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1 Introduction

Analysis of chaotic vibrations is a subject of intensive investigations during the last
decades. One of the principal scenarios of the transient to chaotic behavior is a cascade
of bifurcations of the period doubling. Two approaches exist to predict the chaotic be-
havior. Both these approaches hang one upon other. In the first approach, intersections
of invariant manifolds, which lead to appearance of Smale horseshoe, are investigated
to predict the chaotic dynamics. In the second approach, bifurcations of periodic and
almost periodic vibrations are investigated to determine regions of the chaotic behavior.
The subharmonic Melnikov–Morozov theory [1, 2 et al], which is considered in Section
2 of this paper, is related to the second approach. The methods, which are considered
in Sections 3-6, are related to the first group of approaches. In particular, in Section 3
the Melnikov function is used to determine the region, where the heteroclinic structure
exists in nonlinear mechanical systems under the action of almost-periodic excitation.
Formation of homo- and heteroclinic trajectories (HT) in phase place is a criterion of the
chaotic behavior in dynamical systems [1, 2 et al]. Methods, based on investigation of
the HT formation, are related to the first group of approaches. (Note that the small dis-
sipation leads to the complicated behavior near a separatrix of the Hamiltonian systems.
Solutions that cross the separatrix due to the dissipation, were analyzed, for example,
in [3]). The closed HT formation is possible in dynamical systems with dissipation and
external periodic excitation. To construct the HT in such dynamical systems it is neces-
sary to determine some important parameters. Namely, in such single-DOF system, it is
necessary to know corresponding initial conditions of HT, and the functional dependence
of the system parameters. For example, it may be a dependence of the external excitation
amplitude on the dissipation parameter. In most cases the authors of the last and recent
publications on HT construction make use of the well-known Melnikov function for the
analysis of homoclinic structure [4-7], which gives a single equation for determination
of unknown parameters. As a result, in the Melnikov condition, separatrix trajectories
of the unperturbed autonomous equations are used. A problem of effective analytic ap-
proximation of HT of non-autonomous system is difficult and it is not solved up to now.
Here a new approach for the HT construction in the nonlinear dynamical systems with
phase space of dimensions equal to two is proposed and used. Pade approximants (PA)
[8] and quasi-Pade approximants (QPA) are used to construct the HT in the dynami-
cal system phase space and for the corresponding time history solution. Note that QPA
which contain both powers of some parameter, and exponential functions were considered
in Ref. [9]. Convergence condition were used earlier in the theory of non-linear normal
vibration modes [10-12] as well as the conditions at infinity. This made possible to solve
the boundary-value problem formulated for the HT and evaluate initial amplitude values
with admissible precision. We suppose that the HT construction criterion of the chaos
beginning proposed in this paper is more exact than the generally accepted Melnikov
criterion, because it is not necessary to use separatrix trajectories of the Hamiltonian
equations.

This work is structured as follows. First, the subharmonic Melnikov–Morozov theory
and its application to parametric dynamics of beams are considered in Section 2. The
method for determination of domains of chaos in mechanical systems under the action
of quasiperiodic forces is considered in Section 3. The Pade approximants convergence
condition is discussed in Section 4, and the HT boundary values problem is formulated
in this Section. The approach proposed here was realized for the homoclinic solution of
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the non-autonomous Duffing equation. Corresponding results are presented in Section 5.
Construction of the homo- and heteroclinic orbits for the different dynamical systems is
discussed in Section 6.

2 Subharmonic Melnikov–Morozov Theory and its Applications to

Dynamics of Beam

Subharmonic Melnikov function analysis is carried out on the example of beam vibrations
analysis. This beam is presented in Figure 2.1. Mass M is attached to the end of
the beam. Transverse beam motions W (s, t) induce displacements η(t) of the mass M .
Therefore, linear viscous damping force RL = cLη̇ acts on the mass M . The nonlinear
curvature and nonlinear inertia are taken into account in the model, so the equation of
the beam parametric oscillations has the following form [13]:

EJw′′′′ + EJ
2

(

w′′w′2)′′ +

{

P0 + Pt cos(Ω̄t) − M
2

l
∫

0

(w′2)′′ttds − cL

2

l
∫

0

(w′2)′tds

}

w′′

+cẇ + µẅ − (Nw′)′ = 0,

N = µ
2

l
∫

s

ds1

s1
∫

0

(w′2)′′ttds2,

(2.1)
where ẇ = w′

t; w
′ = w′

s; µ is the mass per unit of length; ẇ is the material damping; the
term w′′′ ′ + 1

2 (w′′w′2)
′′

describes the beam curvature. The nonlinear inertia is presented

by the term (Nw′)
′
in equation (2.1). The following dimensionless parameters are used:

εδ =
l2√
EJµ

; εδL =
cLw2

∗
2l
√

EJµ
; ε Γt =

l2Pt

EJ
; Γ0 =

P0l
2

EJ
; ε γ =

w2
∗

2l2
; m =

M

µl
;

u =
w

w∗
; τ =

√

EJ

µl4
t; ξ =

s

l
; Ω =

Ω̄l2
√

µ√
EJ

; w∗ =
l2
√

2

π

√

P0

P∗
− 1,

(2.2)

where ε << 1; P∗ is the buckling force; w∗ is the static deflection at s = l
2 . Equation

(2.1) is rewritten in the dimensionless form:

u′′′′ + Γ0u
′′ + ü + α(u′′u′2)′′ + ε

[

−mγu′′
1
∫

0

(u′2)̈dξ − γ

(

u′
1
∫

ξ

dη
η
∫

0

(u′2 )̈dh

)′

+

+δ u̇ + Γtos(Ωτ)u′′ − δLu′′
1
∫

0

(u′2)̇dξ

]

= 0,

(2.3)

where α = 0.5 w2
∗l

−2; u′ = u′
ξ; u̇ = u′

τ . Dimensionless fundamental frequencies of the

corresponding linearized system (2.1) are the following: pk = k2π2. The frequency
Ω is varied in the next range: 0.5 < Ω < 4. Therefore, one mode approximation,
u = q(t) sin(πξ), accurately describes the beam dynamics. The following differential
equation is derived by the Galerkin method:

q̈ + λ(q3 − q) + ε
[

γρπ4q(q̇2 + qq̈) + δq̇ − Γtπ
2q cos(Ωτ) + δLπ4q̇q2

]

+ O(ε2) = 0, (2.4)

λ = Γ0π
2 − π4; ρ = m +

1

3
− 3

8π2
. (2.5)
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Figure 2.1: Transverse parametric oscillations of beam.

Figure 2.2: The saddle-node bifurcations curves of the subharmonic oscillations of orders
1,2,3,4. The curves are denoted by the same numbers. The calculations were performed with
the following parameters: ε = 0.01; εδ = εδL = 0.18; εγ = 1.84 · 10−3; ρ = 3.4.
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The equation (2.4) can be presented as

q̈ + λ(q3 − q) + ε
[

−γρλπ4(q5 − q3) + γρπ4qq̇2 + δ q̇ − Γtπ
2q cos(Ωτ) + δLπ4q̇q2

]

= 0.
(2.6)

We stress that, for ε=0 the system (2.6) is a nonlinear conservative one.
In the future calculations the beam dynamics is considered with the following param-

eters [14]:

E = 2.013 · 1011 N

m2
; ρ = 7.80 · 103 Kg

m3
; l = 558mm; b = 11.95mm; h = 1mm;

M = 0.162Kg; µ = 9.3 · 10−2 Kg

m
; P∗ = 6.39N ; P0 = 6.42N ; c = 7.8 · 10−2 Kg

s
;

EJ = 0.201Nm2; w∗ = 3.4 × 10−2m.

