
NONLINEAR DYNAMICS AND SYSTEMS THEORY

Volume Number 20

CONTENTS

10 3 10

An International Journal of Research and Surveys

© 20 ,  Infor ath Publishing Group                ISSN 1562-8353                    Printed in Ukraine
To receive contents by e-mail, visit our Website at:

10 M
and abstracts http://www.e-ndst.kiev.ua

Nonlinear Dynamics

and

Systems Theory

An International Journal of Research and Surveys

Volume     , Number , 20                                        ISSN   1562-835310 3      10

N
O

N
LIN

E
A

R
 D

Y
N

A
M

IC
S
 &

 S
Y
S
TE

M
S
 TH

E
O

R
Y

V
o

lu
m

e
     ,   N

o
.   ,   2

0
1

0
3

        1
0

EDITOR-IN-CHIEF A.A.MARTYNYUK

REGIONAL EDITORS

P.BORNE, Lille, France

C.CORDUNEANU, Arlington, TX, USA
, ,

PENG SHI, Pontypridd, United Kingdom

K.L.TEO,

H.I.FREEDMAN, Edmonton, Canada

S.P.Timoshenko Institute of Mechanics
National Academy of Sciences of Ukraine, Kiev, Ukraine

Europe

USA, Central and South America

Australia New Zealand

Canada

China and South East Asia

and

North America and

Ensenada  Mexico

Perth, Australia

C.CRUZ-HERNANDEZ

InforMath Publishing Group
http://www.e-ndst.kiev.ua

PERSONAGE IN SCIENCE

Professor G. Leitmann ................................................................................ 203
A.A. Martynyuk, S. Pickl and H.I. Freedman

A New Interconnected Observer Design in Power Converter: Theory

and Experimentation ................................................................................... 211

K. Benmansour, A. Tlemçani, M. Djemai and J. De Leon

On the Absolute Stabilization of Dynamical-Delay Systems ..................... 225

I. Ellouze, A. Ben Abdallah and M. A. Hammami

Stabilization of Controllable Linear Systems ............................................. 235
G.A. Leonov and M.M. Shumafov

A Hierarchical Genetic Algorithm Coding for Constructing and

Training an Optimal Neural Network ......................................................... 269

I. Ben Omrane and A. Chatti

On Nonlinear Abstract Neutral Differential Equations with

Deviated Argument ..................................................................................... 283

Dwijendra N. Pandey, Amit Ujlayan and D. Bahuguna

Trajectory Planning and Tracking of Bilinear Systems Using

Orthogonal Functions .................................................................................. 295

H. Sayem, N. Benhadj Braiek and H. Hammouri

Multi-Point Boundary Value Problems on Time Scales ............................. 305
Ismail Yaslan



(1) General. Nonlinear Dynamics and Systems Theory (ND&ST) is an international journal

devoted to publishing peer-refereed, high quality, original papers, brief notes and review
articles focusing on nonlinear dynamics and systems theory and their practical applications in

engineering, physical and life sciences. Submission of a manuscript is a representation that the
submission has been approved by all of the authors and by the institution where the work was

carried out. It also represents that the manuscript has not been previously published, has not
been copyrighted, is not being submitted for publication elsewhere, and that the authors have

agreed that the copyright in the article shall be assigned exclusively to InforMath Publishing
Group by signing a transfer of copyright form. Before submission, the authors should visit the

website:
http://www.e-ndst.kiev.ua

for information on the preparation of accepted manuscripts. Please download the archive

Sample_NDST.zip containing example of article file (you can edit only the file
Samplefilename.tex).

(2) Manuscript and Correspondence. Manuscripts should be in English and must meet
common standards of usage and grammar. To submit a paper, send by e-mail a file in PDF

format directly to
Professor A.A. Martynyuk, Institute of Mechanics,

Nesterov str.3, 03057, MSP 680, Kiev-57, Ukraine
e-mail: anmart@stability.kiev.ua; center@inmech.kiev.ua

or to one of the Regional Editors or to a member of the Editorial Board. Final version of the
manuscript must typeset using LaTex program which is prepared in accordance with the style

file of the Journal. Manuscript texts should contain the title of the article, name(s) of the
author(s) and complete affiliations. Each article requires an abstract not exceeding 150 words.

Formulas and citations should not be included in the abstract. AMS subject classifications and
key words must be included in all accepted papers. Each article requires a running head

(abbreviated form of the title) of no more than 30 characters. The sizes for regular papers,
survey articles, brief notes, letters to editors and book reviews are: (i) 10-14 pages for regular

papers, (ii) up to 24 pages for survey articles, and (iii) 2-3 pages for brief notes, letters to the
editor and book reviews.

(3) Tables, Graphs and Illustrations. Each figure must be of a quality suitable for direct
reproduction and must include a caption. Drawings should include all relevant details and

should be drawn professionally in black ink on plain white drawing paper. In addition to a
hard copy of the artwork, it is necessary to attach the electronic file of the artwork (preferably

in PCX format).
(4) References. References should be listed alphabetically and numbered, typed and
punctuated according to the following examples. Each entry must be cited in the text in form

of author(s) together with the number of the referred article or in the form of the number of
the referred article alone.

Journal: [1] Poincare, H. Title of the article. Title of the Journal Vol. l
(No.l), Year, Pages. [Language]

Book: [2] Liapunov, A.M. Title of the book. Name of the Publishers,
Town, Year.

Proceeding: [3] Bellman, R. Title of the article. In: Title of the book. (Eds.).
Name of the Publishers, Town, Year, Pages. [Language]

(5) Proofs and Sample Copy. Proofs sent to authors should be returned to the Editorial
Office with corrections within three days after receipt. The corresponding author will receive

a sample copy of the issue of the Journal for which his/her paper is published.
(6) Editorial Policy. Every submission will undergo a stringent peer review process. An

editor will be assigned to handle the review process of the paper. He/she will secure at least
two reviewers’ reports. The decision on acceptance, rejection or acceptance subject to revision

will be made based on these reviewers’ reports and the editor’s own reading of the paper.

Nonlinear Dynamics and Systems Theory
An International Journal of Research and Surveys

EDITOR .

HONORARY EDITORS

MANAGING EDITOR

REGIONAL EDITORS

EDITORIAL BOARD

-IN-CHIEF    A A.MARTYNYUK

V LAKSHMIKANTHAM,  Melbourne, FL,USA

I.P.STAVROULAKIS

P.BORNE (France),  e-mail: Pierre.Borne@ec-lille.fr
C.CORDUNEANU (USA),  e-mail: co @uta.edu

C. ( ),  e-mail:
P.SHI (United Kingdom),  e-mail: pshi@glam.ac.uk

K.L.TEO ( ),  e-mail: eo@
(Canada),  e-mail: hfreedma@math.ualberta.ca

The S.P.Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine,
Nesterov Str. 3, 03680 MSP, Kiev-57, UKRAINE / e-mail: anmart@stability.kiev.ua

e-mail: amartynyuk@voliacable.com

.

/
Department of Mathematics, University of Ioannina

451 10 Ioannina, HELLAS (GREECE) e-mail: ipstav@cc.uoi.gr

E.F MISCHENKO   Moscow  Russia. , ,

ncord
CRUZ-HERNANDEZ Mexico ccruz@cicese.mx

Australia K.L.T curtin.edu.au
H.I.FREEDMAN

Artstein, Z. (Israel)

Bohner, M. (USA)
, . . ( )

Chen Ye-Hwa (USA)
D'Anna, A. (Italy)
Dauphin-Tanguy, G. (France)
Dshalalow, J.H. (USA)
Eke, F.O. (USA)
Fabrizio, M. (Italy)
Georgiou, G. (Cyprus)

, . ( )
Guang-Ren Duan (China)
Izobov, N.A. (Belarussia)
Khusainov, D.Ya. (Ukraine)
Kloeden, P. (Germany)
Larin, V.B. (Ukraine)
Leela, S. (USA)

Bajodah, A.H. (Saudi Arabia)

Burton  T A USA

Giesl  P Germany

Leonov, G.A. (Russia)
Limarchenko, O.S. (Ukraine)
Loccufier, M. (Belgium)

Mawhin, J. (Belgium)
Michel, A.N. (USA)
Nguang Sing Kiong (New Zealand)
Prado, A.F.B.A. (Brazil)

Shi Yan (Japan)
Siafarikas, P.D. (Greece)
Siljak, D.D. (USA)
Sree Hari Rao, V. (India)
Stavrakakis, N.M. (Greece)

, . . 
Vatsala, A. (USA)
Wuyi Yue (Japan)

Leitmann, G. (USA)

Lopes-Gutieres, R.M. (Mexico)

Rasmussen, M. (United Kingdom)

Vassilyev S.N. (Russia)

© 20 ,  Infor ath Publishing Group SSN 1562-8353 Printed in Ukraine
No part of this Journal may be reproduced or transmitted in any form or by any means without
permission from Infor ath Publishing Group.

10 M , I print, ISSN 1813-7385 online,

M

ADVISORY EDITOR

ADVISORY COMPUTER  SCIENCE  EDITOR

ADVISORY EDITOR

A. . KO,  Kiev, Ukraine

A.N.CHERNIENKO L.N.CHERNETSKAYA,  Kiev, Ukraine

S.N.RASSH VALOVA,  Kiev, Ukraine

G MAZ
e-mail: mazko@imath.kiev.ua

and

Y

S

LINGUISTIC

INSTRUCTIONS FOR CONTRIBUTORS



NONLINEAR DYNAMICS AND SYSTEMS THEORY

An International Journal of Research and Surveys

Published by InforMath Publishing Group since 2001

Volume 10 Number 3 2010

CONTENTS

PERSONAGE IN SCIENCE

Professor G. Leitmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.A. Martynyuk, S. Pickl and H.I. Freedman

A New Interconnected Observer Design in Power Converter: Theory

and Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
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PERSONAGE IN SCIENCE

Professor G. Leitmann

on for 85th birthday

A.A. Martynyuk 1, S. Pickl 2∗ and H.I. Freedman 3

1S.P.Timoshenko Institute of Mechanics, National Academy of Science of Ukraine,
Nesterov Str. 3, Kiev, 03057, Ukraine

2 Institut für Theoretishe Informatik, Mathematik and Operations Research, Universität der
Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

3 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton AB
T6G 2G1, Canada

This paper presents a biographical sketch and a review of scientific achievements of
George Leitmann, who made outstanding contributions in contemporary nonlinear
dynamics and systems theory.

1 Introduction

George Leitmann was born in Vienna, Austria on May 24, 1925. He emigrated, with
his mother and two grandmothers, to the USA in 1940. Leitmann entered a technical
high school in New York from which he graduated in 1943. Immediately after gradua-
tion he joined the US army and served in the reconnaissance unit of a Combat Engineer
Battalion in France in 1944-45. For his role in the battle for Colmar, Leitmann was
awarded the Croix de Guerre avec Palmes. At the end of the war, he was assigned to
the Counterintelligence Corps as its youngest special agent and served as an interrogator
at the Nuremburg war crimes trial in 1946. After his discharge from military service
in 1946, Leitmann began his university education at Columbia University in New York.
He received a BA degree in physics in 1949 and an MS degree in physics, with research
on secondary electron emission, in 1950. From 1950-57 he worked as a physicist and
then as head of aeroballistics at the rocket development center, China Lake, California.
During that period he also enrolled in the University of California, Berkeley, from which
he received the PhD in engineering science, with a dissertation on the exterior ballistics
of high altitude rockets, in 1956. He joined the engineering faculty of the University of
California, Berkeley as an Assistant Professor of engineering science in 1957; he was ad-
vanced to Associate Professor in 1959 and to Professor in 1963. During his employment
at the rocket development center, Leitmann worked on the design and testing of a variety

∗ Corresponding author: mailto:stefan.pickl@unibw.de
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of rockets. From the outset in 1950 he was concerned with optimization of rocket trajec-
tories by controlling the thrust magnitude and direction. He had already done research
on this problem while preparing his PhD dissertation; he became especially interested
in this topic meeting the famous Chinese scientist H.S. Tsien then at the California In-
stitute of Technology. Of Leitmann’s many published results in the 1950’s and early
1960’s, [1]–[6] and Chapter 5 of [A] constitute a sample. They are primarily based on the
Calculus of Variations and extensions to allow for inequality constraints, already treated
in the 1930’s by G.A Bliss at the University of Chicago. To place Leitmann’s contribu-
tions to rocket trajectory optimization within the extensive body of work in this area,
see [7]. After exposure to the calculus of variations and somewhat later to the maximum
principle as well as to Bellman’s dynamic programming, Leitmann decided to compare
various optimization techniques, particularly those employed to address aerospace — re-
lated problems; see [A]. In the 1960’s, a meeting with Austin Blaquiere revealed that both
Blaquiere and Leitmann were seeking an optimization method which is non-variational
in contrast to the calculus of variations and the maximum principle, both of which are
based on comparison of solutions. Fortuitously, both Blaquire and Leitmann were think-
ing about a geometric approach; this led to a long period of collaboration and a life-long
friendship. In 1955 Leitmann married Nancy Lloyd. They have a son and a daughter as
well as three grandchildren.

2 Basic Trends in Leitmann’s Research

2.1 A geometric approach to optimal control and dynamic games

The geometric approach to optimal processes, initiated by A. Blaquiere and G. Leitmann
[8], [B], Chapter 7 of [C], [9], [J], is not only an alternative avenue to the necessary op-
timality conditions embodied in the pioneering works of the Pontryagin school, but an
investigation of the complex structure of optimal processes. This approach is based on
global properties of optimal processes in cost-augmented state space and utilizes local
aspects of these global properties to arrive at necessary conditions for optimality. This be-
comes even more important in dynamic games, initially treated for two-person zero-sum
differential games by R. Isaacs. Various aspects of these zero-sum games were investigated
at first for both qualitative and quantitative games [10], [11], [D], [E]. Subsequently, these
results were extended to non-cooperative many-player games [F]. Many applied problems,
especially in OR and economics, were treated via the geometric-approach-based theory,
[12]–[15]. Since necessary optimality conditions yield only candidates for optimal so-
lutions, there is considerable interest in sufficient conditions which assure optimality.
Especially field type sufficient conditions for optimal control and even more so for dy-
namic games were inspired by the geometric approach [I], [16]–[18]. On the other hand,
the direct sufficiency conditions in [I] can be applied to problems for which classical ones,
requiring convexity, respectively concavity, do not apply1 .

2.2 Stabilization of dynamical systems with deterministic uncertainty

There is great interest in stabilizing, in some sense, dynamical system behavior in the
presence of uncertainty. The subject has been considered and treated from two points

1A. Novak, Applying the Leitmann–Stalford Sufficiency Conditions to Maximization Control Prob-
lems with Non-Concave Hamiltonian, 11th Workshop on Optimal Control, Dynamic Games and Nonlin-
ear Systems, Amsterdam May–June, 2010.
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of view: the uncertainty is statistical or it is deterministic. It is the latter model to
which Leitmann has contributed. His approach appears to have been inspired by his
exposure to Lyapunov stability theory on the one hand and to dynamic game theory on
the other. Thus he has adopted a “worst case design” approach by allowing for a “game
against nature”, that is, a qualitative game with uncertainty modeled as a destabilizing
opponent [19]–[21]. He soon dropped the game approach in favor of the simpler and
more direct Lyapunov one, especially in the case of nonlinear systems. In order to assure
continuous feedback control, he replaced the requirement for asymptotic stability by
guaranteed ultimate boundedness as well as state feedback by output feedback [22]–[28].
Also of interest he considered the model following [29]. There exists a very large number
of papers on applications in engineering, OR, economics, and related areas. A selected
sample is the included of Section 3.

2.3 A coordinate transformation-based equivalent problem approach to op-

timization

Leitmann invoked invariance arguments to obtain the maximum propulsive efficiency of
rockets, Chapter 13 of [A]. By the way, this topic had been the subject of many incorrect
solutions up to that time, all of which violated required invariance. In 1967 Leitmann
proposed a coordinate transformation which results in a problem which is “equivalent” to
the originally posed problem and whose optimal solution is obtained directly, that is by
simple inspection. He considered this approach for the simplest problem of the calculus
of variations [30]. In the late 1990’s, Leitmann returned to this idea and extended the
method by obtaining results applicable to a wider class of optimization problems, [31]–
[34]. Shortly thereafter, D.A. Carlson2 pointed out a relation of Leitmann’s approach to
that of Caratheodory in his classic 1935 book on the calculus of variations and partial
differential equations. As in the case with Blaquiere in the early 1960’s, this led to
a lasting collaboration and personal friendship which continues to this day and which
has led to many contributions to the subject, [35]–[39], [41]. A relation to Noether’s
invariance transformations was noted by Torres [40]. And more recently, further aspects
of the relation to the work of Caratheodory, in particular the substantial simplification
due to the use of Leitmann’s regularizing transformations, was noted by Wagener3 .

2.4 Avoidance control

There is ever-growing interest in collision avoidance, whether in the sense of evading a
pursuier [42]–[44] or in view of such concerns due to increasing volume of highway and
air traffic. To address this type of problem, Leitmann and Skowronski introduced the
notion of avoidance control in the 1970’s, not from a game–theoretic but rather from a
Lyapunov theory point of view [45], [46]. This method has become the primary control
scheme for collision avoidance currently in use4 .

2D.A. Carlson, An observation on two methods of obtaining solutions to variational problems, J.
Optimiz. Theory and Appl., Vol. 115, No. 1, 2002.

3F.O.O. Wagener, On the Leitmann equivalent problem approach, J. Optimiz. Theory and Appl.,
Vol. 142, No. 1, 2009.

4D.M. Stipanović, A survey and some new results in avoidance control, 15th Int. Workshop on
Dynamics and Control, eds. J. Rodellar and E. Reithmeier, p. 166f., CIMNE, Barcelona, 2009.
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3 Applications-directed Research

While most of Leitmann’s research has been and continues to be oriented toward appli-
cations, much has been applied to specific problems ranging over a wide array of subjects
including some already mentioned in the preceding sections. Here then is a sample of his
work dealing with specific problems: Economics [47, 48]; ecology [49]–[51]; earthquake
engineering [52]–[54]; fisheries [55]–[57]; flight in wind shear [58]–[61]; robotics [62]–[64];
medical applications [65]–[67]; vibration suppression [68]–[69]; terrorism [70], [71].

4 University Activities

In addition to the professional appointment from 1957–1991, when he became an emer-
itus, he acted as a consultant to industrial companies and as member of governmental
committees as well as University ones. He was the first University ombudsman, acting
dean and associate in three areas. Afterwards, he served for four years as chairman of
the engineering faculty and is at present associate dean for International Relations and
professor in the graduate school.

5 Professional Activities

Leitmann has been on many professional society committees and was the founding pres-
ident of the Alexander von Humboldt Association of America. He edited the Journal of
Mathematical Analysis and Applications for 16 years, and he has served and continues
to serve as Associate Editor of four journals and as member of eight editorial boards.

6 Awards

Leitmann is a member of the National Academy of Engineering of the USA and a foreign
member of six academies of science or engineering. He received numerous medals and
prizes including the Senior Scientist Award as well as the Humboldt and the Heisenberg
medals of the Humboldt Foundation. He received the Levy Medal of the Franklin Insti-
tute and the Oldenburger Medal of the American Society of Mechanical Engineering. He
was given the top awards of the professional societies in his field, the Isaacs Award of
the International Society of Dynamic Games and the Bellman Control Heritage Award
of the American Automatic Control Council. He is Commander of the Orders of Merit
of Germany and of Italy, and he holds three honorary doctorates. Most recently, he was
awarded the Medal of Honor of the Universität der Bundeswehr.

7 Public Activities

Leitmann is a keen supporter of the arts. Currently he is Chairman of the Board
of the Artship Foundation of San Francisco. He has published his free translation of
Bela Balasz’ “Mantle of Dreams”, Kodansha International, Tokyo. He performs occa-
sionally in plays presented by the university drama club. G. Leitmann has published
over 300 books and papers. The bibliography and other information can be seen on
www.me.berkeley.edu/faculty/leitmann.

List of Monographs and Books by George Leitmann

[A] Leitmann, G. Optimization Techniques. New York: Academic Press, 1962. (Ed. and
co-author)
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Abstract: This paper deals with an observer design for a P-Cell Chopper. The goal
is to reduce drastically the number of sensors in such system by using an observer
in order to estimate all the capacitor voltages. Furthermore, considering an instan-
taneous model of a p-cell chopper, an interconnected observer is designed in order to
estimate the capacitor voltages. This is realized by using only the load current mea-
surement. Simulation results are given in order to illustrate the performance of such
observer. To show the validity of our approach, experiments based an DSP results
are presented.
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1 Introduction

The power electronics knows important technological developments. This is carried out
thanks to the developments of the power semiconductor but also of new energy conversion
systems. Among these systems, Multi-Cell Chopper are based on the association in series
of the elementary cells of commutation. This structure, appeared at the beginning of
the 90’s [20, 18], and makes it possible to share the constraints in tension and also to
improve the harmonic contents of the waves forms [10].
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Form the practical point of view, the series multi-cell converter, designed by the
LEEI (Toulouse-France), leads to a safe series association of components working in
switching mode. This new structure combines additional benefits: attenuation of the
voltage jump and modularity of the topologies. All these qualities make this new topology
very attractive in many industrial applications. For instance, GEC/ACEC implements
this proposal to realize the input chopper which supplies their ”T13” locomotives in
power. Three-phase inverters called ”symphony” and developed by Alstom to drive
electric motors are also based on the same principe.

To benefit as well as possible from the large potential of the multicellular structure,
researcher went in various directions.

Furthermore, the normal operation of the series p-cell converter is obtained when the
voltages are vci = iE/p, i = 1, ..., p−1 (see Figure 2). These voltages are generated when
a suitable control of switches is applied in order to obtain a specific value. The control
inserted of the switches allows cancelling the harmonics at the switching frequency Fsw

and reducing the ripple of the chopped voltage. However, these properties are lost if
the voltages of these capacitors drift. On the other hand, if a specific control is desired,
it is advisable to measure these voltages in order to implement it. But, it is not easy
because extra sensors are necessary to measure these voltages, then it increases the cost.
For this reason, it should be avoided and the estimation of these voltages becomes an
attractive and economical option. It is for such reason that, an original method to
eliminate such sensors is the use of observers. From, control theory point of view, an
observer is considered as a software sensor used to estimate the unmeasurable variables
of a system.

On the other hand, several approaches have been considered to develop new methods
of control and observation of the p-cell converter. Initially, models have been developed
to describe their instantaneous behaviors [10], harmonic [11] or averaging [1]. These
various models were used as the base for the development of control laws in open-loop
[18] and in closed-loop [15, 21].

Until now, all these p-cell converters are driven successfully, by means of a fix fre-
quency modulator based on pulse width modulation(PWM). Current control algorithms
do not take into account the fact that any power converter is a discrete and discontinuous
plant, or, at least a hybrid one. Nevertheless, the profitable skill of PWM technique is
to ensure a well-known steady state behavior which is ”optimal” for the electric load
with respect to harmonic attenuation. Furthermore, some representations of the p-cell
converter considered complex models and need to be discretized in order to design a
discrete observer to be implemented.

Then, in all proposed methods a considerable number of feedback signals are required
which are associated with extra cost of sensing devices. To reduce the cost of sensors, a
methodology to estimate the voltages in the capacitors is necessary.

In [3, 4], the observer canonical form consisting of a linear output map and linear dy-
namics driven by a nonlinear output injection is used. The resulting observer has exactly
linear error dynamics, i.e., nonlinearities are compensated exactly. The approaches sug-
gested in [5, 6, 7] rely on the observability canonical form, which has significantly weaker
existence conditions than the observer canonical form. In the observability canonical
form, the observer is designed by a high-gain technique with a constant observer gain,
i.e., the nonlinearities are not compensated but dominated by a linear part. For an imple-
mentation of the observer in the original coordinates one gets a Luenberger-like observer
with a possibly nonlinear gain vector field [8, 9]. In the last decade, new approaches
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have been developed for nonlinear systems that are not uniformly observable. Several
approaches use Kalman-like decompositions [8].

In this article, we develop an observer for p-cell chopper based on an instantaneous
model describing the dynamical behavior of the p-cell converter. This model is con-
structed in order to design an observer estimating each flying capacitor voltage. The
proposed observer design is based on the class of nonlinear systems which can be written
in the form of affine state systems, for which the problem of state observer design has
been studied. This class of observers is based on the excitation condition in order to
guarantee its convergence.

Figure 1: General structure of the dSPACE observer.

The objective of this work is to design an observer for a P-Cell Chopper converter
in order to estimate the unmeasurable voltages of the capacitors using the load current
i and the voltage of the source E, and give an experimental validation of it. The block
diagram describing the proposed observation scheme is illustrated in Figure 1.

The paper is organized as follows: In Section 2, the instantaneous model of P-cell
chopper is introduced. In Section 3, the observability properties of the P-Cell Chopper
model are given. The observer design based on an new representation of the instantaneous
model of the converter is presented in Section 4. In Section 5, using a model of 5
cells chopper, simulations results are shown in order to illustrate the performance of
the proposed observer. The proposed observation scheme is validated and experimental
results are given. Finally, some conclusions end the paper.

2 P-Cell Converter Model

Throughout the paper, the p-cell converter connects in series p elementary cells and a
passive load R and L as illustrated in Figure 2. Each switching cell is controlled by a
binary input signal Sk(t) for k = 1, ..., p.
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Figure 2: A p-cells converter.

This signal Sk(t) is equal to 1 when the upper switch of the cell is conducting and
to 0 when the lower complementary switch of the cell is conducting. The mathematical
model describing the behavior of a p-cell converter is given by

Σpcell :



























































dI
dt

= −R
L
I + E

L
Sp −

vcp−1

L
(Sp − Sp−1) . . .−

vc1
L

(S2 − S1) ,

dvc1
dt

= 1
c1

(S2 − S1) I,

dvc2
dt

= 1
c2

(S3 − S2) I,

...

dvcp−1

dt
= 1

cp
(Sp − Sp−1) I,

y = I,

(1)

where vck is the kth flying capacitor voltage and I is the output load current, and is the
only measurable output. ck for k = 1, ..., p; are the capacitors, E is the voltage of the
source, R is the resistance and L is the inductance.

Now, from the instantaneous state model of the p-cell converter given in (1), we will
analyze the observability properties of such system in order to construct an observer. It
is well known that the observability of nonlinear systems depends on the applied input,
and a study of the different classes of inputs which render the system observable or
unobservable is given in [16, 17].

Rewriting the model (1) in the state affine form, we have:

Σ :

{

Ẋ = Ā(u)X + B̄(u),
y = C̄X,

(2)

where X = (I, vc1 , ..., vcp−1
) is the state vector, u = {S1, ..., Sp} is the input sequence

applied to the converter,
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Ā(u) =









−R
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− 1
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(S2 − S1) . . . − 1

L
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− 1
c1

(S2 − S1) 0 . . . 0

. . . . . . . . . . . .
− 1

cp−1
(Sp − Sp−1) 0 . . . 0









,

B̄(u) =











E
L
Sp

0
...
0











, C̄ = (1, 0, . . . , 0) .

Regarding the instantaneous model of the multi-cell converter (2), we can see that
there are several operating switching modes (Sk, Sk+1) which render the system unob-
servable, i.e. for the following operating switching modes

(Sk, Sk+1) = (1, 1) and (Sk, Sk+1) = (0, 0), for k = 1, ..., p− 1,

the system becomes unobservable. These operating switching modes are not affected by
the capacitor voltage. However, these cases occur only for a part of control sequence. If it
occurs for all the control sequences this is not of physical interest because they represent
particular situations in which the cell chopper is not operating.

Now, the sequence of corresponding input u = {u1, ..., up−1}, where uk = Sk+1 − Sk,
applied to the system (1), is sufficiently periodic. Furthermore, assuming that the current
I is the only measurable variable of the system (2), from the observability rank condition,
it follows that

Rank
(

C̄, C̄Ā(u), ..., C̄Āp−1(u)
)T

= 2. (3)

It is clear that the system is not of full rank, i.e. the system is not observable. Then,
in order to overcome this difficulty we consider a new representation of the multi-cell
converted which is constituted of a set of subsystems of dimension 2. These subsystems
are such that the whole system is represented as an interconnected structure. Further-
more, an analysis of the observability of each subsystem is required and is given in the
next section.

3 Observer Design for a P-Cell Chopper

Now, in this section, the design of p − 1 interconnected observers for p- cell chopper is
given. For that, we will consider a different representation of system (1) such that the
original system can be splitted into a suitable set of p− 1 subsystems for which it will be
possible to design an observer for estimating the capacitor voltages vcj , for j = 1, ..., p−1.

