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1 Introduction

Motivated by a recent paper by B. G. Pachpatte [18], our purpose is to obtain time scales
versions of some Ostrowski and Grüss type inequalities including three functions, whose
second derivatives are bounded. In detail, we will prove time scales analogues of the
following three theorems presented in [18].

Theorem 1.1 [See [18, Theorem 1]] Let f, g, h : [a, b] → R be twice differentiable

functions on (a, b) such that f ′′, g′′, h′′ : (a, b) → R are bounded, i.e.,

‖f ′′‖∞ := sup
t∈(a,b)

|f ′′(t)| < ∞, ‖g′′‖∞ < ∞, ‖h′′‖∞ < ∞.

Moreover, let

A[f, g, h] := gh

∫ b

a

f(s)ds+ fh

∫ b

a

g(s)ds+ fg

∫ b

a

h(s)ds
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and

B[f, g, h] := |gh| ‖f ′′‖∞ + |fh| ‖g′′‖∞ + |fg| ‖h′′‖∞ .

Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t−
a+ b

2

)

(fgh)′(t)

∣

∣

∣

∣

≤
1

6

{

(

t−
a+ b

2

)2

+
(b− a)2

12

}

B[f, g, h](t).

Theorem 1.2 [See [18, Theorem 2]] In addition to the notation and assumptions of

Theorem 1.1, let

L[f, g, h] := gh
f(a) + f(b)

2
+ fh

g(a) + g(b)

2
+ fg

h(a) + h(b)

2
.

Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
2

3(b− a)
A[f, g, h](t)−

1

3

(

t−
a+ b

2

)

(fgh)′(t) +
1

3
L[f, g, h](t)

∣

∣

∣

∣

≤
1

3(b− a)
B[f, g, h](t)

∫ b

a

∣

∣

∣

∣

p(t, s)

(

s−
a+ b

2

)∣

∣

∣

∣

ds,

where p(t, s) = s− a for a ≤ s < t and p(t, s) = s− b for t ≤ s ≤ b.

Theorem 1.3 [See [18, Theorem 3]] In addition to the notation and assumptions of

Theorem 1.1, let

M [f, g, h] := gh
f(b)− f(a)

b− a
+ fh

g(b)− g(a)

b − a
+ fg

h(b)− h(a)

b− a
.

Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t−
a+ b

2

)

M [f, g, h](t)

∣

∣

∣

∣

≤
1

3(b− a)2
B[f, g, h](t)

∫ b

a

∫ b

a

|p(t, τ)p(τ, s)| dsdτ,

where p is defined as in Theorem 1.2.

Our time scales versions of Theorems 1.1–1.3 will contain Theorems 1.1–1.3 as special
cases when the time scale is equal to the set of all real numbers, and they will yield
new discrete inequalities when the time scale is equal to the set of all integer numbers.
Special cases of our results are contained in [2–5, 12, 15, 20] for the general time scales
case, in [8–10,16] for the continuous case and in [1,17] for the discrete case. One can also
use our results for any other arbitrary time scale to obtain new inequalities, e.g., for the
quantum case. For further recent results on time scales calculus published in Nonlinear

Dynamics and Systems Theory, we refer to [11, 13, 14, 19].
The set up of this paper is as follows. In the next section, we give some necessary

details of the time scales calculus. Section 3 contains some auxiliary results as well as
the assumptions and notation used in this paper. Finally, in Sections 4–6, we prove time
scales analogues of Theorems 1.1–1.3. Each result is followed by several examples and
remarks. We would like to point out here that our results are new also for the discrete
case.
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2 Preliminaries

Now we briefly introduce some necessary time scales elements and refer the reader to the
books [6, 7] for further details.

Definition 2.1 A time scale T is a nonempty closed subset of R. The mappings
σ, ρ : T → T defined by σ(t) = inf {s ∈ T : s > t} and ρ(t) = sup {s ∈ T : s < t} are
called the forward and backward jump operators, respectively. A point t ∈ T is said to
be right-dense, right-scattered, left-dense, and left-scattered provided σ(t) = t, σ(t) > t,
ρ(t) = t, and ρ(t) < t, respectively. The set Tκ is defined to be equal to the set T without
its left-scattered maximum (if it exists). A function f : T → R is called rd-continuous and
we write f ∈ Crd(T,R) if it is continuous at all right-dense points and its left-sided limits
exist and are finite at all left-dense points, and f is called delta differentiable at t ∈ T

κ,
with delta derivative f∆(t) ∈ R, provided given ε > 0, there exists a neighborhood U of
t such that

∣

∣f(σ(t)) − f(s)− f∆(t)[σ(t) − s]
∣

∣ ≤ ε |σ(t)− s| for all s ∈ U.