Let us analyze the application of the Melnikov–Morozov method [1, 2, 4] for the saddle-
node bifurcations analysis. It is known, that for ε=0 the system (2.6) allows the following
periodic motions:

(q0, q̇0) =

{

√

2

2 − k2
dnτ ; −k2

√
2λ

2 − k2
snτcnτ

}

; τ = t

√

λ

2 − k2
, (2.7)

where k is the elliptic integral modulus; dn; sn; cn are elliptic functions [15]. The equa-
tion: H = λ(k2 − 1)(2− k2)−2 connects the Hamiltonian H of system (2.6) for ε=0 with
the modulus of the elliptic integral. Let us consider motions of the system (2.6) meeting
the resonance conditions:

T (k) = mT ; T = 2π/Ω; T (k) = 2K

√

2 − k2/

λ, (2.8)

where K is the complete elliptic integral of the first kind; T (k) is the period of the
unperturbed system (ε=0) orbits. The subharmonic Melnikov–Morozov method permits
to determine the subharmonic oscillations of a single DOF system with essential nonlinear
unperturbed part. The simple roots of the subharmonic Melnikov function define these
subharmonic oscillations. If the subharmonic Melnikov function roots meet the equation
|sin(Ωt0)| = 1, the saddle-node bifurcation set is taken place. The subharmonic Melnikov
function of system (2.6) is derived as

M̄
m/1
1 = −δ

√
λJ1(k) + Γtπ

2J3(k) sin(Ωt0) − δLπ4
√

λJ2(k), (2.9)

where

J1(k) =
1√
λ

mT
∫

0

q̇2
0dt =

4

3

[

(2 − k2)E − 2k′2K
]

(2 − k2)−3/2;

J2(k) =
1√
λ

mT
∫

0

q̇2
0q

2
0dt =

8

15

[

2(k4 + k′2)E + (k2 − 2)k′2K
]

(2 − k2)−5/2;

J3 sin(Ωt0) =

mT
∫

0

q0q̇0 cos(Ωτ + Ωt0)dτ =
Ω2π

λsh
(

mπK′

K

) sin(Ωt0).

(2.10)
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Note that E is the complete elliptic integral of the second kind.
From the equation (2.9) the parametric set of saddle-node bifurcations is derived as

Γt = ±
√

λ

π2J3(k)

[

δLπ4J2(k) + δJ1(k)
]

. (2.11)

Figure 2.2 shows the saddle-node bifurcations curves on the parametric plane (Ω, Γt).
The bifurcations curves of the subharmonic oscillations of orders 1,2,3,4 are denoted by
the same numbers on this figure

(q0, q̇0) =

{

√

2k2

2k2 − 1
cnτ ;− k

√
2λ

2k2 − 1
snτdnτ ;

}

, τ =

√
λt√

2k2 − 1
. (2.12)

In this case, the equation H = k2k′2λ(2k2 − 1)−2 connects the Hamiltonian H with
the elliptic integral modulus k. The subharmonic Melnikov function of these motions has
the following form:

M̄
m/1
1 = −δ

√
λĴ1(k) + Γtπ

2Ĵ3(k) sin(Ωt0) − δLπ4
√

λĴ2(k), (2.13)

Ĵ1(k) =
8

13

{

k′2K − (1 − 2k2)E
}

(2k2 − 1)−3/2;

Ĵ2(k) =
16

15

{

Kk′2(k2 − 2) + 2E(k′2 + k4)
}

(2k2 − 1)−5/2; Ĵ3(k) =
2Ω2π

λsh
(

lπK′

K

) .

where m = 2l; l = 1, 2, ... If Ji(i = 1, 3) is replaced with Ĵi in formula (2.9), the equation
of saddle-node bifurcations of the motions outside homoclinic orbit is obtained. Fig-
ure 2.3 shows the saddle-node bifurcations curves of subharmonic oscillations outside the
homoclinic orbits of orders m=2; m=4; m=6 for the system parameters from Section
1. The periodic motions of system (2.6) for ε=0 outside the homoclinic orbit have the
form:

Now the saddle-node bifurcations on the plane (δL,Γt) is considered. We study the
limit cycles of the right homoclinic orbit on the system parametric plane. The equation
(2.11) is rewritten as:

Γt = ±π2
√

λJ2(k)J−1
3 (k) [δL − δ∗L(m)] , (2.14)

where δ∗L(m) = −δJ1(k)π−4J−1
2 (k). Following [16], the values δ∗L(m) are called the reso-

nance numbers. Figure 2.4 shows qualitatively the bifurcations curves (2.14). As the el-
liptic integral modulus k satisfies the resonance condition (2.8), the following inequalities
are true: k(2.1) ≺ k(2.2) ≺ ... ≺ k(∞) = 1. Note that the resonance numbers δ∗L(m) sat-
isfy the following relations: δ∗L(∞) = −1.25δπ−4; lim

k→0
δ∗L(m) = −δπ−4. From the analysis

of the resonance numbers the following inequality is obtained: d
dk δ∗L(k) < 0; k ∈ [k1; 1] .

Therefore, integer number m∗ can be selected, that the following inequalities are meet:
−1.25δπ−4 = δ∗L(∞) < ... < δ∗L(m∗ + 1) < δ∗L(m∗).

The intersections of the invariant manifolds of the saddle point are considered now.
It is well known, that these intersections are the necessary condition for the existence of
chaos [1, 2]. The homoclinic Melnikov function of beam has the following form:

M(t0) = −4
√

λδ

3
+

Γtπ
3Ω2

λsh
(

πΩ
2
√

λ

) sin(Ωt0) −
16

15
δLπ4

√
λ. (2.15)
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Figure 2.3: The saddle-node bifurcations curves of the subharmonic oscillations of orders m=2,
m=4, m=6. The calculations are produced with the following parameters: ε = 0.01; εδ = εδL =
0.18; εγ = 1.84 · 10−3; ρ = 3.4.

Figure 2.4: The qualitative behavior of the saddle-node bifurcation curve on the plane (δL,Γt).
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The function M and subharmonic Melnikov function M̄
m/1
1 satisfy the following lim-

its:

lim
m→∞

M̄
m/1
1 = M . (2.16)

Thus, the saddle-node bifurcations are obtained. However, the periodic motions,
which undergo these bifurcations, are not studied. It is clear that these cycles may
undergo others bifurcations. Here the Melnikov–Morozov method, which is considered
in [4, 17], is used to study other bifurcations of parametric oscillations of beams.

The system (2.6) with respect to the action-angle coordinates (I,θ) can be written in
the next form [17]:

İ = εF (I, θ, t); θ̇ = ΩΣ(I) + εG(I, θ, t), (2.17)

where Ω∑ (I) is the frequency of the system (2.6) for ε=0. Let us consider the following
motions:

I = Im,1 +
√

εh(t); θ = ΩΣ(Im,1)t + φ, (2.18)

where the values Im,1 are obtained from the resonance conditions (2.8). Following [17],
the oscillations I = Im,1 +

√
εh(t) are called the motions close to the resonance energetic

level. The aim of the present study is an analysis of the topology of the Poincare sections
close to the resonance energetic levels. Then the equations of the motions have the
following form [1, 2]:

˙̄h =

√
ε

2π
M̄

m/1
1

(

φ̄

ΩΣ(Im,1)

)

+ εF̄ ′
I h̄; ˙̄φ =

√
ε
∂Ω(Im,1)

∂I
h̄ + ε

[

Ω′′(Im,1)

2
h̄2 + Ḡ(φ̄)

]

.

