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Abstract: We obtain a sufficient condition for the existence of a positive solution for
a second-order superlinear semipositone singular Dirichlet dynamic boundary value
problem by constructing a special cone. As a special case when T = R, this result
includes those of Zhang and Liu [9]. This result is new in a general time scale setting
and can be applied to g-difference equations. Two examples are given at the end of
this paper to demonstrate the result.
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1 Introduction

We counsider the following Dirichlet boundary value problem (BVP)

Lz = f(t,x) + h(t), te (p(a),o(b))r, (1.1)
z(p(a)) =0,
z(o(b)) =0,

where the operator L is defined by Lz := — (p(t):cA)v, and T is a time scale containing

a and b. We define the time scale interval (a,b)r by (a,b)r := (a,b) NT, and similarly for
other types of intervals. If T has a right-scattered minimum m, we define T, := T\ {m};
otherwise, we set T, = T. The backward graininess v is defined by v := ¢ — p(¢). Then
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the nabla derivative of z at t, denoted by 2V (¢), is defined to be the number (provided it
exists) with the property that given any ¢ > 0, there is a neighborhood U of ¢ such that

[2(p(t)) — w(s) — ¥ (O)(p(t) — )| < |plt) — s|, Vs €U,

For T = R, we have 2V = 2/, and for T = Z, we have zV (t) = Vz(t) = z(t) — z(t — 1),
which is the backward difference operator. An introduction of Time Scales Calculus can
be found in Chapter 1 of [4], and in [5]. The domain D of L is the set of functions
x: T — R such that z is continuous on [p(a),o(b)]r, =2 is continuous on [p(a), b], and

(p(t)acA)v is continuous on [a,b]r. Since f may have singularities with respect to t at
one or both end points, we shall assume, either f is continuous on (a,b)y x R if f is
singular at both a and b, or f is continous on (a,b]y x R if f is not singular at b, or f
is continuous on [a,b)y x R if f is not singular at a. If either f or h has a singularity
at a, we assume p(a) = a = o(a), and if f or h has a singularity at b, then we assume
p(b) = b = o(b). Let a and b be such that 0 < p(a) < a < b < oo with (a,b)r # ¢,
and h: (p(a),o(b))r — (—o00,00) is Lebesgue V-integrable. Also p > 0 is continuous on
[p(a),o(b)]T, and there are constants m, M such that

0<m<p(t) <M.

The BVP (1.1) — (1.3) arises in chemical reactor theory [2] when we consider the
domain to be the set of real numbers. Since the function h(t) in the above BVP may
change sign we say this type of problem is semipositone. Special cases are studied in [§],
[1] and the references therein. In the applications one is interested in finding positive
solutions.

We impose the following conditions:
(Hy) For any t € (p(a),o(b))r, f(t,1) > 0, and there exist constants A\; > Az > 1 such
that for any (¢t,u) € (p(a), o (b))t % [0,00)

A f(tu) < ft,eu) < 2 f(tu), c€10,1]. (1.4)

(Ha) Let 7 := W f:(a) h=(#)Vt > 0, where m, and M are such that 0 < m <
p(t) < M, and h*(t) := max{+h(t),0}, and assume

(s = pla))(a(b) = 5)[f(s,1) + A" (s)]Vs <

’ m?r(o(b) — p(a))
/p(a) M[(?" + 1))\1 + 1] ' (15)

Remark 1.1 Note that it is easy to see for ¢ > 1, from (1.4) that
2 f(t,u) < f(t cu) < f(tu) (1.6)
for any (t,u) € (p(a), o(8))r x [0, 00).

A solution ug of the BVP (1.1) — (1.3) with ug(¢) > 0, t € (p(a),o(b))r, is called
positive solution of the BVP (1.1) — (1.3).
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2 Preliminary Lemmas

We state the following lemmas which we will use later in this section.

Lemma 2.1 [7] Let X be a real Banach space, S be a bounded open subset of X with
0€Q, and A: QNP — P be a completely continuous operator, where P is a cone in X.

(i) Suppose that Au # Au, for allu € OQ NP, A > 1. Then i(A,QN P, P)=1.

(ii) Suppose that Au £ u, for alluw € 92N P. Then i(A,QN P, P)=0.

Lemma 2.2 If f(t,u) satisfies (H1), then for any t € (p(a),o (b)), f(t,u) is non-
decreasing in u € [0,00), and for any nonempty [, Blr C (p(a), o (b))r,

o ()
Im min
u—00 te(er, Bl u

= Q.

