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Dominant and Recessive Solutions of Self-Adjoint

Matrix Systems on Time Scales

Douglas R. Anderson ∗
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Moorhead, MN 56562 USA

Received: May 31, 2008; Revised: June 17, 2008

Abstract: In this study, linear second-order self-adjoint delta-nabla matrix systems
on time scales are considered with the motivation of extending the analysis of domi-
nant and recessive solutions from the differential and discrete cases to any arbitrary
dynamic equations on time scales. These results emphasize the case when the system
is non-oscillatory.

Keywords: time scales; self-adjoint; matrix equations; second-order; non-
oscillation; linear.

Mathematics Subject Classification (2000): 39A11, 34C10.

1 Introduction

To motivate this study of dominant and recessive solutions, consider the self-adjoint
second-order scalar differential equation

(px′)′(t) + q(t)x(t) = 0.

According to the classical formulation by Kelley and Peterson [1, Section 5.6], a solution
u is recessive at ω and a second, linearly-independent solution v is dominant at ω if the
conditions

lim
t→ω−

u(t)

v(t)
= 0,

∫ ω

t0

1

p(t)u2(t)
dt = ∞,

∫ ω

t0

1

p(t)v2(t)
dt < ∞

all hold; see also a related discussion for three-term difference equations in Ahlbrandt [2],
Ahlbrandt and Peterson [3, Section 5.10], Ma [4], and scalar dynamic equations in Bohner

∗ Corresponding author: andersod@cord.edu
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220 D.R. ANDERSON

and Peterson [5, Section 4.3], Messer [6], and [7, Section 4.5]. It is the purpose of this
work to introduce a robust treatment of these types of solutions for the corresponding
self-adjoint second-order matrix dynamic equation on time scales. Dynamic equations
on time scales have been introduced by Hilger and Aulbach [8, 9] to unify, extend, and
generalize the theory of ordinary differential equations, difference equations, quantum
equations, and all other differential systems defined over nonempty closed subsets of the
real line. We use this overarching theory to extend from the discrete case [3, 4] the matrix
difference system

∆ (P (t)∆X(t − 1)) + Q(t)X(t) = 0, (1.1)

for q > 1 the quantum system [10]

Dq (PDqX) (t) + Q(t)X(t) = 0, (1.2)

and the continuous case developed by Reid [11–15]

(PX ′)
′
(t) + Q(t)X(t) = 0, (1.3)

to the general time scale setting, which admits the self-adjoint delta-nabla matrix system

(

PX∆
)∇

(t) + Q(t)X(t) = 0. (1.4)

Only recently has (formal) self-adjointness been investigated for arbitrary time scales,
even in the scalar case, by Messer [6], Anderson, Guseinov and Hoffacker [16], and Atici
and Guseinov [17]; self-adjoint matrix systems on time scales are relatively unexplored
at this time [18]. More commonly authors Bohner and Peterson [5, Chapter 5] and Erbe
and Peterson [19] focus on

(

PX∆
)∆

(t) + Q(t)Xσ(t) = 0, (1.5)

which they term “self-adjoint” since it admits a Lagrange identity. Thus, these results
connected to the self-adjoint system (1.4) extend and generalize the results related to
(1.1), (1.2) and (1.3), and are different from those worked out for (1.5).

2 Technical Results on Time Scales

Any arbitrary nonempty closed subset of the reals R can serve as a time scale T; see the
books by Bohner and Peterson [5, 7] and the papers by Hilger and Aulbach [8, 9]. Here
and in the sequel we assume a working knowledge of basic time-scale notation and the
time-scale calculus. In addition, the following results will prove to be useful.

Theorem 2.1 If f is delta differentiable at t ∈ T
κ, then fσ(t) = f(t) + µ(t)f∆(t).

If f is nabla differentiable at t ∈ Tκ, then fρ(t) = f(t) − ν(t)f∇(t).

Theorem 2.2 Let f : T × T → R be a continuous function of two variables (t, s) ∈
T × T, and a ∈ T. Assume that f has continuous derivatives f∆ and f∇ with respect to
t. Then the following formulas hold:

(i)
(

∫ t

a
f(t, s)∆s

)∆

= f(σ(t), t) +
∫ t

a
f∆(t, s)∆s,

(ii)
(

∫ t

a
f(t, s)∆s

)∇

= f(ρ(t), ρ(t)) +
∫ t

a
f∇(t, s)∆s,
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(iii)
(

∫ t

a
f(t, s)∇s

)∆

= f(σ(t), σ(t)) +
∫ t

a
f∆(t, s)∇s,

(iv)
(

∫ t

a
f(t, s)∇s

)∇

= f(ρ(t), t) +
∫ t

a
f∇(t, s)∇s.

The following sets and statement [6, Theorem 2.6] (see also [17]) will play an impor-
tant role in many of our calculations.

Definition 2.1 Let the time-scale sets A and B be given by

A := {t ∈ T : t is a left-dense and right-scattered point}, (2.1)

and
B := {t ∈ T : t is a right-dense and left-scattered point}. (2.2)

It follows that for t ∈ A,
lim

s→t−
σ(s) = t,

and for t ∈ T\A, σ(ρ(t)) = t. Likewise for t ∈ B,

lim
s→t+

ρ(s) = t,

and for t ∈ T\B, ρ(σ(t)) = t.

Theorem 2.3 Let the sets A and B be given as in (2.1) and (2.2), respectively.

(i) If f : T → R is ∆ differentiable on T
κ and f∆ is right-dense continuous on T

κ,
then f is ∇ differentiable on Tκ, and

f∇(t) =

{

f∆(ρ(t)) : t ∈ T\A,

lims→t− f∆(s) : t ∈ A.

(ii) If f : T → R is ∇ differentiable on Tκ and f∇ is left-dense continuous on Tκ, then
f is ∆ differentiable on Tκ, and

f∆(t) =

{

f∇(σ(t)) : t ∈ T\B,

lims→t+ f∇(s) : t ∈ B.

The statements of the previous theorem can be formulated as
(

f∆
)ρ

= f∇ and
(

f∇
)σ

= f∆ provided that f∆ and f∇ are continuous, respectively.

3 Self-Adjoint Matrix Equations

All of the results in this section are from Anderson and Buchholz [18]. Let P and Q be
Hermitian n × n-matrix-valued functions on a time scale T such that P > 0 (positive
definite) and Q are continuous for all t ∈ T. (A matrix M is Hermitian iff M∗ = M , where
∗ indicates conjugate transpose.) In this section we are concerned with the second-order
(formally) self-adjoint matrix dynamic equation

LX = 0, where LX(t) :=
(

PX∆
)∇

(t) + Q(t)X(t), t ∈ T
κ
κ. (3.1)
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Definition 3.1 Let D denote the set of all n× n matrix-valued functions X defined
on T such that X∆ is continuous on Tκ and (PX∆)∇ is left-dense continuous on Tκ

κ.
Then X is a solution of (3.1) on T provided X ∈ D and LX(t) = 0 for all t ∈ T

κ
κ.

Definition 3.2 (Regressivity) An n×n matrix-valued function M on a time scale
T is regressive with respect to T provided

I + µ(t)M(t) is invertible for all t ∈ T
κ, (3.2)

and the class of all such regressive and rd-continuous functions is denoted by

R = R(T) = R(T, Rn×n).

Theorem 3.1 Let a ∈ Tκ be fixed and Xa, X∆
a be given constant n × n matrices.

Then the initial boundary value problem

(

PX∆
)∇

(t) + Q(t)X(t) = 0, X(a) = Xa, X∆(a) = X∆

a

has a unique solution.

Definition 3.3 If X, Y ∈ D, then the (generalized) Wronskian matrix of X and Y

is given by
W (X, Y )(t) = X∗(t)P (t)Y ∆(t) − [P (t)X∆(t)]∗Y (t)

for t ∈ T
κ.

Theorem 3.2 (Lagrange identity) If X, Y ∈ D, then

W (X, Y )∇(t) = X∗(t)(LY )(t) − (LX(t))
∗
Y (t), t ∈ T

κ
κ.

Definition 3.4 Define the inner product of n × n matrices M and N on [a, b]T for
a < b to be

〈M, N〉 =

∫ b

a

M∗(t)N(t)∇t, M, N ∈ Cld(T), a, b ∈ T
κ. (3.3)

Corollary 3.1 (Self-adjoint operator) The operator L in (3.1) is formally self
adjoint with respect to the inner product (3.3); that is, the identity

〈LX, Y 〉 = 〈X, LY 〉

holds provided X, Y ∈ D and X, Y satisfy W (X, Y )(t)
∣

∣

b

a
= 0, called the self-adjoint

boundary conditions.

Corollary 3.2 (Abel’s formula) If X, Y are solutions of (3.1) on T, then

W (X, Y )(t) ≡ C, t ∈ T
κ
κ,

where C is a constant matrix.

From Abel’s formula we get that if X ∈ D is a solution of (3.1) on T, then

W (X, X)(t) ≡ C, t ∈ T
κ
κ,

where C is a constant matrix. With this in mind we make the following definition.
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Definition 3.5 Let X, Y ∈ D and W be given as in (3.3).

(i) X ∈ D is a prepared (conjoined, isotropic) solution of (3.1) iff X is a solution of
(3.1) and

W (X, X)(t) ≡ 0, t ∈ T
κ.

(ii) X, Y ∈ D are normalized prepared bases of (3.1) iff X, Y are two prepared solutions
of (3.1) with

W (X, Y )(t) ≡ I, t ∈ T
κ.

Theorem 3.3 Assume that X ∈ D is a solution of (3.1) on T. Then the following
are equivalent:

(i) X is a prepared solution;

(ii) X∗(t)P (t)X∆(t) is Hermitian for all t ∈ Tκ;

(iii) X∗(t0)P (t0)X
∆(t0) is Hermitian for some t0 ∈ Tκ.

Note that one can easily get prepared solutions of (3.1) by taking initial conditions
at t0 ∈ T so that X∗(t0)P (t0)X

∆(t0) is Hermitian.
In the Sturmian theory for (3.1) the matrix function X∗PXσ is important. We note

the following result.

Lemma 3.1 Let X be a solution of (3.1). If X is prepared, then

X∗(t)P (t)Xσ(t) is Hermitian for all t ∈ T
κ.

Conversely, if there is t0 ∈ Tκ such that µ(t0) > 0 and X∗(t0)P (t0)X
σ(t0) is Hermitian,

then X is a prepared solution of (3.1). Moreover, if X is an invertible prepared solution,
then

P (t)Xσ(t)X−1(t), P (t)X(t)(Xσ)−1(t), and Z(t) := P (t)X∆(t)X−1(t)

are Hermitian for all t ∈ Tκ.

Lemma 3.2 Assume that X is a prepared solution of (3.1) on T. Then the following
are equivalent:

(i) (X∗)σPX = X∗PXσ > 0 on Tκ;

(ii) X is invertible and PXσX−1 > 0 on Tκ;

(iii) X is invertible and PX(Xσ)−1 > 0 on Tκ.

Theorem 3.4 (Reduction of order I) Let t0 ∈ Tκ, and assume X is a prepared
solution of (3.1) with X invertible on T. Then a second prepared solution Y of (3.1) is
given by

Y (t) := X(t)

∫ t

t0

(X∗PXσ)
−1

(s)∆s, t ∈ T
κ

such that X, Y are normalized prepared bases of (3.1).
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Lemma 3.3 Assume X, Y ∈ D are normalized prepared bases of (3.1). Then U :=
XE + Y F is a prepared solution of (3.1) for constant n × n matrices E, F if and only
if F ∗E is Hermitian. If F = I, then X, U are normalized prepared bases of (3.1) if and
only if E is a constant Hermitian matrix.

Theorem 3.5 (Reduction of order II) Let t0 ∈ Tκ, and assume X is a prepared
solution of (3.1) with X invertible on T. Then U is a second n × n matrix solution of
(3.1) iff U satisfies the first-order matrix equation

(X−1U)∆(t) = (X∗PXσ)−1(t)F, t ∈ T
κ, t ≥ t0, (3.4)

for some constant n × n matrix F iff U is of the form

U(t) = X(t)E + X(t)

(∫ t

t0

(X∗PXσ)
−1

(s)∆s

)

F, t ∈ T, t ≥ t0, (3.5)

where E and F are constant n × n matrices. In the latter case,

E = X−1(t0)U(t0), F = W (X, U)(t0), (3.6)

such that U is a prepared solution of (3.1) iff F ∗E = E∗F .

4 Factorization of the Self-Adjoint Operator

In this section we introduce the Pólya factorization for the self-adjoint matrix-differential
operator L defined in (3.1).

Theorem 4.1 (Pólya factorization) If (3.1) has a prepared solution U > 0 (pos-
itive definite) on an interval I ⊂ T such that U∗PUσ > 0 on I, then for any X ∈ D we
have on I a Pólya factorization

LX = M∗

1

{

M2(M1X)∆
}∇

, M1 := U−1 > 0, M2 := U∗PUσ > 0.

Proof Assume U > 0 is a prepared solution of (3.1) on I ⊂ T such that U∗PUσ > 0
on I, and let X ∈ D. Then U is invertible and

LX
Thm 3.2

= (U∗)−1W (U, X)∇

Def 3.3
= (U∗)−1

{

U∗PX∆ − U∆∗PX
}∇

= M∗

1

{

U∗[PX∆ − (U∗)−1U∆∗PX ]
}∇

Thm 3.1
= M∗

1

{

U∗[PX∆ − PU∆U−1X ]
}∇

= M∗

1

{

M2[(U
σ)−1X∆ − (Uσ)−1U∆U−1X ]

}∇

= M∗

1

{

M2[(U
σ)−1X∆ + (U−1)∆X ]

}∇

= M∗

1

{

M2(U
−1X)∆

}∇

= M∗

1

{

M2(M1X)∆
}∇

,

for M1 and M2 as defined in the statement of the theorem. 2
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5 Dominant and Recessive Solutions

Throughout the rest of the paper assume a ∈ T, and set ω := supT. If ω < ∞, assume
ρ(ω) = ω. We focus on extending the analysis of dominant and recessive solutions
developed in the case of difference system (1.1), quantum system (1.2), and differential
system (1.3) to the general time-scale setting in (3.1).

Definition 5.1 A solution X of (3.1) is a basis iff rank









X(t0)

(PX∆)(t0)









= n for some

t0 ≥ a. A solution V of (3.1) is dominant at ω iff V is a prepared basis and there exists
a t0 ∈ [a, ω)T such that V is invertible on [t0, ω)T and

∫ ω

t0

(V ∗PV σ)
−1

(t)∆t

converges to a Hermitian matrix with finite entries.

Lemma 5.1 Assume the self-adjoint equation LX = 0 has a dominant solution V at
ω. If X is any other n × n solution of (3.1), then

lim
t→ω

V −1(t)X(t) = K

for some n × n constant matrix K.

Proof Since V is a dominant solution at ω of (3.1), there exists a t0 ∈ [a, ω)T such
that V is invertible on [t0, ω)T. By the second reduction of order theorem, Theorem 3.5,

X(t) = V (t)V −1(t0)X(t0) + V (t)

(∫ t

t0

(V ∗PV σ)
−1

(s)∆s

)

W (V, X)(t0).

Multiplying on the left by V −1 we have

V −1(t)X(t) = V −1(t0)X(t0) +

(∫ t

t0

(V ∗PV σ)
−1

(s)∆s

)

W (V, X)(t0).

Since V is dominant at ω, the following limit exists:

lim
t→ω

V −1(t)X(t) = K := V −1(t0)X(t0) +

(∫ ω

t0

(V ∗PV σ)−1 (s)∆s

)

W (V, X)(t0).

2

Definition 5.2 A solution U of (3.1) is recessive at ω iff U is a prepared basis and
whenever X is any other n × n solution of (3.1) such that W (X, U) is invertible, X is
eventually invertible and

lim
t→ω

X−1(t)U(t) = 0.

Lemma 5.2 If U is a solution of (3.1) which is recessive at ω, then for any invertible
constant matrix K, the solution UK of (3.1) is recessive at ω as well.
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Proof The proof follows from the definition. 2

Lemma 5.3 If U is a solution of (3.1) which is recessive at ω, and V is a prepared
solution of (3.1) such that W (V, U) is invertible, then V is dominant at ω.

Proof By the definition of recessive, W (V, U) invertible implies that V is invertible
on [t0, ω)T for some t0 ∈ [a, ω)T, and

lim
t→ω

V −1(t)U(t) = 0. (5.1)

Let K := W (V, U); by assumption K is invertible, and by Definition 3.3

K = (V ∗PV σ)(V σ)−1U∆ − (V ∆∗PV )V −1U

for all t ∈ [t0, ω)T. Since V is prepared,

(V ∗PV σ)−1K = (V σ)−1U∆ − (V σ)−1V ∆V −1U =
(

V −1U
)∆

.

Delta integrating from t0 to ω and using (5.1) yields that

∫ ω

t0

(V ∗PV σ)−1(t)∆t = −V −1(t0)U(t0)K
−1

converges. Thus V is dominant at ω. 2

Theorem 5.1 Assume (3.1) has a solution V which is dominant at ω. Then

U(t) := V (t)

∫ ω

t

(V ∗PV σ)−1(s)∆s

is a solution of (3.1) which is recessive at ω and W (V, U) = −I.

Proof Since V is dominant at ω, U is a well-defined function and can be written as

U(t) = V (t)

[∫ ω

t0

(V ∗PV σ)−1(s)∆s −

(∫ t

t0

(V ∗PV σ)−1(s)∆s

)

I

]

;

by the second reduction of order theorem, Theorem 3.5, U is a solution of (3.1) of the
form (3.5) with

E =

∫ ω

t0

(V ∗PV σ)−1(s)∆s, F = −I.

From (3.6), W (V, U) = F = −I. Since

E∗F = −

∫ ω

t0

(V ∗PV σ)−1(s)∆s

is Hermitian, U is a prepared solution of (3.1), and W (−V, U) = I implies that U and
−V are normalized prepared bases. Let X be an n × n matrix solution of LX = 0 such
that W (X, U) is invertible. By the second reduction of order theorem,

X(t) = V (t)

[

V −1(t0)X(t0) +

(∫ t

t0

(V ∗PV σ)−1(s)∆s

)

W (V, X)

]

= V (t)C1 + U(t)C2, (5.2)
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where

C1 := V −1(t0)X(t0) +

(∫ ω

t0

(V ∗PV σ)−1(s)∆s

)

W (V, X)

and
C2 := −W (V, X).

Note that
W (X, U) = C∗

1W (V, U) + C∗

2W (U, U) = −C∗

1 .

As W (X, U) is invertible by assumption, C1 is invertible. From (5.2),

lim
t→ω

V −1(t)X(t) = lim
t→ω

(

C1 + V −1(t)U(t)C2

)

= lim
t→ω

(

C1 +

∫ ω

t

(V ∗PV σ)−1(s)∆sC2

)

= C1

is likewise invertible. Consequently for large t, X(t) is invertible. Lastly,

lim
t→ω

X−1(t)U(t) = lim
t→ω

[V (t)C1 + U(t)C2]
−1

U(t)

= lim
t→ω

[

C1 + V −1(t)U(t)C2

]−1
V −1(t)U(t) = [C1 + 0]

−1
0 = 0.

Therefore U is a recessive solution at ω. 2

Theorem 5.2 Assume (3.1) has a solution U which is recessive at ω, and U(t0) is
invertible for some t0 ∈ [a, ω)T. Then U is uniquely determined by U(t0), and (3.1) has
a solution V which is dominant at ω.

Proof Assume U(t0) is invertible; let V be the unique solution of the initial value
problem

LV = 0, V (t0) = 0, V ∆(t0) = I.

Then V is a prepared basis and

W (V, U) = W (V, U)(t0) = (V ∗PU∆)(t0) − (PV ∆)∗(t0)U(t0) = −P (t0)U(t0)

is invertible. It follows from Lemma 5.3 that V is dominant at ω. Let Γ be an arbitrary
but fixed n × n constant matrix. Let X solve the initial value problem

LX = 0, X(t0) = I, X∆(t0) = Γ.

By Theorem 5.1,
lim
t→ω

V −1(t)X(t) = K,

where K is an n×n constant matrix; note that K is independent of the recessive solution
U . By using the initial conditions at t0, by uniqueness of solutions it is easy to see that
there exist constant n × n matrices C1 and C2 such that

U(t) = X(t)C1 + V (t)C2,

where C1 = U(t0) is invertible. Consequently, using the recessive nature of U , we have

0 = lim
t→ω

V −1(t)U(t) = lim
t→ω

(

V −1(t)X(t)U(t0) + C2

)

= KU(t0) + C2,

so that C2 = −KU(t0). Thus the initial condition for U∆ is

U∆(t0) = (Γ − K)U(t0),

and the recessive solution U is uniquely determined by its initial value U(t0). 2
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Theorem 5.3 Assume (3.1) has a solution U which is recessive at ω and a solution
V which is dominant at ω. If U and

∫ ω

t
(V ∗PV σ)−1(s)∆s are both invertible for large

t ∈ T, then there exists an invertible constant matrix K such that

U(t) = V (t)

(∫ ω

t

(V ∗PV σ)−1(s)∆s

)

K

for large t. In addition, W (U, V ) is invertible and

lim
t→ω

V −1(t)U(t) = 0.

Proof For sufficiently large t ∈ T define

Y (t) = V (t)

∫ ω

t

(V ∗PV σ)−1(s)∆s.

By Theorem 5.1 Y is also a recessive solution of (3.1) at ω and W (V, Y ) = −I. Because
U and

∫ ω

t
(V ∗PV σ)−1(s)∆s are both invertible for large t ∈ T, Y is likewise invertible

for large t, and
lim
t→ω

V −1(t)Y (t) = 0

by the recessive nature of Y . Choose t0 ∈ [a, ω)T large enough to ensure that U and Y

are invertible in [t0, ω)T. By Lemma 5.2 the solution given by

X(t) := Y (t)Y −1(t0)U(t0), t ∈ [t0, ω)T

is yet another recessive solution at ω. Since U and X are recessive solutions at ω and
U(t0) = X(t0), we conclude from the uniqueness established in Theorem 5.2 that X ≡ U .
Thus for t ∈ [t0, ω)T we have

U(t) = Y (t)Y −1(t0)U(t0) = V (t)

(∫ ω

t

(V ∗PV σ)−1(s)∆s

)

K,

where K := Y −1(t0)U(t0) is an invertible constant matrix. 2

The next result, when T = Z, relates the convergence of infinite series, the convergence
of certain continued fractions, and the existence of recessive solutions; for more see [3]
and the references therein.

Theorem 5.4 (Connection theorem) Let X and V be solutions of (3.1) deter-
mined by the initial conditions

X(t0) = I, X∆(t0) = P−1(t0)K, and V (t0) = 0, V ∆(t0) = P−1(t0),

respectively, where t0 ∈ [a, ω)T and K is a constant Hermitian matrix. Then X, V are
normalized prepared bases of (3.1), and the following are equivalent:

(i) V is dominant at ω;

(ii) V is invertible for large t ∈ T and limt→ω V −1(t)X(t) exists as a Hermitian matrix
Ω(K) with finite entries;

(iii) there exists a solution U of (3.1) which is recessive at ω, with U(t0) invertible.
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If (i), (ii), and (iii) hold then

U∆(t0)U
−1(t0) = X∆(t0) − V ∆(t0)Ω(K) = −P−1(t0)Ω(0).

Proof Since V (t0) = 0, V is a prepared solution of (3.1). Also,

W (X, X) = W (X, X)(t0) = (X∗PX∆ − X∆∗PX)(t0) = IK − K∗I = 0

as K is Hermitian, making X a prepared solution of (3.1) as well. Checking

W (X, V ) = W (X, V )(t0) = (X∗PV ∆ − X∆∗PV )(t0) = I − 0 = I,

we see that X, V are normalized prepared bases of (3.1). Now we show that (i) implies
(ii). If V is a dominant solution of (3.1) at ω, then there exists a t1 ∈ [a, ω)T such that
V (t) is invertible for t ∈ [t1, ω)T, and the delta integral

∫ ω

t1

(V ∗PV σ)−1(s)∆s

converges to a Hermitian matrix with finite entries. By the second reduction of order
theorem,

X(t) = V (t)E + V (t)

(∫ t

t1

(V ∗PV σ)
−1

(s)∆s

)

F, (5.3)

where
E = V −1(t1)X(t1), F = W (V, X)(t1) = −W (X, V )∗ = −I.