(2.19)
The system (2.19) can be rewritten in the following form:

ḣ =
1

2π

(

−∆1π
4
√

λJ2 + Γtπ
2J3 sin mφ

)

+ εh
[

χ(∆1) + Γtπ
2K3 sin mφ

]

;

φ̇ = Ω′
Σh +

√
ε

[

Ω′′
Σ

2
h2 − Γtπ

2K3

m
cosmφ

]

,
(2.20)

where ∆1 = δL − δ∗L; χ = δ
√

λ
Ω(2 − k2)2σ(k)

60πmλk3J2
− ∆1π

4
√

λK2;

σ(k) = 80(2−k2)E2(k)−160k′2K(k)E(k)−32(k4 +k′2)K(k)E(k)+16k′2(2−k2)K2(k);

K3 =
Ωπ

λsh
(

mπK′

K

)

[

(2 − k2)3Ω2π

8λk4K2k′2 cth

(

mπK ′

K

)

+ ω(k)

]

;

K2 =
2EΩ

λπm
√

2 − k2
+

ω(k)

Ω
J2; Ω

′
Σ = −

√
λπ2(2 − k2)[(2 − k2)E − 2k′2K]

2K3k′2k4
;

Ω′′
Σ = −

√
λπ3

(

2 − k2
)5/2

4k8k′4

[

2E(k′6 + 3k′2 + k4)

K4
+

k′2

K3
(4k′2 − k4) − 3E2

K5
(2 − k2)2

]

.

The fixed points of the system (20) are the following:

(φν , hν) =

(

(−1)ν

m
arcsin(a) +

πν

m
; 0

)

+ O(ε); ν ∈ Z, a =

√
λ

Γtπ2J3
(δJ1 + δLπ4J2).

(2.21)
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If a > 0(a < 0), then ν is changed as: ν = 0, ..., 2m − 1(ν = 1, ..., 2m).
Let us study these fixed points stability. System (20) is linearized and the eigenvalues

λ of the constant matrix of the linear system are derived. The values λ of the saddle
fixed points are the following:

λ
(A)
1,2 = ±

√

ε

2
|Ω′

Σ|ΓtπJ3m
√

1 − a2 + O(ε). (2.22)

The other group of the fixed points is denoted by B. The values λ of these fixed points
are the following:

λ
(B)
1,2 =

1

2
tr(Ã) ± i

√

ε

2
|Ω′

Σ|ΓtπJ3m
√

1 − a2, (2.23)

where tr(Ã) is the trace of matrix [Ã], which meets the following limit:

lim
k→1

tr(Ã) = lim
k→1

ε

√
λ(δLπ4J2 + δJ1)

2mTk′2K(k)
. (2.24)

Motions close to the resonance energetic levels have values k near 1. Using (2.24) we
conclude that if

δL < δ∗L(m)(δL > δ∗L(m)), (2.25)

the fixed points B are stable (unstable), respectively. From the inequality (2.25) the
following parameter is introduced:

α(k) = δ
√

λ
Ω(2 − k2)2σ(k)

60π m λk3J2
+ ∆1π

4
√

λ

(

2K3
J2

J3
− K2

)

.

Figure 2.5: The curves of the saddle-node bifurcations and the heteroclinic bifurcations are
shown. (QZ) and (RS) are the heteroclinic bifurcations curves. The letters denote the regions
of the different dynamical behavior.

Then the inequality (2.25) can be rewritten as α < 0 (α > 0). Therefore, if α < 0
(α > 0), the fixed point B is stable (unstable), respectively. Therefore, the bifurcation set



384 Yu.V. MIKHLIN, K.V. AVRAMOV AND G.V. RUDNYEVA

Figure 2.6: The phase portraits of dynamical system.
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satisfies the equation α=0. This equation describes the bifurcation curve H (Figure 2.5)
on the parameter plane (δL,Γt)∈R2, which can be written as

∆1 = ∆
(H)
1 (k); lim

k→1
∆

(H)
1 (k) =

15δ

8π4
√

λ

[

Ωπ

λ
cth(

Ωπ

2
√

λ
) + 1

]−1

lim
k→1

k′2K2. (2.26)

The bifurcation behavior of the system (20) is considered. The bifurcation structure
on the parametric plane (δL, Γt) is qualitatively presented in Figure 2.5. In the regions
A and B the motions are qualitatively different, as saddle-node bifurcation line (GZ)
separates them. The phase trajectories of the region B are shown qualitatively in Fig-
ure 2.6b. Here, the saddle fixed point α, the stable fixed point β and stable periodic
motions L1 take place. As a result of the saddle- node bifurcation (GZ) these fixed
points are coupled and disappeared. Therefore, there are no fixed points in the region A
(Figure 2.5). In this case, only the stable periodic motions L1 take place (Figure 2.6a).
The same bifurcation behavior is observed in E −F region transitions. The saddle-node
bifurcation (RN) separates these regions.

Heteroclinic orbits of the system (20) are considered. The following values of δ1 are
chosen:

δ1 = δ∗(m) +
√

ε∆; ∆ = O(2.1). (2.27)

The equations (2.27) are substituted into (20) and the Hamiltonian of the system
(20) is the following:

H =

√
ε

2

∂ω

∂I
h̄2 +

√
εΓπ J3

2m
cosmφ̄. (2.28)

The dynamical system (2.28) has the following fixed points: centers (φ̄ν , h̄ν) =
(

2ν

m
π; 0

)

; ν=0;±1. . . ; and saddles (φ̄ν , h̄ν) =

(

2ν + 1

m
π; 0

)

. The heteroclinic orbits

joint the saddles fixed points. Taking into account (2.28), the heteroclinic orbits in
dissipative dynamical system (20) are calculated by means of the following Melnikov
function:

M̄ = −
√

ε

2

∂ω

∂I
∆π3

√
λJ2

∞
∫

−∞

h̄dt +
√

ε
∂ω

∂I
χ|∆=0

∞
∫

−∞

h̄2dt. (2.29)

Integration in the equation (2.29) is performed taking into account the Hamiltonian
(2.28). Then the heteroclinic bifurcations take place, if the system parameters satisfy
the following equation:

∆ = ±4 χ|∆=0

J2

√
λ

√

2ΓJ3

mπ7
∣

∣

∂ω
∂I

∣

∣

. (2.30)

The heteroclinic bifurcations sets (ZQ) and (RS) are presented qualitatively in Fig-
ure 2.5. Let us consider the bifurcations, when the system passes from the region B to the
regions C and D. The periodic motions L1 are observed in the region B (Figure 2.6b).
These periodic motions are connected with the heteroclinic orbit. Note, that this hetero-
clinic trajectory is observed on the bifurcation curve (ZQ). There are no periodic motions
in the region C (Figure 2.6c). The heteroclinic trajectory is observed on the bifurcation
curve (RS). Moreover, the periodic motion L2 is born from this heteroclinic trajectory.
These periodic motions take place in the region D (Figure 2.6d).

The system (20) having the homoclinic trajectory was obtained by the averaging
method. This method is applied to nonautonomous systems, which is derived from the
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system (2.17) using the change of the variables (2.18). At some system parameters,
the homoclinic trajectory of the autonomous system (20) corresponds to the separatrix
manifolds intersections of saddle periodic motions in nonautonomous equations. The
Smale horseshoes arise due to these intersections in phase space. Such phenomenon for
the Duffing–Van-der-Pol oscillator is considered in the paper [16]. The intersections of
invariant manifolds in the system (2.6) are not considered in this paper.

3 Domains of Chaotic Frictional Vibrations Under the Action of Almost

Periodic Excitation

One degree- of- freedom system (Figure 3.1) is considered in this section. The Duffing
oscillator under the action of almost periodic force interacts with moving belt. The
vibrations of the discrete mass is described by the general coordinate x. It is assumed,
that the belt moves with constant velocity v∗, interacting with oscillator due to the dry
friction f(vR), where vR is relative velocity of rubbing surfaces. The nonlinear spring is
described by the restoring force: R = cx + c3x

3. The system vibrations are excited by
the following almost periodic force:

p(t) = Γ1 cosω1t + Γ2 cosω2t.