If f is differentiable such that f∆ is rd-continuous, then we write f ∈ C1
rd(T,R). The set

C2
rd(T,R) is defined similarly. A function F : T → R is called a delta antiderivative of

f : T → R if F∆(t) = f(t) holds for all t ∈ T
κ. Then the delta integral of f is defined by

∫ b

a

f(t)∆t = F (b)− F (a), where a, b ∈ T.

Example 2.1 If T = R, then σ(t) = t and f∆(t) = f ′(t) for all t ∈ R and

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt for all a, b ∈ R,

and if T = Z, then σ(t) = t+ 1 and f∆(t) = f(t+ 1)− f(t) for all t ∈ Z and

∫ n

0

f(t)∆t =

n−1
∑

t=0

f(t) for all n ∈ N.

Some results about integrals, that will be used in this paper, are contained in [6,
Section 1.4] and collected as follows.

Theorem 2.1 If a function is rd-continuous, then it possesses a delta antiderivative.

For f, g ∈ Crd([a, b],R) and a, b, c ∈ T, we have

∫ b

a

[f(t) + g(t)]∆t =

∫ b

a

f(t)∆t+

∫ b

a

g(t)∆t,

∫ b

a

f(t)∆t = −

∫ a

b

f(t)∆t,

∫ b

a

f(t)∆t =

∫ c

a

f(t)∆t+

∫ b

c

f(t)∆t,

∣

∣

∣

∣

∣

∫ b

a

f(t)∆t

∣

∣

∣

∣

∣

≤

∫ b

a

|f(t)|∆t,
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and, if additionally f, g ∈ C1
rd([a, b],R),

∫ b

a

f(σ(t))g∆(t)∆t = f(b)g(b)− f(a)g(a)−

∫ b

a

f∆(t)g(t)∆t.

We also need the time scales monomials (see [6, Section 1.6]) defined as follows.

Definition 2.2 Define for all t, s ∈ T

g2(t, s) :=

∫ t

s

(σ(τ) − s)∆τ, h2(t, s) :=

∫ t

s

(τ − s)∆τ,

g3(t, s) :=

∫ t

s

g2(σ(τ), s)∆τ, h3(t, s) :=

∫ t

s

h2(τ, s)∆τ.

It is known that g2(t, s), g3(t, s), h2(t, s), h3(t, s) are nonnegative for t ≥ s and that
g2(t, s) = h2(s, t) and g3(t, s) = −h3(s, t). Moreover, the following formulas are used in
this paper.

Lemma 2.1 The time scales monomials satisfy the following formulas:

g2(t, a)− g2(t, b) = g2(b, a) + (t− b)(b− a), (1)

g2(a, b) + g2(b, a) = (b− a)2, (2)

g3(t, a)− g3(t, b) = g3(b, a) + (t− b)g2(b, a) + (b− a)g2(t, b). (3)

Proof. The function F defined by F (t) := g2(t, a)− g2(t, b)− g2(b, a)− (t− b)(b− a)
satisfies F∆(t) = σ(t) − a − (σ(t) − b) − (b − a) = 0 and F (b) = 0. Hence F = 0
and so (1) holds. Next, (2) follows by letting t = a in (1). Moreover, the function G

defined by G(t) := g3(t, a) − g3(t, b) − g3(b, a) − (t − b)g2(b, a) − (b − a)g2(t, b) satisfies
G∆(t) = g2(σ(t), a)−g2(σ(t), b)−g2(b, a)− (b−a)(σ(t)−b) = F (σ(t)) = 0 and G(b) = 0.
Hence G = 0 and so (3) holds.

3 Auxiliary Results and Assumptions

Throughout this paper we assume that T is a time scale and that a, b ∈ T such that
a < b. Moreover, when writing [a, b], we mean the time scales interval [a, b] ∩ T. The
following two Montgomery-type results are used in the proofs of our three main results.

Theorem 3.1 Suppose f ∈ C1
rd(T,R). Let t ∈ [a, b] and u1, u2 ∈ C1

rd(T,R). If

u(σ(s)) =

{

u1(σ(s)) for a ≤ s < t,

u2(σ(s)) for t ≤ s ≤ b,
(4)

then
∫ b

a

u(σ(s))f∆(s)∆s = (u1(t)− u2(t))f(t)− u1(a)f(a) + u2(b)f(b)

−

∫ t

a

u∆
1 (s)f(s)∆s−

∫ b

t

u∆
2 (s)f(s)∆s.