Since X is prepared, E∗F = −E∗ is Hermitian, whence E is Hermitian. As a result, by
(5.3)

lim
t→ω

V −1(t)X(t) = E −

∫ ω

t1

(V ∗PV σ)
−1

(s)∆s

converges to a Hermitian matrix with finite entries, and (ii) holds. Next we show that
(ii) implies (iii). If V is invertible on [t1, ω)T and

lim
t→ω

V −1(t)X(t) = Ω (5.4)

exists as a Hermitian matrix, then from (5.3) and (5.4),

Ω = lim
t→ω

V −1(t)X(t) = E −

∫ ω

t1

(V ∗PV σ)
−1

(s)∆s;

in other words,
∫ ω

t1

(V ∗PV σ)
−1

(s)∆s = E − Ω.

Define
U(t) := X(t) − V (t)Ω. (5.5)

Then

W (U, U) = W (X − V Ω, X − V Ω)

= W (X, X) − W (X, V )Ω − Ω∗W (V, X) + Ω∗W (V, V )Ω

= −Ω + Ω∗ = 0,
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and U(t0) = X(t0) = I, making U a prepared basis for (3.1). If X1 is an n × n matrix
solution of LX = 0 such that W (X1, U) is invertible, then

X1(t) = V (t)C1 + U(t)C2 (5.6)

for some constant matrices C1 and C2 determined by the initial conditions at t0. It
follows that

W (X1, U) = W (V C1 + UC2, U) = C∗

1W (V, U) + C∗

2W (U, U)

= C∗

1W (V, U) = C∗

1W (V, U)(t0) = −C∗

1

by (5.5), so that C1 is invertible. From (5.4) and (5.5) we have that

lim
t→ω

V −1(t)U(t) = lim
t→ω

[

V −1(t)X(t) − Ω
]

= 0,

resulting in
lim
t→ω

V −1(t)X1(t) = lim
t→ω

[

C1 + V −1(t)U(t)C2

]

= C1,

which is invertible. Thus X1(t) is invertible for large t ∈ T, and

lim
t→ω

X−1

1
(t)U(t) = lim

t→ω
[V (t)C1 + U(t)C2]

−1U(t)

= lim
t→ω

[C1 + V −1(t)U(t)C2]
−1V −1(t)U(t)

= C−1

1
(0) = 0.

Hence U is a recessive solution of (3.1) at ω and (iii) holds. Finally we show that (iii)
implies (i). If U is a recessive solution of (3.1) at ω with U(t0) invertible, then

W (V, U) = W (V, U)(t0) = −U(t0)

is also invertible. Hence by Lemma 5.3, V is a dominant solution of (3.1) at ω.
To complete the proof, assume (i), (ii), and (iii) hold. It can be shown via initial

conditions at t0 that
U(t) = X(t)U(t0) + V (t)C

for some suitable constant matrix C. By (ii),

lim
t→ω

V −1(t)X(t) = Ω(K),

and thus
V −1(t)U(t) = V −1(t)X(t)U(t0) + C.

As U is a recessive solution at ω by (iii),

0 = lim
t→ω

(

V −1(t)X(t)U(t0) + C
)

= Ω(K)U(t0) + C,

yielding U(t) = [X(t) − V (t)Ω(K)] U(t0). Delta differentiation at t0 gives

U∆(t0)U
−1(t0) = X∆(t0) − V ∆(t0)Ω(K).

Now let Y be the unique solution of the initial value problem

LY = 0, Y (t0) = I, Y ∆(t0) = 0.
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Using the initial conditions at t0 we see that X(t) = Y (t) + V (t)K. Consequently,

lim
t→ω

V −1(t)X(t) = lim
t→ω

V −1(t)Y (t) + K

implies, by (ii) and the fact that X = Y when K = 0, that Ω(K) = Ω(0)+K. Therefore

X∆(t0) − V ∆(t0)Ω(K) = −V ∆(t0)Ω(0) = −P−1(t0)Ω(0).

Thus the proof is complete. 2

Theorem 5.5 (Variation of parameters) Let H be an n×n matrix function that
is left-dense continuous on [t0, ω)T. If the homogeneous matrix equation (3.1) has a pre-
pared solution X with X(t) invertible for t ∈ [t0, ω)T, then the nonhomogeneous equation
LY = H has a solution Y ∈ D given by

Y (t) = X(t)X−1(t0)Y (t0) + X(t)

∫ t

t0

(X∗PXσ)
−1

(τ)∆τW (X, Y )(t0)

+X(t)

∫ t

t0

(

(X∗PXσ)
−1

(τ)

∫ τ

t0

X∗(s)H(s)∇s

)

∆τ.

Proof Let Y ∈ D and assume X is a prepared solution of (3.1) invertible on [t0, ω)T.
As in Theorem 4.1, we factor LY to get

H = LY = X∗−1
(

X∗PXσ(X−1Y )∆
)∇

.

Multiplying by X∗ and nabla integrating from t0 to t we arrive at

(

X∗PXσ(X−1Y )∆
)

(t) − W (X, Y )(t0) =

∫ t

t0

X∗(s)H(s)∇s,

where W (X, Y )(t0) =
(

X∗PXσ(X−1Y )∆
)

(t0) since X is prepared. This leads to

(X−1Y )∆(t) = (X∗PXσ)−1(t)

(

W (X, Y )(t0) +

∫ t

t0

X∗(s)H(s)∇s

)

,

which is then delta integrated from t0 to t to obtain the form for Y given in the statement
of the theorem. Clearly the right-hand side of the form of Y above reduces to Y (t0) at
t0, and since X is an invertible prepared solution, by Theorem 3.1 the delta derivative
reduces to Y ∆(t0) at t0. 2

Corollary 5.1 Let H be an n × n matrix function that is left-dense continuous on
[t0, ω)T. If the homogeneous matrix equation (3.1) has a prepared solution X with X(t)
invertible for t ∈ [t0, ω)T, then the nonhomogeneous initial value problem

LY = (PY ∆)∇ + QY = H, Y (t0) = Y0, Y ∆(t0) = Y ∆

0 (5.7)

has a unique solution.

Proof By Theorem 5.5, the nonhomogeneous initial value problem (5.7) has a solu-
tion. Suppose Y1 and Y2 both solve (5.7). Then X = Y1 − Y2 solves the homogeneous
initial value problem

LX = 0, X(t0) = 0, X∆(t0) = 0;
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by Theorem 3.1, this has only the trivial solution X = 0. 2

We will also be interested in analyzing the self-adjoint vector dynamic equation

Lx = 0, where Lx(t) :=
(

Px∆
)∇

(t) + Q(t)x(t), t ∈ [a, ω)T, (5.8)

where x is an n × 1 vector-valued function defined on T such that x∆ is continuous and
(Px∆)∇ is left-dense continuous on [a, ω)T. We will see interesting relationships between
the so-called unique two-point property (defined below) of the nonhomogeneous vector
equation Lx = h, disconjugacy of Lx = 0, and the construction of recessive solutions to
the matrix equation LX = 0. The following theorem can be proven by modifying the
proof of Theorem 5.5 and its corollary.

Theorem 5.6 Let h be an n × 1 vector function that is left-dense continuous on
[t0, ω)T. If the homogeneous matrix equation (3.1) has a prepared solution X with X(t)
invertible for t ∈ [t0, ω)T, then the nonhomogeneous vector initial value problem

Ly = (Py∆)∇ + Qy = h, y(t0) = y0, y∆(t0) = y∆

0 (5.9)

has a unique solution.

Definition 5.3 Assume h is an n×1 left-dense continuous vector function on [t0, ω)T.
Then the vector dynamic equation Lx = h has the unique two-point property on [t0, ω)T

provided given any t0 ≤ t1 < t2 in T, if u and v are solutions of Lx = h with u(t1) = v(t1)
and u(t2) = v(t2), then u ≡ v on [t0, ω)T.

Theorem 5.7 If the homogeneous matrix equation (3.1) has a prepared solution X

with X(t) invertible for t ∈ [t0, ω)T, and if the homogeneous vector equation (5.8) has
the unique two-point property on [t0, ω)T, then the boundary value problem

Lx = h, x(t1) = α, x(t2) = β,

where t0 ≤ t1 < t2 in T and α, β ∈ Cn, has a unique solution on [t0, ω)T.

Proof If t1 is a right-scattered point and t2 = σ(t1), then the boundary value problem
is an initial value problem and the result holds by Theorem 5.6. Assume t2 > σ(t1). Let
X(t, t1) and Y (t, t1) be the unique n × n matrix solutions of (3.1) determined by the
initial conditions

X(t1, t1) = 0, X∆(t1, t1) = I, and Y (t1, t1) = I, Y ∆(t1, t1) = 0;

by variation of constants, Theorem 5.5,

X(t, t1) = X(t)

∫ t

t1

(X∗PXσ)−1(τ)∆τX∗(t1)P (t1)

and

Y (t, t1) = X(t)X−1(t1) − X(t)

∫ t

t1

(X∗PXσ)−1(τ)∆τX∆∗(t1)P (t1).

Then a general solution of (5.8) is given by

x(t) = X(t, t1)γ + Y (t, t1)δ, (5.10)
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for γ, δ ∈ Cn, as x(t1) = δ and x∆(t1) = γ. By the unique two-point property the
homogeneous boundary value problem

Lx = 0, x(t1) = 0, x(t2) = 0

has only the trivial solution. For x given by (5.10), the boundary condition at t1 implies
that δ = 0, and the boundary condition at t2 yields

X(t2, t1)γ = 0;

by uniqueness and the fact that x is trivial, γ = 0 is the unique solution, meaning
X(t2, t1) is invertible. Next let v be the solution of the initial value problem

Lv = h, v(t1) = 0, v∆(t1) = 0.

Then the general solution of Lx = h is given by

x(t) = X(t, t1)γ + Y (t, t1)δ + v(t).

We now show that the boundary value problem

Lx = h, x(t1) = α, x(t2) = β

has a unique solution. The boundary condition at t1 implies that δ = α. The condition
at t2 leads to the equation

β = X(t2, t1)γ + Y (t2, t1)α + v(t2);

since X(t2, t1) is invertible, this can be solved uniquely for γ. 2

Corollary 5.2 If the homogeneous matrix equation (3.1) has a prepared solution X

with X(t) invertible for t ∈ [t0, ω)T, and if the homogeneous vector equation (5.8) has
the unique two-point property on [t0, ω)T, then the matrix boundary value problem

LX = 0, X(t1) = M, X(t2) = N

has a unique solution, where M and N are given constant n × n matrices.

Proof Modify the proof of Theorem 5.7 to get existence and uniqueness. 2

Theorem 5.8 Assume the homogeneous matrix equation (3.1) has a prepared solu-
tion X with X(t) invertible for t ∈ [t0, ω)T, and the homogeneous vector equation (5.8)
has the unique two-point property on [t0, ω)T. Further assume U is a solution of (3.1)
which is recessive at ω with U(t0) invertible. For each fixed s ∈ (t0, ω)T, let Y (t, s) be
the solution of the boundary value problem

LY (t, s) = 0, Y (t0, s) = I, Y (s, s) = 0.

Then the recessive solution U(t)U−1(t0) is uniquely determined by

U(t)U−1(t0) = lim
s→ω

Y (t, s). (5.11)



234 D.R. ANDERSON

Proof Assume U is a solution of (3.1) which is recessive at ω with U(t0) invertible.
Let V be the unique solution of the initial value problem

LV = 0, V (t0) = 0, V ∆(t0) = P−1(t0).

By the connection theorem, Theorem 5.4, V is invertible for large t. By checking bound-
ary conditions at t0 and s for s large, we get that

Y (t, s) = −V (t)V −1(s)U(s)U−1(t0) + U(t)U−1(t0).

Then

W (V, U) = W (V, U)(t0) = (V ∗PU∆ − V ∆∗PU)(t0) = −U(t0)

is invertible, and by the recessive nature of U ,

lim
t→ω

V −1(t)U(t) = 0.

As a result,

lim
s→ω

Y (t, s) = 0 + U(t)U−1(t0),

and the proof is complete. 2

Definition 5.4 A prepared vector solution x of (5.8) has a generalized zero at a

iff x(a) = 0, and x has a generalized zero at t0 > a iff x(t0) = 0, or if t0 is a left-
scattered point and x∗ρ(t0)P

ρ(t0)x(t0) < 0. Equation (5.8) is disconjugate on [a, ω)T iff
no nontrivial prepared vector solution of (5.8) has two generalized zeros in [a, ω)T.

Definition 5.5 A prepared basis X of (3.1) has a generalized zero at a iff X(a) is
noninvertible, and X has a generalized zero at t0 ∈ (a, ω)T iff X(t0) is noninvertible, or
X∗ρ(t0)P

ρ(t0)X(t0) is invertible but X∗ρ(t0)P
ρ(t0)X(t0) ≤ 0.

Lemma 5.4 If a prepared basis X of (3.1) has a generalized zero at t0 ∈ [a, ω)T,
then there exists a vector γ ∈ C

n such that x = Xγ is a nontrivial prepared solution of
(5.8) with a generalized zero at t0.

Proof The proof follows from Definitions 5.4 and 5.5. 2

Lemma 5.5 If f and g are continuous on [t0, ω)T, then

∫ t

t0

fρ(s)g(s)∇s =

∫ t

t0

f(s)gσ(s)∆s, t ∈ [t0, ω)T.

Proof Set

F (t) :=

∫ t

t0

fρ(s)g(s)∇s −

∫ t

t0

f(s)gσ(s)∆s;

clearly F (t0) = 0, and

F∆(t) =

[∫ t

t0

fρ(s)g(s)∇s

]∆

− f(t)gσ(t).
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Using Theorem 2.2 (iii) and the set B in (2.2),

[∫ t

t0

fρ(s)g(s)∇s

]∆

=

{

(fρg)(σ(t)) : t ∈ T\B,

lims→t+(fρg)(s) : t ∈ B.

For t ∈ T\B, ρ(σ(t)) = t, so that (fρg)(σ(t)) = (fgσ)(t). For t ∈ B, t = σ(t) and
lims→t+ ρ(s) = t, yielding

lim
s→t+

(fρg)(s) = (fg)(t) = (fgσ)(t).

Thus in either case F∆(t) = 0. By the uniqueness property, F ≡ 0, and the result follows.
2

Theorem 5.9 If the vector equation (5.8) is disconjugate on [ρ(t0), ω)T, then the
matrix equation (3.1) has a solution V which is dominant at ω and a solution U which
is recessive at ω, with V and U both invertible such that PV ∆V −1 > PU∆U−1 on
(σ(t0), ω)T.

Proof Let X be the solution of the initial value problem

LX = 0, Xρ(t0) = 0, X∆ρ(t0) = I.

If X is not invertible on (t0, ω)T, then there exists a t1 > t0 such that X(t1) is singular.
But then there exists a nontrivial vector δ ∈ Cn such that X(t1)δ = 0. If x(t) := X(t)δ,
then x is a nontrivial prepared solution of (5.8) with

xρ(t0) = 0, x(t1) = 0,

a contradiction of disconjugacy. Hence X is invertible in (t0, ω)T. We next claim that

(X∗ρP ρX)(t) > 0, t ∈ (σ(t0), ω)T; (5.12)

if not, there exists t2 ∈ (σ(t0), ω)T such that

(X∗ρP ρX)(t2) 6> 0.

It follows that there exists a nontrivial vector γ such that x(t) := X(t)γ is a nontrivial
prepared vector solution of Lx = 0 with a generalized zero at t2. Using the initial
condition for X , however, we have xρ(t0) = 0, another generalized zero, a contradiction
of the assumption that the vector equation (5.8) is disconjugate on [ρ(t0), ω)T. Thus
(5.12) holds, in particular for any t2 ∈ (σ(t0), ω)T. Define for t ∈ [t2, ω)T

V (t) := X(t)

[

I +

∫ t

t2

(X∗PXσ)−1(s)∆s

]

= X(t)

[

I +

∫ t

t2

(X∗ρP ρX)−1(s)∇s

]

,

where the second equality follows from Lemma 5.5. By Theorem 3.5, V is a prepared
solution of LV = 0 with W (X, V ) = I. Note that V is also invertible on [t2, ω)T, so that
by the reduction of order theorem again,

X(t) = V (t)

[

I −

∫ t

t2

(V ∗PV σ)−1(s)∆s

]

, t ∈ [t2, ω)T.
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Consequently,

I =[V −1(t)X(t)][X−1(t)V (t)]=

[

I−

∫ t

t2

(V ∗PV σ)−1(s)∆s

] [

I+

∫ t

t2

(X∗PXσ)−1(s)∆s

]

.

Since the second factor is strictly increasing and bounded below by I, the first factor is
positive definite and strictly decreasing, ensuring the existence of a limit, in other words,
we have

0 ≤ I −

∫ ω

t2

(V ∗PV σ)−1(s)∆s < I −

∫ t

t2

(V ∗PV σ)−1(s)∆s ≤ I.

It follows that

0 ≤

∫ t

t2

(V ∗PV σ)−1(s)∆s <

∫ ω

t2

(V ∗PV σ)−1(s)∆s ≤ I, t ∈ [t2, ω)T, (5.13)

and V is a dominant solution of (3.1) at ω. Set

U(t) := V (t)

∫ ω

t

(V ∗PV σ)−1(s)∆s.

By Theorem 5.1, U is a recessive solution of (3.1) at ω, and W (U, V ) = I. Since

U(t) = V (t)

[
∫ ω

t2

(V ∗PV σ)−1(s)∆s −

∫ t

t2

(V ∗PV σ)−1(s)∆s

]

,

V is invertible on [t2, ω)T, and the difference in brackets is positive definite on [t2, ω)T,
we get that U is invertible on [t2, ω)T as well. Then on [t2, ω)T, we have

PV ∆V −1 − PU∆U−1 = U∗−1U∗PV ∆V −1 − X∗−1X∆∗PV V −1

= U∗−1
[

U∗PV ∆ − U∆∗PV
]

V −1

= U∗−1 [W (U, V )] V −1UU−1

= U∗−1
[

V −1U
]

U−1

= U∗−1

[∫ ω

t

(V ∗PV σ)−1(s)∆s

]

U−1 > 0

by (5.13). Since t2 in (σ(t0), ω)T arbitrary, the conclusions of the theorem follow. 2

Corollary 5.3 Assume the vector equation (5.8) is disconjugate on [ρ(t0), ω)T, and
K is a constant Hermitian matrix. Let U, V be the matrix solutions of LX = 0 satisfying
the initial conditions

U(t2) = I, U∆(t2) = P−1(t2)K, and V (t2) = 0, V ∆(t2) = P−1(t2)

for any t2 ∈ (σ(t0), ω)T. Then V is invertible in (σ(t2), ω)T, V is a dominant solution of
(3.1) at ω, and

lim
t→ω

V −1(t)U(t)

exists as a Hermitian matrix.
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Proof By Theorem 5.9, the matrix equation (3.1) has a solution U which is reces-
sive at ω with U(t) invertible for t ∈ [t2, ω)T. Thus (iii) of the connection theorem,
Theorem 5.4 holds; by (i), then, V is a dominant solution of (3.1) at ω, and by (ii),

lim
t→ω

V −1(t)U(t)

exists as a Hermitian matrix. Since V (t2) = 0 and the vector equation (5.8) is disconju-
gate on [ρ(t0), ω)T,

(V ∗ρP ρV ) (t) > 0, t ∈ (σ(t2), ω)T.

In particular, V is invertible in (σ(t2), ω)T. 2

Theorem 5.10 If the vector equation (5.8) is disconjugate on [ρ(t0), ω)T, then
Lx(t) = h(t) has the unique two-point property in [t0, ω)T. In particular, every boundary
value problem of the form

Lx(t) = h(t), x(τ1) = α, x(τ2) = β,

where τ1, τ2 ∈ [t2, ω)T for t2 ∈ (σ(t0), ω)T with τ1 < τ2, and where α, β are given n-
vectors, has a unique solution.

Proof By Theorem 5.9, disconjugacy of (5.8) implies the existence of a prepared,
invertible matrix solution of (3.1). Thus by Theorem 5.7, it suffices to show that (5.8)
has the unique two-point property in [t2, ω)T. To this end, assume u, v are solutions of
Lx = 0, and there exist points s1, s2 ∈ T such that t2 ≤ s1 < s2 and

u(s1) = v(s1), u(s2) = v(s2).

If s1 is a right-scattered point and s2 = σ(s1), then u and v satisfy the same initial
conditions and u ≡ v by uniqueness; hence we assume s2 > σ(s1). Setting x = u− v, we
see that x solves the initial value problem

Lx = 0, x(τ1) = 0, x(τ2) = 0.

Since Lx = 0 is disconjugate and x is a prepared solution with two generalized zeros, it
must be that x ≡ 0 in [t2, ω)T. Consequently, u = v and the two-point property holds.
2

Corollary 5.4 (Construction of the recessive solution) Assume the vector
equation (5.8) is disconjugate on [ρ(t0), ω)T. For each s ∈ (t0, ω)T, let U(t, s) be the
solution of the boundary value problem

LU(·, s) = 0, U(t0, s) = I, U(s, s) = 0.

Then the solution U with U(t0) = I which is recessive at ω is given by

U(t) = lim
s→ω

U(t, s),

satisfying

(U∗ρP ρU)(t) > 0, t ∈ [t0, ω)T. (5.14)
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Proof By Theorem 5.9 and Theorem 5.10, LX = 0 has a recessive solution and Lx =
h has the unique two-point property. The conclusion then follows from Theorem 5.8,
except for (5.14). From the boundary condition U(s, s) = 0 and the fact that Lx = 0
is disconjugate, it follows that U∗(ρ(t), s)P ρ(t)U(t, s) > 0 holds in [t0, s)T. Again from
Theorem 5.8,

lim
s→ω

U(t, s) = U(t)U−1(t0) = U(t),

so that U invertible on [t0, ω)T and (5.14) holds. 2
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1 Introduction

It is useful to consider state equations that are close (in an appropriate sense) to another
linear state equation that is uniformly stable or uniformly exponentially stable. Prompted
by Lyapunov [6], DaCunha [4] showed that if the stability of the uniformly regressive
time varying linear dynamic system

x∆(t) = A(t)x(t), x(t0) = x0, (1.1)

has already been determined by an appropriate generalized Lyapunov function, then cer-
tain conditions on the perturbation matrix F (t) guarantee specific stability characteristics
of the perturbed linear system

z∆(t) = [A(t) + F (t)]z(t), z(t0) = z0. (1.2)
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In Brogan [2], Chen [3], and Rugh [8], the stability of linear systems and perturbed linear
systems is investigated on the lackluster time scales of R and Z. As is known in the time
scales community, analysis on either of these two domains rarely offers the complexity
and challenge of the same study on an arbitrary closed set of the reals. One of the
main reasons for this is that the uniform graininess of each makes for a run of the mill
investigation. Despite these shortcomings of R and Z, this paper is motivated by these
works to unify and extend to the more general area of time scales, as were Gard and
Hoffacker [5] in the scalar dynamic equation case and Pötzsche, Siegmund, and Wirth [7]
in the constant and Jordan reducible linear systems case. Our aim in this exposition is
to prove analogous results for the universal time scales setting.

This paper is organized as follows. Section 2 introduces two dynamic inequalities
which are generalizations of Gronwall’s inequality. In addition to bounds for solutions to
linear dynamic systems using the system matrix coefficients, linear systems with pertur-
bations and their stability characteristics versus the unperturbed system are investigated
in Section 3. Section 4 gives slightly more general stability results for linear systems with
nonlinear perturbations. The author’s conclusions end the paper.

2 Generalizations of Gronwall’s Inequality

To begin with, we state two theorems from the introductory time scales text [1]. One
important result that is supplied from the following is a way to show uniqueness of
solutions for initial value problems of linear dynamic systems.

Theorem 2.1 [1, Thm. 6.1] Let f, x ∈ Crd and p ∈ R+. Then

x∆(t) ≤ p(t)x(t) + f(t), for all t ∈ T

implies

x(t) ≤ ep(t, t0)x0 +

∫ t

t0

ep(t, σ(s))f(t)∆s, for all t ∈ T.

Theorem 2.2 (Gronwall’s inequality) [1, Thm. 6.4] Let f, x ∈ Crd, p ∈ R+,
and p ≥ 0 for all t ≥ t0. Then

x(t) ≤ f(t) +

∫ t

t0

p(s)x(s)∆s, for all t ∈ T

implies

x(t) ≤ f(t) +

∫ t

t0

ep(t, σ(s))f(s)p(s)∆s, for all t ∈ T. (2.1)

By employing these previous two theorems, in particular, the generalized Gronwall
inequality, we have the following two new generalized dynamic inequalities.