Figure 3.1: The Duffing oscillator interacting with moving belt.

The equation of the system motions has the following form:

mẍ + cx + c3x
3 = Γ1 cosω1t + Γ2 cosω2t − f(ẋ − v∗); (3.1)

f(ẋ − v∗) = θ0sign(ẋ − v∗) − A(ẋ − v∗) + B(ẋ − v∗)
3. (3.2)

We use the next dimensionless variables and parameters:

εµγ2 =
Γ2

cx∗
; α =

Aω0x∗
θ0

; β =
Bω3

0x
3
∗

θ0
;

x = x∗ξ(t); τ = ω0t; Ω1 =
ω1

ω0
; Ω2 =

ω2

ω0
; ελ =

c3x
2
∗

c
; εµθ̃ =

θ0

cx∗
; εγ1 =

Γ1

cx∗
, (3.3)

where µ, ε are two independent small parameters:0 ≺ ε ≺≺ µ ≺≺ 1. The mechanical
system (3.1) with respect to dimensionless variables and parameters is written in the
form:

ξ′′ + ξ = ε
{

−λξ3 + γ1 cosΩ1τ+ µ
[

γ2 cosΩ2τ − θ̃P (ξ′ − vB)
]}

; (3.4)
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P (ξ′ − vB) = sign(ξ′ − vB) − α(ξ′ − vB) + β(ξ′ − vB)3.

The second small parameter µ points, that the friction force is essentially smaller
than the nonlinear part of the restoring force and the amplitude of the harmonic γ1 is
significantly larger than the amplitude µ γ2.

In the future analysis the vibrations are treated for the resonance case:

Ω1 = 1 + εσ; Ω2 = Ω1 + ε ∆, (3.5)

where σ, ∆ are two independent detuning parameters. Note, that in the case of the
resonance (3.5) the external force is almost periodic. Using the multiple scales method
[18], the following system of modulation equations is derived:

ρ′ =
√

ρ
γ1√
2

sin θ + µ
{

ρ θ̃(α − 3βv2
B) − θ̃α1

√

2ρ − 3

2
θ̃ β ρ2+

+
√

ρ
γ2√
2

sin θ cos∆T1 +
√

ρ
γ2√
2

cos θ sin ∆T1

}

;
(3.6)

θ′ = σ − 3λ

4
ρ +

γ1

2
√

2ρ
cos θ + µ

γ2

2
√

2ρ
(cos θ cos∆T1 − sin θ sin ∆T1); (3.7)

α1(ρ) =

{

0; vB >
√

2ρ;

2
π

√

1 − v2
B

2ρ ; vB <
√

2ρ,

where (·)′ = d(·)
dT1

; T1 = ετ. Note, that the dynamical system (36, 37) has small param-
eter µ.

The general coordinate ξ of the system (3.4) and the modulation variables (ρ, θ) are
connected as

ξ =
√

2ρ cos(Ω1τ − θ) + O(ε). (3.8)

Figure 3.2: The phase portraits of the Hamiltonian system (3.9).

Unperturbed system (36, 37) (µ=0 ) has the following Hamiltonian:

H = −
√

2ρ
γ1

2
cos θ +

3λ

8
ρ2 − σρ. (3.9)

The system with Hamiltonian (3.9) has two groups of fixed points (θ1, ρ1) and (θ2, ρ2),
which satisfy the next cubic equation:

σ − 3λ

4
ρ1,2 ±

γ1

2
√

2ρ1,2

= 0; θ1 = 0; θ2 = ±π. (3.10)
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These fixed points are shown in Figure 3.2. They are two types of the points:
centers and saddles. The saddle fixed points are connected by heteroclinic orbits
Γ−(ρ−(T1); θ−(T1)) and Γ+(ρ+(T1); θ+(T1)) (Figure 3.2). The trajectories Γ− and Γ+

correspond to upper and lower heteroclinic orbit, respectively. From the equation (3.7)
at µ=0, it is derived:

θ±(τ) = arcsin

( √
2ρ′±

γ1
√

ρ±

)

.

This equation is substituted into (3.6) assuming that µ=0. As a result one has:

ρ′2 =

(

γ1
√

ρ√
2

+ σρ − 3λ

8
ρ2 + Hs

)(

γ1
√

ρ√
2

− σρ +
3λ

8
ρ2 − Hs

)

. (3.11)

The equation (3.11) is solved using the change of the variables

ρ(T1) = ρ
(2.1)
2 + r(T1);

and the initial conditions

θ±(0) = 0; ρ±(0) = ρ
(2.1)
2 + r̃±, r̃± = 2(k ±

√

2kρ
(2.1)
2 ); k =

4σ

3λ
− ρ

(2.1)
2 .

As a result it is derived:

ρ±(T1) = ρ
(2.1)
2 ± 2r̃−r̃+

(r̃+ − r̃−)ch(ãT1) ± (r̃+ + r̃−)
, (3.12)

where ã = 3λ
8

√−r̃−r̃+, ρ
(2.1)
2 is coordinate of the saddle fixed point.

The intersections of the invariant manifolds take place in the perturbed system (36,
37). The theory of such intersections is treated in books [1,2 ]. The Smale horseshoe,
which is the simplest mathematical pattern of chaotic vibrations, appears due to such
heteroclinic structure. The Melnikov function [1] is used to determine the region, where
the heteroclinic structure exists. The method for these functions calculations is consid-
ered in [1]. Here this approach is used to determine the region of heteroclinic orbits
existence in the system of modulation equations (36, 37). The heteroclinic Melnikov
function of the system (36, 37) has the following form:

M̃ =
∞
∫

−∞

{

−γ1γ2

4 sin θ cos(∆t − ∆t0 + θ)+ γ2√
2

√
ρ sin(∆t − ∆t0 + θ)×

×
(

σ − 3
4λρ + γ1

2
√

2ρ
cos θ

)}

dt +
∞
∫

−∞
P(ρ)

(

σ − 3
4λρ + γ1

2
√

2ρ
cos θ

)

dt,
(3.13)

where P(ρ) = −θ̃α1

√
2ρ + ρθ̃(α − 3β v2

B) − 3
2 θ̃βρ2. The integrals (3.13) are determined

using the heteroclinic trajectories of the system (36, 37) at µ=0. On performing the in-
tegration (3.13), the following equations are taken into account:ρ(T1) = ρ(−T1); θ(T1) =
−θ(−T1). As a result of the transformations, the Melnikov function is derived in the
following form:

M̃ = γ2

2 sin(∆t0)

{

∞
∫

−∞

(

−σ
√

2ρ cos θ + 3λ
4 ρ

√
2ρ cos θ − γ1

2

)

cos(∆t)dt+

+σ
∞
∫

−∞

√
2ρ sin θ sin(∆t)dt − 3λ

4

∞
∫

−∞
ρ
√

2ρ sin θ sin(∆t)dt

}

+

+
∞
∫

−∞
P(ρ)

(

σ − 3
4λρ + γ1

2
√

2ρ
cos θ

)

dt.