Next, considering that system (1) can be splitted into p−1 interconnected subsystems
of the form

Σk :



















dI
dt

= −R
L
I + E

L
SP − 1

L

p−1
∑

j=1

(Sj+1 − Sj) vcj ,

dvck
dt

= 1
ck

(Sk+1 − Sk) i,

y = I,
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where the above system can be represented, for k = 1, ..., p− 1, in a compact form as:

Σk :

{

Ẋk = Ak (uk)Xk +Bk(ūk, X̄k),
y = CkXk,

(4)

where Xk = (I, vck)
T

is the state vector of subsystem (4), X =
(

I, vc1 , ..., vcp−1

)T

is the state of system (1), X̄k = (vc1 , ..., vck−1
, vck+1

, ..., vcp−1
)T , uk = Sk+1 − Sk, for

k = 1, ..., p − 1; and ūk = (u1, ..., uk−1, uk+1, ..., up)
T , are the inputs. Furthermore,

y = CkXk = I is the output of subsystem (4) with Ck = (1 0) for k = 1, ..., p− 1; and

Ak (uk) =

(

−R
L

− (uk)
L

(uk)
ck

0

)

, (5)

Bk(ūk, X̄k) =





− 1
L

p−1
∑

j=1, j 6=k

(Sj+1 − Sj)vcj +
E
L
Sp

0



 =

(

− 1
L
ūT
k X̄k +

E
L
Sp

0

)

. (6)

It is clear that for uk = 0, the system becomes unobservable. However, each subsystem
kth, which is of dimension 2, is observable for an appropriate input uk and its rank is
equal to 2. Furthermore, in order to estimate the unmeasurable variables, no feedback is
applied to excite the converter as it has been proposed in other works. Instead of this, we
consider an equivalent concept which is the well-known concept of regularly persistent
input (see Appendix). More precisely, a regularly persistent input applied to the system
allows to excite the system sufficiently to obtain the information necessary to be able
to reconstruct the unmeasurable variables by means of an observer. If the input is not
sufficiently persistent, then it is not possible to reconstruct the state of the system from
the measured output and the applied input.

Furthermore, the function Bk(ūk, X̄k) is the interconnection term depending on inputs
and states of each subsystem. Notice that the output is the current I(t) and is the same
for each subsystem. Then, the following system

Ok :

{

Żk = Ak (uk)Zk +Bk(ūk, Z̄k)− P−1
k CT

k (yk − ŷk) ,

Ṗk = −θkPk −AT
k (uk)Pk − PkAk(uk) +CT

kCk,
(7)

is an observer for subsystem (4), for k = 1, 2, ..., p−1; where θk > 0, ŷk = CkXk = Î and
P−1
k CT

k is the gain of the observer which depends on the solution of the second equation

of (7) for each subsystem with Zk = (Î , v̂ck)
T , Z̄k = (v̂c1 , ..., v̂ck−1

, v̂ck+1
, ..., v̂cp−1

)T and
Ak (uk) is given in (5) and for k = 1, 2, ..., p− 1;

Bk(ūk, Z̄k) =





− 1
L

p−1
∑

j=1, j 6=k

(Sj+1 − Sj)v̂cj +
E
L
Sp

0



 =

(

− 1
L
ūT
k Z̄k +

E
L
Sp

0

)

.

Now, consider that system (1) can be represented as follows:

Σ :



















Ẋ1 = A1 (u1)X1 +B1(ū1, X̄1),

Ẋ2 = A2 (u2)X2 +B2(ū2, X̄2),
...

Ẋp−1 = Ap−1 (up−1)Xp−1 +Bp−1(ūp−1, X̄p−1).

(8)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10 (3) (2010) 211–224 217

Notice that the output is the current I(t) and is the same for each subsystem. The
main idea of the paper is to construct an observer for the whole system (1), from the
separate observer design of each subsystem (4).

In general, if each (7) is an exponential observer for (4), for k = 1, 2, ..., p− 1; then
the following interconnected system

O :



























































Ż1 = A1 (u1)Z1 +B1(ū1, Z̄1)− P−1
1 CT

1 (y − ŷ) ,

Ż2 = A2 (u2)Z2 +B2(ū2, Z̄2)− P−1
2 CT

2 (y − ŷ) ,
...

Żp−1 = Ap−1 (up−1)Zp−1 +Bp−1(ūp−1, Z̄p−1)− P−1
p−1C

T
p−1 (y − ŷ) ,

Ṗ1 = −θ1P1 −AT
1 (u1)P1 − P1A1(u1) +CT

1 C1,

Ṗ2 = −θ2P2 −AT
2 (u2)P2 − P2A2(u2) +CT

2 C2,
...

Ṗp−1 = −θp−1Pp−1 −AT
p−1(up−1)Pp−1 − Pp−1Ap−1(up−1) +CT

p−1Cp−1,

(9)

is an observer for the interconnected system (8).

Remark 3.1 The proposed observer 9 works for inputs satisfying the regularly per-
sistent condition, which is equivalent to each subsystem (4) being observable, and hence,
observer (7) works at the same time while the other subsystems become observable when
their corresponding input satisfies the regularly persistent condition.

Now, we will give the sufficient conditions which ensure the convergence of the inter-
connected observer (9). For that, we introduce the following assumptions.

Assumption 3.1 Assume that the input uk = Sk+1 − Sk, for k = 1, 2, ..., p − 1; is
regularly persistent input for subsystem (4), and admits an exponential observer (7).
The estimation error, defined as εk = Zk −Xk, is bounded.

Assumption 3.2 The term Bk(ūk, X̄k) does not destroy the observability property
of the subsystem (4), under the action of the regularly persistent input uk = (Sk+1 − Sk),
for k = 1, 2, ..., p− 1. Moreover, Bk(ūk, X̄k) is Lipschitz with respect to X̄k and uniform
with respect to ūk, for k = 1, 2, ..., p− 1.

The observer convergence can be proved only if the inputs uk are regularly persistent,
i.e. it is a class of admissible inputs that allows to observe the system (for more details
see [19, 20]). This assumption guarantees that the observer works and that its gain is
well-defined, i.e. the matrices Pk, for k = 1, 2, ..., p− 1, are nonsingular (see appendix).

The following result can be established.

Proposition 3.1 Consider the system (1) can be represented in the form of system
(8), where each subsystem (4) satisfies the assumptions 3.1 and 3.2, for k = 1, 2, ..., p−1.
Then, system (9) is an exponential observer for system (8). Furthermore, the estimation
error, defined as ε = Z −X, converges exponentially to zero.

Proof In order to prove the convergence of the observer (9), first we consider the
dynamics of subsystem (4), for which an observer of the form (7) can be designed. Then,
defining the estimation error εk = Zk −Xk whose dynamics is given by
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ε̇k = {A(uk)− P−1
k CT

kCk}εk +∆Bk(ūk, X̄k, Z̄k) (10)

for k = 1, . . . , p− 1; where ∆Bk(ūk, X̄k, Z̄k) = Bk(ūk, Z̄k)− Bk(ūk, X̄k).

From Assumption 3.1 and Lemma 7.1 (see Appendix), we can define V =
p−1
∑

l=1,

Vk

as a Lyapunov function for the interconnected system (8), where V (εk) = εTk Pkεk is a
Lyapunov function for subsystem (4). It is clear that these functions are well defined
because the matrices Pk are nonsingular.

Taking the time derivative of V (εk), it follows that

V̇ (εk) ≤ −θkV (εk) + εTj Pk∆Bk(ūk, X̄k, Z̄k) for k = 1, . . . , p− 1. (11)

Now, adding and subtracting the term ∆Bk(ūk, X̄k, Z̄k)
TPk∆Bk(ūk, X̄k, Z̄k), we have

V̇ (εk) ≤ −θkV (εk) + 2εTkPk∆Bk(ūk, X̄k, Z̄k)±∆Bk(ūk, X̄k, Z̄k)
TPk∆Bk(ūk, X̄k, Z̄k).

Next, regrouping the appropriate terms gives:

V̇ (εk) ≤ −(θk − 1)‖εk‖2Pk

−‖εk‖
2
Pk

+ 2εTk Pk∆Bk(ūk, X̄k, Z̄k)− ‖∆Bk(ūk, X̄k, Z̄k)‖
2
Pk

+‖∆Bk(ūk, X̄k, Z̄k)‖
2
Pk
.

(12)

It follows that

V̇ (εk) ≤ −(θk − 1)‖εk‖
2
Pk

+ ‖∆Bk(ūk, X̄k, Z̄k)‖
2
Pk
. (13)

Now, from assumption 3.2, Bk(ūk, X̄k, Z̄k) is Lipschitz, it follows that

‖∆Bk(ūk, X̄k, Z̄k)‖
2
Pk

<

p−1
∑

l=1,l 6=k

λl‖εl‖
2
Pk
. (14)

we get:
V̇ (εk) ≤ −(θk − 1)‖εk‖

2
Pk

+ λl‖εl‖
2
Pk
, (15)

the time derivative of V is given by

V̇ (ε) =

p−1
∑

k=1,

V̇ (εk), (16)

V̇ (ε) ≤

p−1
∑

k=1,

{

− (θk − 1)‖εk‖
2
Pk

+

p
∑

l=1,l 6=k

λl‖εl‖
2
Pk

}

. (17)

Using the lemma on equivalence of norms, i.e. there exists a positive constant µl such
that ‖εl‖

2
Pk

≤ µl‖εl‖
2
Pl
, ∀l = 1, ..., p− 1. Then, it follows that

V̇ (ε) ≤

p−1
∑

k=1,

{

− (θk − 1)‖εk‖
2
Pk

+

p−1
∑

l=1,l 6=k

λlµl‖εl‖
2
Pk

}

(18)
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or

V̇ (ε) ≤

p−1
∑

k=1

−{(θk − 1)− (p− 1)λlµl)} ‖εj‖
2
Pk
. (19)

Finally, we have V (ε) ≤ V (ε(t0))e
−γ(t−t0), for γ = min (γ1, ..., γp−1) where γk =

(θk − 1)− (p− 1)λkµk). Taking ε = col(ε1, ..., εp−1), it is easy to see that

‖ε(t)‖ ≤ K‖ε(t0)‖e
−γ(t−t0). (20)

This ends the proof.

4 Observer for 5-Cell Chopper

Now, in this section we present the proposed methodology which is applied to a model
of 5-Cell Chopper converter. For that, consider the following model of 5-cell chopper:

Σ5cell :











































dI
dt

= −R
L
I + E

L
S5 −

(S2−S1)
L

vc1 −
(S3−S2)

L
vc2 −

(S4−S3)
L

vc3 −
(S5−S4)

L
vc4 ,

dvc1
dt

= 1
c1

(S2 − S1) I,

dvc2
dt

= 1
c2

(S3 − S2) I,

dvc3
dt

= 1
c3

(S4 − S3) I,

dvc4
dt

= 1
c4

(S5 − S4) I.

(21)
Following the ideas of this original methodology, the model can be rewritten in the

following form:

Σ1 :

{

dI
dt

= −R
L
I + E

L
S5 −

(S2−S1)
L

vc1 −
(S3−S2)

L
vc2 −

(S4−S3)
L

vc3 −
(S5−S4)

L
vc4 ,

dvc1
dt

= 1
c1

(S2 − S1) I,

Σ2 :

{

dI
dt

= −R
L
I + E

L
S5 −

(S2−S1)
L

vc1 −
(S3−S2)

L
vc2 −

(S4−S3)
L

vc3 −
(S5−S4)

L
vc4 ,

dvc2
dt

= 1
c2

(S3 − S2) I,

Σ3 :

{

dI
dt

= −R
L
I + E

L
S5 −

(S2−S1)
L

vc1 −
(S3−S2)

L
vc2 −

(S4−S3)
L

vc3 −
(S5−S4)

L
vc4 ,

dvc3
dt

= 1
c3

(S4 − S3) I,

Σ4 :

{

dI
dt

= −R
L
I + E

L
S5 −

(S2−S1)
L

vc1 −
(S3−S2)

L
vc2 −

(S4−S3)
L

vc3 −
(S5−S4)

L
vc4 ,

dvc4
dt

= 1
c4

(S5 − S4) I.

This set of subsystems can be represented in an interconnected compact form as
follows

Σi :

{

Ẋi = Ai(ui)Xi +Bi(ūi, X̄i),
y = CiXi = I,

for i = 1, ..., 4.

It can be assumed that the control sequence of inputs provides the sufficient persis-
tency to guarantee that the observer works correctly (see appendix and assumption 3.1).
Using this assumption, an observer for the above interconnected subsystems is given by

Oi :

{

Ẑi = Ai(ui)X̂i +Bi(ūi, Z̄i) + P−1
i CT

i (y − ŷ),

Ṗi = −θiPi −AT
i (ui)Pi + PiAi(ui) +CT

i Ci,
for i = 1, ..., 4.
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5 Experimental Results

In this section, we show some experimental results obtained by using the proposed in-
terconnected observer. In order to illustrate the performance of this observer, where the
estimated states converge to the real states, the instantaneous converter model of 5 cells
(21) is used for the observer design, where the capacitor voltages are estimated. The
parameters of the model were chosen as follows:

fd = 16kHz, C = 40µF, L = 1mH, R = 100Ω, E = 120V.

Furthermore, to carry out the experimentation and show the efficiency of the proposed
observer, we use a trajectory for the input voltage as given in Figure 3.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

Figure 3: The input voltage E.

Finally, the following initial conditions of the system and the observer were selected
as follows. For the system: Xk = (i, vck)

T
= (0, 0)T and for the observer: Zk = (ı̂, v̂ck)

are given as (1, 20), (1, 30) , (1, 35) and (1, 40) , for k = 1, ..., 4. The parameters θk, for
k = 1, ..., 4, which are the design parameters used to control the rate of convergence of
each observer, were chosen as follows: θ1 = 30, θ2 = 40, θ3 = 50 and θ4 = 60.

5.1 Benchmark observation

The experimental setup realized based on the DS1103 dSPACE kit shown in Figure 1 gives
the global scheme of the experimental setup. This kit allows real time implementation of
converter, it includes several functions such as analog/digital converters and digital signal
filtering. In order to run the application we must write our algorithm in C language.
Then, we use the RTW and RTI packages to compile and load the algorithm on processor.
To visualize and adjust the control parameters in real time we use the software control-
desk which allows conducting the process by the computer.

The multi-cells chopper power stage is based on the use of MOSFET. The pulsewidth-
modulator (PWM) blocks are generated by FPGA card. The observer is first designed
in Simulink/Matlab, then, the Real-Time Workshop is used to automatically gener-
ate optimized C code for real time applications. Afterward, the interface between
Simulink/Matlab and the digital signal processor (DSP) (DS1103 of dSpace) allows the
control algorithm to be run on the hardware.

The master bit I/O is used to generate the required 5 gate signals, and six analog-to-
digital converters (ADCs) are used for the sensed line-currents, capacitors voltage, and
output voltages. An optical interface board is also designed in order to isolate the entire
DSP master bit I/O and ADCS.
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5.2 Experimental evaluation

The experimental results of Figures 4–8 are obtained under the following test conditions:
The sample time was chosen equal to 50 micro-seconds, and the data acquisition is close
to 1 sec in this experimental evaluation. We assume that all parameter are known.
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Figure 4: Capacitor voltage Vc1 measured and estimated.
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Figure 5: Capacitor voltage Vc2 measured and estimated.
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Figure 6: Capacitor voltage Vc3 measured and estimated.

In order to compare the real and estimated voltages 4 sensors were used, an optical
interface was used in this case. Furthermore, to reduce the noise in the signals, a low
pass filter was required. In Figures 4–7, we can see the convergence of the estimated
and real voltage given by the observer to the real variables, this highlights the well
fader performance of the proposed observation scheme. From these plots, we can see
that substantial transient of the voltages estimated, is due to the error in the initial
conditions. However, these transients can be reduced choosing suitable initial conditions
of the observer. In this experiment, the initial conditions were chosen far of them of
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Figure 7: Capacitor voltage Vc4 measured and estimated.
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Figure 8: The output current load.

the converter to show the performance of the observer. The output current i is given in
Figure 8.

Note that all experimental results are obtained by using a second order filter.

6 Conclusion

In this paper, using an instantaneous model of a Multi-Cell converter, an original method-
ology of observation has been presented. An observer design has been presented and
validated experimentally, to estimate the capacitor voltages from the instantaneous mea-
surement of the current. The practical interest of such observer has been illustrated by
means of experimental results. Furthermore, sufficient conditions has been given in or-
der to prove the exponential convergence to zero, with an arbitrary rate of convergence,
of the proposed interconnected observer, which only depends on the persistence of the
switching control sequence.
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7 Appendix: Some Mathematical Preliminaries

We introduce some definitions related to the inputs applied to the system. Consider a
state-affine controlled system of the following form

ẋ = A(v)x +B(v), y = Cx,

where x ∈ Rn; v ∈ Rm; y ∈ Rp with A : Rm → M(n,m);B : Rm → M(n, 1) continuous,
and C ∈ M(p, n), where M(k, l) denotes the space of k × l matrices with coefficients in
R; k (resp.l) is the number of rows (resp. columns).

Notation. Let Φv(τ, t) denote the transition matrix of:

d

dt
Φv(τ, t) = A(v(τ))Φv(τ, t), Φv(t, t) = I,

with the classical relation: Φv(t1, t2)Φv(t2, t3) = Φv(t1, t3). We then define:

• The Observability Grammian: Γ(t, T, v) =
t+T
∫

t

ΦT
v (τ, t)C

TCΦv(τ, t)dτ.

• The Universality index : γ(t, T, v) = min
i
(λi(Γ(t, T, v))), where the λi(M) stand for

the eigenvalues of a given matrix M .

The input functions are assumed to be measurable and such that A(v) is bounded on the
set of admissible inputs of R+. We recall below some required results of input functions
ensuring the existence of an observer for (4).

Definition 7.1 (Regular Persistence). A measurable bounded input v is said to be
regularly persistent for the state-affine system (4) if there exist T > 0;α > 0 and t0 > 0
such that γ(t, T, v) > α for every t ≥ t0.

Now, a further result based on regular persistence is introduced.

Lemma 7.1 Assume that the input uk is regularly persistent for system (2) and
consider the following Lyapunov differential equation:

Ṗk = −θkPk −AT (uk)Pk − PkA(uk) + CT
k Ck (22)

with Pk(0) > 0. Then, ∃θk0 > 0 such that for any symmetric positive definite matrix
Pk(0), ∃θk ≥ θk0

, ∃αk, βk > 0, t0 > 0 : ∀t > t0, αkI < Pk(t) < βkI, where I is the
identity matrix.
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Abstract: In this paper we deal with the problem of absolute stabilization for Lur’e
systems with time-varying delay in a range. An appropriate Lyapunov-Krasovskii
functional is proposed to investigate the delay-range-dependant stabilization prob-
lem.The time-varying delay is assumed to belong to an interval and no restriction on
its derivative is needed. Some relaxation matrices are introduced, which allow the
delay to be a fast time-varying function. Furthermore, a numerical example is given
to prove effectiveness of our main result.
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1 Introduction

During the last two decades, considerable attention has been devoted to the problem of
delay-dependent stability analysis and controller design for time-delay systems. For the
recent progress, the reader is referred to [10, 11, 19, 27, 33, 37]. It is well known that the
choice of an appropriate Lyapunov–Krasovskii functional (LKF) is crucial for deriving
stability criteria and for obtaining a solution to various control problems.

We shall note that studies of stability of time-delay systems have grown steadily.
Indeed, since 1940 all the results were delay independent see for examples [3, 9, 15, 20,
22, 29, 30]. But, the problem is that when the time-delay is small, these results are often
overly conservative, especially, they are not applicable to closed-loop systems which are
open-loop unstable and are stabilized using delayed inputs. That’s why, many efforts
were sacrificed to provide delay-dependant stability criteria.

∗ Corresponding author: mailto:MohamedAli.Hammami@fss.rnu.tn

c© 2010 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 225

mailto:MohamedAli.Hammami@fss.rnu.tn
http://e-ndst.kiev.ua


226 I.ELLOUZE, A.BEN ABDALLAH AND M.A.HAMMAMI

Since the introduction of absolute stability by Lur’e (1957), the absolute stability
problem of nonlinear control systems with a fixed matrix in the linear part of the system
and one or multiple uncertain nonlinearities satisfying the sector constraints has been
the subject of many researches see [2, 18, 22, 25, 28, 34].

From the practical point of view and since in general the delay is not known, it is
worth considering it as time-varying [5, 32, 35, 24]. For this object, one is interested in
conditions that constrain the upper and lower bounds of the delay and the upper bound
of the first derivative of the time-varying delay.

To the best of our knowledge, for the case where only the upper and lower bounds of
the interval time-varying delay are precisely known and the lower bound of the delay is
greater than zero, there is no result available for stability for such kinds of systems. It
should also be mentioned that even for the case where the lower bound of the time-varying
delay is zero and without considering the derivative of the time-varying delay, there
are few works available in the existing literature [7, 13, 6] using Lyapunov–Krasovskii
functional approach.

For this reason we are motivated to provide new stabilization criterion, in order to
improve those in which some useful terms are ignored, when estimating the upper bound
of the derivative of Lyapunov functional [8, 11].

Those resulting criteria are applicable to both fast and slow time-varying delay, in
contrast with previous works in which the upper bound of the first derivative of the
time-varying delay was either restricted to one or completely neglected, see [13, 31, 36].
It is important to mention that this became possible since the free matrices M1 and M2

of the proposition provide some extra freedom in their selection.
The stabilization criterion is formulated in the form of Linear Matrix Inequality

(LMI). Moreover, we give an example to show the applicability of our main result.

Notation: Throughout this paper, R is the set of real numbers, Rn denotes the n
dimensional Euclidean space, and R

n×m is the set of all n ×m real matrices. I is the
identity matrix. The set Cn,τM := C([−τM , 0],R

n) is the space of continuous functions
mapping the interval [−τM , 0] to R

n. The notation A > 0 is that the matrix A is positive
definite.

2 Stabilization of Nonlinear Delay System

Consider the following time-varying-delay control system

ẋ(t) = A0x(t) +A1x(t− τ(t)) +Bω(t) +Gu(t),

y(t) = C0x(t) + C1x(t− τ(t)),

ω(t) = −ψ(t, y(t)), (1)

where x(t) ∈ R
n is the system state, y(t) ∈ R

p is the measured output, and the nonlinear
function ϕ(., .) : R+×R

p → R
p is assumed to be continuous and belongs to sector [0,K],

i.e ϕ(., .) satisfies

ϕ>(t, y) [ϕ(t, y)−Ky] ≤ 0, ∀(t, y) ∈ R+ × R
p, (2)

where K is a positive definite matrix. The matrices A0, A1, B, G, C0, and C1 are real
matrices with appropriate dimensions. The time delay τ(t) is a time-varying continuous
function that satisfies

0 ≤ τm ≤ τ(t) < τM and τ̇ (t) < µ, (3)
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where τm, τM and µ are known constant reals.
Note that τm may not be equal to 0. The initial condition of 1 is given by

x(t) = φ(t), t ∈ [−τM , 0], φ ∈ Cn,τM .

It is assumed that the right-hand side of (1) is continuous and satisfies enough smoothness
conditions to ensure the existence and uniqueness of the solution through every initial
condition φ.

The closed-loop system with the state control feedback

u(t) = K̃x(t) (4)

is given by

ẋ(t) =
(

A0 +GK̃
)

x(t) +A1x(t− τ(t)) +Bω(t). (5)

We first introduce the following definition.

Definition 2.1 The system (1) is said to be absolutely stabilizable in the sector [0,K]
if there exists a control u(t) = Nx(t) such that the closed-loop system (5) is globally
uniformly asymptotically stable for any nonlinear function ϕ(t, y(t)) satisfying (2).

The development of the work in this paper requires the following lemma which can
be found in [36].

Lemma 2.1 Let x(t) ∈ R
n be a vector-valued function with first-order continuous-

derivative entries. Then, the following integral inequality holds for any matrices
M1,M2 ∈ R

n×n and X = X> > 0, and a scalar function τ := τ(t) ≥ 0:

−

∫ t

t−τ(t)

ẋ>(s)Xẋ(s)ds ≤ ξ>(t)Υξ(t) + τ(t)ξ>(t)Γ>X−1Γξ(t), (6)

where

Υ :=

[

M>
1 +M1 −M>

1 +M2

∗ −M>
2 −M2

]

, Γ> :=

[

M>
1

M>
2

]

, ξ(t) :=

[

x(t)
x(t − τ(t))

]

.

The following theorem gives a sufficient condition for stabilization of the system by
means a state feedback when the nonlinearity ψ(t, y) belongs to the sector [0,K].

Theorem 2.1 For given scalars 0 ≤ τm < τM , λi, αi, βi ∈ R, i = 1, 2, if there exist
a scalar ε > 0, positive definite matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0, R2 >
0, R3 > 0, and a matrix Y ∈ R

r×n such that the LMI

Ξ2 =























Ξ11 Ξ12 0 Ξ14 Ξ15 Ξ16 Ξ17 Ξ18 0 Ξ110 Ξ111

∗ Ξ22 0 0 Ξ25 Ξ26 0 Ξ28 0 Ξ210 Ξ211

∗ ∗ Ξ33 Ξ34 0 0 0 0 Ξ39 0 0
∗ ∗ ∗ Ξ44 0 0 Ξ47 0 Ξ49 0 0

∗ ∗ ∗ ∗ −2ε.I τMBT 0 Ξ58 0 τMBT 0

∗ ∗ ∗ ∗ ∗ −τMR1 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −τMR1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τMR3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τMR3























< 0, (7)
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where

Ξ11 = P (A0 + (λ1 + α1)I)
> + (A0 + (λ1 + α1)I)P +GY + Y >G> +Q1 +Q2 +Q3,

Ξ12 = A1P + (α2 − α1)P ,

Ξ14 = (λ2 − λ1)P ,

Ξ15 = B − εPC>
0 K,

Ξ16 = τMPA
>
0 + τMY

>G>,

Ξ17 = λ1τMR1,

Ξ18 = (τM − τm)PA>
0 + (τM − τm)Y >G>,

Ξ110 = τMPA
>
0 + τMY

>G>,

Ξ111 = α1τMR3,

Ξ22 = −(1− µ)Q3 − 2α2P ,

Ξ25 = −εPC>
1 K,

Ξ26 = τMPA
>
1 ,

Ξ28 = (τM − τm)PA>
1 ,

Ξ210 = τMPA
>
1 ,

Ξ211 = α2τMR3,

Ξ33 = −Q1 + 2β1P ,

Ξ34 = (β2 − β1)P ,

Ξ39 = β1(τM − τm)R2,

Ξ44 = −Q2 − 2(λ2 + β1)P ,

Ξ47 = λ2τMR1,

Ξ49 = β2(τM − τm)R2,

Ξ58 = (τM − τm)BT ,

Ξ88 = −(τM − τm)R2,

Ξ99 = −(τM − τm)R2,

holds. Then the origin of the controlled system (1) is stabilized by the linear state feedback

(4), where

K̃ = Y P
−1
.

Proof Let 0 ≤ τm < τM , λ1, λ2, α1, α2, β1 and β2 be fixed reals. Suppose that
there exist a scalar ε > 0, positive definite matrices P > 0, Q1 > 0, Q2 > 0, Q3 >
0, R1 > 0, R2 > 0, R3 > 0, and a matrix Y ∈ R

r×n such that the LMI (7) is satisfied.
Let as denote by Ξ

′

2 the new matrix obtained after making these changes in the matrix
Ξ2 :

P
−1

= P, P
−1

Q1 P
−1

= Q1, P
−1

Q2 P
−1

= Q2, P
−1

Q3 P
−1

= Q3, R1
−1

=

R1, R2
−1

= R2, R3
−1

= R3, K̃P
−1 = Y, Mi = λiP, Ni = βiP, Si = αiP, i = 1, 2.

Then the LMI (7) is equivalent to the feasibility of the following LMI

T> Ξ
′

2 T = Ξ1 < 0, (8)
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where T = diag{P, P, P, P, I, R1, R1, R2, R2, R3, R3},

Ξ1 =























Ξ11 Ξ12 0 Ξ14 Ξ15 Ξ16 τMMT
1 Ξ18 0 Ξ110 τMST

1

∗ Ξ22 0 0 Ξ25 τMAT
1 R1 0 Ξ28 0 τMAT

1 R3 τMST
2

∗ ∗ Ξ33 Ξ34 0 0 0 0 Ξ39 0 0

∗ ∗ ∗ Ξ44 0 0 τMMT
2 0 Ξ49 0 0

∗ ∗ ∗ ∗ Ξ55 τMBTR1 0 Ξ58 0 τMBTR3 0
∗ ∗ ∗ ∗ ∗ −τMR1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −τMR1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τMR3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τMR3























< 0,

where

Ξ11 = (A0 +GK̃)>P + P (A0 +GK̃) +Q1 +Q2 +Q3 +M>
1 +M1 + S>

1 + S1,

Ξ12 = PA1 − S>
1 + S2,

Ξ14 = −M>
1 +M2,

Ξ15 = PB − ε C>
0 K,

Ξ16 = τM (A0 +GK̃)TR1,

Ξ110 = τM (A0 +GK̃)TR3,

Ξ22 = −(1− µ)Q3 − S>
2 − S2,

Ξ25 = −ε C>
1 K,

Ξ33 = −Q1 +N>
1 +N1,

Ξ34 = −N>
1 +N2,

Ξ44 = −Q2 −M>
2 −M2 −N>

2 −N2,

Ξ55 = −2ε I,

Ξ18 = (τM − τm)(A0 +GK̃)TR2,

Ξ28 = (τM − τm)AT
1 R2,

Ξ58 = (τM − τm)BTR2,

Ξ88 = −(τM − τm)R2,

Ξ39 = (τM − τm)NT
1 ,

Ξ49 = (τM − τm)NT
2 ,

Ξ99 = −(τM − τm)R2.