(5)
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Proof. We use Theorem 2.1 to split the integral into two parts, each of which is
evaluated by applying the integration of parts formula, i.e.,

∫ b

a

u(σ(s))f∆(s)∆s =

∫ t

a

u1(σ(s))f
∆(s)∆s +

∫ b

t

u2(σ(s))f
∆(s)∆s

= u1(t)f(t)− u1(a)f(a)−

∫ t

a

u∆
1 (s)f(s)∆s

+ u2(b)f(b)− u2(t)f(t)−

∫ b

t

u∆
2 (s)f(s)∆s,

from which (5) follows.

Theorem 3.2 Suppose f ∈ C2
rd(T,R). Let t ∈ [a, b] and ui, vi ∈ C1

rd(T,R) be such

that u∆
i (s) = vi(σ(s)) for all s ∈ [a, b], where i ∈ {1, 2}. If u satisfies (4), then

∫ b

a

u(σ(s))f∆∆(s)∆s = (u1(t)− u2(t))f
∆(t)− (v1(t)− v2(t))f(t)

− u1(a)f
∆(a) + v1(a)f(a) + u2(b)f

∆(b)− v2(b)f(b)

+

∫ t

a

v∆1 (s)f(s)∆s +

∫ b

t

v∆2 (s)f(s)∆s.

(6)

Proof. Using (5) with f∆ replaced by f∆∆ and subsequently applying integration
by parts twice, we obtain

∫ b

a

u(σ(s))f∆∆(s)∆s = (u1(t)− u2(t))f
∆(t)− u1(a)f

∆(a) + u2(b)f
∆(b)

−

∫ t

a

u∆
1 (s)f

∆(s)∆s−

∫ b

t

u∆
2 (s)f

∆(s)∆s

= (u1(t)− u2(t))f
∆(t)− u1(a)f

∆(a) + u2(b)f
∆(b)

−

∫ t

a

v1(σ(s))f
∆(s)∆s−

∫ b

t

v2(σ(s))f
∆(s)∆s

= (u1(t)− u2(t))f
∆(t)− u1(a)f

∆(a) + u2(b)f
∆(b)

−

{

v1(t)f(t)− v1(a)f(a)−

∫ t

a

v∆1 (s)f(s)∆s

}

−

{

v2(b)f(b)− v2(t)f(t) −

∫ b

t

v∆2 (s)f(s)∆s

}

,

from which (6) follows.

Assumption (H) For the remaining three sections of this paper, we assume that T is
a time scale and that a, b ∈ T such that a < b. We assume that f, g, h ∈ C2

rd(T,R) are
such that

∥

∥f∆∆
∥

∥

∞
:= sup

t∈(a,b)

∣

∣f∆∆(t)
∣

∣ < ∞,
∥

∥g∆∆
∥

∥

∞
< ∞,

∥

∥h∆∆
∥

∥

∞
< ∞ (7)
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and define

A[f, g, h] := gh

∫ b

a

f(s)∆s+ fh

∫ b

a

g(s)∆s+ fg

∫ b

a

h(s)∆s,

B[f, g, h] := |gh|
∥

∥f∆∆
∥

∥

∞
+ |fh|

∥

∥g∆∆
∥

∥

∞
+ |fg|

∥

∥h∆∆
∥

∥

∞
,

C[f, g, h] := ghf∆ + fhg∆ + fgh∆,

D[f, g, h] :=

(

∫ b

a

g(s)h(s)∆s

)(

∫ b

a

f(s)∆s

)

+

(

∫ b

a

f(s)h(s)∆s

)(

∫ b

a

g(s)∆s

)

+

(

∫ b

a

f(s)g(s)∆s

)(

∫ b

a

h(s)∆s

)

,

L[f, g, h] := gh
g2(b, a)f(a) + h2(b, a)f(b)

(b− a)2
+ fh

g2(b, a)g(a) + h2(b, a)g(b)

(b− a)2

+ fg
g2(b, a)h(a) + h2(b, a)h(b)

(b− a)2
,

M [f, g, h] := gh
f(b)− f(a)

b− a
+ fh

g(b)− g(a)

b− a
+ fg

h(b)− h(a)

b− a
.

4 Time Scales Version of Theorem 1.1

Theorem 4.1 Assume (H). Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t)

∣

∣

∣

∣

≤
1

3

(

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

)

B[f, g, h](t) (8)

and

∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)h(t)∆t−
1

3(b− a)2
D[f, g, h]

−
1

3(b− a)

∫ b

a

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t)∆t

∣

∣

∣

∣

∣

≤
1

3(b− a)

∫ b

a

(

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

)

B[f, g, h](t)∆t. (9)

Proof. Fix t ∈ [a, b] and define u by (4), where

u1(s) = g2(s, a), u2(s) = h2(b, s).