(3.14)
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Conclusively, the Melnikov function is written in the form:

M̃±(t0) =
γ2

2
A± sin(∆t0) + D±. (3.15)

The parameter D± is derived as:

D± = ∓
(

3β v2
B − α

)

θ̃
16

3λ

(

σθ±0 ∓ 9λ

16
ρ̃

)

+ θ̃β

{

14ρ̃σ

λ
∓ θ±0

[(

9ρ
(1)
2 − 4σ

λ

)

×

×
(

4σ

λ
− 2ρ

(1)
2

)

+
7σ(r̃+r̃−)

λ

]}

+ θ̃
9λ

16
J

(±)
2 + θ̃

(

9

8
λρ

(1)
2 − σ

2

)

J
(±)
1 ,

where θ+
0 = θ0; θ

−
0 = π − θ0; θ0 = arccos

(

r̃++r̃−

r̃+−r̃−

)

; ρ̃ =
√−r̃+r̃−.

The parameters J
(±)
2 and J

(±)
1 are not presented here for brevity. The values A± are

determined as:

A±(∆, λ, γ1, σ) =
9λ2

16γ1
K±

3 − 9λ

8γ1
(2σ − 3

2
ρ
(1)
2 λ)K±

2 −

− 1

2γ1

[

9

4
γ1λ

√

2ρ
(1)
2 − σ(4σ − 3λρ

(1)
2 )

]

K±
1 − 3λ

2γ1
L±

1 +

(

2σ

γ1
− 3λ

2γ1
ρ
(1)
2

)

L±
0 ,

(3.16)

where

K±
n =

∞
∫

−∞

rn
±(t) cos(∆t)dt; L±

n =

∞
∫

−∞

rn
±(t)ṙ±(t) sin(∆t)dt; n = 1, 2, 3. (3.17)

The integrals (3.17) satisfy the following equations:

L0 = −∆K1; K2 = − 2

∆
L1. (3.18)

Values of the integrals are determined using the residuals. As a result, the f ollowing
parameters are calculated:

K±
1 = ∓16π sh(∆′θ±0 )

3λsh(∆′π)
; K±

2 =
16πρ̃

3λ

[

∆′ ch(∆′θ±0 )

sh(∆′π)
∓ ctgθ0

sh(∆′θ±0 )

sh(∆′π)

]

;

K±
3 = ∓ 8πρ̃2

3λsh(∆′π)

{

sh(∆′θ±0 )(1 + 3ctg2θ0+ ∆′2) ∓3∆′ctgθ0ch(∆′θ±0 )
}

; ;

L±
0 = ±16∆π sh(∆′θ±0 )

3λsh(∆′π)
; L±

1 = −8∆πρ̃

3λ

[

∆′ ch(∆′θ±0 )

sh(∆′π)
∓ ctgθ0

sh(∆′θ±0 )

sh(∆′π)

]

,

where ∆′ = 8∆
3ρ̃λ . Then, finally, the value of A±(∆, λ, γ1, σ) has the following form:

A±(∆, λ, γ1, σ) = cos ech

(

8∆π

3ρ̃λ

){

∓
[

8π∆

3λγ1

(

3

2
λρ̃ctgθ0 − 2

[

2σ − 3

2
λρ

(1)
2

])

+

2π

3λγ1

{

27

4
λ2ρ̃2ctg2θ0− 9λρ̃(2σ − 3

2
ρ
(1)
2 λ)ctgθ0 − 9γ1λ

√

2ρ
(1)
2 +

+8σ(2σ − 3
2ρ

(1)
2 λ) + 9

4λ2ρ̃2
}

+ π∆232
3γ1λ

]

sh(∆′θ±0 )+

+

[

∆2π32

3γ1λ
+

8π∆

λγ1

{

3

2
ρ̃λ ctgθ0 − 2(2σ − 3

2
ρ
(1)
2 λ)

}]

ch(∆′θ±0 )
}

.

(3.19)
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Figure 3.3: The boundaries of the regions of chaotic vibrations.

As shown in the book [1], the intersections of invariant manifolds are described by
the simple roots of the equation: M̃±(t0) = 0. The homoclinic structure is observed in
the region, where the following inequality is met:

∣

∣D±A−1
±
∣

∣ < 0.5γ
(±)
2 . (3.20)

The region of chaotic vibrations (3.20) is studied numerically. The following param-
eters of the mechanical system (3.1) are used in the future analysis [19]:

m = 0.981kg; c = 9.81 · 103 N

m
; c3 = 1.67 · 103 N

m3
; Γ1 = 100N ; θ0 = 4.9N ;

A = 0.2
kg

s
; B = 3 · 10−6 kg · s

m2
.

Then dimensionless parameters (3.3) have the following values:

ε = 0.01; µ = 0.1; λ = 17; θ̃ = 0.5; γ1 = 1.02; α = 4.08; β = 0.61; σ = 10; νB = 4.

Figure 3.3a, b shows boundaries of the chaotic vibrations regions, γ
(+)
2 (∆) and

γ
(−)
2 (∆), for the above-presented system parameters. The heteroclinic structures of the

modulation equations (36, 37) take place above these boundaries.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9 (4) (2009) 375–406 391

4 Boundary Values Problem for the HT Construction

4.1 Convergence condition

Let us assume that there are local expansions of solution obtained at small and large
values of a parameter c (for example, the parameter is an amplitude value or initial
energy of the system). For small values of c the local expansion can be determined as
a power series in c, while for large values of c it can be determined as a power series in
c−1:

y(0) = α0 + α1c + α2c
2 + ..., y(∞) = β0 + β1c

−1 + β2c
−2 + ... (4.1)

In order to join local expansions (4.1), fractional rational diagonal two-point PA [8]
can be used. Let us consider the PA of the form:

PAs =

s
∑

j=o

aj cj

s
∑

j=o

bj cj

=

s
∑

j=o

aj cj−s

s
∑

j=o

bj cj−s

, s = 1, 2, , .... (4.2)

By comparison of expressions (4.1) and (4.2) and retaining only terms with the order
of r (−s ≤ r ≤ s), one obtains a system of 2(s+1) linear algebraic equations for the
determination of coefficients aj , bj (j = 0, . . . , s). Since generally the determinant of the
system ∆s, is not equal to zero, the system has a single trivial exact solution. But we
need in PA corresponding to the retaining terms in Eq. (2.1) having non-zero coefficients
aj , bj . Without loss of generality it can be assumed that b0 =1. Now, the system
of algebraic equations for determination of aj , bj becomes overdetermined. All of the
unknown coefficients can be determined from (2s+1) equations while the “residual” of
this approximate solution can be obtained by substitution of all the coefficients into the
remaining equation. Obviously, the residual (or “error”) is determined by the value of
∆s (it can be proved), since the non-zero solution for coefficients and consequently PA
will be obtained in the given approximation by c only in the case when ∆s= 0. Hence
the following is a necessary condition for convergence of the succession of PAs in the
form (2.2) at s → ∞ to the fractional rational function which gives us a presentation of
the solution for all values of the parameter c [10-12]. Namely,

lim
s→∞

∆(i)
s = 0 (i = 2, 3, ..., n) . (4.3)

It is possible to generalize the necessary condition for convergence (4.3) to quasi-
PAs which contain both powers of some unknown parameter, and exponential functions
[9]. Besides, it is possible to utilize the condition (4.3) for obtaining some unknown
parameters which are contained in local expansions [20].

4.2 Potentiality condition and condition at infinity

It is assumed that along the closed HT the dynamical system energy is saved in average.
For the single-DOF dynamical system of the form,

ẍ + f(x, ẋ, t) = 0,

Multiplying the last equation by ẋ(t) and integrating within limits from t = 0 to
t = ±∞, (or from t = −∞ to t = +∞) along the HT one has the following:

∮

f(x, ẋ, t) ẋ dt = 0. (4.4)
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Note that such condition is used in many problems of the perturbation theory [18] to
construct periodic solutions. In this case the integration is made by the solution period.
This condition for periodic solution is called the periodicity one.