Theorem 2.3 Let x ∈ Crd, f ∈ C1

rd, p ∈ R+, and p ≥ 0 for all t ≥ t0. Then

x(t) ≤ f(t) +

∫ t

t0

p(s)x(s)∆s, for all t ∈ T (2.2)

implies

x(t) ≤ ep(t, t0)f(t0) +

∫ t

t0

ep(t, σ(s))f∆(s)∆s, for all t ∈ T. (2.3)
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Proof Applying Gronwall’s inequality from Theorem 2.2 to the inequality (2.2), we
obtain the inequality (2.1).

Defining the function r(t) as the right hand side of the inequality (2.1), using the fact
that p ≥ 0, and then delta differentiating r(t) we obtain

r∆(t) = f∆(t) + f(t)p(t) +

∫ t

t0

p(t)ep(t, σ(s))f(s)p(s)∆s = f∆(t) + p(t)r(t).

Multiplying both sides by the positive function e⊖p(σ(t), t0) we have

e⊖p(σ(t), t0)(r
∆(t) − p(t)r(t)) = e⊖p(σ(t), t0)f

∆(t)

which is equivalent to

[e⊖p(t, t0)r(t)]
∆

= e⊖p(σ(t), t0)f
∆(t).

On both sides, integrate from t0 to t, then multiply by ep(t, t0) and obtain

r(t) = ep(t, t0)r(t0) +

∫ t

t0

e⊖p(σ(s), t)f∆(s)∆s.

Thus, the desired inequality (2.3) is obtained. 2

Theorem 2.4 Let f, w, x ∈ Crd, where f is a constant, p ∈ R+, and p ≥ 0 for all
t ≥ t0. Then

x(t) ≤ f +

∫ t

t0

w(s) + p(s)x(s)∆s, for all t ∈ T (2.4)

implies

x(t) ≤ ep(t, t0)f +

∫ t

t0

ep(t, σ(s))w(s)∆s, for all t ∈ T. (2.5)

Proof We define the function r(t) by writing the right hand side of the inequal-
ity (2.4). Observe that with (2.4) and the fact that p ≥ 0,

r∆(t) = w(t) + p(t)x(t) ≤ w(t) + p(t)r(t).

Multiplying both sides by the positive function e⊖p(σ(t), t0) we have

e⊖p(σ(t), t0)(r
∆(t) − p(t)r(t)) = e⊖p(σ(t), t0)w(t)

which is equivalent to

[e⊖p(t, t0)r(t)]
∆

= e⊖p(σ(t), t0)w(t).

On both sides, integrate from t0 to t, then multiply by ep(t, t0) and obtain

r(t) = ep(t, t0)r(t0) +

∫ t

t0

e⊖p(σ(s), t)w(s)∆s.

Thus, we obtain the desired inequality (2.5). 2

Example 2.1 Given the time varying system (1.1), we can use Theorem 2.1 (with
f(t) ≡ 0) or Theorem 2.4 (with w ≡ 0) to derive a bound on the solution using the
system matrix. Observe that

||x(t)|| ≤ ||x0|| +

∫ t

t0

||A(s)|| ||x(s)||∆s =⇒ ||x(t)|| ≤ e||A||(t, t0)||x0||, for all t ∈ T.
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3 Linear Perturbations

We begin this section with a few useful definitions.

Definition 3.1 [7, Lem. 4.5] A regressive mapping λ ∈ Crd(T,C) is uniformly re-
gressive on the time scale T if there exists a constant δ > 0 such that

0 < δ−1 ≤ |1 + µ(t)λ(t)|, (3.1)

for all t ∈ T.
Further, the n×n linear dynamic system (1.1) is uniformly regressive if all eigenvalues

{λi}
k
i=1

, k ≤ n, of A satisfy (3.1) for all t ∈ T.

We now define the concepts of uniform stability and uniform exponential stability.
These two concepts involve the boundedness of the solutions of the uniformly regressive
time varying linear dynamic equation (1.1).

Definition 3.2 The time varying linear dynamic equation (1.1) is uniformly stable
if there exists a finite constant γ > 0 such that for any t0 and x(t0), the corresponding
solution satisfies

||x(t)|| ≤ γ||x(t0)||, t ≥ t0.

For the next definition, we define a stability property that not only concerns the bound-
edness of a solutions to (1.1), but also the asymptotic characteristics of the solutions as
well. If the solutions to (1.1) possess the following stability property, then the solutions
approach zero exponentially as t→ ∞ (i.e. the norms of the solutions are bounded above
by a decaying exponential function).

Definition 3.3 The time varying linear dynamic equation (1.1) is called uniformly
exponentially stable if there exist constants γ, λ > 0 with −λ ∈ R+ such that for any
t0 and x(t0), the corresponding solution satisfies

||x(t)|| ≤ ||x(t0)||γe−λ(t, t0), t ≥ t0.

It is obvious by inspection of the previous definitions that we must have γ ≥ 1. By using
the word uniform, it is implied that the choice of γ does not depend on the initial time
t0.

Definition 3.4 [7] The regressive stability region for the scalar IVP is defined to be
the set

S(T) =

{

γ(t) ∈ C : lim sup
T→∞

1

T − t0

∫ T

t0

lim
sցµ(τ)

log |1 + sγ(τ)|

s
∆τ < 0

}

.

It is easy to see that the regressive stability region is always contained in {γ ∈ C :
Re(γ) < 0}. The reader is referred to [7] for more explanation.

Theorem 3.1 Suppose the linear system (1.1) is uniformly stable. Then there exists
some β > 0 such that if

∫

∞

τ

||F (s)||∆s ≤ β

for all τ ∈ T, the perturbed system (1.2) is uniformly stable.
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Proof See [4] for proof. 2

Theorem 3.2 Suppose the linear system (1.1) is uniformly exponentially stable.
Then there exists some β > 0 such that if

∫ ∞

τ

||F (s)||∆s ≤ β

for all τ ∈ T, the perturbed system (1.2) is uniformly exponentially stable.

Proof For any initial conditions, the solution of (1.2) satisfies

z(t) = ΦA(t, t0)z0 +

∫ t

t0

ΦA(t, σ(s))F (s)z(s)∆s,

where ΦA(t, t0) is the transition matrix for the system (1.1). By the uniform exponential
stability of (1.1), there exist constants λ, γ > 0 with −λ ∈ R+ uniformly such that
||ΦA(t, τ)|| ≤ γe−λ(t, τ), for all t, τ ∈ T with t ≥ τ . Taking the norms of both sides and
utilizing the uniform regressivity, we see

||z(t)|| ≤ γe−λ(t, t0)||z0|| +

∫ t

t0

γe−λ(t, s)δ||F (s)|| ||z(s)|| ∆s, t ≥ t0.

Defining ψ(t) := e−λ(t0, t)||z(t)||, this implies

ψ(t) ≤ γ||z0|| +

∫ t

t0

γδ||F (s)|| ψ(s)∆s.

Applying Gronwall’s inequality, we obtain

||z(t)|| ≤ γ||z0||e−λ⊕γδ||F ||(t, t0)

= γ||z0||e−λ(t, t0) exp

(∫ t

t0

Log(1 + µ(s)γδ||F (s)||)

µ(s)
∆s

)

≤ γ||z0||e−λ(t, t0) exp

(∫

∞

t0

Log(1 + µ(s)γδ||F (s)||)

µ(s)
∆s

)

≤ γ||z0||e−λ(t, t0) exp

(

γδ

∫ ∞

t0

||F (s)||∆s

)

≤ γ||z0||e
γδβe−λ(t, t0), t ≥ t0.

Since γ and −λ can be used for any initial conditions, the system (1.2) is uniformly
exponentially stable. 2

Theorem 3.3 Suppose the linear system (1.1) is uniformly exponentially stable.
Then there exists some β > 0 such that if

||F (t)|| ≤ β (3.2)

for all t ≥ t0 with t, t0 ∈ T, the perturbed system (1.2) is uniformly exponentially stable.
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Proof For any initial conditions, the solution of (1.2) satisfies

z(t) = ΦA(t, t0)z0 +

∫ t

t0

ΦA(t, σ(s))F (s)z(s)∆s,

where ΦA(t, t0) is the transition matrix for the system (1.1). By the uniform exponential
stability of (1.1), there exist constants γ, λ > 0 with −λ ∈ R+ such that ||ΦA(t, τ)|| ≤
γe−λ(t, τ), for all t, τ ∈ T with t ≥ τ . By taking the norms of both sides, we have

||z(t)|| ≤ γe−λ(t, t0)||z0|| +

∫ t

t0

γe−λ(t, σ(s))||F (s)|| ||z(s)|| ∆s, t ≥ t0.

Rearranging and applying the uniform regressivity bound and the inequality (3.2), we
obtain

e−λ(t0, t)||z(t)|| ≤ γ||z0|| +

∫ t

t0

γβδe−λ(t0, s)||z(s)|| ∆s, t ≥ t0.

Defining ψ(t) := e−λ(t0, t)||z(t)||, we now have

ψ(t) ≤ γ||z0|| +

∫ t

t0

γβδψ(s) ∆s, t ≥ t0.

By Gronwall’s inequality, we obtain

ψ(t) ≤ γ||z0||eγβδ(t, t0), t ≥ t0.

Thus, substituting back in for ψ(t), we conclude

||z(t)|| ≤ γ||z0||e−λ⊕γβδ(t, t0), t ≥ t0.

We need −λ ⊕ γβδ ∈ R+ and negative for all t ∈ T. Observe, since γβδ > 0, it is
positively regressive, and so γβδ ∈ R+. Since R+ is a subgroup of R, we see that
−λ⊕ γβδ ∈ R+. So we must have

−λ⊕ γβδ < 0 =⇒ β <
λ

γδ(1 − µ(t)λ)
,

for all t ∈ T. Thus, by choosing β accordingly and since γ is independent of the initial
conditions, the system (1.2) is uniformly exponentially stable. 2

Theorem 3.4 Consider the uniformly regressive linear dynamic system (1.2), with
the matrices A(t) and F (t) constant. Let the uniformly regressive constants λ ∈ R+ and
γ > 0 such that

||eA(t, t0)|| ≤ γeλ(t, t0), t ≥ t0.

Then the bound

||eA+F (t, t0)|| ≤ γe(λ⊕γδ||F ||)(t, t0), t ≥ t0,

is valid.
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Proof We begin by noting that the solutionX to (1.2) with constant system matrices
is given by

eA+F (t, t0) = X(t) = eA(t, t0) +

∫ t

t0

eA(t, σ(s))FX(s)∆s. (3.3)

The solution (3.3) can be bounded by the following

||X(t)|| ≤ γeλ(t, t0) +

∫ t

t0

γeλ(t, σ(s))||F || ||X(s)||∆s. (3.4)

We now employ Gronwall’s inequality on (3.4) by defining ψ(t) := eλ(t0, t)||X(t)||.
Thus,

ψ(t) ≤ γ +

∫ t

t0

γeλ(s, σ(s))||F || ψ(s)∆s ≤ γ +

∫ t

t0

γδ||F || ψ(s)∆s

which implies
||eA+F (t, t0)|| ≤ γe(λ⊕δγ||F ||)(t, t0). 2

Theorem 3.5 Given the uniformly regressive system (1.2) with A(t) ≡ A a constant
matrix, suppose all eigenvalues of A belong to S(T), the matrix F (t) ∈ Crd(T,Rn×n)
satisfies

lim
t→∞

||F (t)|| = 0, (3.5)

and the solution x(t) ∈ C1

rd(T,Rn) is defined for all t ≥ t0. Then given any initial
conditions x(t0) = x0, the solution to (1.2) satisfies

lim
t→∞

x(t) = 0. (3.6)

Proof Since spec(A) ∈ S(T) for all t ∈ T and the system is uniformly regressive, we
have

||eA(t, t0)|| ≤ γe−λ(t, t0), (3.7)

for some γ, λ > 0 with −λ ∈ R+, and all t ≥ t0. Using (3.7), we can bound the solution
by

||x(t)|| ≤ γe−λ(t, t0) +

∫ t

t0

γe−λ(t, σ(s))||F (s)|| ||x(s)||∆s.

Choose an ε > 0 such that −λ ⊕ ε < 0 and −λ ⊕ ε ∈ R+ for all t ∈ T. By Gronwall’s
inequality, we have

||x(t)||e−λ(t0, t) ≤ γ||x0|| exp

[∫ t

t0

lim
sցµ(τ)

1

s
Log[1 + sγδ||F (τ)||]∆τ

]

. (3.8)

Denoting the upper bound of the graininess of T by µ∗ and employing the generalized
version of L’Hôpital’s rule [1] and (3.5), we have

lim
t→∞

∫ t

t0
limsցµ(τ)

1

s
Log[1 + sγδ||F (τ)||]∆τ

∫ t

t0
limsցµ(τ)

1

s
Log[1 + sε]∆τ

= lim
t→∞

limsցµ(t)
1

s
Log[1 + sγδ||F (t)||]

limsցµ(t)
1

s
Log[1 + sε]

≤
γδ limt→∞ ||F (t)||

1

µ∗
Log[1 + µ∗ε]

= 0,
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thus implying that there exists a T ∈ T such that for t ≥ T we have

∫ t

t0

lim
sցµ(τ)

1

s
Log[1 + sγδ||F (τ)||]∆τ ≤

∫ t

t0

lim
sցµ(τ)

1

s
Log[1 + sε]∆τ.

From (3.8), for t ≥ T we obtain

||x(t)||e−λ(t0, t) ≤ γ||x0||eε(t, t0).

With a correct choice of ε above, it easily follows that

||x(t)|| ≤ γ||x0||e−λ⊕ε(t, t0)

which implies the claim (3.6). 2

4 Nonlinear Perturbations

In the following theorem, we show that under certain conditions on the linear and nonlin-
ear perturbations, the resulting perturbed nonlinear initial value problem will still yield
uniformly exponentially stable solutions.

Theorem 4.1 Given the nonlinear uniformly regressive initial value problem

x∆(t) = [A(t) + F (t)]x(t) + g(t, x(t)), x(t0) = x0, (4.1)

and an arbitrary time scale T, suppose (1.1) is uniformly exponentially stable, the matrix
F (t) ∈ Crd(T,R

n×n) satisfies ||F (t)|| ≤ β for all t ∈ T, the vector-valued function
g(t, x(t)) ∈ Crd(T,Rn) satisfies ||g(t, x(t))|| ≤ ǫ||x(t)|| for all t ∈ T and x(t), and the
solution x(t) ∈ C1

rd(T,R
n) is defined for all t ≥ t0. Then if β and ǫ are sufficiently

small, there exist constants γ, λ∗ > 0 with −λ∗ ∈ R+ such that

||x(t)|| ≤ γ||x0||e−λ∗(t, t0)

for all t ≥ t0.

Proof Observe that the solution to (4.1) is given by

x(t) = ΦA(t, t0)x0 +

∫ t

t0

ΦA(t, σ(s))[F (s)x(s) + g(s, x(s))]∆s, (4.2)

for all t ≥ t0. Since (1.1) is uniformly exponentially stable, there exist constants γ, λ > 0
with −λ ∈ R+ such that ||ΦA(t, t0)|| ≤ γe−λ(t, t0) for all t ≥ t0. Recall ||F (t)|| ≤ β,
||g(t, x(t))|| ≤ ǫ||x(t)|| for all t ∈ T, and since the decay factor −λ is uniformly regressive
on T, there exists a δ > 0 such that 0 < δ−1 ≤ (1 − µ(t)λ) for all t ∈ T which implies
that 0 < (1 − µ(t)λ)−1 ≤ δ. Taking the norms of both sides of (4.2), we obtain

||x(t)|| ≤ ||ΦA(t, t0)|| ||x0|| +

∫ t

t0

||ΦA(t, σ(s))||(||F (s)|| ||x(s)|| + ||g(s, x(s))||)∆s

= e−λ(t, t0)

[

γ||x0|| +

∫ t

t0

γδ(β + ǫ)e−λ(t0, s)||x(s)||∆s

]

,
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for all t ≥ t0.
By Gronwall’s inequality,

||x(t)|| ≤ γ||x0||e−λ⊕γδ(β+ǫ)(t, t0).

To conclude, we need −λ ⊕ γδ(β + ǫ) ∈ R+ as well as −λ ⊕ γδ(β + ǫ) < 0. Observe
that γδ(β + ǫ) > 0 implies γδ(β + ǫ) ∈ R+ and since R+ is a subgroup of R, we have
−λ⊕ γδ(β + ǫ) ∈ R+. So we need

−λ⊕ γδ(β + ǫ) < 0 =⇒ β <
λ

(1 − µ(t)λ)γδ
− ǫ.

From this result, we must have λ
(1−µ(t)λ)γδ

− ǫ > 0 for all t ∈ T, i.e. ǫ < λ
(1−µ(t)λ)γδ

for

all t ∈ T.
Thus, to fulfill the requirements of the theorem, we must satisfy the following:

0 < ǫ <
λ

(1 − µ(t)λ)γδ
, 0 < β <

λ

(1 − µ(t)λ)γδ
− ǫ, and − λ∗ := −λ⊕ γδ(β + ǫ)

for all t ∈ T. 2

Corollary 4.1 Given the nonlinear uniformly regressive initial value problem (4.1)
with A(t) ≡ A a constant matrix, suppose spec(A) ∈ S(T) for all t ∈ T, the matrix
F (t) ∈ Crd(T,R

n×n) satisfies ||F (t)|| ≤ β for all t ∈ T, the vector-valued function
g(t, x(t)) ∈ Crd(T,Rn) satisfies ||g(t, x(t))|| ≤ ǫ||x(t)|| for all t ∈ T and x(t), and the
solution x(t) ∈ C1

rd(T,R
n) is defined for all t ≥ t0. Then if β and ǫ are sufficiently

small, there exist constants γ, λ∗ > 0 with −λ∗ ∈ R+ such that

||x(t)|| ≤ γ||x0||e−λ∗(t, t0)

for all t ≥ t0.

Proof The proof follows exactly as in Theorem 4.1, with the observation that
ΦA(t, t0) ≡ eA(t, t0). Since spec(A) ∈ S(T), there exist constants γ, λ > 0 with
−λ ∈ R+ such that ||eA(t, t0)|| ≤ γe−λ(t, t0) for all t ≥ t0, we now have the bound
||ΦA(t, t0)|| ≤ γe−λ(t, t0), for some constants γ, λ > 0 with −λ ∈ R+. 2

Conclusions

The intent of this paper was to add to the completeness of bounds on solutions to linear
systems on time scales. In particular, in Section 2 this was done via introduction of
two generalizations of Gronwall’s inequality, thereby creating addition possibilities for
bounding solutions to systems of the form (1.1) and (1.2).

In Section 3 and Section 4, certain bounds were given on the linear and nonlinear
perturbations which maintained stability of the system (1.2) were investigated. This
included integral bounds and asymptotic bounds on the perturbation matrix F .
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Università di Napoli, V. Claudio 21, 80125 Napoli

Received: July 21, 2008; Revised: June 8, 2009

Abstract: We prove some new results regarding the boundedness, stability and
attractivity of the solutions of a class of initial-boundary-value problems characterized
by a quasi-linear third order equation which may contain time-dependent coefficients.
The class includes equations arising in superconductor theory, and in the theory
of viscoelastic materials. In the proof we use a family of Liapunov functionals W

depending on two parameters, which we adapt to the ‘error’, i.e. to the size σ of the
chosen neighbourhood of the null solution.
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1 Introduction

In this paper we study the boundedness and stability properties of a large class of initial-
boundary-value problems of the form

{

−ε(t)uxxt + utt − C(t)uxx + a′ut = F (u) − aut, x ∈]0,π[, t>t0,

u(0, t) = 0, u(π, t) = 0,
(1.1)

u(x, t0) = u0(x), ut(x, t0) = u1(x). (1.2)

∗ Corresponding author: gaetano.fiore@na.infn.it
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Here t0 ≥ 0, ε ∈ C2(I, I), C ∈ C1(I,R+) (with I := [0,∞[) are functions of t, with
C(t)≥C=const>0, the conservative force fulfills F (0) = 0, so that the equation admits
the trivial solution u(x, t) ≡ 0; a′ = const≥ 0, a = a(x, t, u, ux, ut, uxx)≥ 0, ε(t)≥ 0, so
that the corresponding terms are dissipative 1 .

Solutions u of such problems describe a number of physically remarkable continuous
phenomena occurring on a finite space interval.

For instance, when F (u) = b sinu, a = 0 we deal with a perturbed Sine–Gordon
equation which is used to describe the classical Josephson effect [8] in the theory of su-
perconductors, which is at the base (see e.g. [12, 1] and references therein) of a large
number of advanced developments both in fundamental research (e.g. macroscopic ef-
fects of quantum physics, quantum computation) and in applications to electronic devices
(see e.g. Chapters 3–6 in [2]): u(x, t) is the phase difference of the macroscopic quantum
wave functions describing the Bose–Einstein condensates of Cooper pairs in two super-
conductors separated by a very thin and narrow dielectric strip (a socalled “Josephson
junction”), the dissipative term (a′+a)ut is due to Joule effect of the residual current
across the junction due to single electrons, whereas the third order dissipative term is
due to the surface impedence of the two superconductors of the strip. Usually the model
is considered with constant (dimensionless) coefficients ε, C, (a′+a), but in fact the lat-
ter depend on other physical parameters like the temperature or the voltage difference
applied to the junction (see e.g. [12]), which can be controlled and varied with time; in
a more accurate description of the model one should take a non-constant a = β cosu,
where β also depends on temperature and voltage difference applied and therefore can
be varied with time.

Other applications of problem (1.1)–(1.2) include heat conduction at low temperature
[13, 7], sound propagation in viscous gases [10], propagation of plane waves in perfect
incompressible and electrically conducting fluids [15], motions of viscoelastic fluids or
solids [9, 14, 16]. For instance, problem (1.1)–(1.2) with a = 0 = a′ describes [14] the
evolution of the displacement u(x, t) of the section of a rod from its rest position x in a
Voigt material when an external force F is applied; in this case c2 = E/ρ, ε = 1/(ρµ),
where ρ is the (constant) linear density of the rod at rest, and E, µ are respectively
the elastic and viscous constants of the rod, which enter the stress-strain relation σ =
Eν + ∂tν/µ, where σ is the stress, ν is the strain. Again, some of these parameters, like
the viscous constant of the rod, may depend on the temperature of the rod, which can
be controlled and varied with time.

The problem (1.1)–(1.2) considered here generalizes those considered in [3, 4, 5, 6], in
that the square velocity C and the dissipative coefficient ε can depend on t. The physical
phenomena just described provide the motivations for such a generalization. While we
require C to have a positive lower bound, in order not to completely destroy the wave
propagation effects due to the operator ∂2

t − C∂2
x, we wish to include the cases that ε

goes to zero as t → ∞, vanishes at some point t, or even vanishes identically. To that

1 This follows from the non-positivity of the corresponding terms in the time derivative of the
Hamiltonian:

H =

π
∫

0

dx

[

u2
t
+Cu2

x

2
−

∫

u(x)

0
F (z)dz

]

⇒ Ḣ = −

π
∫

0

dx
[

(a+a′)u2
t
+εu2

xt

]

+

π
∫

0

dx Ċ
u2

x

2
.

We also see that the last term is respectively dissipative, forcing if Ċ is negative, positive. H can play
the role of Liapunov functional w.r.t. the reduced norm dε=0(u, ut).
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end, we consider the t-dependent norm

d2(ϕ, ψ) ≡ d2

ε(ϕ, ψ) =

π
∫

0

dx [ε2(t)ϕ2

xx+ϕ2

x+ϕ2+ψ2]. (1.3)

ε2 plays the role of a weight for the second order derivative term ϕ2
xx so that for ε = 0 this

automatically reduces to the proper norm needed for treating the corresponding second
order problem. Imposing the condition that ϕ, ψ vanish in 0, π one easily derives that
|ϕ(x)|, ε|ϕx(x)| ≤ d(ϕ, ψ) for any x; therefore a convergence in the norm d implies also
a uniform (in x) pointwise convergence of ϕ and a uniform (in x) pointwise convergence
of ϕx for ε(t) 6=0. To evaluate the distance of u from the trivial solution we shall use the
t-dependent norm d(t) ≡ dε(t)

[

u(x, t), ut(x, t)
]

; we use the abbreviation d(t) whenever
this is not ambiguous.