Next let us consider the Lyapunov–Krasovskii functional candidate

V (t, xt) = x>(t)Px(t) +

∫ t

t−τm

x>(s)Q1x(s)ds +

∫ t

t−τM

x>(s)Q2x(s)ds

+

∫ t

t−τ(t)

x>(s)Q3x(s)ds+

∫ 0

−τM

∫ t

t+θ

ẋ>(s)R1ẋ(s)dsdθ

+

∫ −τm

−τM

∫ t

t+θ

ẋ>(s)R2ẋ(s)dsdθ

+

∫ 0

−τ(t)

∫ t

t+θ

ẋ>(s)R3ẋ(s)dsdθ.

Recall that matrices P, Qi, Ri, i = 1, 2, 3 are positive definite as well as the matrices
P , Qi, Ri, i = 1, 2, 3. Then the derivative of V along the trajectories of system (1) is
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given by

V̇ (t, xt) = 2ẋ>(t)Px(t) + x>(t)Q1x(t)− x>(t− τm)Q1x(t− τm)

+x>(t)Q2x(t) − x>(t− τM )Q2x(t− τM )

+x>(t)Q3x(t) − (1− τ̇ (t))x>(t− τ(t))Q3x(t − τ(t))

+τM ẋ
>(t)R1ẋ(t)−

∫ t

t−τM

ẋ>(s)R1ẋ(s)ds

+(τM − τm)ẋ>(t)R2ẋ(t)−

∫ t

t−τM

−τmẋ
>(s)R2ẋ(s)ds

+τ(t)ẋ>(t)R3ẋ(t)−

∫ t

t−τ(t)

ẋ>(s)R3ẋ(s)ds. (9)

Using (3) and applying the integral inequality (4) to the right-hand side of (9), we obtain

V̇ (t, xt) ≤ 2ẋ>(t)Px(t) + x>(t)[Q1 +Q2 +Q3]x(t) − x>(t− τm)Q1x(t − τm)

−x>(t− τM )Q2x(t− τM )− (1 − µ)x>(t− τ(t))Q3x(t− τ(t))

+ẋ>(t)[τMR1 + (τM − τm)R2 + τMR3]ẋ(t)

+ξ>1 (t)Υ1ξ1(t) + τMξ
>
1 (t)Γ>

1 R
−1
1 Γ1ξ1(t)

+ξ>2 (t)Υ2ξ2(t) + (τM − τm)ξ>2 (t)Γ>
2 R

−1
2 Γ2ξ2(t)

+ξ>3 (t)Υ3ξ3(t) + τMξ
>
3 (t)Γ>

3 R
−1
3 Γ3ξ3(t)

with

ξ1(t) =

[

x(t)
x(t− τM )

]

,Γ>
1 =

[

M>
1

M>
2

]

,Υ1 =

[

M>
1 +M1 −M>

1 +M2

∗ −M>
2 −M2

]

,

ξ2(t) =

[

x(t− τm)
x(t− τM )

]

,Γ>
2 =

[

N>
1

N>
2

]

,Υ2 =

[

N>
1 +N1 −N>

1 +N2

∗ −N>
2 −N2

]

,

ξ3(t) =

[

x(t)
x(t− τ(t))

]

,Γ>
3 =

[

S>
1

S>
2

]

,Υ3 =

[

S>
1 + S1 −S>

1 + S2

∗ −S>
2 − S2

]

.

Rearranging the terms of the right-hand side yields:

V̇ (t) ≤ η>(t) Π η(t), (10)

where

Π :=













Π11 Π12 0 Π14 Π15

∗ Π22 0 0 Π25

∗ ∗ Π33 Π34 0
∗ ∗ ∗ Π44 0
∗ ∗ ∗ ∗ Π55













, η(t) :=













x(t)
x(t− τ(t))
x(t− τm)
x(t − τM )
ω(t)
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with

Π11 = (A0 +GK̃)>P + P (A0 +GK̃) +Q1 +Q2 +Q3 +

τM (A0 +GK̃)>R1(A0 +GK̃) + (τM − τm)(A0 +GK̃)>R2(A0 +GK̃) +

τM (A0 +GK̃)>R3(A0 +GK̃) +M>
1 +M1 + τMM

>
1 R

−1
1 M1

+τMS
>
1 R

−1
3 S1 + S>

1 + S1,

Π12 = PA1 + τM (A0 +GK̃)>R1A1 + (τM − τm)(A0 +GK̃)>R2A1 +

τM (A0 +GK̃)>R3A1 − S>
1 + S2 + τMS1R

−1
3 S2,

Π14 = −M>
1 +M2 + τMM

>
1 R

−1
1 M2,

Π15 = PB + τM (A0 +GK̃)>R1B + (τM − τm)(A0 +GK̃)>R2B +

τM (A0 +GK̃)>R3B,

Π22 = −(1− µ)Q3 − S>
2 − S2 + τMA

>
1 R1A1 + (τM − τm)A>

1 R2A1 + τMA
>
1 R3A1

+τMS
>
2 R

−1
3 S2,

Π25 = τMA
>
1 R1B + (τM − τm)A>

1 R2B + τMA
>
1 R3B,

Π33 = −Q1 +N>
1 +N1 + (τM − τm)N>

1 R
−1
2 N1,

Π34 = −N>
1 +N2 + (τM − τm)N>

1 R
−1
2 N1,

Π44 = −Q2 −M>
2 −M2 + τMM

>
2 R

−1
1 M2 + (τM − τm)N>

2 R
−1
2 N2 −N>

2 −N2,

Π55 = τMB
>R1B + (τM − τm)B>R2B + τMB

>R3B.

A sufficient condition for asymptotic stability of the system (1) is to show that

V̇ (t) ≤ η>(t)Πη(t) < 0 (11)

for all η(t) 6= 0. Then using (8) and Shur Complement we can see that the LMI (8) is
equivalent to the following:

Σ =













Σ11 Σ12 Σ13 Σ14 Σ15

∗ Σ22 Σ23 Σ24 Σ25

∗ ∗ Σ33 Σ34 Σ35

∗ ∗ ∗ Σ44 Σ45

∗ ∗ ∗ ∗ Σ55













< 0

with Σij = Πij , (i, j = 1, 2, 3, 4), Σ15 = Π15 − ε C>
0 K, Σ25 = Π25 − ε C>

1 K, Σ35 = Π35,
Σ45 = Π45, Σ55 = Π55 − 2ε I. On the other hand, by using the S-procedure and (2) we
have

η>(t) Σ η(t) = η>(t) Π η(t)− 2ε ω>(t)ω(t)− 2ε ω>(t) [KC0x(t) +KC1x(t− τ)] < 0 (12)

for all η(t) 6= 0. This completes the proof. 2

Example 2.1 Consider the time delay system (1) with the nonlinear function
satisfying (2) with

A0 =

[

−3 0
0 −3

]

, A1 =

[

−1 0
0 1

]

, B =

[

−1 0
0 −1

]

, G =
[

−1 −1
]

,

C0 =

[

1 0
0 1

]

, C1 =

[

0 −1
−1 −2

]

, K =

[

0.005 0
0 0.005

]

. (13)
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Let the extra parameters be fixed to:

τm = 10−4, τM = 0.088, µ = 0.01, λ1 = −1, λ2 = −1.2,

α1 = −0.2, α2 = 0, β1 = 0, β2 = 0,

then by Theorem 1, we have ε = 0.6809 and

Q1 =

[

0.9955 0.1991
0.1991 0.9955

]

, Q2 =

[

2.4678 −0.5239
−0.5239 2.0589

]

, Q3 =

[

1.1643 0.0690
0.0690 1.1153

]

,

R1 =

[

4.2714 0.4606
0.4606 4.1847

]

, R2 =

[

13.6586 −0.0274
−0.0274 13.6260

]

, R3 =

[

13.1236 −0.0336
−0.0336 13.0996

]

,

P =

[

0.4781 −0.3380
−0.3380 0.3095

]

, Y =
[

1.1971 1.6605
]

, K̃ =
[

27.6255 35.5345
]

.

3 Conclusion

The problem of absolute stabilization of a class of time-varying delay systems with sector-
bounded nonlinearity have been considered. New delay-dependant stabilization criterion
with sector condition has been proposed. A new result is given and illustrated by nu-
merical example, treated with Matlab, in order to show effectiveness of the main result.
This criterion has been formulated in the form of linear matrix inequalities (LMI).
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suitable static time-invariant output feedback of the state is given. Brockett’s prob-
lem of stabilization by means of a static time-varying output feedback of linear system
is considered. To solve this problem two approaches are considered. Sufficient condi-
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1 Introduction

Within the last 130 years the methods of stabilization of control systems have been con-
structed, developed, and improved: from creating Vyshnegradsky’s cataract to the analy-
sis and synthesis of systems of rocket stabilization and distributed systems of clock-signal
generators in multiprocessor clusters. At present the theory and practice of stabilization
are the subject of many books and surveys. The various methods of stabilization have
entered into textbooks on the control theory and became classical ones. But in the last
thirty years there has been a rapid growth of publications, devoted to the methods of
stabilization of linear control systems, and the above-mentioned books and surveys have
already not reflected them completely.

The increasing interest to stabilization problems is motivated by the needs of the
practice of control formulated in the open problems by many famous scholars such as
V.I. Zubov, W.M. Wonham, D.S. Bernstein, R. Brockett, J. Rosenthal and J.C. Willems.
For solving these problems the new methods of analysis and synthesis of linear control
systems were developed.

In this survey the effort is made to describe new methods and results. The authors
believe that the acquaintance with these methods and results will be useful for many
specialists and will give an impetus to the further development of this interesting and
substantial direction: the theory of stabilization of linear control systems.

A more detailed consideration of current methods of stabilization will be in our book
[1].

2 Stabilizability and Pole Assignment in Linear Systems by Static Time-

Invariant State Feedback

Here we consider the stabilization and pole assignment problems for linear time-invariant
continuous-time systems.

Consider a linear time-invariant continuous-time system

ẋ = Ax+Bu, (1)

where x = x(t) ∈ R
n is the state vector, u = u(t) ∈ R

m is the control input vector, and
A,B are real constant matrices of dimension n× n and n×m, respectively. (The point
over the symbol x denotes the differentiation in t).

In the following all matrices have real-valued elements.
We consider for system (1) the classical feedback stabilization problem:
Under the assumption that the uncontrolled system is unstable, find an appropriate

stabilizing feedback law.

It is well-known that this problem can be solved by means of a time-invariant static
full state feedback u = Sx. This result follows from the following theorem on pole
assignment.

Zubov’s and Wonham’s Theorem (on pole assignment) [2, 3]. The system

(1) is completely controllable if and only if for every choice of the self-conjugate set

M = {µj}n
j=1

of complex numbers µj there exists (m × n)-matrix S such that A + BS
has M for its set of eigenvalues.

According to [4], this theorem was first obtained for the single-input case (m = 1)
by Bertram in 1959 using locus method. In 1961, Bass independently formulated and
proved the same result (but did not publish it) in the context of linear algebra. The
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single-input case was also considered by Rissanen [5] and Rosenbrock [6]. The above
Theorem in the multi-input case for complex matrices A,B, S and arbitrary set M of
complex numbers was proved by Popov [7] and by Langenhop [8]. Other contributions
concerning pole assignment in multi-input systems by state feedback are due to Simon
and Mitter [9], and Brunovsky [10]. In [9] the ability to relocate arbitrarily eigenvalues
by state feedback was called modal controllability.

Zubov [2] and Wonham [3] were the first to prove the Theorem on pole assignment in
the multi-input systems of the type (1) for real matrices A,B, S and self-conjugate set
of complex numbers.

It should be noted that the proof of this Theorem in complex case (A,B, S and M
are complex) is far simpler than real one.

Since then, when Zubov’ and Wonham’s works appeared, a great number (literally
hundreds) of works, concerning pole assignment and its applications has been written.
The primary impetus of most of the works mentioned concerns the stabilization problem
for system (1).

The proof of Zubov’s and Wonham’s Theorem in multi-inpute case is rather tedious.
Therefore after publication of works [2, 3] there were offered alternative proofs of this
theorem (see, e.g., [11]-[13]; and also [14]-[19]). The goal of these papers was to give a
simple proof of Zubov’s and Wonham’s Theorem.

Below we present another, different from the above-mentioned ones simple and direct
new proof of Zubov’s and Wonham’s Theorem [20].

In the following instead of “complete controllability” of system (1) we will simply say
about “controllability” of the pair (A,B).

2.1 Elementary Proof of Zubov’s and Wonham’s Theorem

A. Proof of Sufficiency.
Suppose that the pair (A,B) is not controllable. Then in system (1) we can separate

from (1) a subsystem which contains no input variables. More precisely, there exists a
nondegenerate linear transformation of coordinates x → Qx (detQ 6= 0) such that the
system (1) in new coordinates takes a form of the type (1) with the matrices

A =

(
A11 A12

A21 A22

)
}n1

}n2

, B =

(
B1

B2

)
}n1

}n2

,

A21 = 0, B2 = 0 or A12 = 0, B1 = 0.

Then it is clear that whatever (m× n)-matrix

S = ( S1 S2 )}m (n1 + n2 = n)
︸︷︷︸ ︸︷︷︸

n1 n2

we take the spectrum of the closed-loop system matrix A+BS in the form

σ(A+BS) = σ(A11 +B1S1) ∪ σ(A22)

or
σ(A +BS) = σ(A11) ∪ σ(A22 +B2S2).

We see that one of two parts of the spectrum of the matrix A+BS is independent of
the choice of matrix A+BS. Therefore, the matrix cannot have arbitrarily preassigned
eigenvalues. The Sufficiency is proved. 2

The proof of Necessity leans on a number of simple propositions.
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Lemma 2.1 Let

Γ =

(
α −β
β α

)

(β 6= 0) (2)

be a real (2 × 2)-matrix. Let B be a real (2 × 2)- or (2 × 1)-matrix and B 6= 0. Then

there exists a real matrix R such that the eigenvalues of the matrix Γ +BR are real.

The Proof of Lemma 2.1 is straightforward.
Using Lemma 2.1 we can easily prove the following proposition.

Lemma 2.2 Let Λ and B be real (n×n)- and (n×m)-matrices, respectively. Suppose

the pair (Λ, B) is controllable and all eigenvalues of the matrix Λ are nonreal. Then there

exists a real (m× n)-matrix R such that all eigenvalues of the matrix Λ +BR are real.

Proof Let λ1, λ̄1, . . . , λℓ, λ̄ℓ (λj , λ̄j = αj ± iβj , βj 6= 0, j = 1, . . . , ℓ; n = 2ℓ) be the
eigenvalues of the matrix Λ, listed according to their multiplicity.

By a similarity matrix Q (detQ 6= 0) transforms the matrix Λ to the real lower Jordan
canonical form

Λ̃ = Q−1ΛQ = diag {J1(λ1), . . . , Jq(λq)}, q ≤ ℓ.

Here Jk(λk) (k = 1, . . . , q) is a lower λk – Jordan block of dimension 2νk × 2νk(
q∑

k=1

νk = ℓ

)

. That is, the block Jk(λk) has (2×2)-matrices Γj (j = 1, . . . , ℓ) of the type

(2) on the diagonal, the identity (2× 2)-matrices lower the diagonal, and zero – matrices
elsewhere.

Let B̃ := Q−1B. Find (m × n)-matrix such that the matrix Λ̃ + B̃R̃1 has two real
(may be equal) and n − 2 nonreal eigenvalues. Then it will be the same for the matrix
Λ1 := Λ + BR1, where R1 = R̃Q−1. In this case the pair (Λ1, B) will be controllable
since (Λ, B) is controllable by assumption.

We seek R̃1 in the form of a block matrix R̃1 = [R̃pq] containing four blocks R̃pq (p, q =

1, 2) such that R̃12 = 0, R̃21 = 0, R̃22 = 0 and (2×2)-block matrix R̃11 is to be determined.
(In the case m = 1 R̃11 is a row matrix of size 1 × 2.)

Divide the matrices Λ̃ and B̃ into four blocks

Λ̃ = [Λ̃pq], B̃ = [B̃pq] (p, q = 1, 2)

in such a way that Λ̃11 and B̃11 are (2× 2)-matrices. (In the case m = 1 B̃11 is a column
matrix of dimension 2 × 1.) It is clear that Λ̃11 = Γ1, σ(Λ̃22) = {λ2, λ̄2, . . . , λℓ, λ̄ℓ}.

We have
Λ̃1 := Λ̃ + B̃R̃1 (p, q = 1, 2), (3)

where M̃12 = 0, M̃22 = Λ̃22 and

M̃11 = Γ1 + B̃11R̃11. (4)

The pair (Λ̃, B̃) is controllable, since the pair (Λ, B) is the same by assumption.
Therefore it must be (B̃11, B̃12) 6= 0. Otherwise the pair (Λ̃, B̃) will not be controllable.
Without loss of generality we assume that B̃11 6= 0. Then by virtue of Lemma 2.1 there
exists a matrix R̃11 such that (2× 2)-matrix (4) has real eigenvalues r1 and r2. Whence
taking into account the structure of matrix (3) it follows that

σ(Λ̃ + B̃R̃1) = {r1, r2} ∪ {λ2, λ̄2, . . . , λℓ, λ̄ℓ}.
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Rearrange the matrices M̃11,Γj(j = 1, ℓ) in the diagonal array of matrix (3) in such
a way that Γ2 appears in the top left-hand corner of matrix (3).

We apply to matrix Γ2 the same procedure as above for Γ1. Thus we change the
matrix Γ2 by matrix of the type (4) having real eigenvalues. Therefore we obtain a
matrix Λ2 having four (among them may be equal ones) real eigenvalues and n − 4
remaining nonreal ones λ3, λ̄3, . . . , λℓ, λ̄ℓ.

Repeating this process after ℓ steps as a result we obtain a matrix Λℓ having only
real eigenvalues. The Lemma 2.2 is proved. 2

From Lemma 2.2 immediately it follows

Lemma 2.3 Let A and B be arbitrary real (n×n)- and (n×m)-matrices, respectively.

Let the pair (A,B) be controllable. Then there exists a real (m× n)-matrix R such that

all the eigenvalues of the matrix A+BR are real.

The following lemma solves the pole assignment problem in the field of real numbers
R.

Lemma 2.4 (Lemma on pole assignment in R) Let A and B be arbitrary real (n ×
n)- and (n × m)-matrices, respectively. Suppose the pair (A,B) is controllable. Let

{µ1, . . . , µn} be an arbitrary set of real numbers. Then there exists a real (m×n)-matrix

such that

σ(A+BS) = {µ1, . . . , µn}. (5)

Proof By virtue of Lemma 2.3 there exists a real (m×n)-matrix R0 such that all the
eigenvalues of the matrix A0 := A+ BR0 are real. We denote these ones by λ1, . . . , λn,
listed according to multiplicity. That is,

σ(A0) = {λ1, . . . , λn} (λj ∈ R, j = 1, . . . , n). (6)

The pair (A0, B) is controllable since the pair (A,B) is the same by assumption.
Let µ1, . . . , µn be arbitrary n real numbers (among them may be repeating ones).
The proof of Lemma 2.4 is exactly analogous to that of Lemma 2.2 and consists of

solution n intermediate tasks.
1) {A0, B;λ1|µ1} – task: Find real (m× n)-matrix such that

σ(A0 +BS1) = {µ1;λ2, . . . , λn}. (7)

As above by a similarity matrix Q0 we transform the matrix A0 to the real lower
Jordan form: Ã0 := Q−1

0
A0Q0. Let B̃ = Q−1

0
B.

We first solve {Ã0, B̃;λ1|µ1} – task. For this purpose as above we seek a corresponding
matrix S̃1 in the form of a block matrix S̃1 = [S̃pq] (p, q = 1, 2) such that S̃12 = 0, S̃21 = 0,

S̃22 = 0, and S̃11 =: s̃11 is a real number to be determined.
As above divide the matrices Ã0 and B̃ into four blocks

Ã0 = [Ãpq ] B̃ = [B̃pq] (p, q = 1, 2).

Here Ã11 =: ã11 and B̃11 =: b̃11 are real numbers. Clearly, ã11 = λ1, σ(Ã22) =
{λ2, . . . , λn}. Then we have Ã1 := Ã0 + B̃S̃1 = [M̃pq], where M̃12 = 0, M̃22 = Ã22

and

M̃11 =: m̃11 = λ1 + B̃11S̃11. (8)
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Since the pair (A0, B) is controllable as above in the proof of Lemma 2.2 one must have
(B̃11, B̃12) 6= 0. Without loss of generality we assume that B̃11 = b̃11 6= 0.

We claim that in (8) m̃11 = µ1. From here and (8) we determine s̃11 = (µ1 −λ1)/b̃11.
Therefore we have

σ(Ã0 + B̃S̃1) = {µ1;λ2, . . . , λn}.
That is, the matrix S̃1 is solution of the {Ã0, B̃;λ1|µ1}-task. Then the matrix S1 =
S̃1Q

−1

0
will be solution of the task (7), since the matrix A0 +BS1 is similar to the matrix

Ã0 + B̃S̃1.
Denote A1 := A0 +BS1. Then A1 = A+B(R0 + S1).
We solve the next
2) {A1, B;λ2|µ2}-task: Find (m× n)-matrix such that

σ(A1 +BS2) = {µ1, µ2;λ3, . . . , λn}. (9)

We will exactly solve task (9) analogously to task (7). At first we rearrange the diagonal
elements µ1, λ2, . . . , λn of the matrix Ã1 = Ã0 + B̃S̃1 in such a way that λ2 appears in
the top left-hand corner of matrix Ã1.

Apply to matrices A1, B and numbers λ2, µ2 the same procedure of ”the replacement
λ1 by µ1” that we have made in the previous task. In the same way we determine a
matrix S2 and corresponding matrix A2 = A+B(R0 + S1 + S2) such that

σ(A2) = {µ1, µ2;λ3, . . . , λn}.

In this case S2 = S̃2Q
−1

0
Q−1

1
, where Q1 is a similarity matrix, and S̃2 is determined

analogously to S̃1.
Repeating this process of solving corresponding {Aj−1, B;λj |µj}-tasks we sequen-

tially replace each eigenvalue λj (j = 1, . . . , n) of the matrix A0 from (6) by corresponding
number µj from the given set {µj}n

j=1
. As a result we obtain successively the matrices

S1, . . . , Sn such that the matrix

An = A+B(R0 + S1 + · · · + Sn)

has {µj}n
j=1

for its desired set of eigenvalues. Hence, the matrix S := R0 +S1 + · · ·+Sn

has the required property (5).
Lemma 2.4 is proved. 2

Immediately from Lemma 2.4 it follows

Lemma 2.5 (Lemma on stabilization of the pair (A,B)) Let A and B be real (n×n)-
and (n×m)-matrices, respectively. Let the pair (A,B) be controllable. Then there exists

a real (m × n)-matrix S such that the matrix A + BS is stable, i.e. the pair (A,B) is

stabilizable.

Remark 2.1 A stabilization matrix S in Lemma 2.5 can be constructed by the al-
gorithm described in the proof of Lemma 2.4.

Remark 2.2 In [21] another variant of elementary proof of the Lemma on Stabiliza-
tion of the system (1) is proposed.

B. Proof of Necessity of Zubov’s and Wonham’s theorem.
Without loss of generality we may assume that rankB = m.
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If m = n, then the solution of pole assignment problem is given by the formula

S = B−1(M −A),

whereM is an arbitrary (n×n)-matrix having the set {µj}n
j=1

as its spectrum. It remains
to consider the case 1 ≤ m < n.

Let {µj}n
j=1

be an arbitrary set of n complex numbers closed under complex conju-
gation. We will prove that there exists a (m× n)-matrix S such that

σ(A +BS) = {µj}n
j=1

.

Assume among the numbers µj (j = 1, . . . , n) we have k real and ℓ complex-
conjugate ones. Let µ1, . . . , µk be real numbers and the rest of 2ℓ numbers
µk+1, µ̄k+1, . . . , µk+1, µ̄k+1 be complex conjugate ones. Let µk+j , µ̄k+j = σk+j ± iωk+j ,
ωk+j 6= 0 (j = 1, . . . .ℓ; k + 2ℓ = n).

Let Λ = {λ1, . . . , λn} be an arbitrary set of pairwise distinct real numbers λj (j =
1, . . . , n). By virtue of Lemma 2.4 there exists a real (m× n)-matrix S0 such that

σ(A+BS0) = {λ1, . . . , λn} (λp 6= λq, p 6= q, p, q = 1, . . . , n).

Denote A0 := A+BS0.
1. Applying sequentially the algorithm of solving of {Aq−1, B;λq|µq} – tasks described

in the proof of Lemma 2.4 we construct matrices S1, . . . , Sk and the matrix

Ak = A0 +B(S1 + · · · + Sk)

such that σ(Ak) = {µ1, . . . , µk;λk+1, λk+2, . . . , λn}.
2. We now solve the {Ak, B;λk+1, λk+2|µk+1, µ̄k+1}-task: Find (m×n)-matrix Sk+1

such that

σ(Ak +BSk+1) = {µ1, . . . , µk;µk+1, µ̄k+1;λk+3, . . . , λn}. (10)

Since λk+1 6= λk+2 by a similarity matrix P0 one can reduce the matrix Ak to the form
of the four block matrix

Ãk := P−1

0
AkP+0 = [Λ̃pq] (p, q = 1, 2),

where Λ̃11 = (λk+1, λk+2), Λ̃12 = 0. It is clear that

σ(Λ̃22) = {µ1, . . . , µk;λk+3, λk+4, . . . , λn}.

Divide the matrix B̃ := P−1

0
B into four blocks such that the matrix B̃11 has the dimension

2 × 2 (or 2 × 1 in the case m = 1): B̃ = [B̃pq] (p, q = 1, 2). Let

B̃11 = (b̃rt)
2

r,t=1.

(In the case m = 1 B̃11 = column(b̃11, b̃21.)
Since the pair (A,B) is controllable the pair (Ak, B), and therefore the pair (Ãk, B̃)

is controllable. Hence, as we have noted above in the proofs of Lemmas 2.2 and 2.4 one
may assume that

b̃11 6= 0 and b̃22 6= 0. (11)

To establish (10) we first solve {Ãk, B̃;λk+1, λk+2|µk+1, µ̄k+1}-task. For this purpose
as above we seek a matrix S̃k+1 in the form of a block matrix S̃k+1 = [S̃pq] (p, q = 1, 2),
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where S̃12 = 0, S̃21 = 0, S̃22 = 0 and (2 × 2)-matrix S̃11 is to be determined (in the case
m = 1 S̃11 is a row (1 × 2)-matrix).

We have
Ãk+1 := Ãk + B̃S̃k+1 = [M̃pq], (12)

where M̃11 = Λ11 + B̃11S̃11, M̃12 = 0, M̃22 = Λ̃22. Two cases are possible: a) det B̃11 6=
0 and b) det B̃11 = 0.

Case a). Here we claim that

Λ̃11 + B̃11S̃11 = Σ1, (13)

where

Σ1 =

(
σk+1 −ωk+1

ωk+1 σk+1

)

.

From (13) we at once determine the matrix S̃11 = (B̃11)
−1(Σ1 − Λ̃11).

Case b). In this case we determine the matrix S̃11 from the condition of equality of
the characteristic polynomials of matrices in the right-hand and left-hand sides of (13):

det(pI2 − Λ̃11 − B̃11S̃11) = det(pI2 − Σ1). (14)

Here I2 is the identity (2 × 2)-matrix.
Let S̃11 = (crt)

2

r,t=j . (In the case m = 1 S̃11 = (c11, c12).) Taking into account

inequalities (2.11) and equality b̃11b̃22 − b̃21b̃12 = 0, from (14) we can determine one of
possible values of the entries crt of the matrix S̃11:

c̃11 = d1/b̃11 c21 := 0; c22 = d2/b̃22 (b̃22 6= 0), (15)

where
d1 = (σ2

k+1 + ω2

k+1 + λ2

k+1 − 2λk+1σk+1)/(λk+2 − λk+1),

d2 = (σ2

k+1
+ ω2

k+1
+ λ2

k+2
− 2λk+2σk+1)/(λk+1 − λk+2).