With the notation as in Theorem 3.2, using Definition 2.2, we have

v1(s) = s− a, v2(s) = s− b, v∆1 (s) = v∆2 (s) = 1

and u1(a) = v1(a) = u2(b) = v2(b) = 0. Moreover, we have

u1(t)− u2(t)
(1)
= (t− b)(b− a) + g2(b, a), v1(t)− v2(t) = b− a.
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By (6), we therefore obtain

∫ b

a

u(σ(s))f∆∆(s)∆s = ((t− b)(b − a) + g2(b, a))f
∆(t)− (b− a)f(t) +

∫ b

a

f(s)∆s

and thus

f(t) =
1

b− a

∫ b

a

f(s)∆s+

(

t− b+
g2(b, a)

b − a

)

f∆(t)−
1

b− a

∫ b

a

u(σ(s))f∆∆(s)∆s. (10)

Similarly, we get

g(t) =
1

b− a

∫ b

a

g(s)∆s+

(

t− b+
g2(b, a)

b− a

)

g∆(t)−
1

b− a

∫ b

a

u(σ(s))g∆∆(s)∆s (11)

and

h(t) =
1

b− a

∫ b

a

h(s)∆s+

(

t− b+
g2(b, a)

b − a

)

h∆(t)−
1

b− a

∫ b

a

u(σ(s))h∆∆(s)∆s. (12)

Multiplying (10), (11) and (12) by g(t)h(t), f(t)h(t) and f(t)g(t), respectively, adding
the resulting identities and dividing by three, we have

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t)

= −
1

3(b− a)

∫ b

a

u(σ(s))B̃[f, g, h](t, s)∆s, (13)

where
{

B̃[f, g, h](t, s) := g(t)h(t)f∆∆(s) + f(t)h(t)g∆∆(s) + f(t)g(t)h∆∆(s)

so that
∣

∣

∣
B̃[f, g, h](t, s)

∣

∣

∣
≤ B[f, g, h](t).

(14)

By taking absolute values in (13) and using (7) and

∫ b

a

|u(σ(s))|∆s =

∫ t

a

g2(σ(s), a)∆s+

∫ b

t

h2(b, σ(s))∆s (15)

= g3(t, a)− g3(t, b)

(3)
= g3(b, a) + (t− b)g2(b, a) + (b− a)h2(b, t),

we obtain (8). Integrating (13) with respect to t from a to b, dividing by b − a, noting
that

∫ b

a

A[f, g, h](s)∆s = D[f, g, h], (16)

taking absolute values and using (7) and (15), we obtain (9).

Example 4.1 If we let T = R in Theorem 4.1, then, since C[f, g, h] = (fgh)′,

b−
g2(b, a)

b− a
= b−

(b − a)2

2(b− a)
= b−

b− a

2
=

a+ b

2
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and

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a
=

1

2

{

(t− b)2 + (t− b)(b− a) +
(b− a)2

3

}

=
1

2

{

(

t− b+
b− a

2

)2

−
(b− a)2

4
+

(b− a)2

3

}

=
1

2

{

(

t−
a+ b

2

)2

+
(b− a)2

12

}

,

we obtain [18, Theorem 1], in particular, Theorem 1.1.

Example 4.2 If we let T = Z and a = 0, b = n ∈ N in Theorem 4.1, then, since

b−
g2(b, a)

b− a
= b−

(b− a)(b − a+ 1)

2(b− a)
= b−

b− a+ 1

2
=

a+ b− 1

2
=

n− 1

2

and

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

=
1

2

{

(b − t)(b− t− 1) + (t− b)(b− a+ 1) +
(b− a+ 1)(b − a+ 2)

3

}

=
1

2

{

(

t− b+
b − a+ 2

2

)2

−
(b − a+ 2)2

4
+

(b − a+ 1)(b− a+ 2)

3

}

=
1

2

{

(

t+ 1−
a+ b

2

)2

+
(b− a+ 2)(b− a− 2)

12

}

=
1

2

{

(

t+ 1−
n

2

)2

+
n2 − 4

12

}

,

we obtain

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3n
A[f, g, h](t)−

1

3

(

t−
n− 1

2

)

C[f, g, h](t)

∣

∣

∣

∣

≤
1

6

{

(

t+ 1−
n

2

)2

+
n2 − 4

12

}

B[f, g, h](t)

and

∣

∣

∣

∣

∣

1

n

n−1
∑

t=0

f(t)g(t)h(t)−
1

3n2
D[f, g, h]−

1

3n

n−1
∑

t=0

(

t−
n− 1

2

)

C[f, g, h](t)