In Section 2 we state the hypotheses necessary to prove our results, give the relevant
definitions of boundedness and (asymptotic) stability, introduce a 2-parameter family of
Liapunov functionals W and tune these parameters in order to prove bounds for W, Ẇ .
In Sections 3, 4 we prove the main results: a theorem of stability and (exponential)
asymptotic stability of the null solution (Section 3), under stronger assumptions theorem
of eventual and/or uniform boundedness of the solutions and eventual and/or exponential
asymptotic stability in the large of the null solution (Section 4). In Section 5, we mention
some examples to which these results can be applied.

We note that for constant ε the existence and uniqueness of the solution of the problem
(1.1)–(1.2) follows from the theorem in section 2 of [6], as we can replace at the left-hand
side C(t) by inft C and include in the right-hand side the difference [inft C − C(t)]uxx.

2 Main Assumptions, Definitions and Preliminary Estimates

For any function f(t), we denote f = inft>0 f(t), f = supt>0 f(t). We assume that there
exist constants A≥0, τ >0, k≥0, ρ>0, µ>0 such that

F (0)=0 & Fz(z)≤k if |z|<ρ. (2.1)

C≥k, C−ε̇≥µ(1+ε), µ+
C

2
−2k>0, ε̈>−∞. (2.2)

0 ≤ a≤Adτ (u, ut), a′+
ε

2
>0 (2.3)

We are not excluding the following cases: ε(t) = 0 for some t, ε
t→∞
−→ 0, ε(t) ≡ 0, ε

t→∞
−→ ∞

[in view of (2.2)2 the latter condition requires also C
t→∞
−→ ∞]; but by condition (2.3)2 at

least one of the dissipative terms must be nonzero. Eq. (2.1) implies

∫ ϕ

0

F (z)dz≤k
ϕ2

2
, ϕF (ϕ)≤kϕ2 if |ϕ|<ρ. (2.4)

We shall consider also the cases that, in addition to (2.1), either one of the following
inequalities [which are stronger than (2.4)] holds:

∫ ϕ

0

F (z)dz≤0, ϕF (ϕ)≤0 if |ϕ|<ρ. (2.4′)
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To formulate our results, we need the following definitions. Fix once and for all κ ∈ R,
ξ>0 and let Iκ := [κ,∞[, d(t) := dε(t)

[

u(x, t), ut(x, t)
]

.

Definition 2.1 The solution u(x, t) ≡ 0 of (1.1) is stable if for any σ ∈]0, ξ] and
t0∈Iκ there exists a δ(σ, t0) > 0 such that

d(t0) < δ(σ, t0) ⇒ d(t) < σ ∀t ≥ t0.

If δ can be chosen independent of t0, δ = δ(σ), u(x, t) ≡ 0 is uniformly stable.

Definition 2.2 The solution u(x, t) ≡ 0 of (1.1) is asymptotically stable if it is
stable and moreover for any t0∈Iκ there exists a δ(t0)>0 such that d(t0)<δ(t0) implies
d(t) → 0 as t→ ∞, namely for any ν>0 there exists a T (ν, t0, u0, u1) > 0 such that

d(t0) < δ(t0) ⇒ d(t) < ν ∀t ≥ t0 + T.

The solution u(x, t) ≡ 0 is uniformly asymptotically stable if it is uniformly stable and
moreover δ, T can be chosen independent of t0, u0, u1, i.e. d(t) → 0 as t → ∞ uniformly
in t0, u0, u1.

Definition 2.3 The solutions of (1.1) are eventually uniformly bounded if for any
δ > 0 there exist a s(δ) ≥ 0 and a β(δ) > 0 such that if t0 ≥ s(δ), d(t0) ≤ δ, then
d(t) < β(δ) for all t ≥ t0. If s(δ) = 0 the solutions of (1.1) are uniformly bounded.

Definition 2.4 The solutions of (1.1) are bounded if for any δ > 0 there exist a
β̃(δ, t0) > 0 such that if d(t0) ≤ δ, then d(t) < β̃(δ, t0) for all t ≥ t0.

Definition 2.5 The solution u(x, t) ≡ 0 of (1.1) is eventually exponential-
asymptotically stable in the large if for any δ > 0 there are a nonnegative constant
s(δ) and positive constants D(δ), E(δ) such that if t0 ≥ s(δ), d(t0) ≤ δ, then

d(t) ≤ D(δ) exp [−E(δ)(t− t0)] d(t0), ∀t ≥ t0. (2.5)

If s(δ) = 0 then u(x, t) ≡ 0 is exponential-asymptotically stable in the large.

Definition 2.6 The solution u(x, t) ≡ 0 of (1.1) is (uniformly) exponential-
asymptotically stable if there exist positive constants δ,D,E such that

d(t0) < δ ⇒ d(t) ≤ D exp [−E(t− t0)] d(t0), ∀t ≥ t0. (2.6)

Definition 2.7 The solution u(x, t) ≡ 0 of (1.1) is asymptotically stable in the large
if it is stable and moreover for any t0 ∈ Iκ, ν, α > 0 there exists T (α, ν, t0, u0, u1) > 0
such that

d(t0) < α ⇒ d(t) < ν ∀t ≥ t0 + T.

We recall Poincaré inequality, which easily follows from Fourier analysis:

φ ∈ C1(]0, π[), φ(0) = 0, φ(π) = 0 ⇒

∫ π

0

dxφ2

x(x) ≥

∫ π

0

dxφ2(x). (2.7)

We introduce the non-autonomous family of Liapunov functionals

W ≡W (ϕ, ψ, t; γ, θ) :=

∫ π

0

1

2

{

γψ2+(εϕxx−ψ)2+ [C(1+γ)−ε̇+ε(a′+θ)]ϕ2

x (2.8)

+a′θϕ2+2θϕψ−2(1+γ)

∫ ϕ(x)

0

F (z)dz
}

dx
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where θ, γ are for the moment unspecified positive parameters. W coincides with the
Liapunov functional of [3] for constant ε, C and γ = 3, θ = a′. Let W (t; γ, θ) :=
W (u, ut, t; γ, θ). Using (1.1), from (2.8) one finds

Ẇ (t; γ, θ) =

π
∫

0

{

(εuxx−ut)(εuxxt−utt+ε̇uxx)+[Ċ(1+γ)−ε̈+ε̇(a′+θ)]
u2

x

2

+[C(1+γ)−ε̇+ε(a′+θ)]uxuxt+a
′θuut+θu

2

t +(γut+θu)utt−(1+γ)F (u)ut

}

dx

=

π
∫

0

{

(εuxx−ut)[(a+a′)ut−Cuxx−F (u)+ε̇uxx]+[Ċ(1+γ)−ε̈+ε̇(a′+θ)]
u2

x

2

−[C(1+γ)−ε̇+ε(a′+θ)]uxxut+a
′θuut+θu

2

t

+(γut+θu)[Cuxx+εuxxt+F (u)−(a+a′)ut]−(1+γ)F (u)ut} dx

=

π
∫

0

{

εuxx[(ε̇−C)−F (u)]uxx+[εuxx(a+a′)−(a+a′)ut+Cuxx+F (u)−ε̇uxx−C(1+γ)uxx

+ε̇uxx−ε(a
′+θ)uxx+a′θu+θut+γCuxx+γεuxxt+γF (u)−(a+a′)γut−θ(a+a

′)u

−(1+γ)F (u)]ut+θu[Cuxx+εuxxt+F (u)]+[Ċ(1+γ)−ε̈+ε̇(a′+θ)]
u2

x

2

}

dx

=

π
∫

0

{

ε[(ε̇−C)uxx−F (u)]uxx+ut[εauxx−(a+a′)(1+γ)ut−εθuxx

+θut+γεuxxt−aθu]+θu[Cuxx+εuxxt+F (u)]+[Ċ(1+γ)−ε̈+ε̇(a′+θ)]
u2

x

2

}

dx

= −

π
∫

0

{

ε(C−ε̇)u2

xx+[(a+a′)(1+γ)−θ]u2

t +
[

2θC+ε̈−ε̇(a′+θ)−(1+γ)Ċ
] u2

x

2
+εγu2

xt

+θauut−θuF (u)+ε[−aut+F (u)]uxx

}

dx. (2.9)

2.1 Upper bound for Ẇ

After some rearrangement of terms and integration by parts of the last term, we obtain

Ẇ = −

∫ π

0

{

εγu2

xt+

[

(a+a′)(1+γ)−θ−ε
a2

C−ε̇
−θ

a2

C

]

u2

t +ε(C−ε̇)

[

a

C−ε̇
ut−

uxx

2

]2

+
3

4
ε(C−ε̇)u2

xx+

[

C

(

θ

2
−a′

)

+ε̈+(C−ε̇)(a′+θ)−(1+γ)Ċ−2εFu

]

u2
x

2

+
θC

4
(u2

x−u
2)+

θC

4

[

u+
2a

C
ut

]2

−θuF (u)

}

dx.
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Using (2.7) with φ(x) = ut(x, t), u(x, t) we thus find, provided |u|<ρ, θ>2a′, µ(a′+θ)>2k

Ẇ ≤−

∫ π

0

{[

εγ+(a+a′)(1+γ)−θ−a2

(

1

µ
+
θ

C

)]

u2

t +
3

4
µε2u2

xx+

[

C

(

θ

2
−a′
)

+ε̈+µ(1+ε)(a′+θ)−(1+γ)Ċ−2εk

]

u2
x

2
−θku2

}

dx

≤−

∫ π

0

{[

εγ+(a+a′)(1+γ)−θ−a2

(

1

µ
+
θ

C

)]

u2

t +
3

4
µε2u2

xx+

[

C

(

θ

2
−a′
)

+ε̈+µ(a′+θ)+[µ(a′+θ)−2k]ε−(1+γ)Ċ−2kθ

]

u2
x

2

}

dx. .(2.10)

We now assume that there exists t̄(γ)∈ [0,∞[ such that

Ċ(1 + γ)≤1 for t≥ t̄, Ċ(1 + γ)>1 for 0≤ t< t̄. (2.11)

This is clearly satisfied with t̄(γ)≡0 if Ċ ≤ 0, whereas it is satisfied with some t̄(γ)≥0

if Ċ
t→∞
−→ 0. We fix θ by choosing

θ > θ1 := max

{

2a′,
2k

µ
−a′,

5−ε̈−a′(µ−C)

µ+C/2−2k

}

. (2.12)

Then for all t > t̄

θ

(

µ+
C

2
−2k

)

+[µ(a′+θ)−2k]ε+ε̈−(1+γ)Ċ+a′(µ−C) > 4. (2.13)

Next, provided d(u, ut)≤σ<ρ, we choose

γ > γ1(σ) :=
1+θ

a′+ε
+ γ32σ

2τ , γ32 :=
A2

(a′+ε)

(

1

µ
+
θ

C

)

, (2.14)

what implies, for d ≤ σ,

εγ+(a+a′)(1+γ)−θ−a2

(

1

µ
+
θ

C

)

= a+a′+ (a+a′+ε)γ−θ−a2

(

1

µ
+
θ

C

)

≥ a′+
a+a′+ε

a′+ε

[

(1+θ) +A2

(

1

µ
+
θ

C

)

σ2τ

]

−θ−A2

(

1

µ
+
θ

C

)

d2τ ≥ 1+a′. (2.15)

Equations (2.10), (2.13) and (2.15) imply for all t ≥ t̄

Ẇ (u, ut, t; γ, θ)≤−

∫ π

0

{[

εγ+(a+a′)(1+γ)−θ−a2

(

1

µ
+
θ

C

)]

u2

t +
3

4
µε2u2

xx+

[

θ

(

µ+
C

2
−2k

)

+[µ(a′+θ)−2k]ε+ε̈−(1+γ)Ċ+a′(µ−C)

]

u2
x + u2

4

}

dx

< −η d2(t), η := min {1, 3µ/4} (2.16)

provided 0<d(t)<σ. If, in addition to (2.3) with k > 0, the inequality (2.4’) [which is
stronger than (2.4)] holds, then it is easy to check that we can avoid assuming (2.2)3 and
obtain again the previous inequality, provided we replace k by 0 in the definition (2.12)
of θ1.
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Remark 2.1 One can check that if we had adopted the same Liapunov functional
as in [5, 6] formulae (4.2), i.e. W of (2.8) with θ=0=a′, we would have not been able to
obtain (2.16) (which is essential to prove the asymptotic stability of the null solution) in
a number of situations, e.g. if ε→0 sufficiently fast as t→∞.

2.2 Lower bound for W

From the definition (2.8) it immediately follows

W (ϕ, ψ, t; γ, θ) =

π
∫

0

1

2

{(

γ−θ2−
1

2

)

ψ2+
(εϕxx− 2ψ)2

4
+

(εϕxx−ψ)2

2
+ε2

ϕ2
xx

4

+[C(1+γ)−ε̇+ε(a′+θ)]ϕ2

x+(a′θ−1)ϕ2+[θψ+ϕ]
2
−2(1+γ)

∫ ϕ(x)

0

F (z)dz

}

dx. (2.17)

Using (2.2)2, (2.4) and (2.7) with φ(x) = ϕ(x) we find for |ϕ|<ρ

W ≥

π
∫

0

1

2

{(

γ−θ2−
1

2

)

ψ2+ε2
ϕ2

xx

4
+[(C−k)γ+ µ+(µ+a′+θ)ε]ϕ2

x+[a′θ−1−k]ϕ2

}

dx

≥

π
∫

0

1

2

{(

γ−θ2−
1

2

)

ψ2+ε2
ϕ2

xx

4
+

[

(C−k)γ+µ+

(

µ+a′+
θ

2

)

ε

]

ϕ2

x

+

[(

a′+
ε

2

)

θ−1−k

]

ϕ2

}

dx. (2.18)

Choosing

θ > θ2 := max

{

θ1,
k+5/4

a′+ε/2

}

, γ ≥ γ2(σ) := γ1(σ)+θ2+1, (2.19)

we find that for d ≤ σ

W (ϕ, ψ, t; γ, θ) ≥ χd2(ϕ, ψ), χ :=
1

2
min

{

1

4
, (C−k)γ+µ+

(

µ+a′+
θ

2

)

ε

}

. (2.20)

(Note that 0 < χ ≤ 1/8). If, in addition to (2.1) (with some k>0), the inequality (2.4’)1
holds, then it is easy to check that we obtain (2.20) [with the replacement k → 0 in the
definition of χ] by choosing θ, γ as in (2.19), but replacing k → 0 there.

Finally, we note that if τ=0 in (2.3), i.e. a≤A =const, then γ, t̄(γ) are independent
of σ.

2.3 Upper bound for W

As argued in [3],

∣

∣

∣

∣

∫ ϕ

0

F (z)dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ ϕ

0

dz

∫ ζ

0

Fζ(ζ)dζ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ϕ

0

Fζ(ζ)(ϕ − ζ)dζ

∣

∣

∣

∣

.

Consequently, introducing the non-decreasing funtion m(r) := max {|Fζ(ζ)| : |ζ| ≤ r}
and in view of the inequality |ϕ| ≤ d(ϕ, ψ) we obtain

∣

∣

∣

∣

∫ ϕ

0

F (z)dz

∣

∣

∣

∣

≤ m(|ϕ|)
ϕ2

2
≤ m(d)

d2

2
. (2.21)
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Thus, from definition (2.8) and the inequalities −2ǫϕxxψ≤ǫ2ϕ2
xx+ψ2, 2θϕψ≤θ(ϕ2+ψ2),

(2.2)3 we easily find

W (ϕ, ψ, t; γ, θ)≤

π
∫

0

1

2

{

(γ+2+θ)ψ2+2ε2ϕ2

xx+[C(1+γ)−ε̇

+ε(a′+θ)]ϕ2

x+(a′+1)θϕ2
}

dx+(1+γ)m(d)
d2

2
≤

π
∫

0

1

2

{

(γ+2+θ)ψ2+2ε2ϕ2

xx

+

[

Cγ+(C−ε̇)

(

1+
a′+θ

µ

)]

ϕ2

x+(a′+1)θϕ2

}

dx+(1+γ)m(d)
d2

2
.

Choosing

γ ≥ γ3(σ) := γ2(σ)+1+ a′

+θ
µ

+(a′+1)θ = γ31 + γ32σ
2τ ,

(2.22)

where γ31 := 1+θ
a′+ε

+θ2+2+ a′

+θ
µ

+(a′+1)θ and setting

g(t) :=C(t)−ε̇(t)/2+1>1, B2(d) := [1+m(d)]d2, (2.23)

we find that for d ≤ σ

W (ϕ, ψ, t; γ, θ) ≤

π
∫

0

1

2

[

(γ+2+θ)ψ2+2ε2ϕ2

xx+γ (2C−ε̇)ϕ2

x+γϕ2
]

dx+(1+γ)m(d)
d2

2

≤ [2γg(t)+(1+γ)m(d)]
d2

2
≤(1+γ) [g(t)+m(d)]d2

≤ [1+γ(σ)] g(t)B2(d). (2.24)

The map d∈ [0,∞[→ B(d)∈ [0,∞[ is continuous and increasing, therefore also invertible.
Moreover, B(d) ≥ d.

3 Asymptotic Stability of the Null Solution

Theorem 3.1 Assume that conditions (2.1)-(2.3) are fulfilled. Then the null solution
u(x, t) of (1.1) is stable if one of the following conditions is fulfilled:

Ċ ≤ 0, ∀t ∈ I, (3.1)

Ċ
t→∞
−→ 0; (3.2)

the stability is uniform if the function g(t) defined by (2.23) fulfills g < ∞. The ξ

appearing in Definition 2.1 is a suitable positive constant, more precisely ξ ∈]0, ρ] if
ρ <∞. The null solution is asymptotically stable if, in addition,

∫ ∞

0

dt

g(t)
= ∞, (3.3)

and uniformly exponential-asymptotically stable if g <∞.
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Proof As a first step, we analyze the behaviour of

σ2

1+γ3(σ)
=

σ2

1+γ31+γ32σ2τ
=: r2(σ).

The positive constants γ31, γ32, defined in (2.22), are independent of σ, t0. The function
r(σ) is an increasing and therefore invertible map r : [0, σM [→ [0, rM [, where:

σM =∞, rM =∞, if τ ∈ [0, 1[,

σM =∞ rM =1/
√
γ32, if τ=1,

σ2τ
M := 1+γ31

γ32(τ−1)
, rM =[ τ−1

1+γ31
]

τ−1

2τ /
√
τγ

1
2τ

32
, if τ >1,

(3.4)

(in the latter case r(σ) is decreasing beyond σM ).

Next, let ξ := min{σM , ρ} if the rhs is finite, otherwise choose ξ ∈ R+; we shall
consider an “error” σ∈]0, ξ[. We define

δ(σ, t0) := B−1

[

r(σ)

√
χ

√

g(t0)

]

, κ := t̄[γ3(ξ)]. (3.5)

δ(σ, t0) belongs to ]0, σ[, because B(d) ≥ d implies B−1

[

r(σ)
√
χ/
√

g(t0)
]

≤
√
χσ ≤ σ/2

and is an increasing function of σ. The function t̄(γ) was defined in (2.11); t̄[γ3(σ)]≤κ
as the function t̄[γ3(σ)] is non-decreasing. Mimicking an argument of [6], we can show
that for any t0 ≥ κ

d(t0) < δ(σ, t0) ⇒ d(t) < σ ∀t ≥ t0. (3.6)

Ad absurdum, assume that there exists a finite t1> t0 such that (3.6) is fulfilled for all
t ∈ [t0, t1[, whereas

d(t1) = σ. (3.7)

The negativity of the rhs(2.16) implies that W (t) ≡ W [u, ut, t; γ3(σ), θ] is a decreasing
function of t in [t0, t1]. Using (2.20), (2.24) we find the following contradiction with (3.7):

χd2(t1) ≤W (t1) < W (t0) ≤ [1+γ3(σ)] g(t0)B
2 [d(t0)] < [1+γ3(σ)] g(t0)B

2(δ)

= [1+γ3(σ)] g(t0)

{

B

[

B−1

(

σ

√
χ

√

[1+γ3(σ)]g(t0)

)]}2

= χσ2.

Eq. (3.6) amounts to the stability of the null solution; if g <∞ we obtain the uniform

stability replacing (3.5)1 by δ(σ) :=B−1

[

r(σ)
√
χ/
√

g
]

.

Let now δ(t0) := δ(ξ, t0). By (3.6) and the monotonicity of δ(·, t0) we find that for
any t0 ≥ κ

d(t0) < δ(t0) ⇒ d(t) < ξ ∀t ≥ t0. (3.8)

Choosing W (t) ≡W [u, ut, t; γ3(ξ), θ], (2.24) becomes

W (t) ≤ h(ξ)g(t)d2(t), h(ξ) := [1+γ3(ξ)] [1+m(ξ)] , (3.9)
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which together with (2.16), implies Ẇ (t) ≤ −ηW (t)/[hg(t)] and (by means of the com-

parison principle [17]) W (t) < W (t0) exp
[

−η
∫ t

t0
dz/[hg(z)]

]

, whence

d2(t) ≤
W (t)

χ
<
W (t0)

χ
exp



−
η

h

t
∫

t0

dz

g(z)





≤
hg(t0)

χ
d2(t0) exp



−
η

h

t
∫

t0

dz

g(z)



 <
h(ξ)g(t0)

χ
ξ2 exp



−
η

h(ξ)

t
∫

t0

dz

g(z)





Condition (3.3) implies that the exponential goes to zero as t→ ∞, proving the asymp-
totic stability of the null solution; if g<∞ we can replace g(t0), g(z) by g in the last but
one inequality and obtain

d2(t) <
h(ξ)g

χ
exp

[

−
η

h(ξ)g
(t−t0)

]

d2(t0),

which proves the uniform exponential-asymptotic stability of the null solution (just set

δ=B−1

[

r(ξ)
√
χ/
√

g
]

, D=
√

h(ξ)g/χ, E=η/
[

2h(ξ)g
]

in Def. 2.6). 2

Remark 3.1 We stress that the theorem holds also if ρ = ∞. In the latter case ξ is
σM , if the latter is finite, an arbitrary positive constant, if also σM = ∞.

Next, we are going to extend some of the previous results in the large.

4 Boundedness of the Solutions and Asymptotic Stability in the Large

Theorem 4.1 Assume that: conditions (2.1)-(2.3), and possibly either one of (2.4’),
are fulfilled with ρ = ∞ and τ < 1; the function g(t) defined by (2.23) fulfills g < ∞;
(3.1) is fulfilled. Then:
1. the solutions of (1.1) are uniformly bounded;
2. the null solution of (1.1) is exponential-asymptotically stable in the large.

If only (3.2), instead of (3.1), is satisfied, then:
3. the solutions of (1.1) are eventually uniformly bounded;
4. the null solution of (1.1) is eventually exponential-asymptotically stable in the large.

Proof As noted, r(σ) can be inverted to an increasing map r−1 : [0, rM [→ [0, σM [,
whence also

β(δ) := r−1

[
√

gB(δ)
√
χ

]

(4.1)

defines an increasing map β : [0, δM [→ [0, σM [, where δM :=B−1(rM
√
χ/
√

g). Note that
β(δ)>δ. An immediate consequence of (4.1) is

gB2(δ)

χ
= r2[β(δ)] =

β2(δ)

1+γ3[β(δ)]
. (4.2)

From (2.11) it immediately follows that

s(δ) := t̄{γ3[β(δ)]}

{

= 0, if (3.1) is fulfilled,

<∞, if (3.2) is fulfilled.
(4.3)
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We can now show that for any δ∈]0, δM [, t0≥s(δ)

d(t0) < δ ⇒ d(t) < β(δ), ∀t ≥ t0. (4.4)

Ad absurdum, assume that there exists a finite t2> t0 such that (4.4) is fulfilled for all
t ∈ [t0, t2[, whereas

d(t2) = β(δ). (4.5)

The negativity of the rhs(2.16) implies that W (t) ≡ W{u, ut, t; γ3[β(δ)], θ} is a decreas-
ing function of t in [t0, t2]. Using (2.20), (2.24) and the (4.2) we find the following
contradiction with (4.5):

χd2(t2) ≤W (t2) < W (t0) ≤ {1+γ3[β(δ)]}g(t0)B
2 [d(t0)] < {1+γ3[β(δ)]}gB2(δ) = χβ2(δ).

