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Abstract: Certain classes of essentially nonlinear switched mechanical systems with
one degree of freedom are investigated. The conditions are obtained under which, for
the families of subsystems corresponding to switched systems, there exist common
Lyapunov functions of the prescribed form. The fulfilment of these conditions provides
the asymptotic stability of equilibrium positions of switched systems for any switching
law.
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1 Introduction

Stability analysis and synthesis of switched systems are fundamental and challenging
research problems, see, for example, [4, 7, 11]. In some cases it is required to design a
control system in such a way that it remains stable for any admissible switching law [7,
11]. These cases are natural, when switching signal is either unknown, or too complicated
to be explicitly taken into account.

A general approach to the above problem is based on the computation of a common
Lyapunov function (CLF) for a family of subsystems corresponding to the switched sys-
tem. This approach has been effectively used in many papers, see [4, 7–9, 11]. However,
the conditions of the existence of a CLF are not completely investigated even for the case
of families of linear time-invariant systems [7–9].
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This problem is especially complicated for mechanical systems with switching force
fields. Motion of mechanical systems is described usually by differential equations of the
second order, that results in the appearance of some special properties. In [2], it was
mentioned that the known conditions of the existence of CLFs obtained for systems of
general form might be ineffective or even nonapplicable for switched mechanical systems.
The specific character of mechanical systems leads to the necessity of the separate inves-
tigation of such systems as a special subclass of hybrid systems. This subclass possesses
certain theoretical features and is of undoubted practical interest [3–5, 11].

In the present paper, certain types of switched nonlinear mechanical systems with
one degree of freedom are studied. The conditions of the existence of CLFs for fam-
ilies of subsystems corresponding to switched systems are obtained. The fulfilment of
these conditions provides that the equilibrium positions of the considered systems are
asymptotically stable for arbitrary switching law.

2 Statement of the Problem

First, consider the linear switched mechanical system with one degree of freedom

ẍ+ aσẋ+ bσx = 0. (1)

Here scalar variable x(t) is the state of the system; σ = σ(t) is the piecewise constant
function defining the switching law, σ(t) : [0,+∞) → Q = {1, . . . , N}. In the present
paper, we assume that on every bounded time interval the switching function has a
finite number of discontinuities, which are called switching instants of time, and takes a
constant value on every interval between two consecutive switching instants. This kind
of switching law is called admissible one.

Thus, at each time instant, the behaviour of (1) is described by one of the subsystems

ẍ+ asẋ+ bsx = 0, s = 1, . . . , N, (2)

where as and bs are constant coefficients.
Let the inequalities as > 0, bs > 0, s = 1, . . . , N , be fulfilled. Then, for every

subsystem from the family (2), the equilibrium position x = ẋ = 0 is asymptotically
stable. In spite of this fact, it is well known [4, 7] that there exist parameters as and
bs values and switching laws under which the equilibrium position x = ẋ = 0 of the
corresponding switched system (1) is unstable. It is worthy of note that instability can
take place even in the case where family (2) consists of two subsystems (N = 2), and
switching occurs only in the positional forces (a1 = a2 = const > 0).

In the present paper, we consider the nonlinear switched system

ẍ+ aσẋ+ bσx
µ = 0 (3)

and the corresponding family of subsystems

ẍ+ asẋ+ bsx
µ = 0, s = 1, . . . , N. (4)

Here the switching function σ(t) possesses the same properties as in (1); as and bs
are positive constants; µ is a rational number with odd numerator and denominator,
µ > 1. Thus, subsystems from the family (4) are subjected to linear dissipative forces
and essentially nonlinear potential forces. It is known [10] that the equilibrium position
x = ẋ = 0 of each subsystem is asymptotically stable.
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We will look for the conditions providing the asymptotic stability of the equilibrium
position x = ẋ = 0 of (3) for any admissible switching law. To solve the problem,
we consider the Lyapunov function of a special form and determine the region of the
parameters as and bs values under which CLF of the prescribed form can be constructed
for the family of subsystems (4).

Furthermore, we extend the obtained results to the case of switched mechanical sys-
tem with nonlinear dissipative and potential forces.

3 Conditions of the Existence of a CLF

Consider the Lyapunov function

V (x, ẋ) =
ẋ2

2
+ c

xµ+1

µ+ 1
+ γxβẋ. (5)

Here c and γ are positive constants, and β is a rational number with odd numerator and
denominator, β ≥ 1.