Proof Let t € (p(a),o(b))r, and z,y € [0,00) be arbitrary. Without loss of generality
assume 0 < z < y. Now, if y = 0, then f(t,z) < f(¢t,y) is clear. If y # 0, let ¢ = %,
then 0 < ¢y < 1. Now by (1.4),

ft,z) = f(t,coy) < * ft,y) < f(t,y).

Thus f(¢,u) is non-decreasing in u on [0, c0).

Next choose u > 1. Then it follows from (1.6) that f(¢,u) > u*2f(t,1). So we get

St u)

u

>u T f(t,1), Yt € (p(a), (b))

So for any nonempty [a, S]1 C (p(a), o (b)), we get

min ftw >t min f(t,1).
te(a,B]r u t€la,Br
Since f(t,1) > 0 (by (H1)).
lim min F(t,u) =o00. O

u—00 te€fa, Bl u

Let X := {z € C([p(a),o(b)]T,R)} with ||z[| = sup,c(y(a),0()), 17(t)|; and define

P:={zeX:x(t) >0, t€c [p(a),o(d)r},

» t € [p(a),o(b)]r},

where 0 < m < p(t) < M.

Then one can easily verify that X is a real Banach space, and P, () are cones in X, and
clearly Q C P.
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Note that the Green’s function for the BVP

_(p(t)xA)V = 0, te (p(a),o(d)r
z(p(a)) =
z(o(d)) = 0
can be shown to be given by (see [3] for more information)
t 1 ab) 1 .
Glt,s) = m; {fps(a) @AT fif(b) (f)AT ort =
fp(a) ﬁAT fﬂ(a) s AT g AT, fors <t

Also note that

Sty 757 [ S5 M (s — p(a))(0(b) — 9)
0 < Glt,s) < G(s, s) = 220 I :
fp(flb)) A m2(o(b) — p(a))

Now set  w(t) := :(a)
w(t) is the unique solution of the BVP
v -
(pP(H22)" +h™ () =0, te(p(a)o®)r, w(p(a) =0=z(o(b)).
To see that w(t) is well defined note that

b

w(t) = G(t,s)h™(s)Vs
p(a)
b
G(s,s)h™ (s)Vs
< [ cean e
Mo) ~pl@) [* o
- m? /p<a> )
< 00, for all ¢t € [p(a),o(b)]r.
Also,
b
wp@) = | G (575 =0
b
w(o(b)) = /( )G(a(b), s)h™(s)Vs =0

It remains to show that v
— (p(t)wA) =h"(t).

To verify this last statement we will use the formulas [5][Theorem 5.37]
t A
(/ f(t,s)Vs) = f; A, 8)Vs+ f(o(t),o(t));
a

(/at U 5)V5> . JL Y (8, 5)Vs + f(p(t). 2).

(2.2)

G(t,s)h~(s)Vs, where G(t,s) is as defined above. Then

(2.3)
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Note that
1 t s 1 o(b) 1
w(t) = =T — / </ —AT/ ——A7 | h™(s)Vs
fp(a) p(lr) AT p(a) p(a) p(T) t p(T)
b t 1 O’(b) 1
+/ / —AT/ ——A7 | h™(s)Vs
t p(a) p(T) s p(T)
Then we get,

o) 1 s g o) _ °
(o ) o= ([ L s [ o)

p
a(t) 1 a(b) 1 B
+/p(a) ﬁm/am SV (a(t)

— ——ATh (s)Vs
/s p(7) (s)

o(t) 1 a(b) 1 B
_/p(a) ﬁm/am SV (a(t)
L | _
= — /p(a) m /p(a) 2mArh (s)Vs

b 1 o(b) 1 B
+ t W/s mATh (s)Vs.

So,
\Y% 1

— (pt)w®) " () = Tl 1 A\
(fpézb) el AT)

O’(b) 1
= Arh / —ATh (¢
( U(b) 1 AT . p(T) (*)
p(a) p(r)

=h"(2).