Formula (4.4) together with (4.3) proves statements 1., 3. under the assumption
τ ∈ [0, 1[, because then by (3.4) δM = ∞, so that we can choose any δ > 0 in Definition
2.3.

With the above choice of θ, by (4.4), (3.9) we find that for t≥ t0≥s(δ) the Liapunov
functional Wδ(t) ≡W

{

u, ut, t; γ3

[

β(δ)
]

, θ(δ)
}

fulfills

Wδ(t)≤h(δ)gd2(t); (4.6)

this, together with (2.16) implies Ẇδ(t) ≤ −ηWδ(t)/[h(δ)g] and (by means of the compar-
ison principle [17]) Wδ(t) < Wδ(t0) exp

[

−η(t−t0)/[h(δ)g]
]

. From the latter inequality,
(2.20) and (4.6) with t= t0 it follows

d2(t) ≤
Wδ(t)

χ
<
Wδ(t0)

χ
exp

[

−
η

h(δ)g
(t−t0)

]

≤
h(δ)g

χ
exp

[

−
η

h(δ)g
(t−t0)

]

d2(t0)

for all t ≥ t0 ≥ s(δ). Recalling again (4.3), we see that the latter formula proves
statements 2., 4. 2

In the case τ≥1 we find, by (3.4),

δM =B−1

(

rM

√
χ

√

g

)

=B−1







[

τ−1

1+γ31

]
τ−1

2τ

√
χ

√

gτγ
1/τ
32







.

The finiteness of δM prevents us from extending the results in the large of the previous
theorem to the case τ ≥1. One might think to exploit the freedom in the choice of θ to
make δM as large as we wish. From the θ-dependence of γ31, γ32 [formulae (2.22), (2.14)]
we see that δM decreases with θ, so this is impossible. However, we can prove boundedness
and asymptotic stability in the large even for some unbounded g(t), provided τ = 0.

Theorem 4.2 Assume that: conditions (2.3–2.1), and possibly either one of (2.4’),
are fulfilled with ρ = ∞ and τ = 0; the function g(t) defined by (2.23) fulfills (3.3); either
(3.1) or (3.2) is fulfilled. Then:
1. the solutions of (1.1) are bounded;
2. the null solution of (1.1) is asymptotically stable in the large.

Proof The condition τ = 0 means that γ does not depend on σ; then r−1(β) =
β
√

1+γ, which is an increasing map r−1 : I→I. For any fixed t0 setting

β̃(α; t0) :=r
−1

[

√

g(t0)B(α)
√
χ

]

= B(α)

√

g(t0)(1+γ)
√
χ

(4.7)
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also defines an increasing map β̃ : I→ I, with β̃(α; t0)>α. We now prove statement 1,
i.e. for any α>0, t0≥κ := t̄(γ),

d(t0) < α ⇒ d(t) < β̃(α; t0) ∀t≥ t0. (4.8)

Ad absurdum, assume that there exist a finite t2∈ [t0, t] such that (4.8) is fulfilled for all
t ∈ [t0, t2[, whereas

d(t2) = β̃(α; t0). (4.9)

The negativity of the rhs(2.16) implies that W (t) ≡W{u(t), ut(t), t; γ, θ} is a decreasing
function of t in [t0, t2]. Using (2.20), (2.24) and (4.7) we find the following contradiction
with (4.9):

χd2(t2) ≤W (t2) < W (t0) ≤ (1+γ)g(t0)B
2 [d(t0)] < (1+γ)g(t0)B

2(α) = χβ̃2(α; t0),Q.E.D.

By Theorem 3.1 the null solution of (1.1) is stable. Moreover, by (4.8) relation (2.24)
becomes

W (t) ≤ h̃(α, t0)g(t)d
2(t), h̃(α, t0) := (1+γ)

{

1+m
[

β̃(α; t0)
]

}

,

which, together with (2.16), implies Ẇ (t) ≤ −ηW (t)/[h̃g(t)] and employing usual argu-

ments, W (t) < W (t0) exp
[

−η
∫ t

t0
dz/[h̃g(z)]

]

, whence, for all t > t0 ≥ κ,

d2(t) ≤
W (t)

χ
<
W (t0)

χ
exp



−
η

h̃

t
∫

t0

dz

g(z)



 ≤
h̃g(t0)

χ
d2(t0) exp



−
η

h̃

t
∫

t0

dz

g(z)





<
h̃(α, t0)g(t0)

χ
α2 exp



−
η

h(α, t0)

t
∫

t0

dz

g(z)



 .

The function Gt0(t) :=
∫ t

t0
dz/g(z) is increasing and by (3.3) diverges with t, what makes

the rhs go to zero as t → ∞; more precisely, we can fulfill Definition 2.7 defining the
corresponding function T (α, ν, t0, u0, u1) by the condition that the rhs of the previous
equation equals ν2

0 :=min{ν2, α2} at t = t0+T , or equivalently

T = G−1

t0

{

−
h̃(α, t0)

η
log

[

χ ν2
0

h̃(α, t0) g(t0)α2

]

}

− t0

(the rhs is positive as the argument of the logarithm is less than 1, by the definitions of
χ, h̃ and by the inequality ν0/α ≤ 1); this proves statement 2. 2

5 Examples

Out of the many examples of forcing terms fulfilling (2.1) we just mention F (z) =
b sin(ωz) (this has Fz(z)≤ bω =: k), which makes (1.1) into a modification of the sine-
Gordon equation, and the possibly non-analytic ones F (z) = −b|z|qz with b > 0, q ≥ 0
(this has Fz(z)≤0=:k), or F (z) = b|z|qz (this has Fz(z)=b(q+1)|z|q<b(q+1)|ρ|q =:k if
|z|<ρ). Out of the many examples of t-dependent coefficients that fulfill (2.2-2.3) and
either (3.1) or (3.2), but not the hypotheses of the theorems of [4, 5, 6], we just mention
the following ones:
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Example 5.1 ε(t) = ε0(1+t)−p with constant ε0, p≥0 and C ≡ C0 ≡constant, with

C0>
4(1+ε0)k

3+ε0
. As a consequence ε=0≤ ε≤ ε0 = ε, ε̇=−pε0 ≤ ε̇=−pε0[1+t]−p−1≤0= ε̇,

ε̈=p(p+1)ε0[1+t]
−p−2≥0= ε̈ [condition (2.2)4 is fulfilled], (ε, ε̇, ε̈→0 as t→∞). Conditions

(2.2)1-(2.2)3 are fulfilled with µ=C/(1+ε0). We find g(t) = C0+pε0[1+t]
−p−1+1, whence

g = C0 +pε0+1. Finally we assume that a′ > 0 and a fulfills (2.3)1. Then Theorems
3.1, 4.1, apply: the null solution of (1.1) is uniformly stable and uniformly exponential-
asymptotically stable; it is also uniformly bounded and exponential-asymptotically stable
in the large if in addition ρ = ∞, τ <1.

One can check that if we had adopted the same Liapunov functional as in [5, 6]
formulae (4.2), i.e. W of (2.8) with θ=0=a′, for p>1 (namely ε→0 sufficiently fast as
t→∞) we would have not been able to prove the asymptotic stability .

Example 5.2 ε(t) = ε0(1+t)p, C(t) = C0(1+t)q, with 1 > q ≥ p ≥ 0, ε0≥0 and C0

fulfilling

C0>pε0, C0>
4(1+ε0)k+2p ε0

3+ε0
.

If q, p > 0 then C(t), ε(t) diverge as t → ∞. We immediately find ε(t) ≥ ε0 = ε, ε̇ =
pε0(1+t)p−1 ≥ 0, ε̈= p(p−1)ε0(1+t)p−2 ≤ 0, ε̈= p(p−1)ε0 [condition (2.2)4 is fulfilled],
C(t)≥C0,

C−ε̇

1+ε
=
C0(1+t)q−pε0(1+t)p−1

1+ε0(1+t)p
=
C0(1+t)q−p−pε0(1+t)−1

(1+t)−p+ε0
≥
C0−pε0
1+ε0

,

and conditions (2.2)1-(2.2)3 are fulfilled with µ = (C0−pε0)/(1+ε0). Moreover, Ċ =
qC0(1+t)

q−1 → 0 as t→∞ [condition (3.2) is fulfilled]; g(t) grows as tq, implying that (3.3)
is fulfilled. Finally we assume that a fulfills (2.3)1 [condition (2.3)2 is already satisfied]
. Then Theorem 3.1 applies: the null solution of (1.1) is asymptotically stable. If in
addition ρ = ∞, τ = 0 then Theorem 4.2 applies, and the null solution is also bounded
and asymptotically stable in the large .

Example 5.3 ε(t) fulfilling ε<∞, ε̇<∞, ε̇>−∞, ε̈>−∞ [condition (3.2)]; we note
that this includes regular, periodic ε(t). C(t) = C0+C1(1+t)−q with constant C0, C1, q

fulfilling C1 > 0, q ≥ 0 and

C0>max

{

0, ε̇,
4(1+ε)k+2ε̇

3+ε

}

, C0≥k.

Then conditions (2.2)1–(2.2)3 are fulfilled with µ = (C0− ε̇)/(1+ε). Moreover, Ċ ≤ 0
(condition (3.1) is fulfilled). We find g(t) ≤ C0+C1− ε̇+1=: g<∞. Finally we assume
that a′>0 and a fulfills (2.3)1. Then Theorems 3.1, 4.1, apply: the null solution of (1.1)
is uniformly stable and uniformly exponential-asymptotically stable. It is also uniformly
bounded and exponential-asymptotically stable in the large if in addition ρ = ∞, τ <1.
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[1] Barone, A. and Paternó, G. Physics and Applications of the Josephson Effect. Wiley-
Interscience, New-York, 1982.

[2] Christiansen, P. I., Scott, A. C. and Sorensen, M. P. Nonlinear Science at the Dawn of the
21st Century. Lecture Notes in Physics 542, Springer, 2000.



262 A. D’ANNA AND G. FIORE
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Abstract: In this paper we discuss a system of six coupled ODEs which arise in ODE
reduction of the PDEs governing the motion of uniformly stratified fluid contained in
rectangular basin of dimension L×L×H , which is temperature stratified with fixed
zeroth order moments of mass and heat. We prove that this autonomous system
of ODEs is completely integrable if Rayleigh number Ra = 0 and determine the
stable, unstable and center manifold passing through the rest point and discuss the
qualitative feature of the solutions of this system of ODEs.

Keywords: rotating stratified Boussinesq equation; completely integrable systems.
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1 Introduction

In fluid dynamics, the flow of fluid in the atmosphere and in the ocean is governed by the
Navier-Stokes equations. In the scale of Boussinesq approximation (i.e., flow velocities are
to slow to account for compressible effect), the flow of fluid is given by rotating stratified
Boussinesq equations. In the theory of basin scale dynamics Maas [1], has considered the
flow of fluid contained in rectangular basin of dimension L×L×H , which is temperature
stratified with fixed zeroth order moments of mass and heat. The container is assumed to
be steady, uniform rotation on an f -plane. With this assumptions Maas [1] reduces the
rotating stratified Boussinesq equations to an interesting six coupled system of ODEs.
Our analysis is quite different from the one employed by Maas [1] in as much as we have
obtained rather precise information concerning the global phase portrait of the system
as well as analytical representation of the solution in terms of elliptic functions.
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The system of six coupled ODEs is completely integrable if Rayleigh number Ra =
0. We provide in this paper the complete analysis of this integrable system. Four
functionally independent first integrals and zero divergence of vector field implying the
existence of fifth first integral, thereby prove the complete integrability of the system. The
four first integrals reduce the R6 into a family of two dimensional invariant surfaces (when
rotation frequency f is less than the twice of horizontal Rayleigh damping coefficient
otherwise either degenerate into a rest point or an empty surface). We observe that
gluing these surfaces along a circle of transit points we get a torus of genus one. If
there is a rest point which lies on the invariant surface then it is seen to be singular
and one of the generating circles gets pinched to the rest point. We obtain the stable
and unstable manifolds passing through the rest point. We also find the center manifold
through the rest point which shows that rest point is unstable with two dimensional
stable, unstable and center manifolds passing through it. In additional we carry out
the complete integration of the system in terms of elliptic functions which degenerate in
special case. In the last section we obtained a fifth first integral which is guaranteed by
Jacobi’s last integral theorem, it is quite non trivial and expressible in terms of elliptic
functions.

2 An Ideal Rotating Uniformly Stratified System of ODEs

In the scale of Boussinesq approximation, the flow of fluid in the atmosphere and in the
ocean is described by rotating stratified Boussinesq equations

Dv

Dt
+ f(ê3 × v) = −∇p+ ν(∆v) −

gρ̃

ρb

ê3,

divv = 0,

Dρ̃

Dt
= κ∆ρ̃.

(2.1)

Here v denotes the velocity field, ρ is the density which is the sum of constant reference
density ρb and perturb density ρ̃, p the pressure, g is the acceleration due to gravity
that points in −ê3 direction, f is the rotation frequency of earth, ν is the coefficient of
viscosity, κ is the coefficient of heat conduction and D

Dt
= ∂

∂t
+ (v · ∇) is a convective

derivative. For more about rotating stratified Boussinesq equations one may consult
Majda [2]. In their study of onset of instability in stratified fluids at large Richardson
number, Majda and Shefter [3] obtained the ODE reduction of (2.1) by neglecting the
effects of rotation and viscosity, and complete analysis of that system and qualitative
features of the solution are discussed by Srinivasan et al [4] in their paper. Whereas
Maas [1] consider the effects of rotation to equation (2.1) in the frame of reference of an
uniformly stratified fluid contained in rotating rectangular box of dimension L×B×H .
In this context, Maas [1] reduces the system of equations (2.1) to six coupled system
of ODEs (2.3) given below, which form a completely integrable Hamiltonian system if
Rayleigh number Ra vanishes. In his study he considers a rectangular basin of size
L×L×H , which is temperature-stratified with fixed zeroth order moments of mass and
heat (so that there is no net evaporation or precipitation, nor any net river input or
output, and neither a net heating nor cooling). The container is assumed to be in steady,
uniform rotation on an f -plane (f -plane refers to the effective background rotation axis
determined by the projection of the earth’s rotation vector along the vertical.) Maas [1]
appeals to the idea that the dynamics of the position vector of its center of mass may,
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to some extent, be representative of the basin scale dynamics of a mid-latitude lake or
sea; in this context one may refer to Morgan [5], and Maas [6].

Maas [1] reduces the system of equations (2.1) into the following system of six coupled
ODEs:

Pr−1
dw

dt
+ f ′ê3 × w = ê3 × b − (w1, w2, rw3) + T̂T,

db

dt
+ b × w = −(b1, b2, µb3) +RaF.

(2.2)

In these equations, b = (b1, b2, b3) is the center of mass, w = (w1, w2, w3) is the basin’s
averaged angular momentum vector, T is the differential momentum, F are buoyancy
fluxes, f ′ = f/2rh is the earth’s rotation, r = rv/rh is the friction (rv,h are the Rayleigh
damping coefficients), Ra is the Rayleigh number, Pr is the Prandtl number, µ is the
diffusion coefficient and T̂ is the magnitude of the wind stress torque.

Neglecting diffusive and viscous terms, Maas [1] considers the dynamics of an ideal
rotating, uniformly stratified fluid in response to forcing. He assumes this to be due
solely to differential heating in the meridional (y) direction F = (0, 1, 0); the wind effect
is neglected i.e. T = 0. For Prandtl number, Pr, equal to one the system of equations
(2.2) reduces to the following an ideal rotating, uniformly stratified system of six coupled
ODEs.

dw

dt
+ f ′ê3 × w = ê3 × b,

db

dt
+ b× w = RaF.

(2.3)

We see the system of equations (2.3) is divergence free and, when Ra = 0, admits the
following four functionally independent first integrals

|b|2 = c1, ê3 ·w = c2, |w|2 + 2ê3 · b = c3, b ·w + f ′ê3 · b = c4. (2.4)

Hence, by using Liouville theorem on integral invariants and theorem of Jacobi [7] there
exists an additional first integral. Also we see from (2.4) that |b| and |w| remain bounded
so that the invariant surface (2.4) is compact and the flow of the vector field (w, b) is
complete. Therefore, the system of equations (2.3) is completely integrable for Ra = 0.
Maas [1] took f ′ = 1 and equations (2.3) show that the horizontal circulation (w3) is
constant hence without loss of generality he took w3 = 0 which is one of the first integral

of the system (2.3). Using the first integral |w|
2

2
+ b3 = B (constant), he obtained the

Hamiltonian

H =
1

2

(

r2 + s2 + {B − (w2

1 + w2

2)/2}
2

)

+Raw1 , (2.5)

where r = ẇ1 and s = ẇ2. With this Hamiltonian H , Maas [1] has shown that the system
of equations (2.3) is completely integrable if Ra = 0.

Here we see that if Ra = 0, the system of equations (2.3) is completely integrable and
we can rewrite it as follows

ẇ = −f ′ê3 × w + ê3 × b,

ḃ = w × b.
(2.6)

It is easy to see that the critical points (rest points) of the system (2.6) are
(λ1ê3, λ2ê3), (λ1ê3, 0),
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(0, λ2ê3), (0, 0), (w, f ′w) and ( 1

f ′
b, b) where λ1, λ2 are arbitrary scalars. Of these

critical points, (ê3, ê3) is the only one lying on the invariant surface

|b|2 = 1, ê3 · w = 1, |w|2 + 2ê3 · b = 3, w · b + f ′ê3 · b = 1 + f ′. (2.7)

We give the details of the analysis of the system (2.6) in the following section.

3 Analytical Details

We have six coupled autonomous system of nonlinear ODEs (2.6) with four first integrals
(2.4). We now proceed to analyzing the system (2.6). With nonzero values of c1, c2, c3
and c4 the possible critical points of the system (2.6) are (λ1ê3, λ2ê3). With c1 = 1, and
w = ±ê3, c3 may assume the value −1 or 3 (not both). Now take c3 = 3 so that the
possible critical points are (ê3, ±ê3) and at these critical points the value of c2 is ±1.
Note that the case c2 = −1 will be a surface disjoint from ê3 · b = 1 so with the specific
values of c1 = 1, c2 = 1, and c3 = 3 we have only one critical point (ê3, ê3). At this
critical point the fourth first integral assumes the value c4 = 1 + f ′.

We find the eigenvalues of the matrix of linearized part of the system (2.6) at this
critical point and these are given below

0, 0, ±

√

1 − f ′2 ± (−1 + f ′)3/2
√

3 + f ′

√
2

, (3.1)

the double eigenvalue zero implying the critical point is degenerate. With all four possible
distributions of sign and for 0 < f ′ < 1, we see that among these six eigenvalues, two of
them have positive real parts and two of them have negative real parts and the remaining
of two eigenvalues are zero. This linear analysis suggests that when 0 < f ′ < 1, the rest
point is degenerate and unstable. In fact the critical point (ê3, ê3) is unstable with two
dimensional stable, unstable and center manifolds. For f ′ = 1 the system degenerates
with all the six eigenvalues being zero possessing four linearly independent eigen vectors
(0, ê3), (ê2, ê2), (ê1, ê1), (ê3, 0). We shall now bifurcate the analysis in two parts. (i)
When a critical point lies on the invariant surface determine by equations (2.7). (ii)
When no critical point lies on the invariant surface (2.7).

3.1 Critical point lying on the invariant surface

Now we set up the local coordinates on the two dimensional invariant surface (2.7), we
get w3 = 1. The general solution of the inhomogeneous equation w ·b+ f ′ê3 ·b = 1+ f ′

is given below.

w1 =
−b2k

1 − b3
+

(1 + f ′)b1
1 + b3

, w2 =
b1k

1 − b3
+

(1 + f ′)b2
1 + b3

, w3 = 1, (3.2)

where k is arbitrary. To determine the k, substitute (3.2) in |w|2 + 2ê3 · b = 3 to get

k2 =
(1 − b3

1 + b3

)2
[

1 + 2b3 − 2f ′ − (f ′)2
]

= k(b3). (3.3)

From above equation and for |b|2 = 1, we see that k is real if and only if

0 ≤ f ′ ≤ 1 . (3.4)
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Note that when f ′ = 0, the system of equations (2.6) disregards rotation. For f ′ = 1
the invariant set (2.7) degenerates into the critical point (ê3, ê3) whereas for f ′ > 1 the
invariant set (2.7) is empty. By use of the first integral |b|2 = 1 we can introduce the
spherical polar coordinates in our system

b1 = cos θ sinφ, b2 = sin θ sinφ, b3 = cosφ, (3.5)

with this help of spherical polar coordinates we get k as a function of φ as given below

k2 = tan4

(φ

2

)

[

4 cos2
φ

2
− (1 + f ′)2

]

or

k = ± tan2

(φ

2

)

[

4 cos2
φ

2
− (1 + f ′)2

]1/2

(3.6)

and

w1 = tan
(φ

2

)

(

(1 + f ′) cos θ ∓ sin θ

√

4 cos2
φ

2
− (1 + f ′)2

)

,

w2 = tan
(φ

2

)

(

(1 + f ′) sin θ ± cos θ

√

4 cos2
φ

2
− (1 + f ′)2

)

.

(3.7)

To obtain an ODE for φ we observe that

d

dt
(b21 + b22) = b3(w2b1 − w1b2).

Substituting (3.5) and (3.7) into this we get

φ̇ = ± tan
(φ

2

)

√

4 cos2
φ

2
− (1 + f ′)2 . (3.8)

Finally using this in the equations for ḃ1 and ḃ2 in (2.6) we get the equation for θ namely,

θ̇ =
(1 − f ′ cosφ)

2 cos2 φ
2

. (3.9)

Equations (3.8)-(3.9) admit solutions in terms of elementary functions implying the
complete integrability of the system (2.6). The solutions of the more general equations
(3.22)-(3.26) below involve elliptic integrals. We record these results below for this spe-
cial case. Corresponding to the plus sign in (3.8) we get for an arbitrary constants of
integration C1 > 0 and C2,

φ(t) = 2 sin−1

[

C1

√

4 − (1 + f ′)2 e−
t

2

√
4−(1+f ′)2

1 + C2
1
e−t

√
4−(1+f ′)2

]

,

θ(t) = C2 +
(1 − f ′)

2









t+

2(3 + 4f ′ + f ′2) tan−1

(

2et

√
3−2f

′
−f

′2
−(1−2f ′

−f ′2
)C2

1√
(1+f ′)2(3−2f ′−f ′2)C4

1

)

(1 + f ′)(3 − 2f ′ − f ′2)









.

(3.10)
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Corresponding to the negative sign in (3.8) we get

φ(t) = 2 sin−1

[

C1

√

4 − (1 + f ′)2 e
t

2

√
4−(1+f ′)2

1 + C2
1
et
√

4−(1+f ′)2

]

,

θ(t) = C2 +
(1 − f ′)

2









t+

2(3 + 4f ′ + f ′2) tan−1

(

2C2
1 et

√
3−2f

′
−f

′2
−(1−2f ′

−f ′2
)√

(1+f ′)2(3−2f ′−f ′2)

)

(1 + f ′)(3 − 2f ′ − f ′2)









.

(3.11)
To settle the ambiguity in sign in (3.8) note that the first integrals (2.4) except

w · b + f ′ê3 · b are invariant under reflection

(b1, b2, b3) 7→ (−b1, −b2, b3), (3.12)

whereas the integral w · b + f ′ê3 · b remains invariant when (3.12) is simultaneously
applied with the transformation k 7→ −k.

From (3.6) we see that φ is constrained by the relation

0 ≤ φ ≤ 2 cos−1

(1 + f ′

2

)

, (3.13)

and k vanishes at both extreme values. The critical point (ê3, ê3) is correspond to φ = 0

and at other end of extreme value of φ = 2 cos−1

(

1+f ′

2

)

the system of ODEs, (3.8) has

a periodic trajectory given by

φ = 2 cos−1

(1 + f ′

2

)

, θ̇ =
2 − f ′(1 + f ′)

(1 + f ′)
. (3.14)

However, this does not correspond to a periodic solution of the original system (2.6) since
the parametrization (3.5)-(3.7) fails to be Lipschitz along the locus given by (3.14). The
locus (3.14) consists of transit points, which separate the stable and unstable manifolds.
The locus given by (3.14) is a periodic orbit of the system (2.6) in a special case that we
identify in section 3.2.