Since λk+1 6= λk+2 by choice of the set Λ the last expressions have a meaning. (In the
case m = 1 c11 = d1/b̃11, c12 = d2/b̃21).

From (12) and (14) it follows that

det(pIn − Ãk+1) = det(pI2 − Σ1) det(pIn−2 −M22). (16)

Here I2, In−2, In are the identity matrices of respective dimensions. The equality (16)
implies that for matrix (12) corresponding to the matrix S̃k+1 with found above entries
(15) the relation

σ(Ãk+1) = {µ1, . . . , µk;µk+1, µ̄k+1;λk+3, . . . , λn} (17)

holds.
Set Sk+1 := S̃k+1P

−1

0
. Since the matrix Ãk+1 is similar to the matrix Ak+1 :=

Ak +BSk+1, from (17) it follows that relation (10) is valid for the matrix Sk+1.
Further we solve the {Ak+1, B;λk+3, λk+4|µk+2, µ̃k+2} – task exactly analogously

to the preceding one. As a result we find a matrix Sk+2 and a corresponding matrix
Ak+2 := Ak+1 +BSk+2 such that

σ(Ak+2) = {µ1, . . . , µk;µk+1, µ̄k+1;µk+2µ̄k+2;λk+5, . . . , λn}.
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Repeating this process as above after ℓ steps we find matrices Sk+1, . . . , Sk+ℓ and the
matrix Ak+ℓ = Ak +B(Sk+1 + · · · + Sk+ℓ) such that

σ(Ak+ℓ) = {µ1, . . . , µk;µk+1, µ̄k+1, . . . , µk+ℓµ̄k+ℓ}. (18)

Since

Ak+ℓ = A+B(S0 +

k∑

q=1

Sq +

ℓ∑

j=1

Sk+j),

from (18) it follows that the (m× n)-matrix

S = S0 +

k∑

q=1

Sq +

ℓ∑

j=1

Sk+j

has the required property.
Zubov’s and Wonham’s Theorem is completely proved. 2

Remark 2.3 In just proposed proof of Zubov’s and Wonham’s theorem we only used
the fact of possibility of matrices reduction to Jordan canonical form. But there is also
an elementary proof of the theorem on reduction of a matrix to Jordan form proposed
by A. F. Filippov [22]. Together with this Filippov’s theorem our above proof of Zubov’s
and Wonham’s theorem is completely elementary.

Remark 2.4 As is seen from the proofs of Lemmas 2.2, 2.4 and the proof of the
sufficiency of Zubov’s and Wonham’s theorem there is no necessity to reduce matrices
to Jordan form. It is sufficient only to reduce them to the following forms. In the proof
of Lemma 2.2 in the top left-hand corner of the considered matrices we must have a
(2 × 2)-matrix Γ of the type (2) and the elements of the first two rows except for the
entries of matrix Γ must be equal to zero.

Also, in the proof of Lemma 2.4 in the top left-hand corner we must have a num-
ber λj and the elements of the first row except, may be, for λj must be equal to zero.
This observation also applies to the proof of sufficiency of Zubov’s and Wonham’s The-
orem. As a result the finding of the required matrix S becomes more ”economical” for
computations: much less number of operations must be done.

3 Pole Assignment in Linear Systems with Output Feedback

In the preceding section we have considered linear systems with full state feedback.
We now turn our attention to pole assignment for linear systems by output feedback.
Consider a linear time-invariant continuous-time system described by

ẋ = Ax+Bu, y = Cx, (19)

where x ∈ R
n is a state vector, u ∈ R

m is an input vector, y ∈ R
ℓ is an output vector,

and A,B,C are real constant matrices of sizes n× n, n×m, ℓ× n, respectively (ℓ ≤ n).
Assume that the linear system (19) is controlled by a linear static output feedback

u = Sy (20)
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with a real constant m× ℓ-matrix S. Then the resulting closed-loop system (19), (20) is
described by

ẋ = (A+BSC)x.

The poles of this system are the eigenvalues of the matrix A+BSC.
The problem of pole assignment arises in a natural way for closed-loop system using

static output feedback.
Recall that this problem for system (19), (20) or simply triple matrices A,B,C is

formulated as follows:
Given a triple real matrices (A,B,C) and an arbitrary set {µj}n

j=1
of the complex

numbers µj closed under complex conjugation, find a real matrix S such that the spectrum

of the matrix A+BSC coincides with the set {µj}n
j=1

, i.e.

σ(A+BSC) = {µj}n
j=1

. (21)

As we remarked above in the previous section this problem for two matrices A and
B was first stated and solved by Zubov [2] and Wonham [3].

The problem of pole assignment by time-invariant static output feedback (20) has
received much attention of researchers. Many works are devoted to solution of this
problem and its various modifications (see surveys [23, 24]). Sufficient conditions have
been obtained under which the pole assignment problem (21) can be resolved.

We note that for system (19) as for the system (1) property of controllability of the
pair (A,B) is a necessary condition for the solvability of the pole assignment problem
(21).

One of the pioneer works devoted to solving this problem was Davison’s work [25].
In this work Davison proved the following assertion.

Theorem 3.1 (Davison [25]) If the matrix A is cyclic (i.e. in its Jordan form to

the distinct boxes correspond the distinct eigenvalues), the pair (A,B) is controllable

and rankB = m, rankC = ℓ, then there exists a matrix S such that the eigenvalues of

the matrix A+BSC of closed-loop system (19), (20) are arbitrary close to ℓ preassigned

arbitrary numbers on the complex plane placed symmetrically with respect to the real axis.

In the work [26] it was shown that if system (19) is controllable and observable, then
there exists a matrix S such that the matrix A+BSC is cyclic. Taking into account this
result, in the paper [27] a theorem was proved which strengthen the Davison’s Theorem.
Namely, the following result is valid

Theorem 3.2 (Davison, Chatterjee [27]) If (A,B) is controllable, (A,C) is observ-

able, and rankB = m, rankC = ℓ, then there exists a matrix S such that the max{ℓ,m}
eigenvalues of the matrix A + BSC are arbitrary close to the max{ℓ,m} preassigned

arbitrary complex numbers closed under complex conjugation.

In [28] an algorithm based on this theorem is given which allows pole assignment to
be carried out on large linear systems (19) with output feedback (20).

In the case when A is a cyclic matrix an alternative proof of Davison’s and Chatterjee’s
Theorem based on another approach was suggested in Sridhar’s and Lindorff’s work [29].

An analogous result under some other conditions is established in Jameson’s work
[30] for the systems with scalar input (m = 1). In this work for the case (m = 1) it is
also proved that if the pair (A,B) is not controllable or the pair (A,C) is not observable
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and the eigenvalues λj (j = 1, . . . , n) of the matrix A are distinct, then there is not any
feedback matrix S such that the eigenvalues λjk

(k = 1, . . . , r; r ≤ n) which correspond
to either the uncontrolled or unobserved variables, can be changed. Later, an alternative,
more simple, proof of the second part of Jameson’s assertion, extending his result to the
systems with the vector input (m > 1) was suggested in Nandi’s and Herzog’s note ([31]).

In later Davison’s and Wang’s [32] and Kimura’s [33, 34] works it was established that
under the same as above conditions on the matrices A,B and C for almost all A,B and
C the min(n,m+ ℓ−1) eigenvalues of the matrix A+BSC can be made arbitrarily close
to the min(n,m + ℓ − 1) preassigned arbitrary complex numbers closed under complex
conjugation.

This implies that if

m+ ℓ ≥ n+ 1,

then the pole assignment problem (21) is solvable for almost all matrices A,B and C.
Thus, the last inequality is a sufficient condition of solvability of the problem (21) in

the typical case.
In Brockett’s, Byrnes’s [35] and Shumacher’s [36] works there was given another

sufficient condition of solvability of the problem (21) in the typical case. Namely, they
show that

if mℓ = n and the number

d(m, ℓ) =
1!2! . . . (ℓ− 1)!(mℓ)!

m!(m+ 1)! . . . (m+ ℓ− 1)!

is odd, then the problem (21) is solvable in the typical case.

A sufficient condition in the case when the number d(m, ℓ) is even was obtained by
Wang [37]:

if mℓ > n and the number d(m, ℓ) is even, then the problem (21) is solvable in the

typical case.

The distinct elementary proofs of this assertion were given in the works [38]-[41].

Another sufficient conditions of solvability of the problem (21) (and ”near” problems)
in the typical case were obtained in the works of many authors.

In Hermann’s and Martin’s [42] and Willems’s and Hesselink’s [43] papers it was
established a general necessary condition

mℓ ≥ n

of solvability of the problem (21) in the typical case. Later, this condition was strength-
ened in the work [44].

In [43] it is shown that, generally speaking, the inequality mℓ ≥ n is not a sufficient
condition of solvability of the problem (21) in the typical case. Namely,

if m = ℓ = 2 and n = 4, then the problem (21) in the typical case is unsolvable.

Note that in many works (see, for example, [45]-[51]) a more general than (21) eigen-
structure assignment problem was considered. In this case the eigenvalues µ1, . . . , µr

of the matrix of closed-loop system together with the corresponding to them eigenvec-
tors ξ1, . . . , ξr are arbitrarily given or the elementary divisors, corresponding to these
eigenvalues, are given. The problem is to find a matrix S such that either the spectrum
of the matrix A + BSC contains the set {µj}r

j=1
as a subset and the corresponding to

the numbers µj eigenvectors of the matrix A + BSC are equal to ξj (or are arbitrarily
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close to ξj) or the characteristic polynomial of the matrix A+BSC has the preassigned
polynomials ψ1, . . . , ψr(p) as its invariant factors (or elementary divisors).

One of the first works devoted to the eigenstructure assignment problem were the
works of Rosenbrock [52], Kalman [53], Moore [54], and Srinathkumar [55]. The following
result is valid.

Theorem 3.3 (Rosenbrock and Kalman [18, 52, 53]) Suppose the pair (A,B) is con-

trollable with the indices of controllability k1 ≥ k2 ≥ · · · ≥ km. Let {ψi(p)}q
i=1

, q ≤ m
be a set of polynomials the leading coefficients of which are equal to 1. Assume that each

polynomial ψi (i = 1, . . . , q− 1) is divided by the successive one ψi+1 without residue and
n∑

i=1

degψi = n.

Then for the existence of the matrix S such that the given polynomials ψi are the

nontrivial (not equal identically to the unity) invariant factors of the characteristic poly-

nomial pI −A−BS it is necessary and sufficient that the following inequalities hold

r∑

i=1

degψq+1−i ≤
r∑

i=1

kq+1−i, r = 1, 2, . . . , q.

In this case the equality occurs for r = q = m.

(Here ”deg” denotes a ”degree of polynomial”.)
In the papers [56, 57] Rosenbrock’s and Kalman’s theorem (and results of other

authors) are generalized.
In the work [54] it was described the class of all sets of the eigenvectors of the matrix

A + BS of closed-loop system with state feedback, which can correspond to the preas-
signed arbitrarily distinct eigenvalues of this matrix. In the same work in the case of
distinct eigenvalues there was given the solution of the problem of simultaneous assign-
ment of the eigenvalues and the corresponding eigenvectors of the matrix of closed-loop
system.

In the paper [55] a tool developed in [33, 58] was used for study of the eigenstructure
assignment problem for systems with state feedback. In [55] Srinathkumar has proved,
in particular, the following assertion.

If the pair (A,B) is controllable, the pair (A,C) is observable and rank (B) =
m, rank (C) = ℓ, then there exists a matrix S such that the eigenvalues of the ma-
trix A + BSC are equal to the max(m, ℓ) preassigned numbers with the corresponding
max(m, ℓ) eigenvectors with max(m, ℓ) preassigned arbitrary components.

We also note Van der Woude’s paper where a general theorem is proved giving a
necessary and sufficient condition (in geometric terms) of solvability of pole assignment
problem (21) by output feedback (20) for single-input system (19) (m = 1).

Theorem 3.4 (Van der Woude [59]) Suppose the system (19) is controllable and f(p)
is an arbitrary real polynomial with leading coefficient 1 of degree n.

Then for the existence of a real (ℓ× 1)-matrix S such that

det(pI − (A+BSC)) = f(p)

it is necessary and sufficient that

f(A)Ker (C) ⊂ Lin (B,AB, . . . , An−2B).
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Lately Van der Woude’s theorem was essentially used by Aeyels and Willems [60,
61] for pole assignment in linear time-invariant discrete-time systems by periodic static
output feedback. In the end we note that at the present time the pole assignment problem
and the related with it adjoining questions are in the focus of attention of many scholars
and the flow of literature in this direction does not weaken.

Remark 3.1 Some above-mentioned result can be regarded as results for output
stabilization problem, since the latter is a special case of pole assignment problem. These
results are formulated in terms of matrices whereas in the well-known Nyquist criterion
the necessary and sufficient condition of stabilization of the system (19) is formulated in
terms of behavior of hodograph of the frequency response of this system.

4 Nonstationary Stabilization. The Brockett Problem

In 1999, R. Brockett in the book [62] formulated the problem on stabilizability of a linear
time-invariant system by means of a static time-varying output feedback.

To solve this problem two approaches are developed. The first of them is developed
for constructing a low-frequency time-varying feedback, and the second approach for
constructing a high-frequency one.

The Brockett problem is formulated as follows.

Problem 4.1 (Brockett Problem) Given a linear time-invariant continuous-time sys-
tem (19), find a static time-varying output feedback

u = S(t)y, (22)

such that the resulting closed-loop system

ẋ = (A+BS(t)C)x (23)

is asymptotically stable.

In the previous section some aspects of the problem of stabilization of system (19)
by output feedback (22) with a constant matrix S(t) ≡ S= const are considered. In the
Brockett problem it is required to find a variable stabilizing matrix S = S(t) with the
property mentioned above. In this case the Brockett problem can be reformulated in the
following way.

Does the introduction of the time-dependent matrices S(t) in feedback gain extend the

possibility of stationary stabilization?

In the works [63]-[66] for some important cases the solution of the Brockett problem
of nonstationary linear stabilization for system (19) in the class of piecewise-constant
periodic with a sufficiently large period stabilizing functions S(t) is given(a low-frequency
stabilization).

In the works [67]-[70] for single-input single-output system (19) the Brockett problem
is solved in the other class of the stabilizing functions. Namely, this is solved in the class
of continuous periodic with a sufficiently small period functions S(t) (a high-frequency
stabilization). Below we consider these two types of nonstationary stabilization.
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4.1 Nonstationary low-frequency stabilization

Basic hypotheses. Suppose that there exist real constant (m× ℓ)-matrices S1 and S2

such that the linear systems

ẋ = (A+BSjC)x (x ∈ R
n) (j = 1, 2) (24)

possess stable invariant linear manifolds Lj and invariant linear manifolds Mj.
Suppose

Mj ∩ Lj = {0}, dimMj + dimLj = n.

We assume also that for solutions xj(t;x0) (xj(0;x0) = x0) of systems (24) the following
inequalities

|xj(t;x0)| ≤ αj |x0|e−λjt ∀x0 ∈ Lj , (25)

|xj(t;x0)| ≤ βj |x0|e−κjt ∀x0 ∈Mj, (26)

are satisfied for positive numbers λj , κj, αj , βj .
Suppose that there exist a continuous (m× ℓ)-matrix Σ(t) and a number r > 0 such

that during the time from t = 0 to t = r the phase flow {θr
t0
} of the system

ẋ = (A+BΣ(t)C)x (x ∈ R
n) (27)

takes the manifold M1 to a manifold lying in L2:

θr
0
M1 ⊂ L2. (28)

Under these assumptions the following theorem holds.

Theorem 4.1 (The fundamental theorem) Suppose the following inequality holds

λ1λ2 > κ1κ2.

Then there exists a periodic (m×ℓ)-matrix S(t) such that the system (23) is asymptotically

stable. In this case stabilizing matrix S(t) in (22) has the form

S(t) =







S1 for t ∈ [0, t1),

Σ(t− t1) for t ∈ [t1, t1 + τ), S(t+ T ) = S(t),

S2 for t ∈ [t1 + τ, t1 + t2 + τ),

(29)

where T := t1 + t2 + τ and positive numbers t1 and t2 are determined from conditions

{

− λ1t1 + κ2t2 < −T̃ ,
− λ2t2 + κ1t1 < −T̃ .

Here T̃ is a sufficiently large number.

Consider separately an important case of single-input single-output system (19). Let
in (24)-(28)

S1 = S2 = S0, Σ(t) ≡ Σ0, S0,Σ0 ∈ R, (30)

S0Σ0 < 0, λ1 = λ2 = λ, κ1 = κ2 = κ. (31)
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Suppose that all the eigenvalues λk of the matrix A+BΣ0C have nonpositive real parts,
in this case the eigenvalues with zero real parts have the prime divisors only.

Suppose there exists a sequence {τj} → +∞ such that

θτjM1 ⊂ L2. (32)

Here θt = e(A+Σ0BC)t is the phase flow of system (27), where Σ(t) ≡ Σ0. Then the
following result is valid.

Theorem 4.2 Suppose for system (19) the hypotheses (30)-(32) are satisfied. Sup-

pose the inequality

λ > κ

is valid. Then there exists T -periodic function with zero mean on the period such that the

system (23) is asymptotically stable. In this case the stabilizing function has the from

S(t) =







S0 for t ∈ [0, t0),

Σ0 for t ∈ [t0, t0 + τ), S(t+ T ) = S(t),

S0 for t ∈ [t0 + τj , 2t
0 + τj),

Here T = τj(1 − Σ0/S0) is a period of the function S(t), t0 = |τjΣ0/2S0| and τj is a

sufficiently large number satisfying condition (32).

We remark that there are propositions which provide effective test of the ”condition
of manifolds embedding” (28) [63]-[66].

Applying Theorem 4.1 to two-dimensional case of system (19) (n = 2) one can prove
the following assertion.

Theorem 4.3 Suppose there exist (m×ℓ)-matrices S0 and Σ0 satisfying the following

hypotheses:

1) det(BS0C) 6= 0, Tr (BS0C) 6= 0; if det(BS0C) = 0, then, at least one of inequali-

ties detA 6= 0 or det(a1, r2)+det(r1, a2) 6= 0, is valid. Here a1, a2 and r1, r2 are the first

and the second columns of the matrices A and BS0C, respectively.

2) The matrix A+BΣ0C has complex-conjugate eigenvalues.

Then there exists a periodic matrix S(t) such that the system (23) is asymptotically

stable.

4.2 Stabilization of linear system in the scalar case

Consider the system (19) with scalar input u and scalar output y (m = ℓ = 1).
In the sequel we shall assume that the transfer function W (p) = C(A − pI)−1B

of system (19) is nondegenerate. This is equivalent to the fact that the pair (A,B) is
controllable and the pair (A,C) is observable.

By applying Theorem 4.1 one can prove a number of assertions.

A. The case of codimension 1 of the stable manifold.

In this case the following theorems hold.

Theorem 4.4 Suppose the systems (24) have a stable invariant manifold L2 of di-

mension n−1 and an one-dimensional invariant manifold M1, satisfying basic conditions

(25)-(28).
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Suppose also that S1, S2 and Σ0 are numbers such that Σ0 6= Sj (j = 1, 2) and the

matrix Q = A + Σ0BC has the complex-conjugate eigenvalues α ± iβ of multiplicity 1

and the rest of its eigenvalues λk satisfy the condition Reλk < α (k = 1, . . . , n− 2).
Then there exists a periodic function S(t) of the type (29) with Σ(t) = Σ0 such that

the system (23) is asymptotically stable.

Theorem 4.5 Let the system (24) (j = 1, 2) have a stable invariant manifold L2 of

dimension n − 1 and an one-dimensional invariant manifold M1 satisfying basic condi-

tions (25)-(28). Suppose CB = 0. Then there exists a feedback (22), where S(t) is a

piecewise-constant periodic function of the type (29), such that the system (23) is asymp-

totically stable.

Theorem 4.6 Let in system (19) CB 6= 0. Suppose the matrix A has the eigenvalue

κ > 0 and n− 1 eigenvalues with the real part smaller than −λ, where λ > κ. Suppose

that the inequality
CB

lim
p→κ

(κ− p)W (p)
< 1

is satisfied. Here W (p) is the transfer function of system (19). Then there exists a

periodic function S(t) of the type (29) such that the system (23) is asymptotically stable.

Theorem 4.7 Let CB 6= 0. Suppose that there exist numbers S1 6= S2 such that:

1) the matrix A+ S1BC has the positive eigenvalue κ1.

2) the matrix A+S2BC has the one positive eigenvalue κ2 and n−1 eigenvalues with

negative real parts;

3) the inequality

(CB)
S1 − S2

κ2 − κ1

< 1

holds. Suppose the condition λ1λ2 > κ1κ2 of Fundamental Theorem is satisfied.

Then there exists a periodic function S(t) of the type (29) such that the system (23)
is asymptotically stable.

B. The case of codimension 2 of the stable manifold

In this case the following result is valid.

Theorem 4.8 Suppose the systems (24) have a n − 2-dimensional stable invariant

manifold L2 and an one-dimensional invariant manifold M1 satisfying basic conditions

(25)-(28). Suppose that for a certain number Σ0 6= Sj (j = 1, 2) the matrix A+Σ0BC has

two complex-conjugate eigenvalues α± iβ of multiplicity 1 and the rest of its eigenvalues

λj satisfy the condition Reλj < α. Then there exists a periodic function S(t) of the type

(29), where Σ(t) ≡ Σ0, S1, S2,Σ0 ∈ R, such that the system (23) is asymptotically stable.

4.3 Necessary conditions of stabilization

Above we derived some sufficient conditions of stabilizability of the system (19). Here
we give necessary conditions of stabilizability of the system (19) with a scalar input u
and a scalar output y.

A simple and general necessary condition of the impossibility of stabilization of system
(19) is given by the following
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Proposition 4.1 If the inequality Tr(A+ S(t)BC) ≥ α > 0 is satisfied for all t ∈ R

and some positive number α, then the system (23) is not asymptotically stable.

Here Tr denotes the trace of a matrix.
The statement of this proposition follows from the well-known Liouville formula.
Suppose now that the transfer function of system (19) is nondegenerate. Then it can

be represented as the quotient

W (p) =
ν(p)

∆(p)

of the two polynomials

ν(p) = cnp
n−1 + cn−1p

n−2 + · · · + c1, ck ∈ R,

∆(p) = pn + anp
n−1 + · · · + a1, ak ∈ R (k = 1, . . . , n),

with no common zeros. Here ∆(p) is the characteristic polynomial of the matrix A.
Assume that cn 6= 0. In this case, without loss of generality, we set cn = 1.
The following theorem gives sufficient conditions of the impossibility of stabilization

of system (19).

Theorem 4.9 Suppose for system (19) the following conditions are valid:

1) for n > 2 c1 ≤ 0, . . . , cn−1 ≤ 0 (for n = 2 c1 ≤ 0),

2) c1(an − cn−1) > a1,

c1 + c2(an − cn−1) > a2

. . . . . . . . . . . . . . .

cn−2 + cn−1(an − cn−1) > an−1.

Then there does not exist a function S(t) such that the system (23) is asymptotically

stable.

Thus, a necessary condition of stabilization of the system (19) is the violation of at
least one of hypotheses either 1) or 2) of Theorem 4.9 or the violation of inequality in
the above Proposition.

4.4 Low-frequency stabilization of two-dimensional and three-dimensional

systems

Now we apply the above results to the two-dimensional and three-dimensional systems.
A. Two-dimensional systems. Consider a system with a scalar input u(t) and a

scalar output y(t), the transfer function of which is equal to the following

W (p) =
c2p+ c1

p2 + a2p+ a1

. (33)

Here a1, a2; c1, c2 are real numbers.
Let c2 6= 0. Then without loss of generality we can assume that c2 = 1. Suppose also

that the function W (p) is nondegenerate, i.e.

c21 − a2c1 + a1 6= 0. (34)
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Then the system with transfer function (33) can be realized in the phase space as a
system of the type (19)

{

ẋ1 = x2,

ẋ2 = −a1x1 − a2x2 − u. y = c1x1 + x2.
(35)

From the Routh-Hurwitz conditions it follows that by the feedback u = S0y, S0 =
const 6= 0 the stationary stabilization of system (35) is possible if and only if either the
inequality c1 > 0 or the relations c1 ≤ 0, a2c1 < a1, are valid.

Consider the case when the stationary stabilization is impossible: c1 ≤ 0, a2c1 ≥ a1.
Applying Theorem 4.3 or Theorem 4.6 we can obtain the following sufficient condition

of nonstationary stabilization of system (35) c21 − a2c1 + a1 > 0. If the inequality c21 −
a2c1 +a1 < 0. holds, then the hypotheses of Theorem 4.9 are satisfied. Therefore, system
(35) cannot be stabilizable by any feedback u = S(t)y.

Thus, we have the following

Theorem 4.10 Suppose that the transfer function W (p) of system (35) is non-

degenerate, i.e. inequality (34) is valid. Then a necessary and sufficient condition of

stabilizability of system (35) is that at least one of the conditions holds:

1) c1 > 0 or 2) c1 ≤ 0, c2
1
− a2c1 + a1 > 0, (36)

In this case for the stabilizing control u = S(t)y the function S(t) can be chosen as the

piecewise-constant periodic one with sufficiently large period (a low-frequency stabiliza-

tion).

Remark 4.1 Theorem 4.10 very well illustrates the fact that the introduction of a
function S(t) 6= S0, S0 = const, in the feedback u = S(t)y (a nonstationary stabilization)
extends the possibility of stationary stabilization (S(t) ≡ S0).. Namely, in the space of
parameters {(a1, a2; c1)} of system (35) conditions (36) select a more wide domain than
the domain {c1 > 0} ∪ {c1 < 0, a2c1 < a1}, defined by the Routh-Hurwitz conditions for
stationary stabilization.

B. Three-Dimensional Systems

1) Suppose that the transfer function of system with a scalar input u(t) and the scalar
output y(t) has the form

W (p) =
1

p3 + αp2 + βp+ γ
, (37)

where α, β, γ are real numbers. Then such a system can be realized in the phase space
R

3 as a system of the type (19)







ẋ = x2,

ẋ2 = x3,

ẋ3 = −(αx3 + βx2 + γx1) − u, y = x1.

(38)

By the Routh-Hurwitz conditions the stationary stabilization u = S0y of system (38) is
possible if and only if

α > 0 and β > 0.
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Let α > 0, β ≤ 0. In this case the stationary stabilization is impossible. Now we
make use of Theorem 4.8.

By applying Theorem 4.8 to system (38) one can show that if α > 0, β ≤ 0, there
exists a control u = S(t)y, where S(t) is a piecewise-constant periodic function with
sufficiently large period, such that the system (38) with u = S(t)y is asymptotically
stable.

For system (38) with any feedback u = S(t)y we have

Tr(A+BS(t)C) = −α ∀t ∈ R. (39)

Then by Proposition from section 4.3 system (38) ( u = S(t)y) is not asymptotically
stable for α ≤ 0.

Thus, we have the following

Theorem 4.11 The system (38) with transfer function (37) is stabilized by feedback

(22) if and only if α > 0. In this case the function S(t) for the stabilizing control can

be chosen as the piecewise-constant periodic one with sufficiently large period (a low-

frequency stabilization).

2) Consider a system with a scalar input u(t) and a scalar output y(t) and the transfer
function of the form

W (p) =
p

p3 + αp2 + βp+ γ
, (40)

where α, β and γ are real numbers.
Let γ 6= 0. This condition is a condition of nondegenaracy of the function (40). Then

this system can be realized in the phase space R
3 as a system







ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −(αx3 + βx2 + γx1) − u, y = x2.

(41)

By the Routh-Hurwitz conditions the stationary stabilization of system (41) is possi-
ble if and only if α > 0, γ > 0. Consider the case α > 0, γ < 0. Then the stationary stabi-
lization is impossible. We apply Theorem 4.5 with S1 = S2; λ1 = λ2 = λ, κ1 = κ2 = κ.
Then we obtain that the conditions α > 0, γ < 0, are sufficient for nonstationary stabi-
lization of system (41).

Since for system (41) with any feedback u = S(t)y the equality (39) holds, asymptotic
stability of the system (41) is impossible for α ≤ 0 by Proposition from section 4.3.

Thus, we have the following

Theorem 4.12 Let α 6= 0, γ 6= 0. Then for system (41) to be stabilized by feedback

(22) it is necessary and sufficient that α > 0.

3) Consider a system with a scalar input u(t) and a scalar output y(t) and the transfer
function of the form

W (p) =
p2

p3 + αp2 + βp+ γ
, (42)

where α, β, γ ∈ R.
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Suppose that the function (42) is nongenerate, i.e. γ 6= 0. Then this system can be
realized in the phase space R

3 as a system







ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −(αx3 + βx2 + γx1) − u, y = x3.

(43)

The stationary stabilization u = S0y of system (43) is possible if and only if β > 0, γ > 0.
In the case β < 0, γ < 0 by Theorem 4.9 the stabilization (a stationary or nonstationary)
is impossible.

