pm \infty$. To do this, observe that by Lemma 2.3

$$\left|\dot{x}_{0}(t)\right|^{2} \leq 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} \left(\left|x_{0}(s)\right|^{2} + \left|\dot{x}_{0}(s)\right|^{2}\right) ds + 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} \left|\ddot{x}_{0}(s)\right|^{2} ds.$$
(3.40)

From (3.39) and (3.40) it suffices to prove that

$$\int_{r}^{r+1} \left| \ddot{x}_{0}(s) \right|^{2} ds \to 0, \ as \ r \to \pm \infty.$$
(3.41)

By (HS) we obtain

$$\int_{r}^{r+1} \left| \ddot{x}_{0}(s) \right|^{2} ds = \int_{r}^{r+1} \left(\left| V'(s, x_{0}(s)) \right|^{2} + \left| f(s) \right|^{2} \right) ds - 2 \int_{r}^{r+1} V'(s, x_{0}(s)) \cdot f(s) ds.$$

Since V'(t,0) = 0 for all $t \in \mathbb{R}$, $x_0 \to 0$, as $t \to \pm \infty$ and $\int_r^{r+1} |f(s)|^2 ds \to 0$, as $r \to \pm \infty$, then (3.41) follows.

Finally, we will show that if $f \equiv 0$ then $x_0 \neq 0$. For this purpose we will use the properties of Y given by (2.9). The definition of Y implies that

$$\int_{-kT}^{kT} W'(t, x_k(t)) . v(x_k(t)) dt \le Y(\|x_k\|_{L^{\infty}_{2kT}}) \|x_k\|_{E_k}^2.$$
(3.42)

Since $\phi'_k(x_k).v(x_k) = 0$, then (3.4) gives

$$\int_{-kT}^{kT} W'(t, x_k(t)) . v(x_k(t)) dt = \int_{-kT}^{kT} |\dot{x}_k(t)|^2 dt + \int_{-kT}^{kT} K'(t, x_k(t)) . v(x_k(t)) dt. \quad (3.43)$$

Substituting (3.43) into (3.42), and applying (V'_3) and (V_2) we obtain

 $Y(\|x_k\|_{L^{\infty}_{2kT}}) \ge \min\{1, b_1\} \|x_k\|_{E_k}^2,$

and hence

$$Y(\|x_k\|_{L^{\infty}_{2kT}}) \ge \min\{1, b_1\} > 0.$$
(3.44)

If $||x_{k_m}||_{L^{\infty}_{2k_m T}} \to 0$, as $m \to +\infty$, we would have $Y(0) \ge \min\{1, b_1\} > 0$, a contradiction. Passing to a subsequence of $(x_{k_m})_{m \in \mathbb{N}}$ if necessary, there is $\eta > 0$ such that

$$\|x_{k_m}\|_{L^{\infty}_{2k_m T}} \ge \eta.$$
(3.45)

Moreover, for all $j \in \mathbb{N}$, $t \mapsto x_{k_m,j}(t) = x_{k_m}(t+jT)$ is also a $2k_mT$ -periodic solution of (HS_{k_m}) . Hence, if the maximum of $|x_{k_m}|$ occurs in $h_{k_m} \in [-k_mT, k_mT]$ then, the maximum of $|x_{k_m,j}|$ occurs in $s_{k_m,j} = h_{k_m} - jT$. Then there exists a $j_{k_m} \in \mathbb{Z}$ such that $s_{k_m,j_{k_m}} \in [-T,T]$. Consequently,

$$\|x_{k_m,j_{k_m}}\|_{L^{\infty}_{2k_mT}} = \max_{t \in [-T,T]} |x_{k_m,j_{k_m}}(t)|.$$

Suppose, contrary to our claim, that $x_0 = 0$. Then, by Lemma 3.3,

$$\|x_{k_m,j_{k_m}}\|_{L^{\infty}_{2k_mT}} = \max_{t \in [-T,T]} |x_{k_m,j_{k_m}}(t)| \to 0,$$

which contradicts (3.45). \Box

References

- [1] Ding, Y. and Girardi, M. Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign. *Dynam. Systems. Appl.* **2** (1993) 131–145.
- [2] Izydorek, M. and Janczewska, J. Homoclinic solutions for a class of second order Hamiltonian systems. J. Differential Equations 2 (219) (2005) 375–389.
- [3] Korman, P. and Lazer, A. C. Homoclinic orbits for a class of symmetric Hamiltonian systems, *Electron. J. Differential Equations* 1994 (1) (1994) 1–10.
- [4] Ma, M. and Guo, Z. Homoclinic orbits and subharmonics for nonlinear second order difference equation. Nonlinear Anal. 67 (2007) 1737–1745.
- [5] Martynyuk, A. A. Stability in the Models of Real World Phenomena. Nonlinear Dynamics and Systems Theory 11 (1) (2011) 7–52.
- [6] Mawhin, J. and Willem, M. Critical point theory and Hamiltonian systems. Applied Mathematical Sciences, 74. Springer-Verlag, New York. 1989.
- [7] Mazko, A. G. Cone inequalities and stability of dynamical systems. Nonlinear Dynamics and Systems Theory 11 (3) (2011) 303–318.
- [8] Rabinowitz, P. H. Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh Sect. A 114 (1-2) (1990) 33–38.
- [9] Rabinowitz, P. H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. AMS, Regional conference series in mathematics (CBMS), no. 65, 1986.
- [10] Rabinowitz, P. H. and Tanaka, K. Some results on connecting orbits for a class of Hamiltonian systems. *Math. Z.* 206 (3) (1991) 473–499.
- [11] Salvatore, A. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Discrete Contin. Dyn. syst. Suppl. (2003) 778–787.
- [12] Sere, E. Existence of infinitely many homoclinic orbits in Hamiltonian Systems. Math. Z. 209 (1993) 561–590.
- [13] Tianqing, A. Existence of multiple periodic orbits of Hamiltonian systems on positive-type hypersurfaces in ℝ²ⁿ. J. Math. Anal. Appl. 278 (2003) 376–396.
- [14] Tianqing, A. Periodic solutions of superlinear autonomous Hamiltonian Systems with prescribed period. J. Math. Anal. Appl. 323 (2006) 854–863.
- [15] Timoumi, M. Periodic and subharmonic solutions for a Class of noncoercive superquadratic Hamiltonian Systems. Nonlinear Dynamics and Systems Theory 11 (3) (2011) 319–336.