3.1.1 Stable and unstable manifolds

Let us denote by S the portion of sphere |b|2 = 1 defined by

{

(b1, b2, b3)|b
2

1 + b22 + b23 = 1; 0 ≤ φ ≤ 2 cos−1

(1 + f ′

2

)}

(3.15)

which is a closed spherical cap as shown in Figure 3.1 For each choice of the sign for
k(b3) we denote the graph of function w = (w1, w2, w3), as a function of b on S), by Γ±

namely,

Γ± =

{

(w(b), b)|k = ± tan2

(φ

2

)

[

4 cos2
φ

2
− (1 + f ′)2

]1/2
}

. (3.16)

Note that w = (w1, w2, w3) is defined in (3.2). Define functions f± : S 7→ Γ+ as

f+(b) = (w(b), b), k ≥ 0,
f−(b) = (w(b), b), k ≤ 0.

(3.17)
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Figure 3.1: Stable and unstable manifolds.

Figure 3.2: Torus pinched at critical point.

Both f+ and f− are homeomorphisms and they agree along the circle k = 0 as well as at
the point b = ê3. Thus the invariant surface is made up of the pieces Γ±, each of which
is homeomorphic to the closed spherical cap as shown in Figure 3.1 and given by (3.15).
The invariant surface is obtained by gluing these pieces together at the critical point and
the circle k = 0, as shown in Figure 3.2 This proves the invariant surface is a torus one
of whose generating circle is pinched to a point.

Assume that for a solution starting near the critical point, k(b3) > 0. Taking the plus
sign in (3.8) we see that trajectories starting on Γ+ recede away from the critical point
since φ(t) monotonically increases, reaching the circle k = 0 in a finite time T given by

T =

∫ β

α

cot(φ/2)dφ
√

4 cos2(φ/2) − (1 + f ′)2
. (3.18)

Here α is the initial value of φ and β is the value of φ given by (3.8). The sign of k(b3)
changes when t > T whereby φ(t) decreases monotonically to zero and the trajectory,
which now lies in Γ−, approaches the critical point as t −→ +∞.

On the other hand a trajectory starting on Γ− stays in Γ− and ultimately approaches
the critical point as t −→ +∞. We see that the part Γ+ is the unstable manifold and Γ−
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the stable manifold of the system of ODEs (2.6). A trajectory starting on the unstable
manifold reaches a point on (3.14) in a finite time and then enters the stable manifold.

A trajectory starting on the unstable manifold must reach a point on (3.14) in a finite
time and subsequently must enter the stable manifold. This justifies the terminology
“transit points”.

3.2 When there are no critical points on the invariant surface

We perturb the initial conditions by assigning the values

c1 = c2 = 1, c4 = 1 + f ′, c3 = 3 + ǫ, (3.19)

to the first integrals (2.4). The compact invariant surface (2.4) no longer contains a rest
point and so the Poincaré-Hopf index theorem shows that it is a torus. It is readily
checked that the singularity (ê3, ê3) in the invariant surface that was initially present
has smoothened out. Equations (3.2) continue to be valid except that k(b3) is now given
by

(k(b3))
2 =

(1 − b3

1 + b3

)2[

2(1 + b3) − (1 + f ′)2
]

+ ǫ
(1 − b3

1 + b3

)

. (3.20)

Parameterizing the sphere as in (3.5) we get in place of (3.6) the expression

k2 = tan2

(φ

2

)[

tan2

(φ

2

)(

4 cos2(φ/2) − (1 + f ′)2
)

+ ǫ
]

. (3.21)

Now using (2.6), d
dt

(b21 + b22) = 2kb3(1 + b3), which is in polar coordinates assume the
form

φ̇ = k cot
(φ

2

)

= ±
[

tan2

(φ

2

)(

4 cos2(φ/2) − (1 + f ′)2
)

+ ǫ
]1/2

. (3.22)

The change of variable v = cos2(φ/2) transforms (3.22) into an ODE for elliptic integral:

(dv

dt

)2

= (v − 1)
[

4v2 −
(

4 + (1 + f ′)2 + ǫ
)

v + (1 + f ′)2
]

= C(v) . (3.23)

Note that for ǫ ≤ −[2 + (1 + f ′)]2 or ǫ ≥ −[2− (1 + f ′)]2, the cubic polynomial C(v) has
three distinct real roots namely

ζ1 = 1

8

[

(4 + (1 + f ′)2 + ǫ) −
√

(4 + ǫ)2 + (1 + f ′)2[(1 + f ′)2 + 4 + 2ǫ]
]

,

ζ2 = 1

8

[

(4 + (1 + f ′)2 + ǫ) +
√

(4 + ǫ)2 + (1 + f ′)2[(1 + f ′)2 + 4 + 2ǫ]
]

,

v = 1,

(3.24)

two of which coalesce when ǫ −→ 0.

For ǫ > 0, C(v) has real roots ζ1, 1 and ζ2 where 0 < ζ1 < 1 < ζ2 and since 0 ≤ v ≤ 1,
we see that C(v) is positive only on the interval [ζ1, 1]. The point v(t) attains the value
ζ1 in time T1 given by

T1 =

∫ β

α

dφ
√

tan2(φ/2) [4 cos2(φ/2) − (1 + f ′)2] + ǫ
,
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where α is initial value of φ and β is the value of φ given by (3.22). After which k

becomes negative, hence by equation (3.22), φ is decreasing and it decreases to zero in
time T2 given by

T2 = −

∫ 0

β

dφ
√

tan2(φ/2) [4 cos2(φ/2) − (1 + f ′)2] + ǫ
.

Here we note that the value v = 1 corresponding to b = ê3. However, k ∼ tan(φ

2
)
√
ǫ

and (3.2) gives

w1 = −
√
ǫ sin θ, w2 =

√
ǫ cos θ, ω3 = 1, as t→ T2, (3.25)

after which the value of k again becomes positive and φ increases from zero to its maxi-
mum value 2 cos−1(

√
ζ1) and this cycle repeats itself ad infinitum. Thus the points v = 1

and v = ζ1 represent a pair of circles of transit points and the solution of the system
of ODEs (2.6) lying on the invariant surface (3.19) continuously oscillate between these
circles of transit points in b-space.

On the other hand, for ǫ < 0, equation (3.21) does not permit φ to approach zero.
In fact the roots of the cubic polynomial C(v) are real and satisfy 0 < ζ1 < ζ2 < 1,
forcing v to be in the interval [ζ1, ζ2]. Note that k vanishes along the pair of circles given
by 2 cos−1(

√
ζ1) and 2 cos−1(

√
ζ2). These circles consist of transit points determining a

frustum in which b is constrained to lie.
The equation governing θ is again (3.9) which in conjunction with (3.22) can be

written as
dθ

dφ
= ±

(1 + f ′) sec2(φ

2
) − 2f ′

2

√

tan2(φ
2
)
(

4 cos2(φ
2
) − (1 + f ′)2

)

+ ǫ

. (3.26)

Hence θ(t) may be expressed as an elliptic function of tan(φ

2
).

In the special case when ǫ = −[2− (1+f ′)]2 the cubic polynomial C(v) has two equal

roots (1+f ′

)

2
, the frustum ζ1 ≤ v ≤ ζ2 is squeezed to a circle and the locus k = 0 does

provide a periodic solution to the system (2.6) given by

φ = 2 cos−1

(
√

1 + f ′

2

)

, θ̇ = 1 − f ′. (3.27)

We summarize these results in the form of following theorem.

Theorem 3.1 The solutions of the system of ODEs (2.6) lying on the two dimen-
sional invariant surface (3.19) oscillate between circles of transit points and are express-
ible in terms of elliptic functions.

3.2.1 The center manifold

We have noticed in previous section that if we perturb the initial conditions so that
the first integrals assumes the values as indicated in equations (3.19), then the system
admits a periodic solution lying on the invariant surface (3.19) when ǫ = −[2− (1+f ′)]2.
This suggest the possibility of a more general perturbation that is, involving several
parameters, resulting in a one parameter family of periodic solutions spanning a two
dimensional invariant set that defines the center manifold.
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We now proceed to obtain the center manifold through the rest point (R2ê3, R1ê3)
as the locus of a one parameter family of periodic solutions. At the place of equation
(3.19) we assign to the constants the values given by

c1 = R2

1, c2 = R2, c3 = R2

2 + 2R1 + ǫ, c4 = R1(R2 + f ′). (3.28)

Instead of (3.2) we get

w1 =
−kR2b2

R1 − b3
+

(R2 + f ′)b1
R1 + b3

, w2 =
kR2b1

R1 − b3
+

(R2 + f ′)b2
R1 + b3

, w3 = R2. (3.29)

Substituting in |w|2 + 2ê3 · b = R2
2 + 2R1 + ǫ and using spherical polar coordinates, we

find the value of k to be

k2 = R−2

2
tan2

(φ

2

)[

4R1 sin2

(φ

2

)

− (R2 + f ′)2 tan2

(φ

2

)

+ ǫ
]

, (3.30)

consequently we obtain the ODE for φ as given below

(dφ

dt

)2

=
[

4R1 sin2

(φ

2

)

− (R2 + f ′)2 tan2

(φ

2

)

+ ǫ
]

.

Using the change of variable v = cos2(φ/2) the above equation transforms into the
following ODE for elliptic function

(dv

dt

)2

= (v − 1)
[

4R1v
2 −

(

4R1 + (R2 + f ′)2 + ǫ
)

v + (R2 + f ′)2
]

. (3.31)

The two roots of the cubic polynomial on the right hand side of (3.31) coincide (keeping

v real) if and only if ǫ = −
(

R2 + f ′ − 2
√
R1

)2

, and corresponding repeated root is

cos2
(φ0

2

)

=
R2 + f ′

2
√
R1

. (3.32)

The condition that the system of ODEs (2.6) admits a periodic solution cos2(φ0

2
) =

constant is similar to the coalescence condition. Equation for θ̇ is

θ̇ =
R2 + f ′ − 2f ′ cos2

(

φ
2

)

2 cos2
(

φ

2

) ,

hence for the periodic trajectory we get θ̇ = R2

√
R1−f ′

(R2+f ′

−
√

R1 )

R2+f ′
. In particular, taking

R1 = (ω + f ′)2 we get the family of periodic trajectories parameterized by ω:

w1 = (R2 + f ′) tan
(φ0

2

)

cos(ωt), w2 = (R2 + f ′) tan
(φ0

2

)

sin(ωt), w3 = R2,

b1 = R1 sin(φ0) cos(ωt), b2 = R1 sin(φ0) sin(ωt), b3 = R1 cos(φ0).

(3.33)

We see that when ω =
(

R2−f ′

2

)

, the value of φ0 vanishes and the periodic trajectory

collapses to the rest point (R2ê3, R1ê3) and the family (3.33) is the center manifold
through the rest point.

We summarize our observations in the form of the following theorem.
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Theorem 3.2 The ODE reductions (2.3) of the Boussinesq equations with stratifi-
cation and rotation form a completely integrable system if Rayleigh number Ra vanishes.
Further, when 0 < f ′ < 1, the critical point (ê3, ê3) is degenerate with two dimen-
sional stable, unstable and center manifolds, and when f ′ = 1, the invariant surface
(2.7), which is an intersection of four first integrals, degenerates into the critical point
(ê3, ê3), whereas for f ′ > 1, the invariant surface is empty.

4 Missing First Integral

Here we present some details on the computation of the evasive missing first integral
whose existence is guaranteed by Jacobi’s theorem.

zj = wj , j = 1, 2, 3,

z4 = |b|2,

z5 = w · b + f ′ê3 · b,

z6 = |w|2 + 2ê3 · b = z2
1 + z2

2 + z2
3 + 2b3 .

(4.1)

Now we determine the ODEs for zj , 1 ≤ j ≤ 6. From equations (2.6) and (2.4) we get

ż1 = f ′z2 − b2, ż2 = −f ′z1 + b1, żj = 0, 3 ≤ j ≤ 6, (4.2)

so that for 3 ≤ j ≤ 6, zj are constant and

z5 = w1b1 + w2b2 + w3b3 + f ′b3 = z1b1 + z2b2 + (z3 + f ′)b3,

z1b1 + z2b2 = z5 −
(z3 + f ′)z6

2
+

(z3 + f ′)z2
3

2
+

(z3 + f ′)

2
(z2

1 + z2

2)

= A+B(z2

1 + z2

2),

(4.3)

where

A = z5 −
(z3 + f ′)

2
(z6 − z2

3), B =
z3 + f ′

2
. (4.4)

The general solution of equation (4.3) is given by

b1 =
−z2k

z2
1

+ z2
2

+
Az1

z2
1

+ z2
2

+Bz1, b2 =
z1k

z2
1

+ z2
2

+
Az2

z2
1

+ z2
2

+Bz2 , (4.5)

where k is an arbitrary parameter. On substituting this in equation (4.1) we get

z4 =

(

−z2k

z2
1

+ z2
2

+
Az1

z2
1

+ z2
2

+Bz1

)2

+

(

z1k

z2
1

+ z2
2

+
Az2

z2
1

+ z2
2

+Bz2

)2

+

(

(z6 − z2
3) − (z2

1 + z2
2)

2

)2

,

which after simplification gives the value of k2 as

k2 = −A2 + C(z2

1 + z2

2) +D(z2

1 + z2

2)
2 −

1

4
(z2

1 + z2

2)
3 := ψ(z2

1 + z2

2).
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Here C and D are given by

C = z4 − 2AB −
1

4
(z6 − z2

3)2, D = −B2 +
1

2
(z6 − z2

3).

Rewriting the ODE (4.2) as
ż1

ż2
=

f ′z2 − b2

−f ′z1 + b1

and substituting for b1 and b2 from equation (4.5) we get

f ′

2

d(z2
1 + z2

2)

dt
−

{(

−z2k

z2
1

+ z2
2

+
Az1

z2
1

+ z2
2

+Bz1

)

ż1 +

(

z1k

z2
1

+ z2
2

+
Az2

z2
1

+ z2
2

+Bz2

)

ż2

}

= 0.

After simplification this can be written as

(

f ′ −B

4

)

d

dt
(z2

1 + z2

2)2 −
A

2

d

dt
(z2

1 + z2

2) − k(z1ż2 − z2ż1) = 0 ,

which on integrating gives the first integral

tan−1(z2/z1) +
1

2

∫

{

(z2

1 + z2

2)
√

ψ(z2
1

+ z2
2
)
}−1

[A− (f ′ −B)(z2

1 + z2

2)]d(z
2

1 + z2

2). (4.6)

The integral term in equation (4.6) is an elliptic function and the term tan−1(z2/z1)
explains the spiraling of the solution curves on the surface of intersection of first integrals
in equation (2.4). If f ′ = 0, then the equation (4.6) agrees with the missing first integral
obtained by Srinivasan et al [4] in their study of integrable system of stratified Boussinesq
equations without effects of rotation.

Note that the above first integral is singular in a neighborhood of the rest point
(ê3, ê3). The values of A, B, C, D are given by

A = 0, B =
1 + f ′

2
, C = 0, D =

4 − (1 + f ′)2

4

and a function ψ is given by

ψ(z2

1 + z2

2) = (z2

1 + z2

2)2
[4 − (1 + f ′)2 − (z2

1 + z2
2)

4

]

so (4.6) simplifies to

tan−1

(z2

z1

)

+
(1 − f ′)

2

∫

d(z2
1 + z2

2)

(z2
1

+ z2
2
)
√

H − (z2
1

+ z2
2
)
,

where H = 4 − (1 + f ′)2. It implies that the first integral (4.6) is singular at (ê3, ê3).

5 Conclusion

In this paper we have incorporated the effects of rotation in a stratified Boussinesq
equations in the context of dynamics of an uniformly stratified fluid contained in a
rectangular basin of dimension L × L × H . The ODE reductions provide a system of
six coupled equations, which is completely integrable if a Rayleigh number Ra = 0. For
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0 < f ′ = f

2rh

< 1, the critical point (ê3, ê3) of the system (2.6) is degenerate with

two dimensional unstable, stable and center manifolds. For f ′ = 1 the invariant surface
(2.7) degenerates into the critical point (ê3, ê3) whereas for f ′ > 1 the invariant surface
(2.7) is empty. The two dimensional compact invariant surface on which the solution
curves develop is a torus, one of whose generating circle pinched to a critical point. We
have obtained the analytical solutions of the system (2.6) lying on the invariant surface.
Moreover these solutions are elementary functions, if a critical point lies on this invariant
surface; whereas if there are no critical points lying on the invariant surface, the solutions
are expressible in terms of elliptic functions.
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Abstract: We formalize and investigate an antagonistic game of two players (A
and B), modeled by two independent marked Poisson processes forming casualties to
the players. The game is observed by a third party point process. Unlike previous
work on this topic, the initial observation moment is chosen not arbitrarily, but at
some random moment of time following initial actions of the players. This caused an
analytic complexity unresolved until recently. This, more realistic assumption, forms
a new phase (“initial phase”) of the game and it turns out to be a short game on its
own. Following the initial phase, the main phase of the game lasts until one of the
players’ cumulative casualties exceed some specified threshold. We investigate the
paths of the game in which player A loses the game.

Keywords: noncooperative stochastic games; fluctuation theory; marked point pro-
cesses; Poisson process; ruin time; exit time; first passage time.
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1 Introduction

We model an antagonistic stochastic game by two marked Poisson processes A and B,
each representing casualties incurred to players A and B. The mutual attacks are rendered
in accordance with associated Poisson point processes and their marks are distributed
arbitrary and position independent. The game is observed by a third party process T .
Consequently, the information on the game is available upon T , thereby forming the
embedding AT ⊗BT . (The latter is a more general bivariate marked point process with
marks being mutually and position dependent.) The game lasts until one of the players
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gets “exhausted” or “ruined”. This happens whenever the total casualties to the players
exceed some specified thresholds. The real exit from the game takes place with a delay in
accordance with observations T . This is one of the quite common scenarios of games, in
which the co-authors [9] (and most recently, the first author [5–8, 12]) have been involved.

A realistic approach to the modeling was rendered through the embedded delayed
process AT ⊗ BT distorting the real time information. However, in the previous models
the position of the first observation epoch was placed arbitrarily on the positive time axis
with no regard to the start of the conflict. As the result, the initial observation point
could have been placed before the game began. In a recent article by Dshalalow and
Huang, this deficiency was overcome by placing the first observation at some random
time after the conflict has emerged. This alone formed a separate initial phase of the
conflict with a joint functional, which included the time of the beginning of the conflict
and the amount of casualties to the players, all the way to the first observation. To
merge this initial phase with the rest of the game, required some past information (non-
Markovian), all resulting in two separate phases, which we thereby have come to identify.
From the modeling point of view, the present game is simpler than that of [7], which in
contrast, also included a second phase following the initial and first phases.

The first phase of this game ends with player A losing to player B (while in [7] it was
not specified who of the two exactly loses, as their casualties were then limited).

Even though our model is not entirely characterized as a sequential game, it comes
close enough to this literature [1, 3, 5–7, 11, 12, 14, 15, 18, 21, 24]. The tools we are
using in this paper are mainly self-contained and developed methods of fluctuation theory
that originated from applications to random walk processes. We hold on classic random
walk fluctuation analysis, only in a generalized forms. We mention just a few pieces
of literature where applications of the fluctuation theory takes place in the areas such
as economics [17] and physics [20]. More on this can be found in [5–9]. Topically, the
paper falls into the category of antagonistic stochastic games widely applied to economics
[2, 16, 19, 24] and warfare [9, 12, 22, 23]. As in all previous work by the authors and the
first author, the results are directly applicable to economics and warfare, in particular,
in light of a high volatility of the global economy in the recent months. The latter can be
interpreted as an “antagonism” between the economic actions (such as bailout of credit
institutions) against the panic of the market.

Another area of applied mathematics that relates to our work includes hybrid systems
[4, 13], in particular hybrid stochastic games [5]. For more references on this topic see
[5].

The layoff of the paper is as follows. Section 2 deals with the formalism of the game.
Section 3 takes on the initial phase. Section 4 continues with the game beyond the
initial phase until player A is ruined. The merge between the two phases is the main
contribution to this section.

2 A Formal Description of the Model

The results of Sections 2 and 3 are based on Dshalalow and Huang [7]. To make it
self-contained we follow the initial phase of [7].

Let (Ω,F(Ω), Ft, P ) be a filtered probability space and let FA,FB,FS ⊆ F(Ω) be
independent sub-σ-algebras. We suppose that

A : =
∑

j≥1

djεrj
and B : =

∑

k≥1

zkεwk
(2.1)
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are FA-measurable and FB-measurable marked Poisson random measures (εa is a point
mass at a) with respective intensities λA and λB and position independent marking. The
random measures are specified by the transforms

Ee−uA(·) = eλA|·|[hA(u)−1], hA(u) = Ee−ud1 , Re(u) ≥ 0, (2.2)

Ee−vB(·) = eλB |·|[hB(v)−1], hB(v) = Ee−vz1 , Re(v) ≥ 0, (2.3)

where |·| is the Borel–Lebesgue measure and dj and zk are nonnegative r.v.’s representing
the successive strikes of players B and A against each other, respectively, while rj and
wk are the times of the strikes.

The game starts with hostile actions initiated by one of the players A or B at r1 or
w1. The players can exchange with several more strikes before the first information is
noticed by an observer at time t0. We therefore assume that

t0 ≥ max{r1, w1}. (2.4)

The initial observation time t0 will be formalized below. All forthcoming observations
will be rendered in accordance with a point process

T0 =
∑

i≥0

εti
= εt0 + S, with S =

∑

i≥1

εti
,

0 < t0 < t1 < . . . < tn < . . . (tn → ∞, with n → ∞).

(2.5)

We introduce the extension of T :

T : = εt
−1

+ T0, with t−1 : = min{r1, w1}, (2.6)

such that the tail S =
∑

i≥1
εti

of T0 is FS-measurable. The increments ∆1 : = t1 −
t0, ∆2 : = t2 − t1, ∆3 : = t3 − t2, . . . are all independent and identically distributed,
and all belong to the equivalence class [∆] of r.v.’s with the common Laplace-Stieltjes
transform

δ(θ) : = Ee−θ∆. (2.7)

Now we define the initial observation as

t0 = max{r1, w1} + ∆0, (2.8)

where ∆0 ∈ [∆] and ∆0 is independent from the rest of the ∆’s. t0 is included in T0 of
equation (2.5) and because it contains some of the A and B, T0 is not FS-measurable.
However, T0 is a delayed renewal process, while T is not.

We assign to t−1 the genuine start of the game at time min{r1, w1} of (2.6). That is,

t−1 = min{r1, w1}. (2.9)

Now, since t−1 and t0−t−1 are dependent (through r1 and w1), the extended process T
of (2.6) is not a renewal process, and not even a delayed renewal, as it was in [5, 6, 8, 9, 12].

It should be clear that t0 depends upon r1 and w1 and thus on A and B, which makes
T0 A⊗ B-measurable. Define the continuous time parameter process

(α(t), β(t)) : = A⊗ B([0, t]), t ≥ 0, (2.10)
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to be adapted to the filtration (Ft)t≥0. Also introduce its embedding over T0 :

(αj , βj) : = (α(tj), β(tj)) = A⊗ B([0, tj]), j = 0, 1, . . . , (2.11)

which forms observations of A⊗ B over T0, with respective increments

(ξj , ηj) : = A⊗ B((tj−1, tj ]), j = 1, . . . . (2.12)

In addition, let

(ξ0, η0) : = A⊗ B((max{r1, w1}, t0]) (2.13)

to be used later on.
Introduce the embedded bivariate marked random measures

AT0
⊗ BT0

: = (α0, β0)εt0 +
∑

j≥1

(ξj , ηj)εtj
, (2.14)

where the marginal marked point processes

AT0
= α0εt0 +

∑

i≥1

ξiεti
and BT0

= β0εt0 +
∑

i≥1

ηiεti
(2.15)

are with position dependent marking and with ξj and ηj being dependent. For the
forthcoming sections we introduce the Laplace-Stieltjes transform

g(u, v, θ) : = Ee−uξj−vηj−θ∆j , Re(u) ≥ 0, Re(v) ≥ 0, Re(θ) ≥ 0, j ≥ 1, (2.16)

which will be evaluated as the follows:

E
[

e−uξj−vηj−θ∆j

]

= E
[

e−θ∆jE
[

e−uξj−vηj

∣

∣∆j

]]

= E
[

e−θ∆jE
[

e−uA((tj−1,tj ])
∣

∣∆j

]

E
[

e−vB((tj−1,tj])
∣

∣∆j

]]

= E
[

e−θ∆j · eλA∆j(hA(u)−1) · eλB∆j(hB(v)−1)
]

= E
[

e−{θ+λA(1−hA(u))+λB(1−hB(v))}∆j

]

= δ(θ∗), j = 1, 2, . . . , (2.17)

with

θ∗ : = θ + λA(1 − hA(u)) + λB(1 − hB(v)), (2.18)

and δ defined in (2.7).