Differentiating V (x, ẋ) with respect to the sth subsystem from family (4), we obtain

V̇ = −asẋ
2 − γbsx

2µ + (c− bs)x
µẋ− asγx

β ẋ+ γβxβ−1ẋ2 ≡ Ws(x, ẋ).

By the use of generalized homogeneous functions properties [12], one gets the following
necessary condition of the negative definiteness of functions W1(x, ẋ), . . . ,WN (x, ẋ):

β = µ. (6)

For such value of the parameter β, the Lyapunov function (5) is positive definite for
any c > 0 and γ > 0, and functions W1(x, ẋ), . . . ,WN (x, ẋ) are negative definite if and
only if the quadratic forms

ωs(y1, y2) = −asy
2
2 − γbsy

2
1 + (c− bs − asγ)y1y2, s = 1, . . . , N, (7)

possess the same property.
Applying the Sylvester criterion, we obtain 4asbsγ > (c − bs − asγ)

2, s = 1, . . . , N.
Hence, the inequalities

(√
asγ −

√

bs

)2

< c <
(√

asγ +
√

bs

)2

, s = 1, . . . , N,

should be valid. It means that, for the existence of the required value of the parameter
c, it is necessary and sufficient the fulfilment of the conditions

(√
asγ −

√

bs

)2

<
(√

ajγ +
√

bj

)2

, s, j = 1, . . . , N. (8)

Conditions (8) can be rewritten in the form

√
γ(
√
as +

√
aj) >

√

bs −
√

bj ,
√
γ(
√
as −

√
aj) <

√

bs +
√

bj, s, j = 1, . . . , N.

Denote

A = max
s,j=1,...,N

√
bs −

√

bj√
as +

√
aj

,
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B = +∞ if as = aj for all s, j = 1, . . . , N , and

B = min
s,j: as>aj

√
bs +

√

bj√
as −√

aj

otherwise.
Finally, we arrive at

Theorem 3.1 Family (4) admits a CLF of the form (5) satisfying the assumptions
of the Lyapunov asymptotic stability theorem if and only if the inequality

A < B (9)

holds.

Remark 3.1 Theorem 3.1 gives us the constructive algorithm for finding the CLF
for family (4). If inequality (9) is fulfilled, then the value of parameter β is determined
by formula (6), while γ ∈ (A,B), and, for the value of γ chosen from this interval,
c ∈ (c(γ), c(γ)), where

c(γ) = max
s=1,...,N

(√
asγ −

√

bs

)2

, c(γ) = min
s=1,...,N

(√
asγ +

√

bs

)2

.

Although we have obtained the necessary and sufficient conditions of the existence
of a CLF for family (4), however only for the Lyapunov function of the special form
(5). Nevertheless, these conditions permit us to deduce the following interesting and
important conclusions about stability of the equilibrium position x = ẋ = 0 of switched
system (3).

Corollary 3.1 Let the switching take place in the velocity forces only (bs = b =
const > 0, s = 1, . . . , N). Then the equilibrium position x = ẋ = 0 of system (3) is
asymptotically stable for any admissible switching law.

Corollary 3.2 Let the switching take place in the potential forces only (as = a =
const > 0, s = 1, . . . , N). Then the equilibrium position x = ẋ = 0 of system (3) is
asymptotically stable for any admissible switching law.

Corollary 3.3 Let family (4) consist of two subsystems (N = 2), and the switching
take place both in the velocity forces and in the potential forces (a1 6= a2, b1 6= b2).
Then the equilibrium position x = ẋ = 0 of system (3) is asymptotically stable for any
admissible switching law.

Remark 3.2 As it was mentioned in Section 2, the statements of Corollaries 3.2 and
3.3 are not true for the linear case (µ = 1). Thus, in comparison with linear systems,
nonlinear ones are “more stable” with respect to the switching of parameters values.

4 Systems with Nonlinear Dissipative and Potential Forces

Consider now the switched system

ẍ+ aσx
ν ẋ+ bσx

µ = 0. (10)
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The corresponding family of subsystems is described as follows

ẍ+ asx
ν ẋ+ bsx

µ = 0, s = 1, . . . , N. (11)

Here as and bs are positive constants; µ is a rational number with odd numerator and
denominator, µ > 1; ν is a positive rational number with even numerator and odd
denominator. In this case, considered subsystems are subjected to essentially nonlinear
dissipative and potential forces. Equations of such type are called the Lienard ones [6,
10]. It is known [10] that the equilibrium position x = ẋ = 0 of each subsystem from
(11) is asymptotically stable.