Now we define an operator T' on P by

b
(Tu)(t) = ( )G(t,S) [f(s, [u—w]"(s)) + 7 ()] Vs, t € [p(a), o (b)]r-
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Claim: T: P — P.
Proof of claim: Let u € P be fixed but arbitrary. Choose 0 < ¢ < 1 such that c||ul| < 1.
Then

clu —w]t(s) < culs) <cllul| <1

Then by (1.4), (1.6), and Lemma 2.2, we get, for all ¢ € [p(a),o(d)]r,

1)\1
fmw—wﬂms() Fltelu—wH () < Nl fr D). (25)

Cc

So for any ¢ € [p(a),o(b)]r, we get using (2.2), (2.5), and (1.5) that

b
(Tu)(t) = /( : G(t,s)[f (s, [u—w]"(s)) + h'(s)] Vs

b
< [ Gl [l 1o 1)+ (5)] Vs
p(a)

M (c’\r’\l | + 1) b
= T mR(0() — pla)) A@

< 0.

(s = p(a))(o(b) = 5)[f(s,1) + h*(s)] Vs

Note that Tu € Clp(a),o(b)]r, and Tu(t) >0, Vit € [p(a),o(b)]r are clear.
Thus T': P — P is well defined.

So from the definition of the operator T, we can easily prove the following theorem:

Theorem 2.1 Suppose that (H1), and (Hz) hold. Then the operator T has a fized
point in Clp(a),o(b)]r iff the BVP

{(p(t)uA)v +f(tfu—w]T () +hT () =0 pla) <t < o(b) 26)

u(p(a)) =0 = u(a(b))
has a positive solution where w is given as in (2.3).
Proof The operator T has a fixed point u,

= u(t) = (Tu)(t)" t € [p(a),o(d)]r
= u(t) = “ G(t,s) [f(s,[u—w]"(s)) + h"(s)] Vs, u(p(a)) =0=u(c(b))

Now using properties of the Green’s function (the same steps that are used above to
verify (2.4)), we get

— (p(t)u®) = f(t,[u—w]* (1) + BT (@), ulpla)) =0 = u(a(b)).
The other direction is similar. O

Now we have the following lemma:
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Lemma 2.3 If the singular BVP (2.6) has a positive solution u(t) > w(t) for all
t € [p(a),o(b)|r, then the BVP (1.1) — (1.3) has a Cla,blr N C?%(a,b) positive solution
y(t) = u(t) —w(t), telp(a),od)r.

Proof Let u(t) = y(t) +w(t), t € [p(a),o(b)]r. Then by the first equation of (2.6),
it follows that

(py™)” + (p&)w®)Y + f(t,y(6) + 1T () = 0,
ie,  (p(t)y™)" —h () + f(tLy®) +htE) = o0,
ie,  (p0y®)Y + 6 y®) +h(t) = 0
Also,
y(p(a) = u(p(a)) - w(p(a)) =0,

= 0
ylo(0)) = u(o(b)) —w(a(b)) =0.
Thus y(t) = u(t) — w(t) is a positive solution of the BVP (1.1) — (1.3). O

Lemma 2.4 Assume (Hy) and (Hz) hold. Then T : Q — Q is a completely contin-
uous operator.

Proof For any u € Q, let y(t) = Tu(t). Then y(p(a)) = 0 = y(c(b)). So there exists
to € (p(a), o (b)) such that ||y|| = y(tp). Note that for any ¢, s € (p(a),c(b))r, we get

(t=p(a)) .
A?(ztofpp?a))’ for t,t0 < s;

(t—p(a))(o(b)—s) .

G(t7 5) > 1\212(8_5(2))(0_0))_“))7 for t S S S t07
G(to,s) — %, for t,ty > s;

m”(s—p(a))(o(b)—t) '
M2 (to—p(a))(o(b)—s)’ for t > s > to;

m?(t — p(a))(a(b) — 1)
T M2(o(b) = pla))®

Then for all ¢ € [p(a), o(b)]T,

b
v = @00 = [ Gl [l ) A )] O

_ b G(t75) s s [u—wlT(s +(g 5
- /p<a> G(to,S)G(tO’ IS (s, | 17(s)) + bt (s)|V

Thus, Tu € @, and hence T : Q — Q.