3 The Initial Phase of the Game

The entire game will include the recording of the conflict between players A and B known
to an observer upon process T (informally, {t−1, t0, t1, . . .}) from its inception upon t−1

followed by the initial observation at time t0. T is defined below. The actual start of the
game at t−1 is unknown to the observer, as this moment takes place prior to t0. From the
construction of the extended game, the point process T is obviously “doubly delayed”
(in light of its attachment t−1). The information on t−1 will be used in section 4 during
the merging process.
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The initial phase of the game is specified as follows. Define the respective damages
to the players at t−1 as

(ξ−1, η−1) : = (α−1, β−1) : = (α(t−1), β(t−1)) = (d11{r1≤w1}
, z11{r1≥w1}

). (3.1)

Therefore, the embedded process
∑

k≥−1
εtk

(αk, βk) satisfies the extended initial condi-
tions

At
−1

⊗ Bt
−1

= (α−1, β−1) = (d1, 0), on trace σ-algebra F(Ω) ∩ {r1 < w1}, (3.2)

At
−1

⊗ Bt
−1

= (α−1, β−1) = (0, z1), on F(Ω) ∩ {r1 > w1}, (3.3)

At
−1

⊗ Bt
−1

= (α−1, β−1) = (d1, z1), on F(Ω) ∩ {r1 = w1}. (3.4)

The extended version of the game is defined as the bivariate marked point process

AT ⊗ BT : = (ξ−1, η−1)εt
−1

+ (α0 − ξ−1, β0 − η−1)εt0 +
∑

j≥1

(ξj , ηj)εtj
(3.5)

(embedded over T ).
As we will see it in the next section, the game will require knowledge of AT ⊗BT at

t−1 and t0. Consequently, we begin to work on the functional

φ0 : = φ0(a0, b0, ϑ0, u0, v0, θ0) = E[e−a0α
−1−u0α0−b0β

−1−v0β0−ϑ0t
−1−θ0t0 ] (3.6)

that describes what we call, the initial phase of the game. The following theorem is due
to Dshalalow and Huang [7].

Theorem 3.1 The functional φ0 of the initial phase of the game satisfies the follow-
ing formula:

φ0 =
λAλBδ(θ∗0)

ϑ0 + θ0 + λA + λB

(

1

θA + λB

hA(a0 + u0)hB(v0) +
1

θB + λA

hA(u0)hB(b0 + v0)

)

,

(3.7)

where

θ∗0 : = θ0 + λA(1 − hA(u0)) + λB(1 − hB(v0)), (3.8)

θA : = θ0 − λA(hA(u0) − 1), (3.9)

θB : = θ0 − λB(hB(v0) − 1), (3.10)

δ(θ) : = E
[

e−θ∆0
]

, ∆0 ∈ [∆]. (3.11)

4 The Main Phase of the Game

After passing the initial phase, the game continues with its status registered at epochs
T and it ends when at least one of the players sustains damages in excess of thresholds
M or N . To further formalize the game past t0 we introduce the following random exit
indices

µ : = inf {j ≥ 0 : αj = α0 + ξ1 + . . . + ξj > M}, (4.1)

ν : = inf {k ≥ 0 : βk = β0 + η1 + . . . + ηk > N}. (4.2)

Related on µ and ν are the following r.v.’s:
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tµ is the nearest observation epoch when player A’s damages exceed threshold M ,
tν is the first observation of T when player B’s damages exceed threshold N .

Apparently, αµ and βν are the respective cumulative damages to players A and B at
their ruin times. We will be concerned, however, with the ruin time of player A and thus
restrict our game to the trace σ-algebra F(Ω)∩{µ < ν}. Accordingly, we will target the
following functional

φµ : = φµ(a, b, ϑ, u, v, θ) = E[e−aαµ−1−uαµ−bβµ−1−vβµ−ϑtµ−1−θtµ1{µ<ν}]. (4.3)

To calculate a tractable form of φµ we will use the bivariate Laplace-Carson transform

LCpq(·)(x, y) : = xy

∫

∞

p=0

∫

∞

q=0

e−xp−yq(·)d(p, q), Re(x) > 0, Re(y) > 0, (4.4)

with the inverse

LC−1

xy (·)(p, q) = L−1

xy (·
1

xy
), (4.5)

where L−1 is the inverse of the bivariate Laplace transform.

Theorem 4.1 The functional φµ of the game on trace σ-algebra F (Ω) ∩ {µ < ν}
satisfies the following formula:

φµ = LC−1

xy

(

(Φ1

0 − Φ0) +
Φ∗

0

1 − g
(G1 − G)

)

(M, N), (4.6)

where

G : = g(u + x, v + y, θ), (4.7)

G1 : = g(u, v + y, θ), (4.8)

Φ∗

0 : = φ0(0, 0, 0, a + u + x, b + v + y, ϑ + θ), (4.9)

Φ0 : = φ0(a, b, ϑ, u + x, v + y, θ), (4.10)

Φ1

0 : = φ0(a + x, b, ϑ, u, v + y, θ), (4.11)

with g and φ0 of (2.16) and (3.7), respectively.

Proof : First we modify (4.1) and (4.2) for the random exit indices µ and ν which
depend on parameters M and N , now to depend on p and q (being arbitrary nonnegative
real numbers), respectively, and working with them as parametric families of r.v.’s:

µ(p) : = inf {j ≥ 0 : αj = α0 + ξ1 + . . . + ξj > p}, p ≥ 0, (4.12)

ν(q) : = inf {k ≥ 0 : βk = β0 + η1 + . . . + ηk > q}, q ≥ 0. (4.13)

The functional φµ will now change to

Φpq = E[e−aα
µ(p)−1−uα

µ(p)−bβ
µ(p)−1−vβ

µ(p)−ϑt
µ(p)−1−θt

µ(p)1{µ(p)<ν(q)}]. (4.14)

This will follow the paths of the game on the trace σ-algebra F(Ω) ∩ {µ(p) < ν(q)} and
yield:

Φpq =
∑

j≥0

∑

k>j

E[e−aαj−1−uαj−bβj−1−vβj−ϑtj−1−θtj1{µ(p)=j,ν(q)=k}]. (4.15)

By Fubini’s theorem, and that



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9 (3) (2009) 277– 286 283

LCpq

(

1{µ(p)=j,ν(q)=k}

)

(x, y) = (e−xαj−1 − e−xαj)(e−yβk−1 − e−yβk),

(which can be readily shown) we have

LCpq(Φpq)(x, y) =
∑

j≥0

∑

k>j

E[e−aαj−1−uαj−bβj−1−vβj−ϑtj−1−θtj

× (e−xαj−1 − e−xαj )(e−yβk−1 − e−yβk)].

(4.16)

We distinguish two cases.
(i) Case j = 0. This case will include the entire information on the initial phase

observed at t0 and prior to t0, including t−1. In a few lines below, we are going to
implement the result of Theorem 3.1 and utilize all necessary versions of the functional
φ0 :

∑

k>0

E[e−aα
−1−uα0−bβ

−1−vβ0−ϑt
−1−θt0(e−xα

−1 − e−xα0)(e−yβk−1 − e−yβk)]

=
∑

k>0

E[e−aα
−1−uα0−bβ

−1−vβ0−ϑt
−1−θt0(e−xα

−1 − e−xα0)

× e−yβ0e−y(η1+ldots+ηk−1)(1 − e−yηk)]

=
{

E[e−(a+x)α
−1−uα0−bβ

−1−(v+y)β0−ϑt
−1−θt0 ]

− E[e−aα
−1−(u+x)α0−bβ

−1−(v+y)β0−ϑt
−1−θt0 ]

}

∑

k>0

E[e−y(η1+...+ηk−1)(1 − e−yηk)]

=
{

φ0(a + x, b, ϑ, u, v + y, θ) − φ0(a, b, ϑ, u + x, v + y, θ)
}

×
∑

k>0

[g(0, y, 0)]k−1
(

1 − g(0, y, 0)
)

= Φ1

0 − Φ0, (4.17)

where the summation over k > 0 converges to 1 as per Lemma 1 of Dshalalow and
Huang [5]: the associated convergence of

∑

k>0
[g(0, y, 0)]k−1 is guaranteed provided that

Re(y) > 0. The last line in (4.17) is due to notation (4.9-4.11).
(ii) Case j > 0. This case also contains parts of functional φ0 in the information

related to the reference point t0.
Transformation (4.16) for this case is

∑

j>0

∑

k>j

E[e−aαj−1−uαj−bβj−1−vβj−ϑtj−1−θtj(e−xαj−1 − e−xαj)(e−yβk−1 − e−yβk)]

=
∑

j>0

∑

k>j

{

E[e−(a+u+x)αj−1−(b+v+y)βj−1−(ϑ+θ)tj−1 ]

× E[e−uξj (1 − e−xξj )e−(v+y)ηj−θ∆j ]E[e−y(ηj+1+...+ηk−1)(1 − e−yηk)]
}

=
∑

j>0

{

E[e−(a+u+x)α0−(b+v+y)β0−(ϑ+θ)t0 ]

× E[e−(a+u+x)(ξ1+...+ξj−1)−(b+v+y)(η1+...+ηj−1)−(ϑ+θ)

(

∆1+...+∆j−1)] (4.18)

× E[e−uξj (1 − e−xξj )e−(v+y)ηj−θ∆j ]
∑

k>j

E[e−y(ηj+1+...+ηk−1)(1 − e−yηk)]
}

,
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where the third factor can be written as

E[e−uξj−(v+y)ηj−θ∆j ] − E[e−(u+x)ξj−(v+y)ηj−θ∆j ] = G1 − G

(as per notation (4.7-4.8)) and the summation over k > j converges to 1, for Re(y) > 0,
as per Lemma 1 of [5]. Then, after some algebra in (4.18) and the use of notation (4.7-4.8)
and (4.18), we arrive at

φ0(0, 0, 0, a + u + x, b + v + y, ϑ + θ) ·
∑

j>0

gj−1 · (G1 − G)

= Φ∗

0 ·
∑

j>0

gj−1 · (G1 − G) =
Φ∗

0

1 − g
(G1 − G),

(4.19)

with the convergence of
∑

j>0
gj−1 under the condition that the parameters of g satisfy

Re(a + u + x) > 0, Re(b + v + y) > 0, Re(ϑ + θ) > 0, (4.20)

with any two of the three strict inequalities relaxed with ≥.
With the cases j = 0 and j > 0 combined together, we will arrive at

LCpq(Φpq)(x, y) = (Φ1

0 − Φ0) +
Φ∗

0

1 − g
(G1 − G). (4.21)

2

Remark 4.1 For the particular case

ϕµ = ϕµ(u, v, ϑ) = E[e−uαµ−vβµ−θtµ1{µ<ν}] (4.22)

of the functional φµ we get from (4.21)

LCpq(ϕpq)(x, y) = Φ1

0 − Φ0

1 − G1

1 − G
, (4.23)

where ϕpq is the corresponding marginal reduction of Φpq while the rest of the marginal
functionals G, G1, Φ0, and Φ1

0 will shrink but for convenience carry the same characters:

G = g(u + x, v + y, θ), (4.24)

G1 = g(u, v + y, θ), (4.25)

Φ∗

0 = Φ0 = φ0(0, 0, 0, u + x, v + y, θ), (4.26)

Φ1

0 = φ0(x, 0, 0, u, v + y, θ). (4.27)

Explicitly,

LCpq(ϕpq)(x, y) = φ0(x, 0, 0, u, v + y, θ)

− φ0(0, 0, 0, u + x, v + y, θ)
1 − g(u, v + y, θ)

1 − g(u + x, v + y, θ)
,

(4.28)

where from (3.7-3.10) and (2.18), the marginal versions of φ0 needed for (4.28) are

φ0(x, 0, 0, u, v, θ) = E[e−xα
−1−uα0−vβ0−θt0 ]

=
λAλBδ(θ∗)

θ + λA + λB

(

1

θA + λB

hA(x + u)hB(v) +
1

θB + λA

hA(u)hB(v)

)

, (4.29)

φ0(0, 0, 0, u, v, θ) = E[e−uα0−vβ0−θt0 ]

=
λAλBδ(θ∗)

θ + λA + λB

(

1

θA + λB

hA(u)hB(v) +
1

θB + λA

hA(u)hB(v)

)

, (4.30)
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and

θ∗0 : = θ + λA(1 − hA(u)) + λB(1 − hB(v)), (4.31)

θA : = θ − λA(hA(u) − 1), (4.32)

θB : = θ − λB(hB(v) − 1). (4.33)

2

Concluding Remarks. In this paper, we study fully antagonistic stochastic games
of two players (A and B) (initiated in [5-7]), modeled by two independent marked Poisson
processes recording times and quantities of casualties to the players. The game is observed
by a third party renewal point process upon which the information is gathered (and a
decision about upcoming steps can be made or modified). Unlike previous work in
[5, 6, 8, 9], the initial observation moment is not arbitrarily chosen, but it is placed at
random following some initial actions of the players. This caused an analytic complexity
which was unresolved until recently. Due to this more realistic assumption a new phase
in the game emerged, which we name the “initial phase”. This initial phase turned out
to be a short game on its own. Following the initial phase, the main phase of the game
lasts until one of the players is ruined. This takes place when the cumulative casualties
of a losing player exceed some specified threshold. We investigate the paths of the game
in which player A loses the game. The general formulas are obtained in closed forms. In
[10] we will render calculation for a variety of special cases.
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[3] Brandts, J. and Solàc, C. Reference Points and Negative Reciprocity in Simple Sequential
Games. Games and Economic Behavior 36 (2) (2001) 138–157.

[4] Collins, P. Chaotic dynamics in hybrid systems. Nonlinear Dynamics and Systems Theory
8 (2) (2008) 169–194.

[5] Dshalalow, J.H. and Huang, W. On noncooperative hybrid stochastic games. Nonliear
Analysis: Special Issue Section: Analysis and Design of Hybrid Systems 2 (3) (2008) 803–
811.

[6] Dshalalow, J.H. and Huang, W. A stochastic game with a two-phase conflict. Jubilee
Volume: Legacy of the Legend, Professor V. Lakshmikantham. Cambridge Scientific Pub-
lishers, Chapter 18, (2009) 201–209.

[7] Dshalalow, J.H. and Huang, W. Sequential antagonistic games with initial phase (jointly
with Weijun Huang). To appear in Functional Equations And Difference Inequalities and
Ulam Stability Notions, Dedicated to Stanislaw Marcin ULAM, on the occasion of his 100-th
birthday anniversary. In Press.

[8] Dshalalow, J.H. and Ke, H-J. Layers of noncooperative games. Nonliear Analysis, Series
A. In press.

[9] Dshalalow, J.H. and Treerattrakoon, A. Set-theoretic inequalities in stochastic noncooper-
ative games with coalition. Journal of Inequalities and Applications. Art. ID 713642, 14 pp.
(2008).



286 JEWGENI H. DSHALALOW AND AILADA TREERATTRAKOON

[10] Dshalalow, J.H. and Treerattrakoon, A. Operational calculus in noncooperative stochastic
games, Nonlinear Dynamics and Systems Theory (accepted for publication).

[11] Exman, I. Solving sequential games with Boltzmann-learned tactics. In: Lecture Notes In:
Computer Science, 496, 216–220. Proceedings of the 1st Workshop on Parallel Problem
Solving from Nature, Springer-Verlag London, UK, 1990.

[12] Huang W. and Dshalalow, J.H. Tandem Antagonistic Games, Nonliear Analysis, Series A,
in press.

[13] Khusainov, D., Langerak, R., Kuzmych, O. Estimations of solutions convergence of hybrid
systems consisting of linear equations with delay. Nonlinear Dynamics and Systems Theory
7(2) (2007) 169–186.

[14] Kobayashi, N. Equivalence between quantum simultaneous games and quantum sequential
games. Submitted to Quantum Physics.

[15] Kohler, D.A. and Chandrasekaran, R. A Class of Sequential Games. Operations Research,
INFORMS 19(2) (1971) 270–277.

[16] Konstantinov, R.V. and Polovinkin, E.S. Mathematical simulation of a dynamic game in the
enterprise competition problem. Cybernetics and Systems Analysis 40 (5) (2004) 720–725.

[17] Kyprianou, A.E. and Pistorius, M.R. Perpetual options and Canadization through fluctu-
ation theory. Ann. Appl. Prob. 13 (3) (2003) 1077–1098.

[18] Radzik, T. and Szajowski, K. Sequential Games with Random Priority. Sequential Analysis
9(4) (1990) 361–377.

[19] Ragupathy, R. and Das, T. A stochastic game approach for modeling wholesale energy
bidding in deregulated power markets. IEEE Tras. on Power Syst. 19 (2) (2004) 849–856.

[20] Redner, S. A Guide to First-Passage Processes. Cambridge University Press, Cambridge,
2001.

[21] Siegrist, K. and Steele, J. Sequential Games. J. Appl. Probab. 38(4) (2001) 1006–1017.

[22] Shashikin, V.N. Antagonistic game with interval payoff functions. Cybernetics and Systems
Analysis 40(4) (2004) 556–564.

[23] Shima, T. Capture Conditions in a Pursuit-Evasion Game between Players with Biproper
Dynamics. Journal of Optimization Theory and Applications 126(3) (2005) 503–528.

[24] Wen, Q. A Folk Theorem for Repeated Sequential Games. The Review of Economic Studies
69(2) (2002) 493–512.



Nonlinear Dynamics and Systems Theory, 9 (3) (2009) 287–299

Robust Controller Design for Active Flutter

Suppression of a Two-dimensional Airfoil

Chunyan Gao ∗, Guangren Duan and Canghua Jiang

Center for Control Theory and Guidance Technology, Harbin Institute of Technology,
P.O.Box 416, Harbin 150001, PRC

Received: June 11, 2008; Revised: June 8, 2009

Abstract: This paper investigates the problem of active flutter suppression for a
two-dimensional three degrees of freedom (3DOF) airfoil. With the influence of un-
steady aerodynamic forces and parametric uncertainties, the output suboptimal con-
trol law design for a 3DOF airfoil control system is transformed into a constrained
optimization problem. Then, the flutter robust suppression control law could be ex-
pediently obtained by linear matrix inequalities (LMIs), which realizes active flutter
suppression by increasing the flutter critical speed. Simulation results show that the
flutter phenomenon could be well suppressed in spite of the uncertainty of damping
coefficients.

Keywords: active flutter suppression; suboptimal control; linear matrix inequalities.
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1 Introduction

Recently, techniques of active aeroelastic wing [8], thrust vector control [1, 4] and flying-
wing layout [2, 4] have became the hottest issues in aeronautic area. At the same time,
high-altitude long-endurance aircrafts are taken into account by more and more countries
[7]. The general features of high-altitude long-endurance aircraft are high aspect ratio,
light structural weight, and well flexibility. Therefore, the future aircrafts are in the
nature of more flexibility. With the increase of flexibility, the flutter phenomenon is more
and more prominent. Flutter is a vibration caused by airstream energy being absorbed by
the lifting surface, which is more likely to occur in the wings, ailerons and other flexible
parts. Furthermore, this aeroelastic phenomenon increasing with the flight velocities can
cause the wing fatigue to be increased. If the flight velocity is above the critical flutter
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speed and the flutter phenomenon is not suppressed, the structure of aircrafts may be
destroyed. To reduce or suppress this phenomenon is very important in the aeronautic
industry.

Over the past several decades, this severe problem has been studied using many
different techniques. Traditional technique is the passive flutter suppression method,
which adds structural weight to change the aircraft stiffness, and some components have
to be moved to keep balance. So this technique deteriorates some flight performances, and
is not always feasible. Later the active flutter suppression method appears to suppresses
flutter phenomenon without adding structural weight and redesign. The idea of this
method is to introduce a certain deformation based on the structure flexibility, which
can suppress the flutter actively. Therefore, there are above two main techniques that
we can use.

With the development of active control technology in the aeronautic area, flexibility
at the support of active control technology exhibits more potential. Nowadays, more
and more active control techniques are used to suppress the flutter phenomenon. Shana
D. Olds uses Linear Quadratic Regulation theory to design a state feedback controller
for an aeroelastic system [6]. Good performances are illustrated, but the results are not
feasible in practice because all states are assumed to be measurable. Samuel da Silva and
Vicente L. Júnior used the LMI technique to solve the active flutter suppression problem
with robustness to polytopic parametric uncertainties [9]. In their paper, they designed
a state feedback control law based on full-order state observer. The dimension of state
observer is equal to that of controlled plant. Therefore, there are twenty-order states in
their closed-loop aeroelastic system. Though the state feed back control law and observer
can be designed respectively according to separate principle, the full-order observer is
difficult to carry out in actual engineering application because of high order. In the view
of engineering practice, convenient and effective design process play an important role in
actual aeroelastic system, which motivates us to carry out the present study.

In this paper, for the sake of analysis, the model is simplified on the assumption that
the stiffness of control surface is very large, which is different from the aeroelastic model
of aforementioned papers [6, 9]. We adopt the output as the feedback information to de-
sign a robust controller for active flutter suppression of a two-dimensional 3DOF airfoil
aeroelastic system. Considering the system with polytopic parametric uncertainties and
the influence of unsteady aerodynamic forces, we transform the output suboptimal con-
trol law design for a 3DOF airfoil control system into a constrained optimization problem,
then obtain the output feedback control law by LMI technique and the minimum norm
method. Despite the uncertainties of two-dimensional 3DOF airfoil aeroelastic system,
this proposed approach makes it design easier for engineering application. In addition, it
considers both response performance and control performance. This approach can con-
veniently and effectively realize robust active flutter suppression. The simulation results
show that the flutter phenomenon could be well suppressed in spite of the uncertainty of
damping coefficients.

2 Aeroelastic System Formulation

The schematic diagram of a 3DOF airfoil aeroelastic system with control surface is shown
in Figure 2.1. Here, in order to develop the motion equations a coordinate system is
introduced, which originates at the midpoint of airfoil chord. The x axis lies along the
chord in the horizontal direction. The z axis shown in Figure 2.1 is perpendicular with x
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direction. The quantity b is half chord. And two springs, one of which is line spring, the
other is torsional spring, are put on the point E of airfoil elastic axis which is located at
a distance of ab from the mid-chord. The flap hinge is located at a distance of cb from
the mid-chord. Then, the three degrees of freedom are respectively the plunge h which
is measured at the elastic axis E and positive in the downward direction, the pitching
angle α which rotates on the elastic axis E and positive nose-up, the deflective angle of
control surface β which represents the angular deflection of the flap about the flap hinge
and positive for the flap trailing edge down.

O

xbb

a·b

c·b

z

T

T

LV

h

Kh

K

K
E

Figure 2.1: Configuration of a two-dimensional 3DOF airfoil.

2.1 Unsteady aerodynamic force calculation

The precise calculation of unsteady aerodynamic forces is an important step in two-
dimensional airfoil flutter analysis. According to the Theodorsen theory, the aerodynamic
lift L, pitching moment Tα, and control surface moment Tβ of a unit wingspan length
are respectively:

L = πρb2

(

ḧ + V α̇ − baα̈ −
V

π
T1β̇ −

b

π
T4β̈

)

+ 2πρV bT0C (k) ,

Tα = πρb2

[

baḧ − V b

(

1

2
− a

)

α̇ − b2

(

1

8
+ a2

)

α̈ −
V 2

π
(T4 + T10)β+

V b

π

(

−T1 + T8 + (c − a)T4 −
1

2
T11

)

β̇ +
b2

π

(

T7 + (c − a)T1β̈
)

]

+2πρV b2

(

ā +
1

2

)

T0C (k) ,

Tβ = πρb2

[

b

π
T1ḧ −

V b

π

(

2T9 + T1 −

(

a −
1

2

)

T4

)

α̇ −
2b2

π
T13α̈

−

(

V

π

)2

(T5 − T4T10)β +
V b

2π2
T4T11β̇ +

(

b

π

)2

T3β̈

]

− ρV b2T12T0C (k) .
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where k is the air reduced frequency which is dimensionless, ρ is the air density, and V

is the flow velocity. Definitions of other coefficients could be found in [10].