Consider the case β > 0, γ < 0, when the stationary stabilization is impossible. By
applying the fundamental theorem (Theorem 4.1) from section 4.1 and as above, letting
S1 = S2; λ1 = λ2 = λ, κ1 = κ2 = κ, one can prove the following assertion.

Theorem 4.13 Let β 6= 0, γ < 0. Then for system (43) to be stabilized by feedback

(22) it is necessary and sufficient that β > 0.

Remark 4.2 As Theorem 4.10 Theorems 4.11–4.13 very well illustrate advantages
of nonstationary stabilization in comparison with the stationary one.

4.5 Nonstationary high-frequency stabilization

In the previous section for some important cases the solution of the Brockett problem
of nonstationary linear stabilization of system (19) in the class of piecewise-constant
periodic stabilizing functions S(t) is given.

In the works [67]-[70] another approach is proposed for solving the Brockett problem.
This approach differs from the technique considered in the previous section and is based
on the averaging method and uses some ideas and methods from vibrational control
theory [71]-[74].

Also in this approach some research methods are used developed for the investigation
well-known phenomenon of stabilization of the upper pendulum equilibrium position
when the suspension point performs sufficiently fast oscillations in the vertical direction.

In [67]-[70] the Brockett problem is solved in the class of continuous periodic func-
tions with a sufficiently small period (a high-frequency stabilization). There there are
considered the functions of the form S(t) = α + βωk cos(ωt), where k ∈ N and ω is a
sufficiently large parameter.

We present corresponding results. Consider two cases:
1) CB 6= 0 and 2) CB = CAB = 0.

A. Stabilization in the case CB 6= 0.

In this case the following theorem holds.

Theorem 4.14 ([70]). Let in system (19) CB 6= 0. Suppose that there exist real

numbers α and κ ≥ 0 such that the matrix

A+ κ(CB)BCA + (α− κCAB)BC (44)

is stable. Then there exists a periodic function

S(t) = α+ βω cosωt, (45)
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where ω is a sufficiently large number and β ∈ R satisfies the relation

(

1

2π

2π∫

0

exp(βCB sin t)dt

)2

− 1

(CB)2
= κ, (46)

such that the closed-loop system (23) is exponentially stable uniformly with respect to ω
for all sufficiently large ω.

B. Stabilization in the case CB = CAB = 0.

In this case the following result is valid.

Theorem 4.15 ([70]). Let in system (19) CB = CAB = 0. Suppose that there exist

real numbers α and κ ≥ 0 such that the matrix

A− 3κ(CA2B)BCA + (α+ κCA3B)BC (47)

is stable. Then there exists a periodic function

S(t) = α+ γω2 cosωt, (48)

where ω is a sufficiently large number and γ ∈ R satisfies the relation

γ2 = 2κ. (49)

such that the closed-loop system (23) is exponentially stable uniformly with respect to ω
for sufficiently large ω.

Remark 4.3 In the work [70] the case when in system (19) CB = CAB = · · · =
CA2k−1B = 0 is also considered. In the case k > 1 (k ∈ N) the corresponding stabiliza-
tion theorem is formulated similarly to Theorem 4.15: instead of the stability property
of matrix (47) the stability property of the matrix

A+ (−1)k(2k + 1)κ(CA2kB)BCA + [α+ (−1)k+1(2k + 1)κ(CA2k+1B)BC]

is required. In this case the stabilizing function has the form S(t) = α+ βωk+1 cosωt.

4.6 High-frequency stabilization of two-dimensional and three-dimensional

systems

Here we consider examples of application of Theorems 4.14 and 4.15 to two-dimensional
and three-dimensional systems.

A. Two-dimensional systems. Consider the system (35). Suppose that inequality
(34) holds. For system (35) the condition CB 6= 0 is valid. Therefore, we can apply
Theorem 4.14. In this case the matrix (44) takes the form

(
0 1

−a1 − αc1 − κ(c2
1
− a2c1 + a1) −a2 − α

)

. (50)

The matrix (50) is stable if and only if there exist the values of parameters α ∈ R

and κ ∈ [0,+∞) such that the inequalities

a2 + α > 0, a1 + αc1 + κ(c21 − a2c1 + a1) > 0 (51)
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hold. Relations (51) are satisfied if at least one of the inequalities

c1 > 0 or c2
1
− a2c1 + a1 > 0, c1 ≤ 0 (52)

is satisfied.
Thus, by Theorem 4.14 the condition (52) is sufficient for the existence of a control

u = S(t)y, which stabilizes the system (35). Here S(t) is a function of the type (45). As
α, one may take an arbitrary number satisfying inequalities (51) for some κ ≥ 0. As β,
one should take a number satisfying the equation

2π∫

0

e−β sin tdt = 2π
√

1 + κ. (53)

It is easy to show that the equation (53) has a solution with respect to β.
By Theorem 4.9 if the inequality c2

1
− a2c1 + a1 < 0 (c1 ≤ 0) is satisfied, then system

(35) cannot be stabilized by any feedback of the type u = S(t)y.
Thus, we have the following

Theorem 4.16 ([67, 70]) Suppose the inequality (34) holds. Then

1) if at least one of inequalities (52) is satisfied, then there exists a feedback

u = S(t)y, S(t) = α+ βω cosωt, (54)

where α and β are determined from (51) and (53), respectively, such that the closed-loop

system (35),(54) is exponentially stable uniformly with respect to ω for sufficiently large

ω;

2) if condition (52) is not satisfied, then for any choice of function S(t) the system

(35), where u = S(t)y, is not exponentially stable.

Thus, condition (52) is necessary and sufficient one for the existence of feedback (54)
such that it stabilizes uniformly exponentially system (35) in the class of continuous and
periodic functions S(t).

The same condition (52), as was shown in section 4.4, is also necessary and sufficient
one for stabilization of system (35) in the other class of the piecewise-constant periodic
functions S(t).

B. Three-dimensional systems. Consider a system (38), where α := a3, β :=
a2, γ := a1(a1, a2, a3 are real numbers).

The stationary stabilization (S(t) ≡ const) is possible if and only if a2 > 0, a3 > 0.
For system (38) the relations CB = CAB = 0 are valid. We apply Theorem 4.15.

Here the matrix (47) takes the form





0 1 0
0 0 1

−a1 + α+ κa3 −a2 − 3κ −a3



 . (55)

The matrix (55) is stable if and only if there exist values of the parameters α ∈ R

and κ ∈ [0,+∞) such that the following inequalities

a3 > 0, a1 − α− κa3 > 0.

a3(a2 + 3κ) − a1 + α+ κa3 > 0

}

(56)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10 (3) (2010) 235–268 257

hold. The relations (56) are equivalent to the inequality a3 > 0.
Thus, by Theorem 4.15 the condition a3 > 0 is sufficient for the existence of the

periodic function S(t) of the type (48) such that the feedback u = S(t)y exponentially
stabilizes the system (38). Here one may take as α an arbitrary number satisfying relation
(56) for some κ ≥ 0. As γ a number satisfying the equation (49) should be taken.

The relation (39) holds. Therefore, if a3 ≤ 0 by Proposition from section 4.3 the
system (38) is not asymptotically (and exponentially) stable for any feedback u = S(t)y.

Thus, the following result is valid.

Theorem 4.17 ([69, 70]) 1) If in system (38) a3 > 0, then there exists a feedback of

the type (48) such that the system (38),(48) is uniformly with respect to ω exponentially

stable for sufficiently large values of ω.

2) If a3 ≤ 0, then for no function S(t) the exponential stabilization of system (38) is

possible by means of the feedback u = S(t)y.

Thus, the condition a3 > 0 is necessary and sufficient one for the existence of the
feedback of the type (48), which stabilizes uniformly exponentially the system (38). As
was shown above in section 4.4 (Theorem 4.11) the same condition a3 > 0 is also necessary
and sufficient one for stabilization of system (38) in the class of the piecewise-constant
periodic functions S(t) with sufficiently large period (a low-frequency stabilization).

5 Discrete-time systems. Problem statement

In this part the discrete-time version of Brockett stabilization problem and pole assign-
ment in discrete-time systems by periodic output feedback will be considered.

Consider a linear time-invariant discrete-time system

xk+1 = Axk +Buk, yk = Cxk (k = 0, 1, 2, . . .), (57)

where xk ∈ R
n is the state vector, uk ∈ R

m is the control input vector, yk ∈ R
ℓ is the

output vector, A,B and C are real constant matrices of dimension n×n, n×m and ℓ×n,
respectively.

It is well known that if C = In (In is the identity matrix) and the pair (A,B) is
controllable then the poles of the system (57) can be assigned arbitrarily by time-invariant
static state feedback [2, 3]. Hence the system (57) under the mentioned assumptions can
be stabilizable. When only the output but not the state is available the problem of
stabilizability and pole assignability by time-invariant static output feedback has also
received much attention.

Necessary and/or sufficient conditions have been obtained under which stabilizability
and pole assignability by time-invariant static output feedback are guaranteed. The basic
results are available in the literature (see, for example, [18],[19] and surveys [23],[24]).

The question arises as to what extent the stabilization or pole assignment problem
can be resolved by introducing time-varying static output feedback. The problem can be
formulated as follows.

Problem 5.1 The Stabilization Problem.
Given a triple real constant matrices A,B and C, find a sequence of real (m × ℓ)-

matrices {Sk} (k = 0, 1, 2, . . .) such that the system (57) with the feedback

uk = Skyk (k = 0, 1, 2, . . .), (58)
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i.e. the closed-loop system

xk+1 = (A+BSkC)xk (k = 0, 1, 2, . . .) (59)

is asymptotically stable.

The Problem 5.1 is the discrete analog of the Brockett problem of stabilization of a
linear continuous-time system by means of time-varying static output feedback.

It is important to notice that the discrete-time and continuous-time versions of Brock-
ett problem are essentially different. This becomes clear, for example, from the fact that
several difficulties and obstructions, which arise in solving of the Brockett problem in the
continuous-time case, are lacking in the discrete-time case. For the statement the the
next problem we assume that the time-dependent feedback (58) is periodic. i.e.

Sk+p = Sk ∀k ∈ {0, 1, 2, . . .}, (60)

where p is a positive integer.
Then the system (59) is a periodic linear system of period p. This system can be

considered as a time-invariant system with time interval equal to the period p:

ξr+1 = Msξr (r = 0, 1, 2, . . .), (61)

where
Ms = (A+BSp−1C)(A +BSp−2C) . . . (A+BS0C). (62)

The eigenvalues of the composite matrix Ms determine the dynamics of the system
(61), which in turn determines the dynamics of the periodic system (59),(60). These
eigenvalues called multiplicators will be referred to as the poles of the periodic system
(59). The matrix Ms is called the monodromy matrix for system (59),(60).

Now the pole assignment problem for the system (57) can be formulated in the fol-
lowing way:

Problem 5.2 The pole assignment problem.
Given a triple real constant matrices A,B and C, find real (m × ℓ)-matrices

S0, S1, . . . , Sp−1 such that the eigenvalues of the closed-loop system matrix Ms from
(62) are the roots of a polynomial

f(z) = zn + αn−1z
n−1 + · · · + α0 (63)

with real coefficients αi (i = 0, 1, . . . , n− 1).

Clearly, Problem 5.2 is more general than Problem 5.1. Problem 5.1 has been studied
in [75], and Problem 5.2 in [60],[61]. In these works two different approaches were offered
in solving these problems. Here we present the corresponding results. We begin with
Problem 5.2.

5.1 Pole assignability

Consider the system (57) with scalar input and scalar output (m = l = 1). Then B is a
column matrix, C is a row matrix, the feedback gains Sk are numbers.

A. Two-Dimensional Case

In this case the following theorem yields a complete solution of Problem 5.2 in the
sense of giving conditions for the realizability of pole assignment by static periodic output
feedback.
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Theorem 5.1 (On pole assignment: n = 2 [60]). Let in system (57) n = 2. Suppose

that the pair (A,B) is controllable and the pair (A,C) is observable. Then for the problem

of pole assignment in system (57) by means of periodic feedback (58),(60) with period 3

to be solvable it is necessary and sufficient that 1) CA−1B 6= 0 and 2) |CB|+ |TrA| 6= 0.

Remarks to Theorem 5.1

1. In Theorem 5.1 it is assumed that the system (57) is controllable and observable.
This assumption is necessary for pole assignability. This follows from the well-known fact
that uncontrollable and unobservable modes cannot be moved by static output feedback:
neither by time-invariant nor by time-varying feedback [76].

2. In Theorem 5.1 it is assumed implicitly that the system matrix A is non-singular.
This assumption entails no restriction as soon as the system (57) is controllable and
observable. The nonsingularity of matrix A in controllable and observable system can
be realized by a preliminary output feedback. Really, this follows from the well-known
formula

det[zI − (A+ SBC)] = ∆(z) + Sν(z),

where the characteristic polynomial ∆(z) = det(zI − A) of the matrix A and the poly-
nomial ν(z) of degree not greater than n− 1 have no common roots.

3. From the result stated in [77] it follows that the pole assignability of system (57)
is not possible in general by means of a periodic static output feedback of period 2.
Therefore, at least periodic static output feedback of period 3, as considered in Theorem
5.1, is necessary to realize pole assignment.

B. Multidimensional Case

Let W (z) denote the transfer function of system (57). Consider its representation in
the form of rational function

W (z) = C(Iz −A)−1B =
qn−1z

n−1 + · · · + q1z + q0
zn + pn−1zn−1 + · · · + p1z + p0

, (64)

where p, q ∈ R (i = 0, 1, . . . , n − 1). Here in the denominator of (64) we have the
characteristic polynomial of the matrix A.

The following theorem gives sufficient conditions under which the poles of system (57)
of arbitrary order can be assigned by means of periodic output feedback (58),(60).

Theorem 5.2 (On pole assignment: n > 2 [61]) Suppose that the pair (A,B) is

controllable and the pair (A,C) is observable. Suppose that the coefficients qi, pi (i =
0, 1, . . . , n − 1) of polynomials in the numerator and denominator of fraction (64) are

non-zero and all quotients pi/qi (i = 0, 1, . . . , n − 1) are mutually different. Let α0 6= 0
in (63). Then for the problem of pole assignment in system (57) by means of periodic

feedback (58),(60) with period p = n+ 1 to be solvable it is sufficient that

rank [B,AΠs0B, . . . , (AΠs0)n−1B] = n,

where

Πs0 = (A+ S0

n−1BC) . . . (A+ S0

0BC), s0 := (S0

0 , S
0

1 , . . . , S
0

n−1) =

(
p0

q0
,
p1

q1
, · · · , pn−1

qn−1

)

.

Remarks to Theorem 5.2

1. As in Theorem 5.1 (see Remark 1 to it) the conditions that (A,B) is controllable
and (A,C) is observable are necessary for pole assignability. Therefore, without loss of
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generality, the system matrix A is assumed to be nonsingular. By analogy with this we
may also assume that the coefficients pi (i = 0, 1, . . . , n− 1) of characteristic polynomial
of the matrix A are non-zero.

2. The assumption that the coefficients qi (i = 0, 1, . . . , n − 1) of the numerator in
(64) are all non-zero is not necessary in general. This assumption is only a consequence
of approach offered in [61]. The condition q0 6= 0 is equivalent to condition CA−1B 6= 0,
since q0 = −(CA−1B)p0. This is necessary. Really, otherwise the determinant of the
monodromy matrix Ms from (62) would be independent of the numbers S0, S1, . . . , Sp−1

for any values of p, since

detMs = (detA)p · (1 + S0CA
−1B) . . . (1 + Sp−1CA

−1B).

On the other hand the condition qn−1 6= 0 or equivalent (since qn−1 = CB) to it condition
CB 6= 0 is not necessary in general. Indeed, in two-dimensional case (see Theorem 5.1)
the zero value of CB may be allowed, but then the trace TrA of the matrix A must be
different from zero.

3. The condition that all quotients pi/qi (i = 0, 1, . . . , n − 1) are mutually different
is not necessary in general. It is a consequence of approach offered in [61]. For the
second-order systems this condition is not necessary [60].

4. The condition that the period of the output feedback gain Sk is equal to n+ 1 is
sufficient only. As remarked above for second order systems periodic feedback of period
p = 2 cannot solve the pole assignment problem.

5. The condition α0 6= 0 is equivalent to the condition that the poles of closed-
loop system (59) must differ from the origin. This condition is not necessary. In [61]
an example of third order system, where α0 = 0, is given but nevertheless the pole
assignment is possible.

6. The result of Theorem 5.2 can be generalized for multi-input multi-output systems
(see [61]).

5.2 Examples

A. A second order system ([60]).

Consider the system

xk+1 =

(
0 1
2 1

)

xk +

(
0
1

)

uk, yk = (−1 1)xk. (65)

The system (65) is controllable and observable. Here CB = 1, CA−1B = −1/2.
Therefore by Theorem 5.1 the pole assignment for system (65) is solvable by means of
periodic feedback (58),(60) with period p = 3.

This result can be obtained also by Theorem 5.2. Really, the transfer function of
system (65) is

W (z) =
z − 1

z2 − z − 2
.

We have p0 = −2, p1 = −1, q0 = −1, q1 = 1, S0

0
= 2, S0

1
= −1. Also,

Πs0 = (A+ S0

0BC)(A + S0

1BC) =

(
0 0
0 3

)

, rank (B,AΠs0 ) = rank

(
0 3
1 3

)

= 2.

Therefore, all conditions of Theorem 5.2 are satisfied.
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It should be noted that the open-loop system (65) xk+1 = Axk (uk := 0) is unstable
and cannot be stabilized by time-invariant output feedback uk = Syk (S = const).

B. A third order system ([61]).

Consider the discrete-time third-order system of the type (57) with

A =





0 1 0
0 0 1

−p0 −p1 −p2



 , B =





0
0
1



 , C = (q0 q1 q1).

The transfer function is

W (z) =
q2z

2 + q1z + q0
z3 + p2z2 + p1z + p0

.

For the values of parameters p0 = 1.875, p1 = 5.75, p2 = 4.5, q0 = 2, q1 = 3, q2 = 1,
the transfer function W (z) has three poles z1 = −0.5, z2 = −1.5, z3 = −2.5 and two real
zeros z0

1
= −1, z0

2
= −2. By the root locus method it can be established that this system

cannot be stabilized by constant output feedback.

Let the characteristic polynomial to be realized be f(z) = z3, i.e. the closed-loop
system is required to have all poles at the origin by introducing the periodic output
feedback of period p = 4. A numerical analysis [61] yields the following result for feedback
gains S0 = 0.9375, S1 = 2.528322, S2 = −8.928145, S3 = 10.

Note that the condition α0 6= 0 of Theorem 5.2 is not satisfied. But nevertheless the
pole assignment problem for considered system is solvable for the polynomial f(z) = z3.
Therefore, as is remarked above (Remark 5 to Theorem 5.2) the condition α0 6= 0 in
Theorem 5.2 is indeed not necessary.

Remark 5.1 Above for the pole assignment in system (57) the periodic memoryless
output feedback has been used, i.e. the value of the input at a particular time t = k
depends on the output value at the same moment of time k. Contrary to this approach in
the works [78]-[80] a memory in the periodic output feedback law is introduced. That is,
value of the input at a moment t = k depends on an output value at a time prior to this
moment, namely at the beginning of the period. We adduce a result on pole assignment
for single-input single-output system (57) by such kind (with memory) of periodic output
feedback. In [79] the following theorem is established:

Let the pair (A,B) be controllable. Then the pole assignment problem has a solution

if and only if the pair (An, C) is observable.

5.3 Stabilizability

We now turn to Problem 5.1 stated above.

5.3.1 Low-frequency stabilization of multi-input multi-output systems

Basic hypotheses. Suppose that there exist real constant (m×ℓ)-matrices S(j)(j = 1, 2)
such that the systems

xk+1 = (A+BS(j)C)xk, xk ∈ Rn (j = 1, 2)(k = 0, 1, 2, . . .) (66)
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have stable invariant linear manifolds Lj and invariant linear manifolds Mj . Assume

that dimMj +dimLj = n and Mj ∩Lj = {0}. Suppose that for solutions x
(j)

k (x
(j)
0

= x0)
of systems (66) the following inequalities

‖x(j)

k ‖ ≤ αj‖x0‖e−λjk ∀x0 ∈ Lj, (67)

‖x(j)

k ‖ ≤ βj‖x0‖eµjk ∀x0 ∈Mj , (68)

are satisfied for positive numbers λj , µj , αj , βj.

Assume that there exist a sequence of matrices {Σk}∞k=0
and an integer r ≥ 1 such

that for the system

xk+1 = (A+BΣkC)xk

the inclusion θr
0M1 ⊂ L2 holds, where θr

0 =
r−1∏

j=0

(A+BΣjC).

Under these assumptions we have the following

Theorem 5.3 (Fundamental Theorem on Stabilization [75]). Suppose the inequality

λ1λ2 > µ1µ2 holds. Then there exists a K-periodic matrix sequence {Sk}(Sk+K = Sk, k =
0, 1, 2, . . . ;K ∈ N) such that the system (59) is asymptotically stable.

In this case the stabilizing feedback gain matrix Sk has the form

Sk =







S1 for k ∈ [0, k1),

Σk−k1
for k ∈ [k1, k1 + r),

S2 for k ∈ [k1 + r, k1 + k2 + r),

where K := k1 + k2 + r, and positive integers k1 and k2 are determined from conditions

−λ1k1 + µ2k2 < −T, −λ2k2 + µ1k1 < −T.

Here T is a sufficiently large positive number. (The notation k ∈ [α, β) means that k
takes only integer values from the interval [α, β).)

5.3.2 Stabilization of single-input single-output systems

Consider the system (57) with scalar input uk and scalar output yk.

Theorem 5.3 implies the following assertion.

Theorem 5.4 (On Stabilization: m = l = 1 [75]). Suppose the pair (A,B) is con-

trollable and the pair (A,C) is observable. Let

M1 = M2, dimM1 = 1, µ1 = µ2 = µ, L1 = L2, dimL1 = n− 1, λ1 = λ2 = λ,

where Lj,Mj(j = 1, 2) are linear manifolds introduced for systems (66), and λj , µj are

numbers from (67), (68). Then if the inequality λ > µ is satisfied, there exists a K-

periodic number sequence {Sk}∞k=0
such that the system (59) is asymptotically stable.

Using Theorem 5.4 one can prove the following
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Theorem 5.5 (On Stabilization: m = l = 1 [75]). Suppose the pair (A,B) is con-

trollable and the pair (A,C) is observable. Suppose that there exists a number S0 such

that the matrix A + S0BC has n − 1 eigenvalues ρj(j = 1, . . . , n − 1) located inside the

unit circle and for the eigenvalue ρn the inequality

max
j

|ρn · ρj | < 1 (69)

holds. Then there exists a K-periodic number sequence {Sk}∞k=0
such that the system

(59) is asymptotically stable.

Remark 5.2 It is well known that for time-invariant system xk+1 = Dxk to be
asymptotically stable it is necessary and sufficient that all eigenvalues of the matrix
D should be located inside the unit circle |z| < 1. The matrix A + S0BC is closed-
loop system obtained after introducing in system (57) a time-invariant output feedback
uk = S0yk(S0 ∈ R). As is seen the condition (69) of Theorem 5.5 relaxes the requirement
of locating all eigenvalues of the matrix A+S0BC inside the unit circle. Hence Theorem
5.5 extends the possibility of stationary stabilization (by time-invariant output feedback).

5.3.3 Stabilization of linear second order systems

Consider a linear single-input single-output system with the transfer function

W (z) =
c2z + c1

z2 + a2z + a1

, (70)

Here a1, a2.c1, c2 are real numbers.
Suppose the function W (z) is nondegenerate, i.e.

c2
1
− a2c1c2 + a1c

2

2
6= 0. (71)

A state-space realization of the system considered is a system of the type (57) with

A =

(
0 1

−a1 −a2

)

, B =

(
0
1

)

, C = (c1 c2). (72)

Relation (71) is a necessary and sufficient condition for controllability of the pair
(A,B) and observability of the pair (A,C).

Apply Theorem 5.5. The condition (69) is equivalent to the inequality |a1−S0c1| < 1
which have to be satisfied for some number S0. This yields the conditions

c1 6= 0 or |a1| < 1, (73)

which by Theorem 5.5 are sufficient conditions for stabilizability of the system (57), (72).
One can show that conditions (73) are also necessary for stabilizability of the system

considered.
Thus, since the similarity transformation (A,B,C) → (T−1AT, T−1B,CT ) does not

change the transfer function W (z) and detA, we have the following

Theorem 5.6 (On Stabilization: n = 2,m = l = 1 [75]). Suppose that inequality

(71) is satisfied. Then for the system (57) with transfer function (70) to be stabilizable it

is necessary and sufficient that at least one of conditions

W (0) 6= 0 or | detA| < 1 (74)

is valid.
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We note that the conditions 1) and 2) of Theorem 5.1 are also sufficient but, in
general, not necessary conditions for stabilization of system (57) in the two-dimensional
case. Since W (0) = CA−1B, it is clear that for the stabilization of system (57) conditions
(74) are milder than the conditions 1) and 2) of Theorems 5.1.

Remark 5.3 Comparing the conditions (73) of nonstationary stabilization of system
defined by matrices (72) for special case c2 := 0(c1 6= 0) with necessary and sufficient
condition |a2| < 2 of stationary stabilization we see the additional possibilities opened
up by introducing time-variance in the feedback gain.

6 Conclusion

It is well known that although some interesting results are obtained for arbitrary pole
assignment in linear time-invariant systems by means of time-invariant static output
feedback, the possibility of this approach is limited. Another approach to the pole as-
signment stabilization problems is to consider the potential of time-varying static output
feedback. This approach was developed for stabilization of continuous-time systems by
Brockett [62]. For pole assignment in discrete-time systems this approach was considered
by Aeyels and Willems [60, 61].

It is shown that the stabilization by means of periodic output feedback is possible
under weak conditions. Necessary and sufficient conditions for nonstationary low- and
high-frequency stabilization of two- and three-dimensional systems are derived. It turns
out that time-varying feedback control strategy can achieve results that cannot be ob-
tained by time-invariant feedback.

Analogous problems are considered for pole assignment and stabilization of time-
invariant discrete-time control systems.

It is shown that under mild conditions stabilization of time-invariant control systems
is possible by means of piecewise-constant periodic with a sufficiently large period output
feedback (low-frequency stabilization). For second order systems necessary and sufficient
conditions of stabilizability are obtained. Also, it is shown that introducing time-variance
in the feedback gain opens up additional possibilities of stabilization of time-invariant
discrete-time control systems.

Further, the results of works [60, 61] on pole assignment in discrete-time systems by
time-varying static output feedback are presented.

Finally, we remark that the problems of stabilization of linear controllable systems
are the high-capacity impetus for the development of new mathematical methods, which
are presented in the present paper. Here an attempt is made to represent a constantly
increasing number of publications, concerning this subject. In these publications not
only the classical problems of stabilization are solved but the new notions are introduced
and the new problems, arising in different applications, are considered. For the solution
of these problems the methods, suggested in the present paper, can be useful.

Some of the methods described here are useful for investigations of nonlinear systems
[81].
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Abstract: Neural Networks (NN) proved to be a powerful problem solving mech-
anism with great ability to learn. The success and speed of training is based on
the initial parameter settings such as architecture, initial weights, learning rates and
others. The most used method of training Neuron Networks is the back propagation
of the gradient. Although this method provides a global optimal solution in a rea-
sonable time, it can converge towards local minimum, in addition to large number
of parameters that should be fixed previously. Within this framework of study, we
propose a new coding for a hierarchical genetic algorithm for the determination of
the structure and the training of the Neuron Networks. These algorithms are known
for structures’ and parameters’ optimization. We will prove that Hierarchical genetic
algorithm can improve the result of backpropagation of gradient.

Keywords: hierarchical genetic algorithms, neural networks, backpropagation algo-
rithm, learning, multilayer perceptron, optimization.
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1 Introduction

The solutions to the problem of learning neural networks by back propagation of gradient
are characterized by their incapacity to escape from local optima. The evolutionary
algorithms bring a great number of solutions in certain fields: drive networks of variable
architecture, automatic generation of Boolean Neurons Networks for the resolution of
a certain class of problems of optimization [15]. But the research effort is especially
related to the generation and the training of discrete networks.
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In this paper, we propose a solution of research for the learning and the determination
of Neural Network structure. This solution is based on the hierarchical genetic algorithm
which can escape local optima. The evolutionary algorithms are based on the study of
the process of natural evolution. The important principles of this type of algorithms are
the following:

• The algorithm works on a population of individuals. Each individual corresponds
to a point of research on a space of solutions.

• The population is initialized by chance. It evolves/moves thanks to operations
such as the change of an individual or the recombination of individuals.

• The adaptation of an individual to his environment is measured thanks to a function
called Cost which associates a positive reality with each individual.