Additionally we are going to find the solution x(t) as an analytic function along the
HT satisfying the next condition:

(x(t), ẋ(t)) −→
t→±∞

(b0, 0) . (4.5)

That is we suppose that HT tends to the equilibrium point (saddle point) at infinity.
The convergence condition (4.3), and conditions presented in this subsection, permit

to solve uniquely the boundary-value problem for the HT. It is possible to construct both
this trajectory and the corresponding solution in time.

5 Non-autonomous Duffing Equation

5.1 Analytical construction of the homoclinic trajectory

One considers in details the construction of HT for the well-known non-autonomous
Duffing equation. In general case this equation has a form

ÿ + δẏ − β y + α y3 = f cosω t, (5.1)

A lot of papers are devoted to the investigation of this equation and systems described
by it [1, 4-7, 22-24]. Chaotic behavior of solutions can be observed at different choices
of elastic characteristics, namely for soft elasticity (β < 0, α < 0) [21], rigid one (β <
0, α > 0) [22], with zero (k = 0, γ > 0) [23] or negative (β > 0, α > 0) [5, 24] linear
elasticity.

Here the last variant, namely, β > 0, α > 0, δ > 0, δ << 1, f << 1, is considered. In
this case the unperturbed system has three equilibrium positions, namely one unstable

saddle point (0, 0) and two stable nods
(

±
√

β/α, 0
)

. To simplify notations let us do the

change of variables y = λx, t = µτ to make coefficients of x and x3 equal to -1 and 1,
correspondingly. Then equation (2.1) can be rewritten as

y′′ + δ y′ − y + y3 = f cosω t. (5.2)

A problem of effective analytic approximation of HT in non-autonomous system is not
solved up to now. Here PA and QRA [8, 9] are used for the HT and the corresponding
time solution construction in the case of small dissipation.

To construct the HT in this system we should determine values of the system param-
eters δ, ω, f , corresponding to this trajectory and the coordinates of the shifted saddle
point (b0, 0). The coordinates of the initial point for this trajectory (a0, a1) are also
required. Thus we have to construct system of four equations to find unknowns. The
condition (4.5) at infinity will be used.

Thus, we can consider the next expansion of the solution of equation (5.2) in Taylor
series at zero:

y = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + . . . , (5.3)

where a0, a1 are arbitrary constants. After substitution of (5.3) to the equation (t) and
equating the coefficients at equal powers of variable t, we get the following expressions
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for series coefficients:

a2 = −(a3
0 − a0 − f + δ a1)/2, a3 = (a1 − 3a2

0a1 − 2δ a2)/6,
a4 = (2a2 − fω2 − 6δ a3 − 6a2

1a0 − 6a2a
2
0)/24, . . .

Multiplying the equation (5.2) by y′(t) and integrating within limits from t = 0 to
infinity along the homoclinic trajectory, we have the following:

−b2
0

2
+

a2
0

2
+

b4
0

4
− a4

0

4
− a2

1

2
+

±∞
∫

0

(δ y′ − f cos ω t) y′ dt = 0. (5.4)

Let us consider the integral
T
∫

0

(δ y′ − f cos ω t) y′dt. After substitution instead of

y(t) its Taylor series and integration one obtains:

T
∫

0

(δ y′ − f cos ω t) y′dt = A T + B T 2 + C T 3 + D T 4 + E T 5 + · · · , (5.5)

where

A = (δ a1 − f)a1, B = (2(δ a1 − f)a2 + 2δ a2a1)/2,
C =

(

3(δ a1 − f)a3 + 4δ a2
2 + (fω2/2 + 3δ a3)a1

)/

3,
D =

(

4(δ a1 − f)a4 + 4δ a4a1 + 6δ a2a3 + 2(fω2/2 + 3δ a3)a2

)/

4, . . .

It is desirable to get presentation of the integral at infinity. For this the QPA is used as
a form of analytical continuation of the expansion (5.5):

A T + B T 2 + C T 3 + · · · → PAp
3 =

α1T + α2T
2 + α3T

3

1 + β1T + β2T 2 + β3T 3
. (5.6)

From here one has the following:

α1 = A,

α2 = −−ADC2 − DA2E + 2AD2B + FA2C − AFB2 + B3E − 2B2DC + BC3

AEC − AD2 − B2E + 2BDC − C3
,

α3 = (−A2E2 + 2AEC 2 + 2AEBD − 2ACD 2 − 2ACBF + DFA 2

−2CB 2E + 3BDC 2 − D 2B 2 + FB 3 − C 4)/(AEC − AD2 − B2E + 2BDC − C3),

β2 = −AE2 − EC2 − EBD + CD2 + CBF − DFA

AEC − AD2 − B2E + 2BDC − C3
,

β3 =
−BDF + BE2 − 2DCE + C2F + D3

AEC − AD2 − B2E + 2BDC − C3
.

Passing on to infinity in the fractional presentation (5.6), we can rewrite the equation
(5.4) as:

−b2
0

2
+

a2
0

2
+

b4
0

4
− a4

0

4
− a2

1

2
+

α3

β3
= 0. (5.7)
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Additional equation could be obtained from the convergence condition for the PA
(5.6):

−2D2BF + 2DBE2 − 3D2CE + 2DC2F + D4 − AE3 + E2C2 − 2ECBF+
2EDFA − F 2AC + F 2B2 + GAEC − GAD2 − GB2E + 2GBDC − GC3 = 0.

(5.8)

In similar way we can construct the analytical continuation of the solution at infinity
by means of quasi-rational approximation. This QPA is chosen in the form similar to the
solution of autonomous Duffing equation (separatrix solution), namely:

y = a0 + a1t + a2t
2 + a3t

3 + . . . → e−t α0 + α1e
t + α2e

2t + α3e
3t

1 + β2e2t
. (5.9)

It follows from (5.9) that

b0 =
α3

β2
, (5.10)

where coefficients αi, βj in (5.9) can be found as it is described below.
Final equation being the convergence condition for the approximation (5.9) is

24a 5a 3 + 2a 5a 1 + 12a 5a 2 − 24a 2
4 − 4a 1a 4 −

4

15
a 1a 2 −

7

10
a 1a 3−

− 1

10
a 2

1 − 8a 2a 4 +
5

6
a 2

2 + 4a 2a 3 + 6a 2
3 − 12a 4a 3 = 0.

(5.11)

The system of algebraic equations (5.7), (5.8), (5.10) and (5.11) determines the un-
known values a0, a1, b0 and f = f(δ) while ω is fixed. They can be obtained from
the essentially nonlinear system by means of the Newton method. Several examples of
obtained phase trajectories are presented in Figure 5.1 and Figure 5.2. Figure 5.1 shows
trajectories constructed by Runge–Kutta procedure with initial points obtained from the
system. Here two sets of parameters are chosen, namely:

a) δ = 0.001, a0 = 1.21508, a1 = 0.621819, b0 = 0.00058, f = 0.00087; ω = 1;
b) δ = 0.01, a0 = 1.21609, a1 = 0.621943, b0 = 0.0058 , f = 0.00878, ω = 1.

Figure 5.1: Trajectories constructed by Runge–Kutta procedure with initial points obtained

from the system (5.7), (5.8), (5.10) and (5.11).

Figure 5.2 gives comparison of trajectories constructed with the same initial point
obtained from the system but in different ways, namely by means of Runge–Kutta method
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(solid line) and by the QPA (5.9) (dash line). Values of parameters are taken as for the
previous figure.

Figure 5.3 and Figure 5.4 present parameter dependences corresponding to the HT
creation, i.e. chaos onset. The solid lines show curves obtained by the proposed approach,
but dash lines show the same curves obtained by the Melnikov method. Numerical
investigation of chaos onset in the system under consideration shows that our curve is
more exact.