∣

∣

∣

∣

∣

≤
1

6n

n−1
∑

t=0

{

(

t+ 1−
n

2

)2

+
n2 − 4

12

}

B[f, g, h](t),
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where

A[f, g, h] = gh

n−1
∑

s=0

f(s) + fh

n−1
∑

s=0

g(s) + fg

n−1
∑

s=0

h(s),

B[f, g, h] = |gh| max
1≤s≤n−1

∣

∣∆2f(s)
∣

∣+ |fh| max
1≤s≤n−1

∣

∣∆2g(s)
∣

∣+ |fg| max
1≤s≤n−1

∣

∣∆2h(s)
∣

∣ ,

C[f, g, h] = gh∆f + fh∆g + fg∆h,

D[f, g, h] =

(

n−1
∑

s=0

g(s)h(s)

)(

n−1
∑

s=0

f(s)

)

+

(

n−1
∑

s=0

f(s)h(s)

)(

n−1
∑

s=0

g(s)

)

+

(

n−1
∑

s=0

f(s)g(s)

)(

n−1
∑

s=0

h(s)

)

.

These inequalities are new discrete Ostrowski–Grüss type inequalities.

Remark 4.1 If we let h(t) ≡ 1 in Theorem 4.1, then (8) becomes

∣

∣

∣

∣

∣

f(t)g(t)−
1

2(b− a)

{

g(t)

∫ b

a

f(s)∆s+ f(t)

∫ b

a

g(s)∆s

}

−
1

2

(

t− b+
g2(b, a)

b− a

)

{

g(t)f∆(t) + f(t)g∆(t)
}

∣

∣

∣

∣

≤
1

2

(

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

)

{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

and (9) turns into

∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)∆t−
1

(b − a)2

(

∫ b

a

f(t)∆t

)(

∫ b

a

g(t)∆t

)

−
1

2(b− a)

∫ b

a

(

t− b+
g2(b, a)

b− a

)

{

g(t)f∆(t) + f(t)g∆(t)
}

∆t

∣

∣

∣

∣

∣

≤
1

2(b− a)

∫ b

a

(

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

)

·

·
{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

∆t.

If, moreover, we let g(t) ≡ 1, then (8) becomes

∣

∣

∣

∣

∣

f(t)−
1

b− a

∫ b

a

f(s)∆s−

(

t− b+
g2(b, a)

b− a

)

f∆(t)

∣

∣

∣

∣

∣

≤

(

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

)

∥

∥f∆∆
∥

∥

∞
.

From these inequalities, special cases such as discrete inequalities can be obtained.
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5 Time Scales Version of Theorem 1.2

Theorem 5.1 Assume (H). Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
2

3(b− a)
A[f, g, h](t) +

1

3
L[f, g, h](t)

−
1

3

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t)

∣

∣

∣

∣

≤
1

3(b− a)
B[f, g, h](t)I(t) (17)

and
∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)h(t)∆t−
2

3(b− a)2
D[f, g, h] +

1

3(b− a)

∫ b

a

L[f, g, h](t)∆t

−
1

3(b− a)

∫ b

a

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t)∆t

∣

∣

∣

∣

∣

≤
1

3(b− a)2

∫ b

a

B[f, g, h](t)I(t)∆t, (18)

where

I(t) :=
1

b− a

∫ t

a

|2(b− a)g2(σ(s), a)− (σ(s) − a)g2(b, a)|∆s

+
1

b− a

∫ b

t

|2(b− a)h2(b, σ(s))− (b− σ(s))h2(b, a)|∆s.

Proof. Fix t ∈ [a, b] and define u by (4), where

u1(s) = 2(b− a)g2(s, a)− (s− a)g2(b, a), u2(s) = 2(b− a)h2(b, s)− (b− s)h2(b, a).

With the notation as in Theorem 3.2, using Definition 2.2, we have

v1(s) = 2(b− a)(s− a)− g2(b, a), v2(s) = 2(b− a)(s− b) + h2(b, a),

v∆1 (s) = v∆2 (s) = 2(b− a)

and u1(a) = u2(b) = 0, v1(a) = −g2(b, a), v2(b) = h2(b, a). Moreover, we have

u1(t)− u2(t) = 2(b− a)(g2(t, a)− h2(b, t))− (t− a)g2(b, a) + (b− t)h2(b, a)

(1),(2)
= 2(b− a)(g2(b, a) + (t− b)(b− a))

−(t− a)g2(b, a) + (b − t)
(

(b− a)2 − g2(b, a)
)

(2)
= (b− a)g2(b, a) + (t− b)(b− a)2,

v1(t)− v2(t) = 2(b− a)2 − g2(b, a)− h2(b, a)

(2)
= 2(b− a)2 − (b − a)2 = (b− a)2.