Next we show that T : Q — @ is a completely continuous operator.
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First we show T : @ — @ is continuous. Let {x,,}22 , C @ be such that z,, — xo when
n — 0o. Then there is a constant My > 0 such that ||z,|| < M; for all n =0,1,2,---
Since for any s € [p(a), o(b)]T,

[z — w]"(s) < wn(s) < |lanl] < My < My+1,
by (1.6), and Lemma 2.2 (since (H;) holds for f), we get

fsifan —w]™(s)) +27(s) < f(s, Mi+1)+h¥(s)
< (M 1) f(s.1) +h*(s)
< [(My+ DM +1] [f(s,1) + BT (s)] .
Then using (2.2) and (1.5), we get

b
l/UG@a>wamlm+@»+h+@ﬂvS
pla

b

< [(My+1)M +1] / G(s,s) [f(s, 1)+ hT(s)] Vs

pla)
M [(My 4+ 1)M 4+ 1] /b
m?(a(b) — p(a)) o(a)

< 00.

(s = pla))(a(b) — ) [f(s,1) + h™(5)] Vs

Note that by the continuity of f,

lim f(sa [Zn - w]Jr(S)) = f(sa [930 - w]Jr(S))

n—oo

Then by the Lebesgue Dominated Convergence Theorem [5, page 159], we get

nh_}n;o [| T2y — Tl

= lim sup [Tz, — Taol

N0 telp(a),o (b)]r

b
< nh—>Holo sup G(t,s) | f(s, [xn —w]T(s)) = f(s,[zo — w]T(s))| Vs
t€[p(a),o(b)lr Jp(a)

im ' M{(s — p(@))(a(b) — 5) s, [xn — w|T) = £(s, [z — w]T S
= i o) m2(a(b) = pla)) 7o e = wl") = flos oo = ]}

Lb —p(a))(o(b) —s) lim s, [zy — w|T (s
Sm%wwmwnﬂw( p(@)(o(6) — ) lim |£(s, [rn — u]*(5))

—f (s, [ro —w]" ()| Vs
=0.
Thus T : Q — Q is continuous.

Finally, we show that T : @ — @ is relatively compact.
To see this let D C @ be any bounded set. Then there exists My > 0 such that ||z|| < Mo
for all x € D. So for any z € D and s € [p(a),o(b)]r, we get

[z —w]T(s)) < z(s) <||z|| < My < My + 1.
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So for all s € [p(a),o(b)]T,
f(s, [z —w]t(s) +hT(s) < f(s, Mo+ 1)+ h'(s) < [(Mg + 1))‘1 + 1} [f(s, 1)+ h+(s)} .
Then for all x € D, and ¢ € [p(a), o(b)]r, we get using (2.2) and (1.5),

Ta(t)] =

/( G.9) [ o = 0] (6) +1°(5)] Vs

M[(M2+1)/\1+1] ' s —pla))(o -8 s +(s S
S 200 = pla) /p@( p(@)(o(b) — 5) [£(s,1) + hT(s)] V

< 00.

Thus T'(D) is uniformly bounded.

Again by the Lebesgue Dominated Convergence Theorem,

b

Tz (t1) — Tx(ts)| < /( : G(t1,5) = G(ta, 5)| [f(s, [z —w] () + T ()] Vs
b

< [(Mg + 1))‘1 + 1] /( : |G(t1,5) — G(ta, s)| [f(s, 1)+ h+(s)} Vs
—> 0 asty — ts.

Since this is true for any t1,ts € [p(a), o(b)]r and the RHS is independent of x, T(D)
is equicontinuous on [p(a),o(b)]r. Then by the Arzela-Ascoli Theorem, T : @ — Q is
relatively compact.

Thus, T : Q — Q is a completely continuous operator. O

Lemma 2.5 Assume (Hy) and (Hz) hold. Let Q. = {z € Q : ||z|| < r}, and
3
0Q, = {x € Q : ||z|| = 7}, where r := Wﬁ(a) h=(t)Vt as defined in (Ha).
Then i(T,Q,, Q) = 1.

Proof Assume that there exist zg € 0Q,, > 1 such that pzg = Tzg. Then zg =
ﬁTzo, and 0 < % < 1. Since zg € 9Q,

[z0 — w]T(s) < 2z0(s) < ||zo]| =7 <7 +1,
then for s € (p(a), o (b)), we get
F(s,[20 = w] T () + hF(s) < [(r+ )M +1] [f(s,1) + 1T (s)] -

Now

1
r=|lzol|] = H;TZO

< [Tl
b

» G(t,s) [f(s,[z0 — w]t(s)) + hT(s)] Vs
pla

= sup
t€lp(a),o(b)]
b

IN

( )G(s, s) [f(s,[z0 — w]*(s)) + h*(s)] Vs
pla

M((r+ D)™ +1] /”
m?[o(b) — p(a)] Jp)