To obtain the conditions providing the asymptotic stability of the equilibrium position
of (10) for any admissible switching law, construct a CLF for the family (11) in the form

V (x, ẋ) =
ẋ2

2
+ c

xµ+1

µ+ 1
+ γxβ ẋ+ εxẋλ, (12)

where c > 0, γ > 0, ε < 0, while β and λ are rational numbers with odd numerators and
denominators, β ≥ 1, λ ≥ 1.

Differentiating V (x, ẋ) with respect to the sth subsystem from (11), one gets

V̇ = εẋλ+1 − asx
ν ẋ2 − γbsx

µ+β + (c− bs)x
µẋ− asγx

β+ν ẋ

+γβxβ−1ẋ2 − ελasx
ν+1ẋλ − ελbsx

µ+1ẋλ−1 ≡ Ws(x, ẋ).

By the use of generalized homogeneous functions properties [12] and Lemma 2 from [1],
it is easy to obtain the following necessary conditions of the negative definiteness of
functions W1(x, ẋ), . . . ,WN (x, ẋ):

(i) if µ > 2ν + 1, then
β = µ− ν; (13)

(ii) if µ ≤ 2ν + 1, then λ = 1 + 2(β − 1)/(µ+ 1).
It is worthy of note that, in the case where µ = 2ν + 1, systems

ẋ = y, ẏ = −asx
νy − bsx

µ, s = 1, . . . , N,

corresponding to equations from (11) are generalized homogeneous.
In what follows, we consider the only case where µ > 2ν + 1. Under the condition

(13), we have

Ws(x, ẋ) = xν
(

−asẋ
2 − γbsx

2(µ−ν) + (c− bs − asγ)x
µ−ν ẋ

)

+ εẋλ+1

+γβxµ−ν−1ẋ2 − ελasx
ν+1ẋλ − ελbsx

µ+1ẋλ−1, s = 1, . . . , N.

Let

λ >
2µ− 2ν − 1

µ− ν
. (14)

Then the Lyapunov function (12) is positive definite, and for the negative definiteness
of functions W1(x, ẋ), . . . ,WN (x, ẋ) it is sufficient the negative definiteness of quadratic
forms (7).

With the numbers A and B defined in a similar way as in Section 3, we claim the
following result
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Theorem 4.1 Let µ > 2ν + 1. If inequality (9) holds, then for family (11) there
exists a CLF of the form (12) satisfying the assumptions of the Lyapunov asymptotic
stability theorem.

Remark 4.1 In contrast to Theorem 3.1, the conditions of Theorem 4.1 are only
sufficient ones for the existence of a CLF of the given form for the considered family.

Remark 4.2 Under the conditions of Theorem 4.1, we obtain the following construc-
tive algorithm for the finding of a CLF for family (11). The Lyapunov function can be
chosen in the form (12), where β is defined by the formula (13), λ satisfies inequality (14),
ε is an arbitrary negative number, while the values of parameters γ and c are defined in
a similar way as in Remark 3.1.

Corollary 4.1 Let µ > 2ν+1. If the switching takes place in the velocity forces only
(bs = b = const > 0, s = 1, . . . , N), then the equilibrium position x = ẋ = 0 of system
(10) is asymptotically stable for any admissible switching law.

Corollary 4.2 Let µ > 2ν + 1. If the switching takes place in the potential forces
only (as = a = const > 0, s = 1, . . . , N), then the equilibrium position x = ẋ = 0 of
system (10) is asymptotically stable for any admissible switching law.

Corollary 4.3 Let µ > 2ν+1. If family (11) consists of two subsystems (N = 2), and
the switching takes place both in the velocity forces and in the potential forces (a1 6= a2,
b1 6= b2), then the equilibrium position x = ẋ = 0 of system (10) is asymptotically stable
for any admissible switching law.

5 Conclusion

In the present paper, for certain classes of families of nonlinear mechanical systems
with one degree of freedom the conditions of the existence of CLFs of the given form
are obtained. The fulfilment of these conditions provides the asymptotic stability of
equilibrium positions of corresponding switched systems for any switching law. It is
proved that, for considered families of essentially nonlinear systems, we can guarantee the
existence of CLFs under weaker assumptions than for linear ones. Thus, in comparison
with linear systems, nonlinear ones are “more stable” with respect to the switching of
parameters values. Theorems 3.1 and 4.1 can be used for the design of stabilizing controls
for mechanical systems. A challenging direction for further research is the extention of
the obtained results to the switched nonlinear mechanical systems with several degrees
of freedom.
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