By (6), we therefore obtain

∫ b

a

u(σ(s))f∆∆(s)∆s = (b − a) (g2(b, a) + (t− b)(b− a)) f∆(t)

− (b− a)2f(t)− g2(b, a)f(a)− h2(b, a)f(b) + 2(b− a)

∫ b

a

f(s)∆s
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and thus

f(t) =
2

b− a

∫ b

a

f(s)∆s−
g2(b, a)f(a) + h2(b, a)f(b)

(b− a)2

+

(

t− b+
g2(b, a)

b− a

)

f∆(t)−
1

(b − a)2

∫ b

a

u(σ(s))f∆∆(s)∆s. (19)

Similarly, we get

g(t) =
2

b− a

∫ b

a

g(s)∆s−
g2(b, a)g(a) + h2(b, a)g(b)

(b− a)2

+

(

t− b+
g2(b, a)

b− a

)

g∆(t)−
1

(b − a)2

∫ b

a

u(σ(s))g∆∆(s)∆s (20)

and

h(t) =
2

b− a

∫ b

a

h(s)∆s−
g2(b, a)h(a) + h2(b, a)h(b)

(b − a)2

+

(

t− b+
g2(b, a)

b− a

)

h∆(t)−
1

(b− a)2

∫ b

a

u(σ(s))h∆∆(s)∆s. (21)

Multiplying (19), (20) and (21) by g(t)h(t), f(t)h(t) and f(t)g(t), respectively, adding
the resulting identities and dividing by three, we have

f(t)g(t)h(t)−
2

3(b− a)
A[f, g, h](t) +

1

3
L[f, g, h](t)

−
1

3

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t) = −
1

3(b− a)2

∫ b

a

u(σ(s))B̃[f, g, h](t, s)∆s (22)

with B̃ as in (14). By taking absolute values in (22) and using (7) and

1

b− a

∫ b

a

|u(σ(s))|∆s = I(t), (23)

we obtain (17). Integrating (22) with respect to t from a to b, dividing by b− a, noting
(16), taking absolute values and using (7) and (23), we obtain (18).

Example 5.1 If we let T = R in Theorem 5.1, then, since C[f, g, h] = (fgh)′,

b−
g2(b, a)

b− a
=

a+ b

2

and (with p as defined in Theorem 1.2)

I(t) =
1

b − a

∫ t

a

∣

∣

∣

∣

(b− a)(s− a)2 − (s− a)
(b− a)2

2

∣

∣

∣

∣

ds

+
1

b− a

∫ b

t

∣

∣

∣

∣

(b− a)(s− b)2 − (b− s)
(b − a)2

2

∣

∣

∣

∣

ds

=

∫ t

a

∣

∣

∣

∣

(s− a)

(

s−
a+ b

2

)∣

∣

∣

∣

ds+

∫ b

t

∣

∣

∣

∣

(s− b)

(

s−
a+ b

2

)∣

∣

∣

∣

ds

=

∫ b

a

∣

∣

∣

∣

p(t, s)

(

s−
a+ b

2

)∣

∣

∣

∣

ds,
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we obtain [18, Theorem 2], in particular, Theorem 1.2.

Example 5.2 If we let T = Z and a = 0, b = n ∈ N in Theorem 5.1, then, since

b −
g2(b, a)

b− a
=

n− 1

2

and

I(t) =
1

b− a

t−1
∑

s=a

∣

∣

∣

∣

(b − a)(s+ 1− a)(s+ 2− a)− (s+ 1− a)
(b− a)(b − a+ 1)

2

∣

∣

∣

∣

+
1

b− a

b−1
∑

s=t

∣

∣

∣

∣

(b− a)(b − s− 1)(b− s− 2)− (b − s− 1)
(b− a)(b − a− 1)

2

∣

∣

∣

∣

=

t−1
∑

s=a

∣

∣

∣

∣

(s+ 1− a)

(

s+ 1−
a+ b− 1

2

)∣

∣

∣

∣

+
b−1
∑

s=t

∣

∣

∣

∣

(s+ 1− b)

(

s+ 1−
a+ b − 1

2

)∣

∣

∣

∣

=

t−1
∑

s=0

∣

∣

∣

∣

(s+ 1)

(

s+ 1−
n− 1

2

)∣

∣

∣

∣

+

n−1
∑

s=t

∣

∣

∣

∣

(s+ 1− n)

(

s+ 1−
n− 1

2

)∣

∣

∣

∣

,

we have

∣

∣

∣

∣

f(t)g(t)h(t)−
2

3n
A[f, g, h](t) +

1

3
L[f, g, h](t)−

1

3

(

t−
n− 1

2

)

C[f, g, h](t)

∣

∣

∣

∣

≤
1

3n
B[f, g, h](t)

{

t
∑

s=1

s

∣

∣

∣

∣

s−
n− 1

2

∣

∣

∣

∣

+

n
∑

s=t+1

(n− s)