Genetic Algorithms (GA) form a subset of the evolutionary algorithms. An individual
is entirely determined by a genotype (chromosome), a phenotype and a reality [12]. By
analogy with the process of natural evolution, a chromosome is often a chain of bits
or integer. The operations of change and recombination are carried out by specific
operators. Empirical studies showed that GA converged towards a total optimum for a
big class of problems of optimization defined for a discrete unit [9]. Theoretical studies
demonstrated that under certain hypothesis of regularity for the force function, these
algorithms converge asymptotically into total optimal solutions [9].

We will present in this work a Hierarchical Genetic Algorithm (HGA), which is an
alternative to the Genetic Algorithms. HGA has as role to optimize parameters and the
structure (number of neurons in hidden layer, input and output weights), and at the
same time, to train the network for modelling a non-linear process. Algorithms will do a
research in a very varied environment, in order to explore all the possible solutions and
to avoid the local minima or to be able to leave them.

To summarize, our work consists in minimizing the function cost (the quadratic error)
into two steps: an algorithm of back propagation of gradient starting the minimization,
then a HGA continues the work by carrying out research for another architecture in order
to leave the local minima and to find the global one.

Two examples will be employed to proof the improvement of the HGA solution com-
pared by methods of gradient.

2 Learning Process

Once the architecture of a NN is selected, it is necessary to do a learning to determine
the values of the weights making the NN output to be as close as possible to the laid
down objective. This learning is carried out thanks to the minimization of a function,
called function cost, calculated from the examples of the training and the output of the
NN; this function determines the objective to reach.

2.1 Principle of the minimization algorithms

The principle of these methods is to use an initial point, to find a direction of descent of
the cost in the space of the parameters W, then to move a step in this direction. Once a
new point is reached, we reiterate the procedure until satisfaction of a criterion of stop.
Thus, in the kth iteration, we calculate ωk = ωk−1 + αk−1.dk−1, where αk is the step of
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the descent and dk is the direction of descent. Various algorithms are characterized by
the choice of these two parameters.

2.2 Problem of the local minima

The minimum found by the back propagation algorithms is local minima. The minimum
found depends on the starting point of the research i.e. of the initialization of the weights.
In practice, it is necessary to carry out several minimizations with different initializations,
to find several minima and to keep the ”best”. It is nevertheless impossible and generally
useless to make sure that the selected minimum is the global one.

3 Presentation of the Hierarchical Genetic Algorithms (HGA)

3.1 Principle

Contrary to the conventional genetic algorithms, the Hierarchical Genetic Algorithms
(HGA) use variable chromosomes dimensions. These chromosomes have the specific name
of Hierarchical Chromosomes (HC). They are used mainly for the joint optimization of
structure and parameters. The principle of HC is the following: the activation of a
parametric gene is guided by the value of a gene of control of the first level, which
is activated by a gene of control of the second level, etc [7]. Figure 1 illustrates this
mechanism.

Figure 1: Structure of a Hierarchical Chromosome.

The HGA have a flexible hierarchical structure. Indeed, several hierarchical levels
can be used if needed. Therefore it is a question of an ideal approach to model topologies
or structures at the same time as the corresponding parameters. The HGA will seek a
solution considering all the possible lengths (different structures) and all the values of
parameters to meet the criteria of the objective function.

3.2 Genetic operations on the Hierarchical Chromosomes

Since the structure of the Hierarchical Chromosomes is fixed, the methods of crossing
and mutation can be used independently for each level or on the entire chromosome if it
is homogeneous. The genetic operations which affect genes of the higher levels can affect
the number of active genes of the lower levels what makes it possible to jointly optimize
the parameters and the topology of the system to be optimized [14].
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3.3 Multi-criterion approach

Let us define the objective functions F associated with each chromosome X of a HGA:
F = [f1f2...fi]

′. The objective functions F are used by the HGA for the optimization
of the parameters of the system. The task of a HGA is the joint optimization of the
parameters and the topology of a system, so an additional objective function fi+1 must
be considered by the HGA for the optimization of the topology of the system (Figure 2).
Based on the specific structure of the chromosome of the HGA, information concerning
topology to be optimized is directly acquired by genes of control.

Figure 2: Example of optimization of the structure.

By regarding topology as an objective to be optimized, the problem is now formulated

like a problem of multi-criterion optimization F =

[

Fi

fi+1

]

.

The genetic algorithm is used to minimize the vector of objective functions F .
Let us consider a problem of a system optimization, where:

• xj represents a solution (chromosome),

• Fi(xj) = Mj represents the objective function to minimize.

• fi+1(xj) = nj represents the number of parameters of the system.

The whole of the acceptable solutions to this problem is represented by:
{x : Fi(x) = 0 at N1 ≤ fi+1 ≤ N2}. In short, the best solution to this problem is

Figure 3: Whole of the acceptable solutions for a problem of joint optimization of the param-
eters and topology of a system.

represented by xopt, where fi+1(xopt) = N1 and Fi(xopt) = 0.
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Other solutions where the value of the objective function fi+1(xj) = nj > N1 with
Fi(xj) = 0 are acceptable solutions as regards the parameters of the system however the
topology of the system is not optimal (Figure 3) [14].

4 HGA for NN learning

HGAs are used for the optimization of the parameters and the topology of NNs. The
advantage of this approach is that the genes of the chromosome are classified in two
categories (hierarchy). This approach is ideal to represent the relations between:

• layers of the network,

• neurons in hidden layer,

• weights.

The following Figure 4 illustrates the principle operation of the new strategy.

Figure 4: Principle of the new strategy.

Each chromosome is composed by 2 types of genes:

• Genes of control (bits) for activations of the layers and the neurons of the NN.

• Genes of connections (real) for the determination of the weights of connexion.

The following Figure 5 illustrates the Structure of a chromosome.

Figure 5: Structure of a chromosome for the optimization of a NN.
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5 Presentation of New Approach for NN Learning

5.1 Objective

We build a HGA which selects a structure of NN (number of neurons in the hidden
layer). This number is given after the evaluation of a cost function. The function to be
minimized is the following quadratic criterion:

J =
1

N

N
∑

k=1

[ydi − yi]
2, (1)

where N is a number of example, ydi is an output of the process, yi is an NN output.

5.2 Coding

We have Npop chromosomes which are in the form of multi-dimensional table. The first
line is coded with 0 and 1 which indicates the consideration or not of neuron in hidden
layer. The lines which remain contain real which represent the whole of connexions of
input and output of hidden layer.

Example of chromosome coding:

We consider a NN with 2 input layer, 1 output layer and maximum 5 neurons in hidden
layer (this number can change).

Thus, our chromosome will have 5 columns and 4 lines:

• The columns represent neurons constituting the hidden layer,
• The 1st line contains 0 and 1. If 1 then the neuron exists (active) if 0 then it’s not

consider (inactive). In this example a hidden layer contains 3 neurons (There are
3 box with 1),

• 2nd and 3rd line represents input weights (2neurons of entry thus 2 lines)
• 4th line represents output weights (1 neuron of exit thus a line)

Figure 6 illustrates the description bellow.

Figure 6: Chromosome code.

The corresponding NN is:

5.3 Evaluation

Feval represents the quadratic criterion to minimize. Each individual of the population
is evaluated independently of the others

Feval(x) =
1

N

N
∑

k=1

[ydi − yi]
2. (2)
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Figure 7: translate chromosome to RNA.

The function of evaluation is a function which depends on 2 independent variables : the
first parameter is the desired output ydi. This output, we obtained it after having applied
to our process an entry rich in frequency (learning sequence). The second variables yi

are the output which are calculated as follows:

Figure 8: Calculation of the exit of the network.

5.4 Initial population

It is necessary to create and maintain a sufficient genetic diversity in the population.
For this reason the initial population must be most heterogeneous as possible in order
to prevent premature convergence. That is why we chose a random generation of Npop

individuals of the initial population. But for not having, a research space far from the
required minimum, and to minimize the search time, we chose to inject into this initial
population a certain number of individuals resulting from a training by back propagation.

5.5 Selection

We select a group of reproducers according to their evaluation by the cost function Feval.
The individuals who have the minimal function will be selected. It is about an elitist
selection. It was noted that this method induced a perfect convergence of the algorithm.
Indeed, any Good individual which once combined with others also good, can appear to
be interesting. For each individual:

• Calculate the function cost relative to each individual,

• Sort individuals in the ascending order of their function cost,

• Copy in the following generation the Pselect better individuals.
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5.6 Criterion of stop

The iterations of the algorithm end when the maximum number of generation, defined
in advance, is reached.

6 Application

6.1 System 1: Simple pendulum

We consider the non-linear system describing a simple pendulum and represented by the
following model:

Figure 9: Model of the simple pendulum.

We propose to apply for this system the neuronal predictive control in order to control
the position.

We will proceed by creating examples of learning. Then we will identify direct neu-
ronal model of the system by two methods of training: backpropagation and HGA [4, 5].

Development of the learning examples.

These examples of learning constitute a database which will be used for the identifi-
cation of the direct neuronal model by training. By considering a field of study, we excite
the system with input vector (which is a control signal) of amplitude between [-10, 10]
and we recover the corresponding vector which is in the interval [-1, 1]. We divide this
database into two parts: One will be used for the learning and the other for validation.
Figure 10 shows the sequence of test used.

Development of direct neuronal model: DNM :

Establish the system model to be used later in system control. We will follow the
choice below:

• Choice of the representation: input/output,
• Choice of the model assumption: model NARX (model not looped),
• Choice of the order of the model: 2.

By considering these choices, the network predictor is governed by the following equation:
yr(k) = ϕ(y(k − 1), y(k − 2), u(k), u(k − 2); C), where yr is NN output, y is a system
output, ϕ is a function of network, C is network parameters (weight).
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Figure 10: Input/output vectors (sequences of training and of test).

Architecture of the network.

We choose network not looped with 1 hidden layer: 4 inputs, 10 neurons hidden which
have a sigmoid function (tansig) and 1 neuron of linear output. The input of the network
is the vector: Ed = [y(k − 1); y(k − 2); u(k − 1); u(k − 2)].

Consider the matrix of the input weights Wd and the matrix of the output weights
Wds. Wd is a matrix (10,4), Wds is a matrix (1,10), ym is a network output, such as
ym(k) = Wds*tansig(Wd ∗ Ed);

Learning.

Used algorithm of training is the back propagation of the simple gradient to minimize
the following criterion:

J =
1

2

N
∑

k=1

[y(k) − ym(k)]2, (3)

where J is a quadratic error, N is a number of learning examples.
We use the following parameters: the iteration N = 200; a step of training = 0.2;

values of initial input y(1) = 0, u(1) = 0; and a random initialization of the matrices of
the weights.

Wd = Rand (10,4) = [0,52952 0,081759 -0,4405 -0,55428 -0,97313 0,63588 -0,020734
-0,028146 0,47375 0,40174 0,024 0,017082 -0,0060763 0,23539 -0,51866 0,32817 0,75842
-0,50884 0,0193 0,037063 0,25786 -0,08087 -0,25978 -0,25763 0,043251 0,44786 -0,42815
0,34426 -1,4512 0,69197 -0,021571 0,020547 0,21106 -0,073689 -0,28491 -0,38401 -0,13845
0,58937 -0,088476 -0,09446],

Wds = Rand (1,10) = [0,086723 -0,32983 0,17984 -0,068595 0,2788 0,015448 0,018001
-0,344 -0,072587].

Then we use the algorithm of back propagation for a given iteration.
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Test of the model.

To estimate the error of generalization by calculating the average quadratic error on
the sequence of test and of training according to the following formula:

EQMT =

√

√

√

√

1

NT

NT
∑

k=1

[y(k) − ym(k)], (4)

EQMA =

√

√

√

√

1

NA

NA
∑

k=1

[y(k) − ym(k)]. (5)

The validation of the model found is done by applying to the NN input, after learning,
test sequence and by comparing the output with the output wished. We evaluate the
performance of the model found by the error analysis of prediction which represents the
error of generalization of the network (Figure 11) [4, 5].

Figure 11: NN output and error of prediction of the DNM.

First, we made the learning of NN with the back propagation algorithm of the gra-
dient. Now, we apply our HGA for determining the NN architecture and make learning.
The parameters of simulation which we used are the following:

• The number of maximum neuron that our network can contain is 20 neurons.
• The number of neuron in the input layer is 4 (Ed=[y(k-1); y(k-2);u(k-1) ; u(k-2)]).
• The number of neuron in the output layer is 1.
• The number of individuals in a generation is 200.
• The number of generation (iteration) is 100.

After simulation, the algorithm gives us, a NN of 9 neurons in the hidden layer and
the following matrices of weight:

Input Weight Wd: [ 0,52879 0,081639 -0,55371 -0,44001 -0,96342 0,62766 -0,031226
-0,023709 0,46174 0,40518 0,027177 0,020853 0,74751 -0,5037 0,021788 0,039943
0,25955 -0,079655 -0,25648 -0,24315 -1,4033 0,65602 -0,022435 0,014063 -0,10963 0,55455
-0,098256 -0,099649 -0,56835 1,0888 0,56752 0,020133 -0,074531 -0,87235 0,63455 0,3784].
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Output Weight Wds:[ 0,081874 -0,33508 0,17908 0,28084 0,0172 -0,39829 -0,22687
-0,016373 0,008739].

Now we will evaluate the performance of the model found by the error analysis of
prediction which represents the error of generalization of the network (see Figure 12).

Figure 12: NN output and prediction error of the DNM after use of the HGA.

XComments.

According to Figure 12, we notice that the output of the network reproduces the
evolutions of the output of the process. This results in an error of prediction very close
to zero which reaches the maximum of 0.0005. So, the model established by the HGA
gives a better result than that found previously by back propagation of the gradient. We
can say that the solution given by back propagation of the gradient was local minima.
HGA find another best minimum by using another structure and parameters of NN.

6.2 System 2: Rigid spring shock absorber

We consider the non-linear system describing a rigid spring shock absorber. It is repre-
sented by the following differential equation :

ÿ(t) + ẏ(t) + y(t) + y3(t) = u(t). (6)

Figure 13 represents block of our system where y is a system output representing the
linear position, u is a system input representing the force applied: y is a system output

Figure 13: Model of spring shock absorber rigid.

representing the linear position, u is a system input representing the force applied.
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Development of the examples of learning.

We recover the examples of learning by exciting the system with an input vector of
frequency and amplitude variable between [-12, 12]. We recover the corresponding output
vector (Figure 14). This database will be used for the identification of direct model MND
and inverse model MNI of the process. We divide the vectors of input and output into
two parts of which one will be used for the learning and the other for validation.

Figure 14: Input/Output Vectors (sequences of training and of test).

Inverse Model Control (IMC).

We propose to apply inverse model. We made learning of inverse model of the process
by two methods which will be compared. The first one by direct learning and the other
by HGA learning. Then, we will simulate the two inverse model control found in order
to compare the performances of the two types of learning.

Learning direct inverse model.

Learning consists in minimizing the following criterion:

J =
1

2

N
∑

k=1

[u(k) − um(k)]2, (7)

where J is a quadratic error, N is a number of training examples.

The characteristics of the adopted network are the following ones:

• NN input : process order is 2 so the regressor is (y(k+1), y(k−1), u(k−1), u(k−2)),

• Network architecture: 5 neurons in hidden layer with sigmode activation functions,
one linear output neuron.

Validation of the IMC.

We validate the model found after its learning by applying to the network the sequence
of test and while comparing with the desired output. Figure 15 shows results found in
order to evaluate the performance of the NN model [4, 5].
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Figure 15: NN output and error of prediction of the IMC (direct learning).

Figure 16: NN output and error of prediction of the IMC (direct learning) after use of AGH.

Now, we apply our HGA for learning inverse model. For the validation, we apply
to the network found the sequence of test and we will compare it with the desired out-
put. Figure 16 shows the results found and error of prediction in order to evaluate the
performance of the network model.

XComments.

We note that the IMC found after the use of our hierarchical genetic algorithm is
very satisfactory compared to the traditional method used at the beginning. Indeed we
have an error of prediction much nearer to 0.

7 Conclusion

The algorithms performing local searches based on gradient information are sensitive
to initialization and can provide a solution corresponding to a local optimum. This
sensitivity to local optima is very limiting for multilayer perceptron learning.

Our main aim is the limitation of the defects of back propagation algorithm. The
HGA gives us a very interesting result. Indeed this algorithm considered very great
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number of multi-layer architecture of perceptron and made a learning by applying its
various operators (crossover and mutation).

In order to test our algorithm, precisely effectiveness of coding, we simulated two
non-linear systems, by the Simulink tool of MatLab. We have initially made learning of
direct and inverse model by using backpropagation and then our HGA. The results show
that the variance of the error for the second method is better than for the first one and
can escape local optima.
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Abstract: In this paper we are concerned with a neutral differential equation with
a deviated argument in an arbitrary Banach space X. To study the existence and
uniqueness of a solution of the problem considered, we use the theory of the analytic
semigroups and the fixed point arguments. Finally, we give an example to demon-
strate an application of the abstract results.
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1 Introduction

In this study we are concerned with the following neutral differential equation with a
deviated argument considered in a Banach space X :

{

d
dt
[u(t) + g(t, u(a(t)))] +Au(t) = f(t, u(t), u[h(u(t), t)]), 0 < t ≤ T <∞,

u(0) = u0,
(1.1)

where −A is the infinitesimal generator of an analytic semigroup. f, g, h and a are
suitably defined functions satisfying certain conditions to be stated later.

Initial results related to the differential equations with the deviated arguments can
be found in some research papers of the last decade but still a complete theory seems
to be missing. For the initial works on the existence, uniqueness and stability of various
types of solutions of different kinds of differential equations, we refer to [1]-[14] and the
references cited in these papers.
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Hernandez and Henriquez [9, 10] established some results concerning the existence,
uniqueness and qualitative properties of a solution operator of the following general
partial neutral functional differential equation with the infinite delay:

d

dt
(u(t)− g(t, ut)) = Au(t) + f(t, ut), t ≥ 0,

u0 = ϕ ∈ C0,

where A generates an analytic semigroup on a Banach space B, g and f are continuous
functions from [0,∞)× C0 into B and for each u : (−∞, b] → B, b > 0 and t ∈ [0, b], ut
represents, as usual, the mapping defined from (−∞, 0] into B by

ut(θ) = u(t+ θ) for θ ∈ (−∞, 0].

Adimy et al [1] have studies the existence and stability of a solution of the following
general class of nonlinear partial neutral functional differential equations:

d

dt
(u(t)− g(t, ut)) = A(u(t)− g(t, ut)) + f(t, ut), t ≥ 0,

u0 = ϕ ∈ C0, (1.2)

where the operator A is the Hille-Yosida operator not necessarily densely defined on the
Banach space B. The functions g and f are continuous from [0,∞)× C0 into B.

In this paper, we use the Banach fixed point theorem and the analytic semigroup
theory to prove the existence and uniqueness of different kinds of solutions to the prob-
lem (1.1). The plan of the paper is as follows. In Section 3, we prove the existence and
uniqueness of a local solution and in Section 4, the existence of a global solution for the
problem (1.1) is given. In the last section, we give an example.

The results presented in this paper can be applied easily to the problem (1.1) with a
nonlocal condition under some modified assumptions on the function f and the operator
A.

2 Preliminaries and Assumptions

As pointed out earlier, we note that if −A is the infinitesimal generator of an analytic
semigroup then for c > 0 large enough, −(A+ cI) is invertible and generates a bounded
analytic semigroup. This allows us to reduce the general case in which −A is the infinites-
imal generator of an analytic semigroup to the case in which the semigroup is bounded
and the generator is invertible. Hence, without loss of generality, we suppose that

‖S(t)‖ ≤M for t ≥ 0 and 0 ∈ ρ(−A),

where ρ(−A) is the resolvent set of −A. It follows that for 0 ≤ α ≤ 1, Aα can be defined
as a closed linear invertible operator with domain D(Aα) and being dense in E. We have
Eκ ↪→ Eα, for 0 < α < κ and the embedding is continuous. For more details on the
fractional powers of the closed linear operators, we refer to Pazy [15].

It can be proved easily that Eα := D(Aα) is a Banach space with norm ‖x‖α = ‖Aαx‖
and it is equivalent to the graph norm of Aα. Also, for each α > 0, we define E−α = (Eα)

∗,
the dual space of Eα is a Banach space endowed with the norm ‖x‖−α = ‖A−αx‖.
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It can be seen easily that Cα
t = C([0, t];Eα), for all t ∈ [0, T ], is a Banach space

endowed with the supremum norm,

‖ψ‖t,α := sup
0≤η≤t

‖ψ(η)‖α, ψ ∈ Cα
t .

We set Cα−1
T = C([0, T ];Eα−1) = {y ∈ Cα

T : ‖y(t)− y(s)‖α−1 ≤ L|t− s|, ∀ t, s ∈ [0, T ]},
where L is a suitable positive constant to be specified later and 0 ≤ α < 1.

To proceed further, we need to assume the following assumptions on operator A and
function f, g, h, a:

(A1): 0 ∈ ρ(−A) and −A is the infinitesimal generator of an analytic semi-
group {S(t) : t ≥ 0}.

(A2): Let U1 ⊂ Dom(f) be an open subset of R+ × Eα × Eα−1 and for each
(t, u, v) ∈ U1 there is a neighborhood V1 ⊂ U1 of (t, u, v). The nonlinear map
f : R+ × Eα × Eα−1 → E satisfies the following condition,

‖f(t, x1, y1)− f(s, x2, y2)‖ ≤ Lf [|t− s|θ1 + ‖x1 − x2‖α + ‖y1 − y2‖α−1],

where 0 < θ1 ≤ 1, 0 ≤ α < 1, Lf > 0 is a constant, (t, x1, y1) ∈ V1, and
(s, x1, y2) ∈ V2.

(A3): Let U2 ⊂ Dom(h) be an open subset of Eα×R+ and for each (x, t) ∈ U2

there is a neighborhood V2 ⊂ U2 of (x, t). The map h : Eα×R+ → R+ satisfies
the following condition

|h(x, t)− h(y, s)| ≤ Lh[‖x− y‖α + |t− s|θ2 ],

where 0 < θ2 ≤ 1, 0 ≤ α < 1, Lh > 0 is a constant, (x, t), (y, s) ∈ V2 and
h(., 0) = 0.

(A4): Let U3 ⊂ Dom(g) be an open subset of [0, T ] × Eα−1 and for each
(t, x) ∈ U3, there is a neighborhood V3 ⊂ U3 of (x, t). The function g :
[0, T ]× Eα−1 → Eβ is continuous for (t, u) ∈ [0, T0]× Eα−1 such that

‖Aβg(t, x)−Aβg(s, y)‖ ≤ Lg{|t− s|+ ‖x− y‖α−1}, and

Lg‖A
α−β−1‖ < 1,

where 0 ≤ α < 1, Lg > 0 is a positive constant (x, t), (y, s) ∈ V3.

(A5): The function a : [0, T ] → [0, T ] satisfies the following two conditions:

(i) a satisfies the delay property a(t) ≤ t, for all t ∈ [0, T ];

(ii) The function a is Lipschitz continuous; that is, there exists a positive
constant La such that

|a(t)− a(s)| ≤ La|t− s|, for all t, s ∈ [0, T ] and 1 > ‖A−1‖La.

Definition 2.1 A continuous function u ∈ Cα−1
T ∩Cα

T is said to be a mild solution
of equation (1.1) if u is the solution of the following integral equation

u(t) = S(t)[u(0) + g(0, u0)]− g(t, u(a(t))) +

∫ t

0

AS(t− s)g(s, u(a(s)))ds

+

∫ t

0

S(t− s)f(s, u(s), u[h(u(s), s)])ds, t ∈ [0, T ] (2.3)

and satisfies the initial condition u(0) = u0.
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Definition 2.2 A function u : [0, T ] → E is called a solution of 1.1 if u satisfies the
following conditions,

(i) u(.) + g(., u(a(.))) ∈ Cα−1
T ∩ C1((0, T ), E) ∩ C([0, T ], E),

(ii) u(t) ∈ D(A), and (t, u(t), u[h(u(t), t)]) ∈ U1,

(iii) d
dt
[u(t) + g(t, u(a(t)))] +A[u(t)] = f(t, u(t), u[h(u(t), t)]) for all t ∈ (0, T ],

(iv) u(0) = u0.

3 Existence of Local Solutions

In this section, we provide an existence and uniqueness theorem for a mild solution of
(1.1). We set

W = {u ∈ Cα
T0

∩Cα−1
T0

: u(0) = u0, ‖u− u0‖T0,α ≤ δ}.

Clearly, W is a closed and bounded subset of Cα−1
T .

Under the assumptions (A2)-(A3), 0 ≤ α < 1 and u ∈ Cα
T0

imply that
f(s, u(s), u[h(u(s), s)]) is continuous on [0, T0]. Therefore, we can show that there ex-
ists a positive constant N such that

‖f(s, u(s), u[h(u(s), s)])‖ ≤ N= Lf [T0
θ1 + δ(1 + LLh) + LLhT

θ2
0 ] +N0,

where N0 = ‖f(0, u0, u0)‖. Similarly, with the help of the assumptions (A4)-(A5), we
can easily show that ‖Aβg(t, u(a(t)))‖ ≤ Lg[T0 + δ] + ‖g(0, u0)‖α = N1. Also, we denote
‖A−1‖ =M2 and ‖A−α‖ =M3.

Theorem 3.1 Let us assume that the assumptions (A1)-(A5) are satisfied and u0 ∈
D(Aα), for 0 ≤ α < 1. Then, the differential equation (1.1) has a unique local mild
solution u(t), for t ∈ (0, T0), where T0 = T0(α, β, u0) > 0 is sufficiently small.

Proof For a fixed δ > 0, we choose 0 < T0 = T0(α, β, u0) ≤ T such that

Cα+1−βLg

T β−α
0

β − α
+ CαLf [2 + LLh]

T 1−α
0

(1− α)
≤ 1− η, (3.4)

where η = Lg‖A
α−β−1‖ < 1 and satisfying the following

‖(S(t)− I)Aα[u0 + g(0, u0)]‖+ ‖Aα−β‖Lg[T0 + δ] ≤
δ

2
(3.5)

for all t ∈ [0, T0] and

Cα+1−βN1
T β−α
0

β − α
+ CαN

T 1−α
0

1− α
≤

δ

2
. (3.6)

For more details of choosing such a T0, we refer to Theorem 2.2 of [8].
We define a map F : Cα

T0
∩ Cα−1

T0
→ Cα

T0
∩ Cα−1

T0
as

(Fu)(t) = S(t)[u0 + g(0, u0)]− g(t, u(a(t))) +

∫ t

0

AS(t− s)g(s, u(a(s)))ds

+

∫ t

0

S(t− s)f(s, u(s), u[h(u(s), s)])ds, t ∈ [0, T ]. (3.7)
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In order to prove this theorem, we need to show that Fu ∈ Cα−1
T0

, for any u ∈ Cα−1
T0

.
Clearly, F : Cα

T → Cα
T .

If u ∈ Cα−1
T0

, T > t2 > t1 > 0, and 0 ≤ α < 1, then we get

‖(Fu)(t2)− (Fu)(t1)‖α−1 ≤ ‖(S(t2)− S(t1))(u0 + g(0, u0))‖α−1

+‖Aα−β−1‖‖Aβg(t2, u(a(t2)))−Aβg(t1, u(a(t1)))‖

+

∫ t1

0

‖(S(t2 − s)− S(t1 − s))Aα−β‖‖Aβg(s, u(a(s)))‖ds

+

∫ t2

t1

‖S(t2 − s)Aα−β‖‖Aβg(s, u(a(s)))‖ds.