(s = p(a))(a(b) — 5)[f(s,1) + 1" (5)]Vs.
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This implies,

b m?2r(o(b) — p(a))
[ = o) 551+ s > OB

which is a contradiction to (1.5). So T'zg # pzo for all zg € 9Q,, p > 1.
Then by Lemma 2.1, «(7T,Q,,Q)=1.0

Lemma 2.6 Assume (Hy) holds. Then there exists a constant R > r such that
i(T,Qr. Q) = 0 where Qr i={z € Q : |la]l < R}, and 9Qr := {z € Q : |lal| = R}.

Proof Assume x # Tz for all © € Qp is false. Then there exists y1 € dQg such
that Y1 Z Tyl
Choose constants «, 5 so that [«, 8]t C (p(a), (b)), and K such that
2M?(0(b) — p(a))?
5 .
m?(a — p(a))(o(b) — B) maxie(p(a),0 )] Jo, Gt 5)Vs
From Lemma 2.2 there exists Ry > 2r such that when t € [« S|, and = > Ry, we get

K >

(2.7)

Jtw) |
That is,
flt,z) > Kz, te€]a,fBlr, z>R;.
- 2Ry M2(o(b) — pla))?
1 o(b) — pla
2 o —p(@)@b) - B) 29
Then clearly R > Ry > 2r, and so % < %
Now for the above mentioned y;, we have for all ¢ € [«, S,
b
yi(t) —w(t) = w(t) - ( )G(tvs)hf(S)VS
M pla)e®) 1) [T, o
> 0= Sl O
_ _m*t—p(a) (o) — 1)
= O TG00 - p(@)?
yi(t) r
> yi(t) vl 1() Ry1(t)
> yl(t) - %yl( ) %yl(t)
e ® =)
1 m*(a —p(a ))(U(b) B)
> SR - ol 29
> Ry >0. (using (2.8))
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So,
R = ||yl = wn(t)
b
> Ty(t) = /()G(m) [£(s. [o1 — w]* (s)) + h*(s)] Vs
B
> / G(t, ) [ (5. (42 (5) — w(s)) + h* ()] Vs
B
> / G(t, )/ (s, (01 () — w(s))) Vs
B
> [ Gt K nGs) - ul(s)vs
8 w2 (o — p(a))(o(b) - B) |
> /(XG( )K R M2 (b) — pla))? Vs (using (2.9))
= %KRm 5\(;2_(/)53 (ZEZ)) 5) / G(t,s)Vs, Vte [p(a),o(d)]r
1 m?(a — p(a))(o(b) - B)
> §KR MZ(o() — pla))? maxb) /aG(t,s)Vs
k- 20020 () — pla))?

B
m2(a — pl(a))(0(b) — B) maxicipa) oy 2 Gt 5)Vs
which is a contradiction to our choice of K above.

Thus  # Tz for all z € dQg, so by Lemma 2.1, we get

Z(Ta QR;Q) =0.0

3 Main Result

Now we state and prove our main result.

Theorem 3.1 Suppose that (H1), and (Hz) hold. Then the BVP (1.1) — (1.3) has
at least one Cla,blr N C?(a,b)r positive solution ug(t), and there exists k > 0 such that

ug(t) = k(t — p(a))(o(b) — 1), t € [p(a), o (b)]r-
Proof By Lemmas 2.5, 2.6, and by a property of the fixed point index, we get

Z(Ta QR\QT;Q) - Z(TaQRaQ) 7Z(Ta QTaQ)
0-1
—1 (#£0).

So T has a fixed point zg in Qg \ Q, with r < ||20]| < R.
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Then for all ¢ € [p(a), o(b)],

m2(t — p(a))(o(b) — b
zot)—w(t) > |0l A(;Q(U"((b)))_(pg?)y H_ / G(t, $)h~(5)Vs

m2(t — pla)(o(®) —1) M(t—pla))o®)—t) [*
= ol 33ty — p@) ~  m2(o () — pla) /,m)" (8)Vs
o @) ®) 1) e~ pla)o) 1)
(o (8) — pla))? Ao (5) — pla))?
e pa)e® -0
(o (8) — pla))?