∣

∣

∣

∣

s−
n− 1

2

∣

∣

∣

∣

}

and

∣

∣

∣

∣

∣

1

n

n−1
∑

t=0

f(t)g(t)h(t)−
2

3n2
D[f, g, h]

+
1

3n

n−1
∑

t=0

L[f, g, h](t)−
1

3n

n−1
∑

t=0

(

t−
n− 1

2

)

C[f, g, h](t)

∣

∣

∣

∣

∣

≤
1

3n2

n−1
∑

t=0

B[f, g, h](t)

{

t
∑

s=1

s

∣

∣

∣

∣

s−
n− 1

2

∣

∣

∣

∣

+

n
∑

s=t+1

(n− s)

∣

∣

∣

∣

s−
n− 1

2

∣

∣

∣

∣

}

,

where in addition to A,B,C,D defined in Example 4.2,

L[f, g, h] = gh
(n+ 1)f(a) + (n− 1)f(b)

2n
+ fh

(n+ 1)g(a) + (n− 1)g(b)

2n

+ fg
(n+ 1)h(a) + (n− 1)h(b)

2n
.

These inequalities are new discrete Ostrowski–Grüss type inequalities.
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Remark 5.1 If we let h(t) ≡ 1 in Theorem 5.1, then (17) becomes

∣

∣

∣

∣

∣

f(t)g(t)−
1

b− a

{

g(t)

∫ b

a

f(s)∆s+ f(t)

∫ b

a

g(s)∆s

}

+ g(t)
g2(b, a)f(a) + h2(b, a)f(b)

2(b− a)2
+ f(t)

g2(b, a)g(a) + h2(b, a)g(b)

2(b− a)2

−
1

2

(

t− b+
g2(b, a)

b− a

)

{

g(t)f∆(t) + f(t)g∆(t)
}

∣

∣

∣

∣

≤
1

2(b− a)

{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

I(t),

(observe (2) when calculating L) and (18) turns into

∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)∆t−
2

(b − a)2

(

∫ b

a

f(t)∆t

)(

∫ b

a

g(t)∆t

)

+
1

b− a

∫ b

a

{

g(t)
g2(b, a)f(a) + h2(b, a)f(b)

2(b− a)2
+ f(t)

g2(b, a)g(a) + h2(b, a)g(b)

2(b− a)2

}

∆t

−
1

2(b− a)

∫ b

a

(

t− b+
g2(b, a)

b− a

)

{

g(t)f∆(t) + f(t)g∆(t)
}

∆t

∣

∣

∣

∣

∣

≤
1

2(b− a)2

∫ b

a

{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

I(t)∆t.

If, moreover, we let g(t) ≡ 1, then (17) becomes

∣

∣

∣

∣

∣

f(t)−
2

b− a

∫ b

a

f(s)∆s+
g2(b, a)f(a) + h2(b, a)f(b)

(b− a)2

−

(

t− b +
g2(b, a)

b− a

)

f∆(t)

∣

∣

∣

∣

≤
1

b− a

∥

∥f∆∆
∥

∥

∞
I(t).

From these inequalities, special cases such as discrete inequalities can be obtained.

6 Time Scales Version of Theorem 1.3

Theorem 6.1 Assume (H). Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t− b+
g2(b, a)

b− a

)

M [f, g, h](t)

∣

∣

∣

∣

≤
1

3(b− a)2
B[f, g, h](t)H(t) (24)



132 ELVAN AKIN-BOHNER, MARTIN BOHNER AND THOMAS MATTHEWS

and

∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)h(t)∆t−
1

3(b− a)2
D[f, g, h](t)

−
1

3(b− a)

∫ b

a

(

t− b +
g2(b, a)

b− a

)

M [f, g, h](t)∆t

∣

∣

∣

∣

∣

≤
1

3(b− a)3

∫ b

a

B[f, g, h](t)H(t)∆t,

(25)

where

H(t) :=

∫ b

a

∫ b

a

|p(t, τ)p(τ, s)|∆s∆τ

and

p(t, s) :=

{

σ(s)− a for a ≤ s < t,

σ(s)− b for t ≤ s ≤ b.