+

∫ t1

0

‖(S(t2 − s)− S(t1 − s))Aα−1‖

× ‖f(s, u(s), u[h(u(s), s)])‖ds

+

∫ t2

t1

‖S(t2 − s)Aα−1‖‖f(s, u(s), u[h(u(s), s)])‖ds. (3.8)

For the first part of the right hand side of (3.8), we have

‖(S(t2)− S(t1))(u0 + g(0, u0))‖α−1 ≤

∫ t2

t1

‖Aα−1S′(s)(u0 + g(0, u0))‖ds

=

∫ t2

t1

‖AαS(s)(u0 + g(0, u0))‖ds

≤

∫ t2

t1

‖S(s)‖[‖u0‖α + ‖Aα−β‖‖g(0, u0)‖β ]ds

≤ C1(t2 − t1), (3.9)

where C1 = [‖u0‖α + ‖Aα−β‖‖g(0, u0)‖β]M.
For the second part of the right hand side of (3.8), we can see that

‖Aα−β−1‖‖Aβg(t2, u(a(t2)))−Aβg(t1, u(a(t1)))‖

≤ ‖Aα−β−1‖Lg[|(t2 − t1)|+ ‖u(a(t2))− u(a(t1))‖α−1]

≤ ‖Aα−β−1‖[Lg + LLa]|(t2 − t1)|

≤ C2|(t2 − t1)|. (3.10)

where C2 = ‖Aα−β−1‖[Lg + LLa].
To handle the third and fifth parts of the right hand side of (3.8), we observe that

‖(S(t2 − s)− S(t1 − s))‖α−1 ≤

∫ t2−t1

0

‖Aα−1S′(l)S(t1 − s)‖dl

≤

∫ t2−t1

0

‖S(l)AαS(t1 − s)‖dl

≤ MCα(t2 − t1)(t1 − s)−α. (3.11)

Now we use the inequality (3.11) to get the bound for the third part we have

∫ t1

0

‖(S(t2 − s)− S(t1 − s))Aα−β‖ × ‖Aβg(s, u(a(s))])‖ds ≤ C4(t2 − t1), (3.12)
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where C4 = N1MCα−β+1
T

1−(α−β)

0

1−(α−β) . Similarly, bound for the fifth part is given as

∫ t1

0

‖(S(t2 − s)− S(t1 − s))Aα−1‖ × ‖f(s, u(s), u[h(u(s), s)])‖ds ≤ C3(t2 − t1), (3.13)

where C3 = NMCα
T

1−α
0

1−α
. For the bound for the sixth part, we have

∫ t2

t1

‖S(t2 − s)Aα−1‖‖f(s, u(s), u[h(u(s), s)])‖ds ≤ C5(t2 − t1), (3.14)

where C5 = ‖Aα−1‖MN. Finally, for the fourth part we have the following

∫ t2

t1

‖S(t2 − s)Aα−β‖‖Aβg(s, u(a(s))‖ds ≤ C6(t2 − t1), (3.15)

where C6 = ‖Aα−β‖MN1.
We use the inequalities (3.9), (3.10), (3.13)-(3.15) in inequality (3.8) to get the fol-

lowing inequality

‖(Fu)(t2)− (Fu)(t1)‖α−1 ≤ L̃|t2 − t1|, (3.16)

where, L̃ = max{Ci, i = 1, 2, · · ·6}. Hence, F : Cα−1
T0

→ Cα−1
T0

follows.
Our next task is to show that F : W → W . Now, for t ∈ (0, T0] and u ∈ W , we have

‖(Fu)(t)− u0‖α ≤ ‖(S(t)− I)Aα[u0 + g(0, u0)]‖

+ ‖Aα−β‖‖Aβg(s, u(a(s)))−Aβg(0, u(a(0)))‖

+

∫ t

0

‖S(t− s)A1+α−β‖‖Aβg(s, u(a(s)))‖ds

+

∫ t

0

‖S(t− s)Aα‖‖f(s, u(s), u[h(u(s), s)])‖ds

≤ ‖(S(t)− I)Aα[u0 + g(0, u0)]‖+ ‖Aα−β‖Lg[T0 + δ]

+CαN
T 1−α
0

1− α
+ C1+α−βN1

T β−α
0

β − α
.

Hence, from inequalities (3.5) and (3.6), we get ‖Fu− u0‖T0,α ≤ δ. Therefore, F : W →
W .

Now, if t ∈ (0, T0] and u, v ∈ W , then

‖(Fu)(t)− (Fv)(t)‖α ≤ ‖Aα−β‖‖Aβg(t, u(a(s)))−Aβg(t, v(a(s)))‖

+

∫ t

0

‖S(t− s)A1+α−β‖‖Aβg(s, u(a(s)))−Aβg(s, v(a(s)))‖ds.

+

∫ t

0

‖S(t− s)Aα‖

×‖f(s, u(s), u[h(u(s), s)])− f(s, v(s), v[h(u(s), s)])‖ds. (3.17)

We have the following inequalities

‖Aβg(t, u(a(s)))−Aβg(t, v(a(t)))‖ ≤ Lg‖A
−1‖‖u− v‖T0,α, (3.18)
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‖f(s, u(s), u[h(u(s), s)])− f(s, v(s), v[h(v(s), s)])‖

≤ Lf [2 + LLh]‖u− v‖T0,α. (3.19)

We use the inequalities (3.18) and (3.19) in the inequality (3.17) and get

‖(Fu)(t)− (Fv)(t)‖α ≤ [Lg(‖A
α−β−1‖+ C1+α−β

T β−α
0

β − α
)

+CαLf [2 + LLh]
T 1−α
0

(1− α)
]‖u− v‖T0,α. (3.20)

Hence, from inequality (3.4), we get the following inequality given below

‖Fu−Fv‖T0,α < ‖u− v‖T0,α.

Therefore, the map F has a unique fixed point u ∈ W which is given by

u(t) = S(t)[u0 + g(0, u0)]− g(t, u(a(t))) +

∫ t

0

AS(t− s)g(s, u(a(s)))ds

+

∫ t

0

S(t− s)f(s, u(s), u[h(u(s), s)])ds t ∈ [0, T0]. (3.21)

Hence, the mild solution u of equation (1.1) is given by the equation (3.21) and belongs
to Cα

T0
∩Cα−1

T0
. Also, on the similar lines of the proof of Theorem 6.3.1, we can easily

check that
‖u(t+ h)− u(t)‖ ≤ L′|h|γ

for some 0 < γ < 1 − α. Furthermore, the inequality of (A2), implies the local Hölder
continuity of the function f for t, s ∈ [t0, T ], 0 < t0 < T . Precisely for u ∈ Cα−1

T0
and

moreover, u ∈ Cγ((0, T ], Eα) for 0 < γ < 1− α :

‖f(t, u(t), u[h(u(t), t)])− f(s, u(s), u[h(u(s), s)])‖

≤ Lf{|t− s|θ1 + ‖u(t)− u(s)‖α + L|h(u(t), t)− h(u(s), s)|}

≤ Lf{|t− s|θ1 + ‖u(t)− u(s)‖α + LLh[|t− s|θ2 + ‖u(t)− u(s)‖α]}

≤ Lf{|t− s|θ1 + L′|t− s|γ + LLh[|t− s|θ2 + L′|t− s|γ ]}. (3.22)

Hence, the map t 7→ f(t, u(t), u[h(u(t), t)]) is locally Hölder continuous. Therefore,

f(t, u(t), u[h(u(t), t)]) ∈ C([0, T ], E) ∩ Cβ
′

((0, T ], E),

where 0 < β
′

< min{θ1, γ, θ2}. Similarly, we can prove that u(.) + g(., u(a(.))) is also
Hölder continuous on (0, T0]. Therefore, from Theorem 3.1 pp. 110 and Corollary 3.3,
pp. 113, Pazy [15], the function u(.)+g(., u(a(.))) ∈ Cα−1

T0
∩ C1((0, T0), E) ∩ C([0, T0], E)

and u(.) is the unique solution of the problem (1.1) in the sense of definition (3.2) of Pazy
[15]. This completes the proof of the Theorem. 2

4 Existence of Global Solutions

In order to establish the global existence of a mild solution to (1.1), we need the following
lemma.
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Lemma 4.1 Let u0(t, s) ≥ 0 be continuous on 0 ≤ s ≤ t ≤ T < ∞. If there are
positive constants A, E and α such that

u0(t, s) ≤ A+B

∫ t

s

(t− σ)α−1u0(σ, s)dσ, (4.1)

for 0 ≤ s < t ≤ T , then there is a constant C such that u0(t, s) ≤ C.

Proof For 0 ≤ s < t ≤ T , we have

∫ t

s

(t− τ)(α−1)(τ − s)(β−1)dτ = (t− s)α+β−1Γ(α)Γ(β)

Γ(α+ β)
, (4.2)

which holds for every α, β > 0. Integrating (4.1) n−1 times and using (4.2) and replacing
t− s by T , we get

u0(t, s) ≤ A

n−1
∑

j=0

(

BTα

α

)j

+
(BΓ(α))n

Γ(nα)

∫ t

s

(t− σ)nα−1u0(σ, s)dσ. (4.3)

Let n be large enough so that nα > 1. We majorize (t− σ)nα−1 by T nα−1 to obtain

u0(t, s) ≤ c1 + c2

∫ t

s

u0(σ, s)dσ. (4.4)

Application of Gronwall’s inequality leads to

u0(t, s) ≤ c1e
c2(t−s) ≤ c1e

c2T ≤ C. (4.5)

This completes the proof of the lemma.

Theorem 4.1 Suppose that 0 ∈ ρ(−A) and the operator −A generates the analytic
semigroup S(t) with ‖S(t)‖ ≤M , for t ≥ 0, the conditions (A1)–(A5) are satisfied and
u0 ∈ D(Aα). If there are continuous nondecreasing real valued functions k1(t), k2(t) and
k3(t) such that

‖f(t, x, y)‖ ≤ k1(t)(1 + ‖x‖α + ‖y‖α−1), (4.6)

|h(x, t)| ≤ k2(t)(1 + ‖z‖α), (4.7)

‖g(t, y)‖β ≤ k3(t)(1 + ‖v‖α−1), (4.8)

for t ≥ 0, x ∈ Eα and y ∈ Eα−1, then the initial value problem (1.1) has a unique
solution which exists for all t ∈ [0, T ].

Proof Let T0 be sufficiently small as defined in the proof of Theorem 3.1 and let
u(t), t ∈ (0, T0), be the local mild solution of (1.1). To prove the global existence of u(t),
we need to show that we can continue the solution of equation (1.1) as long as ‖u(t)‖α
stays bounded. It is therefore sufficient to show that if u exists on [0, T ), then ‖u(t)‖α is
bounded as t ↑ T.

We have the following inequality

‖u[h(u(s), s)]‖α−1 ≤ ‖u[h(u(s), s)]− u(0)‖α−1 + ‖u0‖α−1

≤ L|h(u(s), s)|+ ‖u0‖α−1

≤ Lk2(T ) + Lk2(T )‖u‖s,α + ‖u0‖α−1. (4.9)
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For t ∈ [0, T ), we have

‖u(t)‖α ≤ ‖S(t)Aα[u0 + g(0, u0)]‖+ ‖Aα−β‖‖g(t, u(a(t)))‖β

+

∫ t

0

‖Aα+1−βS(t− s)‖‖Aβg(s, u(s)))‖ds

+

∫ t

0

‖AαS(t− s)‖‖f(s, u(s), u[h(u(s), s)])‖ds

≤ M [‖u0‖α + k3(T )‖A
α−β‖{1 + ‖A−1‖‖u0‖α}]

+ k3(T )‖A
α−β‖[1 + ‖A−1‖‖u‖t,α]

+ Cα+1−β

∫ t

0

(t− s)−1+β−αk3(T )[1 + ‖A−1‖‖u‖s,α]ds,

+ Cα

∫ t

0

(t− s)−αk1[1 + ‖u‖s,α + ‖u[h(u(s), s)]‖α−1]ds

≤ M [‖u0‖α + k3(T )‖A
α−β‖{1 + ‖A−1‖‖u0‖α}]

+ k3(T )‖A
α−β‖[1 + ‖A−1‖‖u‖t,α]

+ k3(T )Cα+1−β

∫ t

0

(t− s)−(1+α−β)ds

+ ‖A−1‖k3(T )Cα+1−β

∫ t

0

(t− s)−(1+α−β)‖u‖s,αds

+ k1(T )Cα

∫ t

0

(t− s)−αds+ k1(T )Cα

∫ t

0

(t− s)−α‖u‖s,αds

+ (Lk2(T ) + ‖u0‖α−1)k1(T )Cα

∫ t

0

(t− s)−αds

+ Lk2(T )k1(T )Cα

∫ t

0

(t− s)−α‖u‖s,αds.

Hence,

‖u‖t,α ≤ C1 +

∫ t

0

(C2(t− s)−α + C3(t− s)β−α−1)‖u‖s,αds, (4.10)

where

C1 =
M [‖u0‖α + k3(T )‖A

α−β‖{1 + ‖A−1‖‖u0‖α}] + k3(T )‖A
α−β‖

(1− k3(T )‖Aα−β−1‖)

+
k1(T )CαT

1−α

(1− k3(T )‖Aα−β−1‖)(1− α)

+
(Lk2(T ) + ‖u0‖α−1)k1(T )CαT

1−α

(1− k3(T )‖Aα−β−1‖)(1− α)

+
k3(T )Cα+1−βT

α−β

(1− k3(T )‖Aα−β−1‖)(α− β)
,

C2 =
k1(T )Cα[1 + Lk2(T )]

(1 − k3(T )‖Aα−β−1‖)
,

C3 =
‖A−1‖k3(T )Cα+1−β

(1 − k3(T )‖Aα−β−1‖)
.
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Now, we rewrite (4.10) as follows

‖u‖t,α ≤ C1 +

∫ t

0

˜C2,3(t− s)−γ̃‖u‖s,αds, (4.11)

where

˜C2,3(t− s)−γ̃ = 2×max[C2(t− s)−α, C3(t− s)β−α−1]. (4.12)

Hence, by applying Lemma 4.1 to the above inequality (4.11), we get the required results.
This completes the proof of the theorem. 2

5 Example

Let E = L2(0, 1).We consider the following partial differential equations with a deviated
argument,















∂t[w(t, x) + ∂xf1(t, w(a(t), x))] − ∂2x[w(t, x)]
= f2(x,w(t, x)),+f3(t, x, w(t, x)), x ∈ (0, 1), t > 0,
w(t, 0) = w(t, 1) = 0, t ∈ [0, T ], 0 < T <∞,
w(0, x) = u0, x ∈ (0, 1),

(5.1)

where

f2(x,w(t, x)) =

∫ x

0

K(x, s)w(s, h(t)(a1|w(s, t)| + b1|ws(s, t)|))ds.

The function f3 : R+ × [0, 1]×R → R is measurable in x, locally Hölder continuous in t,
locally Lipschitz continuous in u and uniformly continuous in x. Further, we assume that
a1, b1 ≥ 0, (a1, b1) 6= (0, 0), h : R+ → R+ is locally Hölder continuous in t with h(0) = 0
and K : [0, 1]× [0, 1] → R.

We define an operator A, as follows,

Au = −u′′ with u ∈ D(A) = {u ∈ H1
0 (0, 1) ∩H

2(0, 1) : u′′ ∈ E}. (5.2)

Here, clearly the operator A is self-adjoint with compact resolvent and is the infinitesimal
generator of an analytic semigroup S(t). Now we take α = 1/2, D(A1/2) = H1

0 (0, 1) is
the Banach space endowed with the norm,

‖x‖1/2 := ‖A1/2x‖, x ∈ D(A1/2)

and we denote this space by E1/2. Also, for t ∈ [0, T ], we denote

C
1/2
t = C([0, t];D(A1/2)),

endowed with the sup norm

‖ψ‖t,1/2 := sup
0≤η≤t

‖ψ(η)‖α, ψ ∈ C
1/2
t .

We observe some properties of the operators A and A1/2 defined by (5.2). For u ∈
D(A) and λ ∈ R, with Au = −u′′ = λu, we have 〈Au, u〉 = 〈λu, u〉; that is,

〈−u′′, u〉 = |u′|2L2 = λ|u|2L2 ,
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so λ > 0. A solution u of Au = λu is of the form

u(x) = C cos(
√
λx) +D sin(

√
λx)

and the conditions u(0) = u(1) = 0 imply that C = 0 and λ = λn = n2π2, n ∈ N. Thus,
for each n ∈ N, the corresponding solution is given by

un(x) = D sin(
√

λnx).

We have 〈un, um〉 = 0 for n 6= m and 〈un, un〉 = 1 and hence D =
√
2. For u ∈ D(A),

there exists a sequence of real numbers {αn} such that

u(x) =
∑

n∈N

αnun(x),
∑

n∈N

(αn)
2 < +∞ and

∑

n∈N

(λn)
2(αn)

2 < +∞.

We have
A1/2u(x) =

∑

n∈N

√

λn αn un(x)

with u ∈ D(A1/2); that is,
∑

n∈N
λn(αn)

2 < +∞. E− 1
2
= H1(0, 1) is a Sobolev space of

negative index with the equivalent norm ‖.‖− 1
2
=

∑∞
n=1 |〈., un〉|

2. For more details on

the Sobolev space of negative index, we refer to Gal [8].
The equation (5.1) can be reformulated as the following abstract equation in E =

L2(0, 1):

d

dt
[u(t) + g(t, u(a(t)))] +A[u(t)] = f(t, u(t), u[h(u(t), t)]) t > 0,

u(0) = u0, (5.3)

where u(t) = w(t, .) that is, u(t)(x) = w(t, x), x ∈ (0, 1). The function g : R+×E1/2 → E,
such that g(t, u(a(t)))(x) = ∂xf1(t, w(a(t), x)) and the operator A is same as in equation
(5.2).

The function f : R+ × E1/2 × E−1/2 → E, is given by

f(t, ψ, ξ)(x) = f2(x, ξ) + f3(t, x, ψ), (5.4)

where f2 : [0, 1]× E → H1
0 (0, 1) is given by

f2(t, ξ) =

∫ x

0

K(x, y)ξ(y)dy, (5.5)

and f3 : R× [0, 1]×H2(0, 1) → H1
0 (0, 1), satisfies the following

‖f3(t, x, ψ)‖ ≤ Q(x, t)(1 + ‖ψ‖H2(0,1)) (5.6)

with Q(., t) ∈ E and Q is continuous in its second argument. We can easily verify that
the function f satisfies the assumptions (A1)-(A4). For more details see [8].

For the function a we can take
(i) a(t) = kt, where t ∈ [0, T ] and 0 < k ≤ 1;

(ii) a(t) = ktn for t ∈ I = [0, 1] k ∈ (0, 1] and n ∈ N;

(iii) a(t) = k sin t for t ∈ I = [0, π2 ], and k ∈ (0, 1].
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Abstract: This paper proposes a trajectory planning and tracking approach for
bilinear systems that approximate weakly nonlinear systems, based on orthogonal
functions and especially the use of operational integration and product matrices.
These operational tools allow the conversion of a bilinear differential state equation
into an algebraic one depending on initial and final conditions. Arranging and solving
the obtained algebraic equation lead to an open loop control law that allows the
planning of a system trajectory. The parameters setting of the tracking state feedback
closed loop control is yielded by considering a reference model characterizing the
desired performances.

Keywords: bilinear systems; trajectory planning; orthogonal functions; trajectory
tracking.
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1 Introduction

Trajectory planning and tracking are linked subjects. Indeed, trajectory planning is
finding an open loop control that permits to reach a final fixed state from a known initial
state, and tracking is designing a closed loop control that ensures stability of system round
its planned trajectory. These subjects have been considered by different approaches for
stationary linear systems and particular classes of nonlinear systems [1]–[4]. Orthogonal
functions were used as a powerful tool for systems study, identification [5, 6] and control
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[7, 8]. For this purpose, different orthogonal functions were used as Walsh [9] and Block-
pulse [10] functions as well as Laguerre [11], Chebychev [12], Hermite [13] and Legendre
polynomials [14]. The projection of the system differential equation on an orthogonal
basis leads to an algebraic system representation that turns out to be more convenient
for equation resolution especially for bilinear systems. In this work, we start by pointing
out that a weakly nonlinear systems can be approximated by a bilinear system [15], and
then we propose to use orthogonal functions properties with the aim to turn away the
integration difficulty caused by trajectory planning and tracking for bilinear systems.
We will point out that the algebraic form of system obtained by the orthogonal basis
approximation and the use of tools offered by orthogonal functions such as operational
matrix of integration and of product makes possible the characterization of a planned
system trajectory and the synthesis of tracking state feedback control.

2 Bilinear Approximation of Weakly Nonlinear Systems

Consider a nonlinear system described by the following state equation

ẋ(t) = f(x(t)) +Bu(t),

y(t) = Cx(t),
(1)

where f ∈ R
n → R

n is a nonlinear function with initial condition x(0) = x0,u(t) ∈ R,
y(t) ∈ R and B,C ∈ R

n are constant vectors.

The system (1) can be linearized around an operating point (uop, xop, yop) as

˙̃x(t) = Ax̃(t) +Bũ(t),

ỹ(t) = Cx̃(t),
(2)

where x̃ = x− xop, ũ = u− uop, ỹ = y− yop and A = ∂f
∂u

|x=x̃. The matrix A can be also
approached by means of an identification method [16].

The main inconvenience of the obtained linear model that describes the original non-
linear plant is its availability in a limited domain around the operating point. In order
to simplify the nonlinear model in a large region, one may look for a bilinear model. In
fact, the bilinear structure of dynamical system constitutes a medium structure between
the complex nonlinear model and the simple linear one. It represents a good compromise
between the simplicity and complexity of dynamical models. It is complex enough to
preserve the nonlinear properties of the original system and it is simple enough to recall
the linear representation. The bilinear model can be written in the following form:

ẋ(t) = Ax(t) +Nx(t)u(t) +Bu(t),

y(t) = Cx(t).
(3)

The bilinearization of a nonlinear plant can be led by different techniques as the de-
termination of A, B, N and C matrices by identification method [16]. Another known
technique is the Carlemen bilinearization [15]. This technique is based on the develop-
ment of the analytic function f(.) in a polynomial form:

f(x) = A1x
[1] +A2x

[2] +A3x
[3] + · · · +Arx

[r], (4)
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where x[i] is the i-th Kronecker power of the vector x. Then the nonlinear system (1)
with the polynomial approximation (4) can be bilinearized as

˙̂x(t) = Âx̂(t) + N̂ x̂(t)u(t) + B̂u(t),

y(t) = Ĉx̂(t),
(5)

where x̂(t) =
[
x(1)T x(2)T · · · x(r)T

]T
and Â, B̂, N̂ , Ĉ are constant matrices, which

can be expressed by An, B and C. Â and N̂ are square matrices of dimension n+ n2 +
· · · + nk. x̂, B̂ and Ĉ are vectors with n+ n2 + · · · + nk components.

As example, in particular case where r = 3 and n = 1 one has

Â =





Â11 Â12 Â13

0 Â22 Â23

0 0 Â33



 , (6)

where Â11 = A1, Â12 = A2, Â13 = A3, Â22 = A1⊗In +In⊗A1, Â23 = A2⊗In +In⊗A2,
Â33 = A1 ⊗ In2 + In ⊗A1 ⊗ In + In2 ⊗A1,

B̂ =





B̂1

0
0



 with B̂1 = B, (7)

N̂ =





0 0 0

N̂21 0 0

0 N̂32 0



 , (8)

where N̂21 = B ⊗ In + In ⊗B, N̂22 = B ⊗ In2 + In ⊗B ⊗ In + In2 ⊗B.
In the next section we will consider the class of bilinear system having the same

representation as (5) for trajectory planning.

3 Proposed Approach for Trajectory Planning

3.1 Orthogonal functions

Consider a set of orthogonal functions Φ = {ϕi(t), i ∈ N} defined on [a, b] ⊂ R. The key
idea is that all analytical function f(t) absolutely integrable can be developed as follows

f(t) =

∞∑

i=0

fiϕi(t), ∀t ∈ [a, b], (9)

where the coefficients fi are constant and given by

fi =
1

ri

∫ b

a

w(x)ϕi(x)f(x)dx, ∀i ∈ N. (10)

To obtain practice function approximation, the projection (9) is shorten to an order N ,
such that:

f(t) ∼=
N−1∑

i=0

fiϕi(t) = FT
NΦN (t), (11)
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where FN =
[
f0 f1 · · · fT

n−1

]
is a constant coefficient vector and ΦN (t) =

[
ϕ0(t) ϕ1(t) · · · ϕn−1(t)

T
]

is the vector composed by N orthogonal functions. The
projection of a matrix A(t) = [aij(t)] on the basis of the orthogonal functions is given by

A(t) ∼=
N−1∑

i=0

ANiϕi(t), (12)

where ANi ∈ R
n×m are constant matrices. More than approximation (12), orthogonal

functions offers different operational tools like the operational matrix of integration and
the operational matrix of product which are used for solving differential equations. The
operational matrix of integration is the constant matrix PN ∈ R

N×N verifying:

∫ t

0

ΦN (t)dt ∼= PNΦN (t), (13)

and the operational matrix of product MiN is defined such that one has

ϕi(t)ΦN (t) ∼= MiN (V )ΦN (t) (14)

with
MiN =

[
K0i K1i · · · fn−1,i

]
, (15)

where ∀i, j ∈ {0, 1, · · ·, N − 1}, ϕi(t)ϕj(t) ∼= KT
ijΦN (t) Thus the following operational

relation holds for any constant vector V ∈ R
n [16]:

ΦN (t)ΦT
N (t) ∼= MN(V )ΦN (t), (16)

where MN (V ) =
[

M0NV
... M1NV

... · · ·
... M(N−1)NV

]

.

3.2 Proposed trajectory planning approach

Consider a bilinear system having the following state representation

ẋ = Ax+Bu+
m∑

i=0

Aixui,

y = Cx,
(17)

where A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n. We intend to determine, using orthogonal

functions as approximation tool, an open loop control that permits system (17) going
to fixed final state x(T ) starting from known initial state x(0). The projection of state
variables of system (17) on a set of orthogonal functions {ϕi(t), i = 0, · · ·, N − 1} with a
truncation of order N allows to write:

x(t) = xNΦN (t), (18)

ui(t) = uiNΦN(t), (19)

u(t) = uNΦN (t), (20)

and the state representation (17) can be put in the following approximated form

ẋ = AxNΦN (t) +BuNΦN (t) +

m∑

i=0

AixNuiNΦN(t). (21)
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On the other hand, substituting the initial state x(0) by its projection on the orthogonal
basis ΦN (t):

x(0) = xN,0ΦN (t), (22)

where xN,0 =
[

x(0)
... 0

... · · ·
... 0

]

and integrating equation (21) between an ini-

tial time (t0 = 0) and a time t and making use of the operational integration and product
proprieties(13) and (14) one obtains

(xN − xN,0) = AxNPN +BuNPN +

m∑

i=0

AixNMN (uiN )PN . (23)

By using the V ec operator and its main following property [17]

V ec(ABC) = (CT ⊗A)V ec(B), (24)

the equation (23) yields the following relation

V ec(xN ) =

[

InN − (PT
N ⊗A) −

m∑

i=0

PT
NM

T
N(uiN ) ⊗Ai

]
−1

[
(PT

N ⊗B)V ec(uN) + V ec(xN,0)
]
.

(25)

Integrating again relation (21) between instant t and final time T and replacing x(T )
by its projection on the orthogonal basis:

x(T ) = xN,T ΦN (t) (26)

with xN,T =
[

x(T )
... 0

... · · ·
... 0

]

and using the fact that the orthogonal basis

vector at final instant T verifies: ΦN (t) = KNΦN (t) one obtains

(xN,T −xN ) = AxNPN (KN−IN )+BuNPN (KN−IN )+

m∑

i=0

AixNMN (uiN )PN (KN−IN ),

(27)
putting ΠN = PN (KN − IN ) and applying V ec operator yield:

V ec(xN ) =
[
InN + (ΠT

N ⊗A) +
∑m

i=0
ΠT

NM
T
N(uiN ) ⊗Ai

]
−1

[
V ec(xN,T ) − (ΠT

N ⊗B)V ec(uN)
]
.

(28)

By equalizing (25) and (28) one obtains the following relation

H−1

N

[
(PT

N ⊗B)V ec(uN) + V ec(xN,0

]
= G−1

N

[
V ec(xN,T − (ΠT

N ⊗B)
]
, (29)

where
HN = HN (uN ) = InN −Ru, (30)

Ru = (PT
N ⊗A) +

m∑

i=0

PT
NM

T
N(uiN ) ⊗Ai, (31)

GN = InN + (ΠT
N ⊗A) +

m∑

i=0

ΠT
NM

T
N(uiN ) ⊗Ai, (32)
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By substitution of ΠN by its expression ΠN = PN (KN − IN ), one has

GN = HN + (KT
N ⊗ IN )Ru, (33)

and the relation (29) becomes:

[
InN − (KT

N ⊗ IN )
] [

(PT
N ⊗B)V ec(uN) + V ec(xN,0)

]
+

(KT
N ⊗ IN )H−1

N

[
(PT

N ⊗B)V ec(uN) + V ec(xN,0

]

= (InN −KT
N ⊗ IN )

[
(PT

N ⊗B)V ec(uN )
]
+ V ec(xN,T )

(34)

Let’s put
Z(uN ) = H−1

N (uN)
[
(PT

N ⊗B)V ec(uN ) + V ec(xN,0)
]
, (35)

Γ(xN,0, xN,T ) = (KT
N ⊗ InN )V ec(xN,0) + V ec(xN,T ), (36)

the relation (34) yields

(KT
N ⊗ IN )Z(uN ) = Γ(xN,0, xN,T ). (37)

The planning open loop control is then derived by minimizing with respect to uN the
norm of the difference between the two parts of equality (37):

ζ = ‖(KT
N ⊗ IN )Z(uN ) − Γ(xN,0, xN,T )‖. (38)

This minimization can be led using the Matlab optimization toolbox.