Now let ug(t) := zo(t) —w(t), t € [p(a), o (D)]r. Then from Lemma 2.3, it follows that
uo(t) is a positive solution of the BVP (1.1) — (1.3), and there exists a k > 0 such that
uo(t) > k(t — p(a))(o(b) —t), t € [p(a),o(b)]r. The proof is now completed. O

4 Examples
In this section we give two examples as applications of Theorem 3.1.
o0
Example 4.1 Let T = {qin} U{0,2}, ¢ > 1. Then we claim the BVP
n=0

AV W21
U + BT N O7 te (0, 2)’]1‘, (41)
u(0) =0=u(2)

has a positive solution.

First note that the BVP (4.1) is of the from (1.1) — (1.3) with a =0, b =1 and
3/2 1

u—7 h_ (t) =
5t Vi

Also note that f and h have a singularity at ¢t = 0, and m = M = 1. Then since ¢ > 1,

LA pte) [
re=———_——"" )Vt

pt) =1, [f(t,u)=

:2/01%%5 (a)
D) (i) 2 G-3) ]
21+ =]

Take Ay = Ao = 3/2, then (H;) is satisfied.
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For (H2) note that,

b
| 5= pla@(o® =) [f(s,1) + b (s)] Vs

(a)
1/t 2+q
- 2 —35)Vs .
5A( ) 5+ bq

Also note that,

mr(o(b) - p(a)) 2r 20+ 2,/

> = :
M((r+1*M+1) =~ (r+1)%2+1 5¢+6,/q+2

- 2+q 29+2./9
Now, it is easy to see that 515g < 5q+6/4+2 for ¢ > 1.

Thus, (H2) is also satisfied. Hence the existence of a positive solution is now guaran-
teed from Theorem 3.1.

Example 4.2 Let T = The Cantor Set. (See pages 18—19 of [4] for more information
regarding this time scale.)

Consider the following BVP for k£ > %,

AV u? 1 _
u + RO—0 NS =0, te (0,
u(0) =0 = u(1).

Again we apply Theorem 3.1. First note that

T =

M3(a(b) — pla)) [° h- (1) V
—/,, (t) Vit

m? (@)
! 1
-}
/1(\/Z)V Vit =1.

0

Take A\; = Ay = 2, then (H) is satisfied.
In [6] the authors show that
! 3
/ tAt =2,
0 7

where t € T, and T is the Cantor set. Using similar arguments we get that

1
4
tVt ==
/0 7

which we use below.
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To see that (Hs) holds, note that

b
[ = raN®) =) [0 )] 95
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Now it is clear that
4 m2r(a(b) — p(a)) r _1

il — = —for k> 2,
E S My Om 1 1l 5 FTT

Thus (H») is also satisfied. Hence the existence of a positive solution is now guaran-

teed from Theorem 3.1.

References

1]
2]
8]
[4]
[5]

[6]

[7]
8]

[9]

[10]

Agarwal, R. and O’Regan, D. A note on existence of nonnegative solutions to singular
semi-positone problems. Nonlinear Anal. 36 (1999) 615-622.

Aris, R. Introduction to the Analysis of Chemical Reactors. Prentice-Hall, Englewood Cliffs,
NJ, 1965.

Atici, F.M. and Guseinov, G.Sh. On Greeen’s functions and positive solutions for boundary
value problems on time scales. J. Comput. Appl. Math. 141 (2002) 75-99.

Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with
Applications. Birkhaduser, Boston, 2001.

Bohner, M. and Peterson, A. Advances in Dynamic Equations on Time Scales. Birkhauser,
Boston, 2003.

Cabada, A. and Vivero, D.R. Expression of the Lebesgue A-integral on time scales as a
usual Lebesgue integral: application to the calculus of Delta-antiderivatives. Math. Comput.
Modelling 43(1-2) (2006) 194-207.

Guo, D.J. and Lakshmikantham, V. Nonlinear Problems in Abstract Cone. Academic Press,
Inc. New York, 1988.

Wang, J. andGao, W. A note on singular nonlinear two-point boundary value problems.
Nonlinear Anal. 39 (2000) 281-287.

Zhang, X. and Liu, L. Positive solutions of superlinear semipositone singular Dirichlet
boundary value problems. Journal of Mathematical analysis and Applications 316 (2006)
525-537.

Zhang, X., Liu, L. and Wu, Y. Existence of positive solutions for second-order semipositone
differential equations on the half-line. Appl. Math. Comput. 185 (2007) 628-635.