Proof. Fix t ∈ [a, b]. We use Theorem 3.1 three times to obtain

∫ b

a

∫ b

a

p(t, τ)p(τ, s)f∆∆(s)∆s∆τ =

∫ b

a

p(t, τ)

{

∫ b

a

p(τ, s)f∆∆(s)∆s

}

∆τ

=

∫ b

a

p(t, τ)

{

(b − a)f∆(τ) −

∫ b

a

f∆(s)∆s

}

∆τ

= (b − a)

∫ b

a

p(t, s)f∆(s)∆s+ (f(a)− f(b))

∫ b

a

p(t, s)∆s

= (b − a)

{

(b− a)f(t)−

∫ b

a

f(s)∆s

}

+ (f(a)− f(b))

{

(b − a)t−

∫ b

a

s∆s

}

= (b − a)2f(t)− (b− a)

∫ b

a

f(s)∆s+ (f(a)− f(b))

∫ a

b

(s− t)∆s

= (b − a)2f(t)− (b− a)

∫ b

a

f(s)∆s+ (g2(t, a)− h2(b, t))(f(a)− f(b))

and thus (by using (1))

f(t) =
1

b− a

∫ b

a

f(s)∆s+

(

t− b+
g2(b, a)

b− a

)

f(b)− f(a)

b− a

+
1

(b− a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)f∆∆(s)∆s∆τ. (26)

Similarly, we get

g(t) =
1

b− a

∫ b

a

g(s)∆s+

(

t− b+
g2(b, a)

b− a

)

g(b)− g(a)

b− a

+
1

(b− a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)g∆∆(s)∆s∆τ. (27)
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and

h(t) =
1

b− a

∫ b

a

h(s)∆s+

(

t− b+
g2(b, a)

b− a

)

h(b)− h(a)

b− a

+
1

(b − a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)h∆∆(s)∆s∆τ. (28)

Multiplying (26), (27) and (28) by g(t)h(t), f(t)h(t) and f(t)g(t), respectively, adding
the resulting identities and dividing by three, we have

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t− b+
g2(b, a)

b− a

)

M [f, g, h](t)

=
1

3(b− a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)B̃[f, g, h](t, s)∆s∆τ (29)

with B̃ as in (14). By taking absolute values in (29) and using (7) and the definition of
H , we obtain (24). Integrating (29) with respect to t from a to b, dividing by b−a, noting
(16), taking absolute values and using (7) and the definition of H , we obtain (25).

Example 6.1 If we let T = R in Theorem 6.1, then, by the same calculations as in
Example 4.1, we obtain [18, Theorem 3], in particular, Theorem 1.3.

Example 6.2 If we let T = Z and a = 0, b = n ∈ N in Theorem 6.1, then, by the
same calculations as in Example 4.2, we obtain

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3n
A[f, g, h](t)−

1

3

(

t−
n− 1

2

)

M [f, g, h](t)

∣

∣

∣

∣

≤
1

3n2
B[f, g, h](t)H(t)

and

∣

∣

∣

∣

∣

1

n

n−1
∑

t=0

f(t)g(t)h(t)−
1

3n2
D[f, g, h]−

1

3n

n−1
∑

t=0

(

t−
n− 1

2

)

M [f, g, h](t)

∣

∣

∣

∣

∣

≤
1

3n3

n−1
∑

t=0

B[f, g, h](t)H(t),

where in addition to A,B,D defined in Example 4.2,

M [f, g, h] = gh
f(b)− f(a)

b− a
+ fh

g(b)− g(a)

b− a
+ fg

h(b)− h(a)

b− a
,

H(t) =

n−1
∑

τ=0

n−1
∑

s=0

|p(t, τ)p(τ, s)| ,

p(t, s) =

{

s+ 1, if 0 ≤ s < t,

s+ 1− n, if t ≤ s ≤ n.

These inequalities are new discrete Ostrowski–Grüss type inequalities.
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Remark 6.1 If we let h(t) ≡ 1 in Theorem 6.1, then (24) becomes

∣

∣

∣

∣

∣

f(t)g(t)−
1

2(b− a)

{

g(t)

∫ b

a

f(s)∆s+ f(t)

∫ b

a

g(s)∆s

}

−
1

2

(

t− b+
g2(b, a)

(b − a)

){

g(t)
f(b)− f(a)

b− a
+ f(t)

g(b)− g(a)

b− a

}∣

∣

∣

∣

≤
1

2(b− a)2
{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

H(t)

and (25) turns into

∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)∆t−
1

(b − a)2

(

∫ b

a

f(t)∆t

)(

∫ b

a

g(t)∆t

)

−
1

2(b− a)

∫ b

a

(

t− b +
g2(b, a)

b− a

){

g(t)
f(b)− f(a)

b− a
+ f(t)

g(b)− g(a)

b− a

}

∆t

∣

∣

∣

∣

∣

≤
1

2(b− a)3

∫ b

a

{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

H(t)∆t.

If, moreover, we let g(t) ≡ 1, then (24) becomes

∣

∣

∣

∣

∣

f(t)−
1

b− a

∫ b

a

f(s)∆s−

(

t− b+
g2(b, a)

(b − a)

)

f(b)− f(a)

b− a

∣

∣

∣

∣

∣

≤
1

(b− a)2

∥

∥f∆∆
∥

∥

∞
H(t).
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