4 Trajectory Tracking: Closed Loop Control

Consider the difference variables

δx = x(t) − xp(t), δu = u(t) − up(t) (39)

between the trajectory of system (17) and a planned trajectory (xp(t), up(t)) verifying
the system equation

ẋp = Axp +Bup +
m∑

i=0

Aixpuip, (40)

the state equation of difference system can be written as

δẋ = (A+
m∑

i=0

Aiuip)δx(t) + (B +
m∑

i=0

Aixp)δu(t) +
m∑

i=0

Aiδxδui, (41)

by neglecting the product term δxδui compared with δx and δui, the state equation (41)
can be simplified into a linear time variant state equation

δẋ = A(t)δx(t) + B(t)δu(t), (42)

where

A(t) = A+

m∑

i=0

Aiuip(t), B(t) = B +

m∑

i=0

Aixp(t). (43)
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Our purpose is then to characterize a state feedback control law δu(t) = −Kδx(t) which
confers to a controlled LTV (Linear Time Variant) system

δẋ = (A(t) − B(t)K)δx(t), (44)

desired performances. Such performances can be defined in a convenient linear reference
model [18]

δẋ = Eδx(t). (45)

The expansion of the time variant matrices A(t), B(t) and the state vector δx(t) into a
basis of orthogonal functions as follows

A(t) =
N−1∑

i=0

ANiϕi(t), (46)

B(t) =

N−1∑

i=0

BNiϕi(t), (47)

δx(t) = δxNΦN (t), (48)

yields the following differential relation

δẋ =
[
∑N−1

i=0
ANiϕ(t) −K

∑N−1

i=0
BNiϕ(t)

]

δxNΦN (t). (49)

Integrating equation (49) and making use of operational matrices of integration and
product and the V ec operator one obtains:

V ec(δxN ) − V ec(δxNp) = (

N−1∑

i=0

(MiNPN )T ⊗ANi − k(

N−1∑

i=0

(MiNPN )T ⊗ BNi)V ec(δxN ).

(50)
A similar development for the reference model (45) yields:

V ec(δxN,r) − V ec(δxN,0) = (PT
N ⊗ E)V ec(δxN ). (51)

The equalization of V ec(δxN ) coming from (49) and V ec(δxN,r) derived from (50) allows
to have the following linear algebraic equation where unknown is the feedback control
gain K:

φK = ψ (52)

with

φ =

N−1∑

i=0

(MiNPN )T ⊗ BNi, ψ =

N−1∑

i=0

(MiNPN )T ⊗ANi − (PT
N ⊗ E). (53)

Solving equation (52) by using least squares method leads to a closed loop control feed-
back law δu(t) = −Kδx(t) that ensures trajectory tracking for bilinear system (17).
Note that the development (44) until (51) can be easily extended to look for a time
variant feedback control law δu(t) = −K(t)δx(t) where the time variant gain K(t) can

be determined as an expansion of orthogonal functions: K(t) =
∑N−1

i=0
KNiϕi(t).
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5 Illustrating Example

In this section we present the implementation of the proposed approach for trajectory
planning and tracking of the bilinear system described by the following equations

ẋ1 = x1 − x2u+ u, ẋ2 = −x2 − x1u− u,

y = x2.
(54)

A state representation of this system is the following

ẋ = Ax+Nxu+Bu,

y = Cx,
(55)

with x =
[
x1 x2

]T
, A =

[
1 0
0 −1

]

, N =

[
0 −1
−1 0

]

, B =

[
1
−1

]

, C =
[
0 1

]
.

The application of the proposed planning approach based on modified Legendre orthog-
onal functions with a truncation order N = 16, for system (55) starting from an initial

state x0 =
[
1 2

]T
at initial time t0 = 0s to the final state xT =

[
0 0

]T
at final

time T = 10s, yields the planned trajectories x1p(t) and x2p(t) and planning input up(t)
presented in Figure 1.

0 2 4 6 8 10
0

1

2

Time en (S)

planned trajectory of x1

0 2 4 6 8 10
0

1

2
planned trajectory of x2

0 2 4 6 8 10
0

0.5

1

1.5
planning input up

Figure 1: Trajectory planning and planning input.

These simulations show that the use of orthogonal approximation method yields an
open loop control that allows to the bilinear system (55) to reach the fixed final state
xT starting from a chosen initial state x0. Note that initial and final conditions can
be modified and one obtains then an open loop control that yields another trajectory
planning. The tracking of the obtained trajectory (xp(t), up(t)) is given by the application
of the orthogonal approximation to the following LTV system

δẋ = A(t)δx(t) + B(t)δu(t) (56)
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with A(t) = A + Nup(t) and B(t) = B + Nxp(t) derived from the linearization of the
bilinear system round the planned trajectory.

The synthesis of the closed loop control δu(t) = −Kδx(t) that ensures the tracking
of the planned trajectory is based on the following linear reference system that confers
to the state feedback controlled LTV system the desired performances corresponding to
the linear reference model:

δẋ = Eδx(t), (57)

where E =

[
−1 1
0 −1

]

. Figure 2 shows the effect of the obtained control law on the

tracking of the planned trajectory affected by two instantenous disturbances at t1 = 3s
and t2 = 15s.

0 5 10 15 20
−0.5

0

0.5

1

1.5

Time en (S)

planned trajectory of x1
closed loop trajectory of x1

0 5 10 15 20
0

0.5

1

1.5

2
planned trajectory of x2
closed loop trajectory of x2

Figure 2: Trajectory tracking.

It appears that the designed control law ensures stability of the system around its planned
trajectory. Note that the performances of the closed loop controlled system can be
modified by choosing another linear reference model.

6 Conclusion

In this paper, a new approach has been introduced for trajectory planning and tracking
of bilinear systems, which approximate weakly nonlinear systems, by using orthogonal
functions as a tool of approximation. The presented method was applied to a class of
bilinear invariant systems. The use of operational matrices of integration and product in
planning problem has allowed the transformation of the system differential equation into
an algebraic one depending on the control variable and the initial and final states. For
trajectory tracking, this technique has allowed the synthesis of a closed feedback control
which ensures for the considered system the performances of a prespecified reference
model. Note that the proposed approach can be extended to other classes of systems
such as time variant bilinear systems and affine control nonlinear systems.
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Abstract: In this paper, we are interested in the existence of at least one,two and
three positive solutions of a nonlinear second-order m-point boundary value problem
on time scales by using fixed point theorems in cones. As an application, some
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1 Introduction

The study of multi-point boundary value problems for linear second-order ordinary dif-
ferential equations was initiated by Il’in and Moiseev [7, 8]. Motivated by the study of
Il’in and Moiseev [7, 8], Gupta [5] studied certain three-point boundary value problems
for nonlinear ordinary differential equations. For the existence problems of positive solu-
tions of multi-point boundary value problems on time scales, some authors have obtained
many results in recent years, see [6, 9, 10, 12, 13, 14, 15, 16, 18] and the references therein.

Motivated by [17], in this paper, we are interested in the existence of multiple positive
solutions of the following m-point boundary value problem (BVP)







u∆∇(t) + h(t)f(t, u(t)) = 0, t ∈ [t1, tm] ⊂ T,

u∆(tm) = 0, αu(t1)− βu∆(t1) =
m−1
∑

i=2

u∆(ti), m ≥ 3,
(1)

where T is a time scale, 0 ≤ t1 < . . . < tm−1 < tm, α > 0 and β ≥ 0 are given
constants. Some basic definitions and theorems on time scales can be found in the books
[2, 3].
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The rest of paper is arranged as follows. In Section 2, we give several lemmas to
prove the main results in this paper. In Section 3, we first establish the existence results
of solutions of the BVP (1) as a result of Schauder fixed-point theorem. Second, we use
Krasnosel’skii fixed-point theorem to show the existence of a positive solution for the BVP
(1). Third, we apply the Avery-Henderson fixed-point theorem to prove the existence
of at least two positive solutions to the BVP (1). Finally, we establish criteria for the
existence of at least three positive solutions of the BVP (1) by using Legget-Williams
fixed-point theorem. In Section 4, we give two examples to illustrate our results.

2 Preliminaries

We now state and prove several lemmas which are needed later. These lemmas are based
on the linear BVP







u∆∇(t) + y(t) = 0, t ∈ [t1, tm] ⊂ T,

u∆(tm) = 0, αu(t1)− βu∆(t1) =
m−1
∑

i=2

u∆(ti), m ≥ 3.
(2)

Lemma 2.1 Let α 6= 0 and y ∈ Cld[t1, tm]. Then the BVP (2) has the unique
solution

u(t) =

tm
∫

t1

(
β

α
+ s− t1)y(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

y(s)∇s+

tm
∫

t

(t− s)y(s)∇s. (3)

Proof From u∆∇(t) + y(t) = 0, we have

u(t) = u(tm) + u∆(tm)(tm − t) +

tm
∫

t

(t− s)y(s)∇s.

By using the boundary conditions, we get

αu(tm) + α

tm
∫

t1

(t1 − s)y(s)∇s− β

tm
∫

t1

y(s)∇s =

m−1
∑

i=2

tm
∫

ti

y(s)∇s.

Since

u(tm) =

tm
∫

t1

(
β

α
+ s− t1)y(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

y(s)∇s,

we obtain

u(t) =

tm
∫

t1

(
β

α
+ s− t1)y(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

y(s)∇s+

tm
∫

t

(t− s)y(s)∇s. 2

Lemma 2.2 If α > 0, β ≥ 0 and y ∈ Cld ([t1, tm], [0,∞)), then the unique solution
u of the BVP (2) given in (3) satisfies

u(t) ≥ 0, t ∈ [t1, tm] ⊂ T.
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Proof Since u(t) is increasing on [t1, tm], we know that if u(t1) ≥ 0, then u(t) ≥ 0
for t ∈ [t1, tm].

u(t1) =

tm
∫

t1

(
β

α
+ s− t1)y(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

y(s)∇s+

tm
∫

t1

(t1 − s)y(s)∇s

=
β

α

tm
∫

t1

y(s)∇s+
1

α

m−1
∑

i=2

tm
∫

ti

y(s)∇s

≥ 0.

Hence the result holds. 2

Lemma 2.3 If α > 0, β ≥ 0 and y ∈ Cld ([t1, tm], [0,∞)), then the unique solution
to the BVP (2) satisfies

u(t) ≥
t− t1
tm − t1

‖u‖, t ∈ [t1, tm] ⊂ T, (4)

where ‖u‖ = sup
t∈[t1,tm]

|u(t)|.

Proof From the fact that u(t) is increasing on [t1, tm], we have ‖u‖ = sup
t∈[t1,tm]

|u(t)| =

u(tm). Let

g(t) = u(t)−
t− t1
tm − t1

‖u‖, t ∈ [t1, tm] ⊂ T. (5)

Since g∆∇(t) = u∆∇(t) = −y(t) ≤ 0, we know that the graph of g is concave on [t1, tm] ⊂
T. We get

g(t1) = u(t1) ≥ 0

and
g(tm) = 0.

From the concavity of g,
g(t) ≥ 0 for t ∈ [t1, tm] ⊂ T. (6)

From (5) and (6), we obtain

u(t) ≥
t− t1
tm − t1

‖u‖ for t ∈ [t1, tm] ⊂ T. 2

We assume the following hypotheses:
(H1) h ∈ Cld ([t1, tm], [0,∞)) and there exists t0 ∈ [t1, tm] such that h(t0) > 0.
(H2) f : [t1, tm]× [0,∞) → [0,∞) is continuous such that f(t, .) > 0 on any subset of T
containing t0.

The solutions of the BVP (1) are the fixed points of the operator A defined by

Au(t) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

+

tm
∫

t

(t− s)h(s)f(s, u(s))∇s.
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3 Existence of Solutions

To prove the existence of at least one solution for the BVP (1), we will apply the following
Schauder Fixed Point Theorem: Let B be a Banach space and S be a nonempty bounded,
convex, and closed subset of B. Assume A : B → B is a completely continuous operator.
If the operator A leaves the set S invariant, i.e. if A(S) ⊂ S, then A has at least one
fixed point in S.

Let B denote the Banach space Cld[t1, tm] with the norm ‖u‖ = sup
t∈[t1,tm]

|u(t)|.

Theorem 3.1 Assume (H1) and (H2) are satisfied, α > 0 and β ≥ 0. Let there exists
a number r > 0 such that

max
‖u‖≤r

|f(t, u)| ≤
1

k1
u

for t ∈ [t1, tm], where

k1 =

tm
∫

t1

(
β

α
+ s− t1)h(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)∇s.

Then the m-point BVP (1) has at least one solution u(t).

Proof Let S = {u ∈ B : ‖u‖ ≤ r}. Obviously, S is closed, bounded and convex
subset of B. Define A : S → B by

Au(t) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

+

tm
∫

t

(t− s)h(s)f(s, u(s))∇s.

for t ∈ [t1, tm]. Now, we will show that A : S → S. If u ∈ S,

‖Au‖ =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

≤

tm
∫

t1

(
β

α
+ s− t1)h(s)

1

k1
u(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)
1

k1
u(s)∇s

≤ ‖u‖ ≤ r.

for every t ∈ [t1, tm]. Since ‖Au‖ ≤ r, we have A(S) ⊂ S. Further, the operator A is
completely continuous. Hence, A has at least one fixed point in S by Schauder fixed
point theorem. Since the solutions of problem (1) are fixed points of operator A, the
BVP (1) has at least one solution u(t). 2

We will need also the following (Krasnosel’skii) fixed point theorem [15] to prove the
existence of at least one positive solution for the BVP (1).
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Theorem 3.2 [4] Let E be a Banach space, and let K ⊂ E be a cone. Assume Ω1

and Ω2 are open bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either
(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2;

or
(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2 \Ω1).

Theorem 3.3 Assume (H1), (H2) hold, and α > 0, β ≥ 0. In addition, let there
exist numbers 0 < r < R <∞ such that

f(s, u) ≤
1

k1
u, if 0 ≤ u ≤ r, s ∈ [t1, tm]

and

f(s, u) ≥
tm − t1

k2(tm−1 − t1)
u, if R ≤ u <∞, s ∈ [tm−1, tm],

where

k1 =

tm
∫

t1

(
β

α
+ s− t1)h(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)∇s

and

k2 =

tm
∫

tm−1

(
β +m− 2

α
+ s− t1)h(s)∇s.

Then the BVP (1) has at least one positive solution.

Proof Define the cone P ⊂ B by

P = {u ∈ B : u is concave, u(t) ≥ 0 and u∆(tm) = 0}. (7)

From (H1), (H2), Lemma 2.2 and Lemma 2.3, we have AP ⊂ P . Also it is easy to obtain
that A : P → P is completely continuous. If u ∈ P with ‖u‖ = r, then we get

‖Au‖ =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

≤

tm
∫

t1

(
β

α
+ s− t1)h(s)

1

k1
u(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)
1

k1
u(s)∇s

≤ ‖u‖.

Thus, we have ‖Au‖ ≤ ‖u‖ for u ∈ P ∩∂Ω1, where Ω1 := {u ∈ Cld([t1, tm],R) : ‖u‖ <
r}.
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Let us now define

Ω2 := {u ∈ Cld([t1, tm],R) : ‖u‖ <
tm − t1
tm−1 − t1

R}.

If u ∈ P ∩ ∂Ω2, from (4)

u(t) ≥ u(tm−1) ≥
tm−1 − t1
tm − t1

‖u‖ = R, t ∈ [tm−1, tm]

and so

‖Au‖ =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

=

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s

+
1

α
[(

t3
∫

t2

h(s)f(s, u(s))∇s+ . . .+

tm
∫

tm−1

h(s)f(s, u(s))∇s)

+ (

t4
∫

t3

h(s)f(s, u(s))∇s+ . . .+

tm
∫

tm−1

h(s)f(s, u(s))∇s) + . . .

+

tm
∫

tm−1

h(s)f(s, u(s))∇s]

≥

tm
∫

tm−1

(
β +m− 2

α
+ s− t1)h(s)f(s, u(s))∇s

≥

tm
∫

tm−1

(
β +m− 2

α
+ s− t1)h(s)

tm − t1
k2(tm−1 − t1)

u(s)∇s

≥ ‖u‖.

Hence, ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2. By the first part of Theorem 3.2, A has a fixed
point in P ∩ (Ω2 \ Ω1), such that r ≤ ‖u‖ ≤ tm−t1

tm−1−t1
R. Therefore, the BVP (1) has at

least one positive solution. 2

Now, we apply the following (Avery-Henderson) fixed point theorem [1] to prove the
existence of at least two positive solutions to the nonlinear m-point BVP (1).

Theorem 3.4 [1] Let P be a cone in a real Banach space E. Set

P (φ, r) = {u ∈ P : φ(u) < r}.

If η and φ are increasing, nonnegative continuous functionals on P , let θ be a nonnegative
continuous functional on P with θ(0) = 0 such that, for some positive constants r and
M ,

φ(u) ≤ θ(u) ≤ η(u) and ‖u‖ ≤Mφ(u)
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for all u ∈ P (φ, r). Suppose that there exist positive numbers p < q < r such that

θ(λu) ≤ λθ(u), for all 0 ≤ λ ≤ 1 and u ∈ ∂P (θ, q).

If A : P (φ, r) → P is a completely continuous operator satisfying

(i) φ(Au) > r for all u ∈ ∂P (φ, r),

(ii) θ(Au) < q for all u ∈ ∂P (θ, q),

(iii) P (η, p) 6= ∅ and η(Au) > p for all u ∈ ∂P (η, p),

then A has at least two fixed points u1 and u2 such that

p < η(u1) with θ(u1) < q and q < θ(u2) with φ(u2) < r.

Define the constants

M :=
(

tm
∫

tm−1

(
β +m− 2

α
+ tm−1 − t1)h(s)∇s

)−1

(8)

and

N :=
(

tm
∫

t1

(
β +m− 2

α
+ s− t1)h(s)∇s

)−1

. (9)

Theorem 3.5 Assume (H1), (H2) hold and α > 0, β ≥ 0. Suppose there exist num-
bers 0 < p < q < r such that the function f satisfies the following conditions:

(i) f(s, u) > rM for s ∈ [tm−1, tm] and u ∈ [r, r(tm−t1)
tm−1−t1

],

(ii) f(s, u) < qN for s ∈ [t1, tm] and u ∈ [0, q(tm−t1)
tm−1−t1

],

(iii) f(s, u) > pM for s ∈ [tm−1, tm] and u ∈ [p(tm−1−t1)
tm−t1

, p]

where N and M are defined in (8) and (9), respectively. Then the BVP (1) has at least
two positive solutions u1 and u2 such that

u1(tm) > p with u1(tm−1) < q and u2(tm−1) > q with u2(tm−1) < r.

Proof Define the cone P as in (7). From (H1), (H2), Lemma 2.2 and Lemma 2.3,
AP ⊂ P and it is easy to obtain A is completely continuous. Let the nonnegative
increasing continuous functionals φ, θ and η be defined on the cone P by

φ(u) := u(tm−1), θ(u) := u(tm−1), η(u) := u(tm).

For each u ∈ P , we have

φ(u) = θ(u) ≤ η(u)

and from (4) we have

‖u‖ ≤
tm − t1
tm−1 − t1

φ(u). (10)

Moreover, θ(0) = 0 and for all u ∈ P , λ ∈ [0, 1] we get θ(λu) = λθ(u). In the following
claims, we verify the remaining conditions of Theorem 3.5.
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If u ∈ ∂P (φ, r), from (10) we have r = u(tm−1) ≤ u(s) ≤ ‖u‖ ≤ r(tm−t1)
tm−1−t1

for

s ∈ [tm−1, tm]. Then using hypothesis (i) and (8), we obtain

φ(Au) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

+

tm
∫

tm−1

(tm−1 − s)h(s)f(s, u(s))∇s

=

tm−1
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α
[

tm−1
∫

t2

h(s)f(s, u(s))∇s+ . . .

+

tm−1
∫

tm−2

h(s)f(s, u(s))∇s+ (m− 2)

tm
∫

tm−1

h(s)f(s, u(s))∇s]

+

tm
∫

tm−1

(
β

α
+ tm−1 − t1)h(s)f(s, u(s))∇s

>

tm
∫

tm−1

(
β +m− 2

α
+ tm−1 − t1)h(s)rM∇s

= r.

Thus the condition (i) of Theorem 3.4 holds. Next, we will show that the condition (ii)
of Theorem 3.4 is satisfied. If u ∈ ∂P (θ, q), then from (10) we have 0 ≤ u(s) ≤ ‖u‖ ≤
q(tm−t1)
tm−1−t1

for s ∈ [t1, tm]. Thus, from hypothesis (ii) and (9) we get

θ(Au) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

+

tm
∫

tm−1

(tm−1 − s)h(s)f(s, u(s))∇s

≤

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α
(m− 2)

tm
∫

t1

h(s)f(s, u(s))∇s

<

tm
∫

t1

(
β +m− 2

α
+ s− t1)h(s)qN∇s

= q.

So condition (ii) of Theorem 3.4 holds. Since 0 ∈ P and p > 0, P (η, p) 6= ∅. If

u ∈ ∂P (η, p), from (4) we have p(tm−1−t1)
tm−t1

≤ u(tm−1) ≤ u(s) ≤ ‖u‖ = p for s ∈ [tm−1, tm].
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Hence, we obtain

η(Au) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

>

tm
∫

tm−1

(
β +m− 2

α
+ tm−1 − t1)h(s)pM∇s

= p

using hypothesis (iii) and (8). Since all the conditions of Theorem 3.4 are satisfied, the
m-point BVP (1) has at least two positive solutions u1 and u2 such that

u1(tm) > p with u1(tm−1) < q and u2(tm−1) > q with u2(tm−1) < r. 2

Now, we will use the following (Legget-Williams) fixed point theorem [11] to prove
the existence of at least three positive solutions to the nonlinear BVP (1).

Theorem 3.6 [11] Let P be a cone in the real Banach space E. Set

Pr := {x ∈ P : ‖x‖ < r}

P (ψ, a, b) := {x ∈ P : a ≤ ψ(x), ‖x‖ ≤ b}.

Suppose A : Pr → Pr be a completely continuous operator and ψ be a nonnegative
continuous concave functional on P with ψ(u) ≤ ‖u‖ for all u ∈ Pr. If there exists
0 < p < q < l ≤ r such that the following conditions hold,

(i) {u ∈ P (ψ, q, l) : ψ(u) > q} 6= ∅ and ψ(Au) > q for all u ∈ P (ψ, q, l);

(ii) ‖Au‖ < p for ‖u‖ ≤ p;

(iii) ψ(Au) > q for u ∈ P (ψ, q, r) with ‖Au‖ > l,

then A has at least three fixed points u1, u2 and u3 in Pr satisfying

‖u1‖ < p, ψ(u2) > q, p < ‖u3‖ with ψ(u3) < q.

Theorem 3.7 Assume (H1), (H2) hold and α > 0, β ≥ 0. Suppose that there exist

constants 0 < p < q < q(tm−t1)
tm−1−t1

≤ r such that the function f satisfies the following

conditions:

(i) f(s, u) ≤ rN for s ∈ [t1, tm] and u ∈ [0, r];

(ii) f(s, u) > qM for s ∈ [tm−1, tm] and u ∈ [q, q(tm−t1)
tm−1−t1

];

(iii) f(s, u) < pN for s ∈ [t1, tm] and u ∈ [0, p].

Then the BVP (1) has at least three positive solutions u1, u2 and u3 satisfying

u1(tm) < p, u2(tm−1) > q, u3(tm) > p with u3(tm−1) < q.

Proof We will show that the conditions of Theorem 3.6 are satisfied. For this purpose
we first define the nonnegative continuous concave functional ψ : P → [0,∞) to be
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ψ(u) := u(tm−1), the cone P as in (7), M as in (8) and N as in (9). We have ψ(u) ≤ ‖u‖
for all u ∈ P . If u ∈ Pr, then 0 ≤ u ≤ r and from the hypothesis (i), we get

‖Au‖ =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

≤

tm
∫

t1

(
β +m− 2

α
+ s− t1)h(s)rN∇s

= r.

Thus, we obtain A : Pr → Pr . Similarly, if u ∈ Pp, then the hypothesis (iii) yields
f(s, u(s)) < pN for s ∈ [t1, tm]. Just as above, we have A : Pp → Pp. It follows that
condition (ii) of Theorem 3.6 is satisfied.

Since q(tm−t1)
tm−1−t1

∈ P (ψ, q, q(tm−t1)
tm−1−t1

) and ψ( q(tm−t1)
tm−1−t1

) = q(tm−t1)
tm−1−t1

> q, {u ∈

P (ψ, q, q(tm−t1)
tm−1−t1

) : ψ(u) > q} 6= ∅. For all u ∈ P (ψ, q, q(tm−t1)
tm−1−t1

), we get q ≤ u(tm−1) ≤

u(s) ≤ ‖u‖ for s ∈ [tm−1, tm]. Using the assumption (ii), we obtain

ψ(Au) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

+

tm
∫

tm−1

(tm−1 − s)h(s)f(s, u(s))∇s

>

tm
∫

tm−1

(
β +m− 2

α
+ tm−1 − t1)h(s)qM∇s

= q.

Hence, the condition (i) of Theorem 3.6 holds.
For the condition (iii) of Theorem 3.6, we suppose that u ∈ P (ψ, q, r) with ‖Au‖ >

q(tm−t1)
tm−1−t1

. Then, from (4) we obtain

ψ(Au) = Au(tm−1) ≥
tm−1 − t1
tm − t1

‖Au‖ > q.

Since all conditions of the Legget-Williams fixed point theorem are satisfied, the nonlinear
BVP (1) has at least three positive solutions u1, u2 and u3 such that

u1(tm) < p, u2(tm−1) > q, u3(tm) > p with u3(tm−1) < q. 2

Using the ideas in the proof of the above problem, we can establish the existence of
an arbitrary odd number of positive solutions of (1).

Theorem 3.8 Assume that (H1) and (H2) are satisfied and α > 0, β ≥ 0. Suppose
that there exist numbers

0 < p1 < q1 <
q1(tm − t1)

tm−1 − t1
≤ p2 < q2 <

q2(tm − t1)

tm−1 − t1
≤ p3 < . . . ≤ pn, n ∈ N
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such that the function f satisfies the following conditions:

(i) f(s, u) < piN for s ∈ [t1, tm] and u ∈ [0, pi],

(ii) f(s, u) > qiM for s ∈ [tm−1, tm] and u ∈ [qi,
qi(tm−t1)
tm−1−t1

],

where N and M are defined in (8) and (9), respectively. Then the m-point BVP (1) has
at least 2n− 1 positive solutions.

The proof of the theorem comes directly from induction. When n = 1, we obtain
A : Pp1

→ Pp1
⊂ Pp1

from condition (i), which implies that A has at least one fixed
point u1 ∈ Pp1

by the Schauder fixed point theorem. When n = 2, by Theorem 3.7 we
can obtain at least three positive solutions u2, u3 and u4. Following this way, we can
obtain that the operator A has 2n− 1 different fixed points by induction.

Remark 3.1 When m = 3, our results, i.e. Theorem 3.3, Theorem 3.5 and Theorem
3.7 reduce to Theorem 4, Theorem 5 and Theorem 6 in [12], respectively.

4 Examples

Example 4.1 Let T = {(15 )
n : n ∈ N0} ∪ {0}. We consider the following boundary

value problem:







u∆∇(t) + 29(u+4)
1
20

(u+4)
1
2 +1

= 0, t ∈ [0, 1] ⊂ T,

u∆(1) = 0, u(0)− 2u∆(0) = u∆( 1
25 ) + u∆(15 ).

(11)

Taking t1 = 0, t2 = 1
25 , t3 = 1

5 , t4 = 1 = α, β = 2,m = 4, h(t) = 1 and f(t, u) = 29(u+4)
1
20

(u+4)
1
2 +1

,

we investigate the solvability of this problem by means of Theorem 3.5. By (8) and (9),
we obtain M = 25

84 and N = 6
29 .

If we take p = 10, q = 17 and r = 19, then 0 < p < q < r and the conditions (i)− (iii)
of Theorem 3.5 are satisfied. Thus, the BVP (11) has at least two positive solutions u1
and u2 satisfying

u1(1) > 10 with u1(
1

5
) < 17 and u2(

1

5
) with u2(

1

5
) < 19.

Example 4.2 In problem (11), let f(t, u) = 2u2

(u+1)2+1 . If we take p = 0.27, q = 1 and

r = 8 then 0 < p < q < q(tm−t1)
tm−1−t1

≤ r and the conditions (i) − (iii) of Theorem 3.7 are

satisfied. According to Theorem 3.7, the BVP

{

u∆∇(t) + 2u2

(u+1)2+1 = 0, t ∈ [0, 1] ⊂ T,

u∆(1) = 0, u(0)− 2u∆(0) = u∆( 1
25 ) + u∆(15 ),

has at least three positive solutions u1, u2 and u3 satisfying

u1(1) < 0.27, u2(
1

5
) > 1, u3(1) > 0.27 with u3(

1

5
) < 1.
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