Figure 5.2: Comparison of the trajectories constructed with the obtained initial point by
Runge–Kutta method (solid line) and by means of quasi-rational approximation (dash line).

Figure 5.3: Dependence between the amplitude of external force and dissipation coefficient
for ω = 1.

Introduction of the phase ϕ permits to choose the point (a0, 0) as the HT initial point
instead of such point (a0, a1) as was made earlier. The corresponding HT construction
is not presented here, and it can be found in [25].
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Figure 5.4: Dependence (ω, f) corresponding to HT appearance.

5.2 Comparison of analytical construction and numerical simulation

The obtained analytical results can be compared with numerical simulation. The nu-
merical construction of the manifolds was fulfilled to find the moment of the separatrix
branches touching, which corresponds to the chaos onset. The method of Latte [26] was
used for this. The main idea of this approach is to consider quadratic approximation of
manifolds:

y − y0 = α (x − x0) = α±
1 (x − x0) +

α±
2

2
(x − x0)

2
+ O

(

|x − x0|3
)

,

where “+” corresponds to unstable manifold but “–” corresponds to stable one. Here
(x0, y0) is saddle point in phase space. Figure 5.5 and Figure 5.6 present the fulfilled
investigation and demonstrate the accuracy of the obtained above analytic results (val-
ues of parameters corresponding to manifold touching are the same as obtained above
analytically).

Value of the force amplitude corresponding to a point of the HT formation obtained
by the analytical approach is equal to 0.004465 for some fixed values of ω and δ. The
same result is observed in Figure 5.5.

Figure 5.6 presents phase portraits when ω = 2, δ = 0.001 and δ = 0.01. Correspond-
ing analytic results are f = 0.0018 and f = 0.018.

6 Construction of the HT in Different Dynamical Systems

6.1 The Van der Pol–Duffing equation

One considers the model which describes, in particular, the panel flatter in the supersonic
air flow [25]:

ẍ + δ
(

α − βx2
)

ẋ − x + x3 = 0, (6.1)

where α, β > 0, δ is the small parameter (0 < δ << 1).
To construct the HT, the procedure presented in the previous Section, is used here.

At first, local expansions near the unstable equilibrium point are selected. These expan-
sions, corresponding to stable and unstable branches, can be obtained by using the small
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Figure 5.5: Phase portraits for Duffing equation when δ = 0.005, ω = 1.
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Figure 5.6: Phase portraits of Duffing system in the vicinity of the saddle point.

parameter method:

x = c0e
k1t − c3

0

1 − k1δβ

9k2
1 + 3δαk1 − 1

e3k1t + . . . , t → +∞; (6.2)

x = c1e
k2t − c3

1

1 − k2δβ

9k2
2 + 3δαk2 − 1

e3k2t + . . . , t → −∞, (6.3)

here k1 =
−δα −

√
δ2α2 + 4

2
, k2 =

−δα +
√

δ2α2 + 4

2
are roots of the characteristic

equation k2 + δα k−1 = 0, and c0, c1 are arbitrary constants. One writes too the Taylor
series for a solution x(t) at point t = 0:

x = a0 + a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + . . . , (6.4)

where a0 is an arbitrary constant, a2 =
a0 − a3

0

2
, a3 = −δ

(

−α + βa2
0

)

a0

(

a2
0 − 1

)

6
, . . .

Thus, to construct the HT it is necessary to find values of the three pointed out
arbitrary constants, c0, c1, a0. Respectively, three algebraic equations to obtain these
constants must be constructed.

Multiplying the equation (6.2) by ẋ(t) and integrating within limits from t = 0 to
infinity along the homoclinic trajectory, we have the following:

a2
0

2
− a4

0

4
+ δ

±∞
∫

0

(

α − βx2
)

ẋ2 dt = 0.

Using in this integral the local expansion (6.4), and rebuilding the obtained expression
to the Pade approximation, we can write the following:

t
∫

0

(

α − βx2
)

ẋ2 dt = At3 + Bt4 + Ct5 + . . . =
α3t

3 + α4t
4

1 + β1t + β2t2 + β3t3 + β4t4
,
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One has in the limit at t → ±∞:

a2
0

2
− a4

0

4
+ δ

α4

β4
= 0. (6.5)

Taking into account the local expansions at infinity (6.2) (6.3), it is possible to match
these expansions with the expansion (6.4) by using the QPA of the form

P+∞ = ek1t α0 + α2e
2k1t + α4e

4k1t

1 + β2e2k1t + β4e4k1t
, P−∞ = ek2t α0 + α2e

2k2t + α4e
4k2t

1 + β2e2k2t + β4e4k2t
, (6.6)

where coefficients of approximations P+∞, P−∞ are calculated by comparing them with
the expansions (6.2), (6.4) (6.3), (6.4), respectively.

So, there are two solution presentations for positive and for negative values of the
variable t, and we can obtain two additional equations which are the convergence condi-
tions (4.3) for approximations P+∞, P−∞. These equations together with the condition
of potentiality (6.5) form a system of nonlinear algebraic equations to determine unknown
constants presented in local expansions.

Figure 6.1:

In Figure 6.1 the examples of HT determined by the Runge–Kutta method are shown
for different values of the parameter δ, namely: a) δ = 0.05; b) δ = 0.1; c) δ = 0.2;
d) δ = 0.4, where the initial values determined from the algebraic equations are used.
Figure 6.2 presents a comparison of the HT, obtained by the Runge–Kutta method (line
a) and the QPA (6.6) (i.e. P−∞(line b) and P+∞(line c)) for δ = 0.01.

6.2 Equation of a parametrically excited damped pendulum

Let us use the same technique to investigate the behavior of pendulum with periodically
excited point of pendulum suspension [27]. This system is governed by the following
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Figure 6.2:

equation:
x′′ + δ x′ + (1 + f cosω t) sin x = 0, (6.7)

where x is an angle of deviation from the vertical line. We rewrite this equation (6.7) in
the form

y′′ + δ y′ − (1 + f cosω t) sin y = 0, (6.8)

after change y = x + π. This system possesses infinite number of saddle points
(2π n, 0) (n ∈ Z), therefore we will consider heteroclinic trajectory construction as crite-
rion of chaos onset. We make the same assumptions as for Duffing equation and obtain
the following:

∞
∫

0

(y′′ + δ y′ − (1 + f cosω t) sin y) y′dt =

= −a2
1

2
+ cos (b0) − cos (a0) +

∞
∫

0

( δ y′ − f cosω t sin y) y′dt = 0.

∞
∫

0

( δ y′ − f cosω t sin y) y′dt =
(

A t + B t2 + C t3 + D t4 + E t5 + · · ·
)∣

∣

∞
0

,

where A = a1 (δa1 − f sin a0), B = a1 (2δa2 − fa1 cos a0)/2 + a2 (δa1 − f sin a0) , . . .
For analytic continuation we use the quasi-rational approximation:

A t + B t2 + C t3 + D t4 + E t5 + · · · → α1t + α2t
2

1 + β1t + β2t2
, (6.9)

where α1 = A, α2=(–2ABC+DA2 + B3)/(B2–AC ), β1=(DA–BC )/(B2–AC ),
β2=(BD–C2)/(AC–B2).

Thus we have:

−a2
1

2
+ cos (b0) − cos (a0) +

α2

β2
= 0. (6.10)
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To simplify the problem we accept b0 = 0. Additionally we continue the Taylor series
of solution in quasi-rational approximation:

y = a0 + a1t + a2t
2 + a3t

3 + . . . → e−t α0 + α1e
t + α2e

2t

1 + β2e2t
. (6.11)

The following two algebraic equations are obtained from existence condition for (76)
and (78):

2CBD − C3 − D2A + EAC − EB2 = 0, (6.12)

6a1a2 − 72a2a3 + 42a2
1 − 30a1a3 + 3a0a1 − 18a0a3 + 36a4a0+

+72a4a1 + 72a4a2 − 72a2
3 − 3a2a0 − 6a2

2 = 0.
(6.13)

Figure 6.3: Dependences between parameters corresponding to HT creation.

Equations (6.10), (79), (80) form the system of nonlinear algebraic equations to de-
termine parameters of (6.8) and a0, a1 while ω is fixed. Figure 6.3 demonstrates the
dependences between parameters obtained from constructed system.

At values of force amplitude f less then 0.2, the instability domain is observed only
in vicinity of heteroclinic trajectory but at rising of f the domain enlarges as well.

Figure 6.4 demonstrates the results of manifolds construction for the system (6.8) for
δ = 0.001 and ω = 1. Figure 6.5 presents the same construction for δ = 0.001 and ω = 2.

Analytic results obtained above by proposed approach are f = 0.00243 (ω = 1)
and f = 0.0038 (ω = 2). So, comparing the obtained analytical results with the phase
portraits we can observe a good accuracy of the analytical results and efficiency of the
proposed approach.

Similar equations with parametric periodic excitation can be obtained in a problem
of the elastic oscillations absorption by using the snap-through truss as absorber. It was
shown that the snap-through truss can be used for effective absorption of longitudinal
oscillations of some elastic solid [28]. In this case a big part of the energy of elastic
oscillations is transferred to the truss, which has a capacity to jump. But it was shown
too [29] that the chaotic behavior, which is not appropriate for this absorption, can
appear in this system.

7 The One-degree-of-freedom Weakly Forced Oscillator with Nonlinear Dis-

sipation Forces

Mechanical system with a small periodic external excitation, nonlinear dissipation forces
and the Duffing type stiffness is governed by the following second order differential equa-
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Figure 6.4: Phase portrait of (6.8) in the vicinity of saddle point (0, 0) for ω = 1.

Figure 6.5: Phase portrait of (2.15) in the vicinity of saddle point (0, 0) for ω = 2.
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tion:

y′′ − y + y3 = f cos (ωt + ϕ) − θ (y′ − ν∗) , (7.1)

where θ (y′ − ν∗) = T0sign (y′ − ν∗)− α (y′ − ν∗) + β (y′ − ν∗)3 is the nonlinear dissipa-
tion characteristic.

To construct a homoclinic trajectory we need to know the initial point (a0, 0), the
phase φ corresponding to a moment t= 0, and the relation of the system parameters ω,
fand θ corresponding to HT appearing. Thus we should construct the algebraic system
to determine the unknown values.

Let us make some assumption like for the previous systems. One assumes that
(y, y′) −→

t→±∞
(0, 0) . We will construct the analytical approximation for the sought solu-

tion. First, we can consider the Taylor expansion at zero of the solution y(t):

y = a0 + a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + . . . , (7.2)

where a0 is an arbitrary constant, and aj = aj (a0, ϕ, f, T0, α, β)
(

j = 2,∞
)

Then multiplying the equation (7.1) by y′(t) and integrating within the limits from
t = 0 to t = +∞ and from t = 0 to t = −∞, one has the following equations where several
integrals are calculated along the separatrix zero approximation (for θ = 0, f = 0),
y0 =

√
2/ch(t):

a2
0

2 − a4
0

4 −
(

αν∗ − βν∗3 − T0

)

a0 − 2α
3 + 8β

35 + 4
√

2βν∗

5 + 2βν∗2+

+f sinϕ
+∞
∫

0

sin ω t y′
0 dt − f cosϕ

+∞
∫

0

cos ω t y′
0 dt = 0;

(7.3)

a2
0

2 − a4
0

4 −
(

αν∗ − βν∗3) a0 + 2α
3 − 8β

35 + 4
√

2βν∗

5 − 2βν∗2 − f sinϕ
+∞
∫

0

sin ω t y′
0 dt−

−f cos ϕ
+∞
∫

0

cosω t y′
0 dt − T0

0
∫

−∞
sign (y′

0 − ν∗) y′
0 dt = 0.

(7.4)

Here
+∞
∫

0

sinω t y′
0dt =

0
∫

−∞

sin ω t y′
0dt = −ω

√
2π

2
· 1

chωπ
2

;

+∞
∫

0

cosω t y′
0dt = −

0
∫

−∞

cosω t y′
0dt = −

√
2 + ω

√
2

(

−π

2
th

ωπ

2
+ 4ω

∞
∑

k=0

1

ω2 + (1 + 4k)
2

)

.

The integral
0
∫

−∞
sign (y′

0 − ν∗) y′
0 dt is evaluated as a function of the parameter ν∗

computationally.

For the continuation of the local expansion at infinitum we rebuild it to QPA:

y = a0 + a2t
2 + a3t

3 + a4t
4 + a5t

5 + . . . → e−t α0 + α1e
t + α2e

2t

1 + β1et + β2e2t
. (7.5)
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So, the additional equation may be obtained by means of the convergence equation
(4.3) for the QPA (7.5).

72a5a1a3 + 72a5a2a1 + 12a5a1a0 − 144a4a2a3 − 72a4a1a3−
−60a4a2a1 − 72a5a3a0 − 72a4a

2
2 + 72a2a

2
3 + 72a5a

2
2+

+30a5a
2
1 + 30a3a

2
2 + 72a3

3 + 3/5a1a1a3 − 12a0a4a2+

+72a2
4a0 −

1

10
a0a

2
1 +

1

2
a0a

2
2 − 6a4a

2
1 −

11

10
a2a

2
1−

− 9

10
a2
1a3 +

9

10
a1a

2
2 +

1

3
a3
1 + 6a3

2 + 72a2
4a1 = 0.

(7.6)

Figure 7.1: Boundaries of the chaotic behavior regions in planes ω, f and δ, f , for ν∗=0.5,
δ = 0.001 (solid line), δ = 0.005 (“point-dash” line), δ = 0.01 (dash line).

Figure 7.2: Haotic behavior boundaries in parameter spaces and the homoclinic trajectories
in phasespace while ν∗=0.5, T0 = α = β=0.001.

Nonlinear algebraic equations (7.3), (7.4) and (7.6) form the system which allows to
determine unknown parameters a0, ϕ and the relation f = f(ω) while the dissipation
parameters T0, α, β are fixed.
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Figure 7.1 shows the dependences between the parameters of the system correspond-
ing to HT and the one obtained by the method proposed here.

Also the example of homoclinic trajectory and comparison of the trajectory evaluated
by Runge-Kutta method (when it is used the initial values, obtained from the obtained
above algebraic equations) and by means of QPA (7.5) are presented in Figure 7.2.

8 Concluding Remarks

The methodologies presented in this work is sufficiently general to be applicable to other
types of non-linear dynamical systems. The subharmonic Melnikov–Morozov theory is
utilized to describe a sequence of the saddle-node bifurcations in the process of transition
to the chaotic behavior in some mechanical systems. An appearance of heteroclinic
structures in mechanical systems under the almost-periodic excitation, is described too by
using the Melnikov functions. The multiple-scale method is used here successfully. Other
approach of detection of the chaotic behavior is a construction of homo- or heteroclinic
trajectories (HT) by using the Pade- and quasi-Pade approximants. It seems more exact
that the generally used Melnikov function approach. The presented approach realizes
the analytical continuation of the local expansions connected with these HT, to infinity.
The necessary condition of convergence of the PA or QPA, as well additional conditions
at infinity permit to solve corresponding boundary-value problem for the closed HT.
Checking of numerical calculations of the HT with initial amplitudes values obtained by
using the analytical approach, shows an acceptable precision of the proposed analytical
procedure.
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