2.2 Aeroelastic System Modeling

In the dynamic schematic diagram Figure 2.1, any point displacement of the airfoil can
be expressed as

z = h + (x − ab)α + (x − cb)βUstep (x − cb) ,

where Ustep (x − cb) is an unit step function.

Then, the system kinetic energy is

T =
1

2

∫ b

−b

ż2m̄dx

=
1

2
mḣ2 +

1

2
Iαα̇2 +

1

2
Iβ β̇2 + Sαḣα̇ + Sβ ḣβ̇ + [(c − a) bSβ + Iβ ] α̇β̇,

and the potential energy is

U =
1

2
khh2 +

1

2
kαα2 +

1

2
kββ2,

where

m =

∫ b

−b

m̄dx,

Sα =

∫ b

−b

(x − ab) m̄dx = mxa,

Iα =

∫ b

−b

(x − ab)
2
m̄dx = mr2

a,

Sβ =

∫ b

cb

(x − cb) m̄dx = mxβ ,

Iβ =

∫ b

cb

(x − cb)
2
m̄dx = mr2

β ,

kh, kα, kβ are stiffness coefficients, m̄ is airfoil mass of unit area. Definitions of other
coefficients could be found in [11].

According to Lagrange’s equation and principle of virtual work, the equation of mo-
tion for this two-dimensional 3DOF airfoil aeroelastic system is





m mxα mxβ

mxα mr2
α mr2

β + mxβ (cb − ab)

mxβ mr2
β + mxβ (cb − ab) mr2

β









ḧ

α̈

β̈





+





dh 0 0
0 dα 0
0 0 dβ









ḣ

α̇

β̇



 +





kh 0 0
0 kα 0
0 0 kβ









h

α

β



 =





−L

Tα

Tβ




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On the assumption of perfect rigidity, i.e. the stiffness of control surface is very large,
after introducing some damping coefficients, and the unsteady aerodynamic forces, the
open-loop motion model of a 3DOF airfoil can be represented as [11]

(

s2
[

Ms Mc

]

+ s
[

Ds 0
]

+
[

Ks 0
])

[

qs (s)
β (s)

]

+qd

[

Ãs (s) Ãc (s)
]

[

qs (s)
β (s)

]

= 0 (2.1)

where qs =
[

h α
]T

, Ms, Ds, Ks are respectively the mass matrix, structural damping
matrix, and structural stiffness matrix of plunge and pitching modes, Mc is the coupled
mass matrix among the control surface and structural modes, Ãs (s) and Ãc (s) are the
matrices of aerodynamic forces, qd = 1

2
ρV 2 is the dynamic pressure of a gas flow.

For the sake of convenience, Eq. (2.1) could be rearranged into the following form:
(

Mss
2 + Dss + Ks

)

qs (s) + Mcs
2β (s) + qdÃs (s) qs (s) + qdÃc (s)β (s) = 0.

In order to obtain a state space representation, a rational function approximation, that
is, the minimum states method, is adopted to fix the unsteady aerodynamic matrices in
frequency domain to the matrices in Laplace domain. Therefore we have

Ãs (s) = As0 +
b

V
As1s +

b2

V 2
As2s

2 + E

(

Is −
V

b
R

)−1

Fss, (2.2)

Ãc (s) = Ac0 +
b

V
Ac1s +

b2

V 2
Ac2s

2 + E

(

Is −
V

b
R

)−1

Fcs. (2.3)

And aerodynamic augmented states

xa (s) =

(

Is −
V

b
R

)−1

(Fsqs (s) + Fcβ (s)) s (2.4)

are introduced.
According to formula (2.2), (2.3) and (2.4), Eq. (2.1) can be rewritten into the state

space form:
Ẋh = AhXh + Bhuh,

where

Xh =





qs

q̇s

xa



 , uh =





β

β̇

β̈



 ,

Ah =





0 I 0
−M−1 (Ks + qdAs0) −M−1

(

Ds + qd
b
V

As1

)

−qdM
−1E

0 Fs
V
b
R



 ,

Bh =







0 0 0

−qdM
−1Ac0 −qd

b
V

M−1Ac1 −M−1

(

Mc + qd
b2

V 2 Ac2

)

0 Fc 0






,

M = Ms + qd

b2

V 2
As2.
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In practice, information of displacement, velocity, and acceleration can be obtained
by sensors, such as accelerometers and angular rate gyros. It is assumed that in this two
dimensional 3DOF aeroelastic system the acceleration information can be measured by
gyros which takes the following form [11]

Yh = Φ
[

−M−1 (Ks + qdAs0) −M−1
(

Ds + qd
b
V

As1

)

−qdM
−1E

]





q

q̇

xa





+Φ
[

−qdM
−1Ac0 −qd

b
V

M−1Ac1 −M−1

(

Mc + qd
b2

V 2 Ac2

) ]





β

β̇

β̈



 ,

where Φ is the coefficient matrix. Then the output state function of the two-dimensional
3DOF aeroelastic system could be denoted as

Yh = ChXh + Dhuh.

Furthermore, we adopt the following transfer function to describe the relation between
the deflective angle of control surface and the command of actuator

β

δc

=
a3

s3 + a2s2 + a1s + a0

,

which has the following representation in time domain





β̇

β̈...
β



 =





0 1 0
0 0 1

−a0 −a1 −a2









β

β̇

β̈



 +





0
0
a3



 δc.

Then, the final open-loop aeroelastic state and output functions are

Ẋ = AX + Bu,

Y = CX,

where
X =

[

Xh Xe

]T
, u = δc, Xe =

[

β β̇ β̈
]T

,

A =

[

Ah Bh

0 Ae

]

, B =

[

0
Be

]

, C =
[

Ch Dh

]

,

Ae =





0 1 0
0 0 1

−a0 −a1 −a2



 , Be =





0
0
a3



 .

Since matrix A depends on the flow velocity V explicitly, in the following matrix A is
substituted by A (V ). It is clear that eigenvalues of A (V ) change their positions on
complex plan with V . According to the linear control theories, the system is stable if
and only if the eigenvalues of state matrix are located in the open left-half complex plane.
Therefore, when the locus of a eigenvalue crosses the imaginary axis from the left-half
complex plane, the aeroelastic system is critically stable. And the corresponding flow
velocity is called a critical flutter speed.
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3 Robust Control Law Design for Active Flutter Suppression

3.1 Problem Formulation

In the aeroelastic control systems, the most common technique for active flutter suppres-
sion is the theory of Linear Quadratic Regulation by state feedback. Since the aerody-
namic augmented states are immeasurable, this technique has difficulties to be applied
in practice. Therefore, output feedback is adopted in this paper.

According to the two-dimensional 3DOF aeroelastic system model

Ẋ = A (V )X + Bu,

Y = CX, (3.1)

and supposing that the matrix C is of full row rank, we design the following output
feedback control law

u = −KY (3.2)

to minimize the cost function

J =
1

2

∫

∞

0

(

XT QX + uT Ru
)

dt. (3.3)

Generally the weighting matrices Q and R are selected via engineering experiences. In
this paper, the two weighting matrices are both assumed to be positive definite. Q is
limited to 10−3 level, and R is limited to an identity matrix.

Usually there are three approaches, i.e. the Levine-Athans method, the least error
excitation method, and the minimum norm method [13], to solve the output suboptimal
problem and obtain the output feedback control law K indirectly. But the actual two-
dimensional 3DOF system works in a changing environment, which differs from the model
that we discuss and design, especially when the damping coefficients are difficult to be
obtained precisely. Therefore the model we analysis possesses uncertainties. In this
paper, we assume that the dynamic matrix has a parametric uncertainty which can be
described by a polytope, i.e.

A ∈ Ω = Co {A1, A2, · · · , An} =

{

n
∑

i=1

λiAi; λi ≥ 0,

n
∑

i=1

λi = 1

}

,

where n is the number of vertexes of the polytopic system. In addition, the formula
qd = 1

2
ρV 2 is included in every matrix Ai. Therefore, the matrix Ai also depends on the

flow velocity V .

3.2 Robust Control Law Design

The problem to be investigated in this paper is how to design the output feedback control
law (3.2). With the control law, the two-dimensional 3DOF aeroelastic system (3.1) can
be represented as:

Ẋ = (A − BKC)X, A ∈ Ω.

Then, the cost function could be rewritten into the following form:

J =
1

2

∫ ∞

0

XT
(

Q + CT KT RKC
)

Xdt.
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The system described by (3.1) is quadratically stable if and only if there exists a sym-
metric matrix P = PT > 0 such that

(A − BKC)T
P + P (A − BKC) + Q + CT KT RKC ≤ 0. (3.4)

Along any trajectory of the closed-loop system, the derivative of XT (t)PX (t) is

d

dt

[

XT (t)PX (t)
]

= XT (t)
[

(A − BKC)
T

P + P (A − BKC)
]

X (t)

≤ −XT (t)
(

Q + CT KT RKC
)

X (t) . (3.5)

After integrating both sides of the inequality (3.5) from t = 0 to t = ∞, we have

J =
1

2

∫ ∞

0

XT
(

Q + CT KT RKC
)

Xdt ≤ XT (0)PX (0) .

Therefore the suboptimal control problem could be transformed into a constrained opti-
mization problem

min
1

2
XT (0)PX (0)

s.t.

{

(A − BKC)
T

P + P (A − BKC) + Q + CT KT RKC ≤ 0,

P > 0, Q > 0, R > 0.
(3.6)

It is noted that since our purpose is to determine the matrix K, inequality (3.4)
is actually a nonlinear matrix inequality. This drawback can be overcome by defining
P1 = P−1, P2 = −KCP1, and inequality (3.4) is equivalent to the following LMI





P1A
T + AP1 + PT

2 BT + BP2 P1 PT
2

P1 −Q−1 0
P2 0 −R−1



 ≤ 0.

Obviously, when the dynamic matrix A has a polytopic parametric variation, we only
need analyze this problem on the vertexes [3, 5, 12]. Thus, the optimization problem
(3.6) could be transformed further into the following form:

min γ

s.t.







































P1A
T
i + AiP1 + PT

2 BT + BP2 P1 PT
2

P1 −Q−1 0
P2 0 −R−1



 ≤ 0,

[

γ XT (0)

X (0) P1

]

≥ 0,

P1 > 0,

(3.7)

where P1 = P−1, P2 = −KCP1, i = 1, 2, · · ·n.
Because the output matrix C is not always square, we could not directly inverse

CP1 to derive K from equation P2 = −KCP1. In this paper, we apply the minimum
norm method to determine the matrix K indirectly. Define F ∗ , −P2P

−1

1
, F , KC.

Supposing that the matrices P1 and P2 have been derived from the optimization problem
(3.7), minimizing the following objective function

J =‖ F − F ∗ ‖=

√

Trace (F − F ∗)
T

(F − F ∗),
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we can get the approximate solution

K = F ∗CT
(

CCT
)−1

.

4 Numerical Simulation

4.1 Open-loop Simulation

In order to validate the effectiveness of the proposed method, numerical simulation are
set up in this section with the following parameters. Here parameter variations are not

Parameter Value Parameter Value
m 1.285kg Sα 0.0209kgm
Sβ 0.0006608kgm Iα 0.005142kgm2

a −0.5 b 0.1m
c 0.5 ρ 1.025kg/m3

kh 2742N/m kα 2.912Nm/rad
kβ 90042Nm/rad dh 30.43Ns/m
dα 0.04Ns/m dβ 418.8977Ns/m

Table 4.1: List parameters.

considered. Under the influence of the unsteady aerodynamic forces, the root locus of
the open loop aeroelastic system are showed in Figure 4.1. And the real parts of the
eigenvalues of A(V ) with respect to the flow velocities are showed in Figure 4.2. If the
real parts of all of the eigenvalues of A (V ) are negative, that is, the eigenvalues are in
the open left half plane, the two-dimensional 3DOF aeroelastic system is asymptotically
stable. From Figure 4.1 and Figure 4.2 we can see that the pitching mode will be in
the right half plane when the flow velocity exceeds 47.5m/s, and then flutter occurs.
The flutter speed, Vf = 47.5m/s, is the speed at which the open loop system becomes
marginally stable.
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Figure 4.1: The root locus of the
open loop aeroelastic system.
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Figure 4.2: The relation between
real parts of eigenvalues and flow ve-
locity.

Here we select three velocity values to see the time response of each modes without
considering uncertainties in any parameter. From Figures 4.3, 4.4 and 4.5 we could see
the plunge, pitching and control surface states are asymptotically stable at V = 46m/s,
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Figure 4.3: The time response curve
of plunge mode at V=46m/s.
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Figure 4.4: The time response curve
of pitching mode at V=46m/s.
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Figure 4.5: The time response curve
of control surface mode at V=46m/s.
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Figure 4.6: The time response curve
of plunge mode at V=47.5m/s.
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Figure 4.7: The time response curve
of pitching mode at V=47.5m/s.

0 2 4 6 8 10
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time (sec)

β 
(r

ad
)

Figure 4.8: The time response curve
of control surface mode at V=47.5m/s.
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Figure 4.9: The time response curve
of plunge mode at V=49m/s.
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Figure 4.10: The time response
curve of pitching mode at V=49m/s.
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Figure 4.11: The time response
curve of control surface mode at
V=49m/s.
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Figure 4.12: The time response
curve of plunge mode at V=49m/s af-
ter robust flutter suppression.

and almost all oscillations disappear at t = 7 seconds. So, the flutter phenomenon could
be suppressed by the aeroelastic system itself. At V = Vf = 47.5m/s, the sates are all
settled into harmonic oscillations as shown in Figures 4.6, 4.7, 4.8. But in Figures 4.9,
4.10, and 4.11, with flow velocity V = 49m/s, the plunge, pitching and control surface
states continue to increase without bound, and after about 6 seconds, the oscillations
are so severe that the airfoil would become unstable. Furthermore, from Figure 4.11 we
could see that the state of control surface β is always stable even though the flow velocity
exceeds the critical flutter speed, which coincides with the assumption of the perfect rigid
control surface.

In brief, for V < Vf the system is asymptotically stable. And for V > Vf the system
is unable, in this case wing separation will occur which is dangerous for a real aircraft.

4.2 Closed-loop Simulation

In this section a robust controller is designed for the two-dimensional 3DOF airfoil aeroe-
lastic system using the proposed method. Because the damping coefficients are difficult
to be obtained precisely, the damping coefficients are assumed to be uncertain which have
possible variations of ±10% around the nominal values. The robust output feedback gain

matrix is obtained by K = F ∗CT
(

CCT
)−1

, where F ∗ is the solution to the optimization
problem (3.7).

Figures 4.12, 4.13, and 4.14 illustrate the time response curves at V = 49m/s, from
which we can see the flutter phenomenon is well suppressed after about 1 second and the
output feedback is robust to the considered parametric variations.

Furthermore, we are interested in the performance when the flow velocity exceeds
the critical flutter speed and the control is delayed by a few seconds. We investigate the
system response with parametric uncertainties when the control is initiated at a time
greater than t = 0 seconds. Consequently, with flow velocity 49m/s, and the control
initiated at 2 seconds. the time responses are shown in Figures 4.15, 4.16, 4.17. The
oscillation disappear at t = 3 seconds and the output feedback is robust to the considered
parametric variations as well.

The relation between the real parts of A(V ) eigenvalues and the flow velocity with
flutter robust suppression is shown in Figure 4.18, from which we could see the criti-
cal flutter speed is 57.8m/s, that is, the critical speed increase from the original speed
47.5m/s to 57.8m/s. The critical flutter speed increases 21.68%. From the simulations
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Figure 4.13: The time response
curve of pitching mode at V=49m/s
after robust flutter suppression.
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Figure 4.14: The time response
curve of control surface mode at
V=49m/s after robust flutter suppres-
sion.
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Figure 4.15: The time response
curve of plunge mode at V=49m/s af-
ter robust flutter suppression: t=2 sec-
onds.
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Figure 4.16: The time response
curve of pitching mode at V=49m/s
after robust flutter suppression: t=2
seconds.
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Figure 4.17: The time response
curve of control surface mode at
V=49m/s after robust flutter suppres-
sion: t=2 seconds.
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we can conclude that the proposed method not only well suppresses flutter phenomenon,
but also increases the critical flutter speed.

5 Conclusion

In the traditional aircraft design, a passive method is usually adopted, which increases
the structure weight of the aircraft in order to increase the critical flutter speed. In this
paper we present an active control approach, which transforms the suboptimal control law
design problem into a constrained optimization problem, to design the robust control law
of a two-dimensional 3DOF aeroelastic system. The introduced deformation can suppress
the flutter phenomenon by the flexibility of structure. The simulation results show that
the minimum norm method and the LMI technique adopted is valid with the uncertainties
of damping coefficients. When the flow velocity exceeds the critical flutter speed, the
two-dimensional 3DOF airfoil is still stable with the proposed robust controller.
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Abstract: In this note, the problem of H∞ filtering for a class of nonlinear neutral
systems with delayed states and outputs is investigated. By introducing a descriptor
technique, using Lyapunov-Krasovskii functional and a suitable change of variables,
new required sufficient conditions are established in terms of delay-dependent linear
matrix inequalities (LMIs) for the existence of the desired H∞ filters. The explicit
expression of the filters is derived to satisfy both asymptotic stability and a prescribed
level of disturbance attenuation for all admissible known nonlinear functions. A
numerical example is provided to show the proposed design approach.
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1 Introduction

Delay (or memory) systems represent a class of infinite-dimensional systems [1, 2] largely
used to describe propagation and transport phenomena or population dynamics [3, 4].
Delay differential systems are assuming an increasingly important role in many disci-
plines like economic, mathematics, science, and engineering. For instance, in economic
systems, delays appear in a natural way since decisions and effects are separated by some
time interval. The presence of a delay in a system may be the result of some essential
simplification of the corresponding process model. The delay effects problem on the
(closed-loop) stability of (linear) systems including delays in the state and/or input is
a problem of recurring interest since the delay presence may induce complex behaviors
(oscillation, instability, bad performances) for the (closed-loop) schemes [2, 5–9].
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Neutral delay systems constitute a more general class than those of the retarded type.
It is important to point out that the highest order derivative of a retarded differential
equation does not contain any delayed variables. When such a term does appear, then we
have a differential equation of neutral type. Stability of these systems proves to be a more
complex issue because the system involves the derivative of the delayed state. Especially,
in the past few decades increased attention has been devoted to the problem of robust
delay-independent stability or delay-dependent stability and stabilization via different
approaches for linear neutral systems with delayed state and/or input and parameter
uncertainties (see for instance [2, 10, 11]). Among the past results on neutral delay
systems, the LMI approach is an efficient method to solve many control problems such as
stability analysis and stabilization [12–17],H∞ control problems [18–24] and guaranteed-
cost (observer-based) control design [25–29].

On the other hand, the state estimation problem has been one of the fundamental
issues in the control area and there have been many works following those of Kalman
filter or H2 optimal estimators (in the stochastic framework) and Luenberger filter (in
the deterministic framework) [30]. Nevertheless there has been an increasing interest in
the robust H∞ filtering, which is concerned with the design of an estimator ensuring
that the L2-induced gain from the noise signal to the estimation error is less than a
prescribed level, in the past years [31-35]. Compared with the conventional Kalman
filtering, the H∞ filter technique has several advantages. First, the noise sources in the
H∞ filtering setting are arbitrary signals with bounded energy or average power, and no
exact statistics are required to be known [36]. Second, the H∞ filter has been shown to
be much more robust to parameter uncertainty in a control system. These advantages
render the H∞ filtering approach very appropriate to some practical applications. When
parameter uncertainty arises in a system model, the robustH∞ filtering problem has been
studied, and a great number of results on this topic have been reported (see the references
[37–39]). In the case when parameter uncertainty and time delays appear simultaneously
in a system model, the robust H∞ filtering problem was dealt with in [40] via LMI
approach, respectively. The corresponding results for uncertain discrete delay systems
can be found in [41]. However, it is noted that the H∞ filtering of nonlinear neutral
systems has not been been fully investigated in the past and remains to be important
and challenging. This motivates the present study.

In this paper, we are concerned to develop a new delay-dependent stability criterion
for H∞ filtering problem of nonlinear neutral systems with known nonlinear functions
which satisfy the Lipschitz conditions. The main merit of the proposed method is the
fact that it provides a convex problem with additional degree of freedom which lead to
less conservative results. Our analysis is based on the Hamiltonian–Jacoby–Isaac (HJI)
method. By introducing a descriptor technique, using Lyapunov–Krasovskii functional
and a suitable change of variables, we establish new required sufficient conditions in terms
of delay-dependent LMIs under which the desired H∞ filters exist, and derive the explicit
expression of these filters to satisfy both asymptotic stability and H∞ performance. A
desired filter can be constructed through a convex optimization problem, which can be
solved by using standard numerical algorithms. Finally, a numerical example is given to
illustrate the proposed design method.

Notations. The superscript ′T ′ stands for matrix transposition; ℜn denotes the n-
dimensional Euclidean space; ℜn×m is the set of all real n by m matrices. ‖.‖ refers to the
Euclidean vector norm or the induced matrix 2-norm. col{· · · } and sym(A) represent,
respectively, a column vector and the matrix A + AT . λmin(A) and λmax(A) denote,
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respectively, the smallest and largest eigenvalue of the square matrix A. The notation
P > 0 means that P is real symmetric and positive definite; the symbol ∗ denotes the
elements below the main diagonal of a symmetric block matrix. In addition, L2[0,∞) is
the space of square-integrable vector functions over [0,∞). Matrices, if the dimensions are
not explicitly stated, are assumed to have compatible dimensions for algebraic operations.

2 Problem Description

We consider a class of nonlinear neutral systems with delayed states and outputs repre-
sented by



















ẋ(t) = Ax(t) +A1x(t− h(t)) +A2ẋ(t−d(t))+E1f(x(t)) + E2f(x(t− h(t))) +B1w(t),

x(t) = ϕ(t), t ∈ [−max{h1, d1}, 0],

z(t) = C1x(t),

y(t) = C2x(t) + g(t, x(t)),

(1)
where x(t) ∈ ℜn, w(t) ∈ Ls

2[0,∞), z(t) ∈ ℜz and y(t) ∈ ℜp are corresponded to state
vector, disturbance input, estimated output and measured output. The time-varying
function ϕ(t) is continuous vector valued initial function and the parameters h(t) and
d(t) are time-varying delays satisfying

0 ≤ h(t) ≤ h1, ḣ(t) ≤ h2,

0 ≤ d(t) ≤ d1, ḋ(t) ≤ d2 < 1.

Assumption 2.1 1) The nonlinear function f : ℜn → ℜn is continuous and satisfies
f(0) = 0 and the Lipschitz condition, i.e., ‖f(x0) − f(y0)‖ ≤ ‖U1(x0 − y0)‖ for all
x0, y0 ∈ ℜn and U1 is a known matrix.

2) The nonlinear function g : ℜ × ℜn → ℜp is continuous and satisfies the Lipschitz
condition, i.e., ‖g(t, x0)− g(t, y0)‖ ≤ ‖U2(x0 − y0)‖ for all x0, y0 ∈ ℜn and U2 is a known
matrix.

In this paper, the author’s attention will be focused on the design of an n−th order
delay-dependent H∞ filter with the following state-space equations



















˙̂x(t) = F x̂(t) + F1x̂(t− h(t)) + F2
˙̂x(t− d(t)) + F3f(x̂(t)) + F4f(x̂(t− h(t)))

+G(y(t) − C2x̂(t) − g(t, x̂(t))),

x̂(t) = 0, t ∈ [−max{h1, d1}, 0],

ẑ(t) = G1x̂(t),

(2)

where the state-space matrices F, F1, F2, F3, F4, G and G1 of the appropriate dimensions
are the filter design objectives to be determined. In the absence of w(t), it is required
that

‖x(t) − x̂(t)‖2 → 0 as t→ ∞,

where x̂(t) and ẑ(t) are the estimation of x(t) and of z(t), respectively, and e(t) =
x(t)− x̂(t) is the estimation error. Then, the error dynamics between (1) and (2) can be
expressed by

ė(t) = (A− F )x̂(t) + (A1 − F1)x̂(t− h(t)) + (A2 − F2) ˙̂x(t− d(t))
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+(F −GC2)e(t) + F1e(t− h(t)) + F2ė(t) −Gψ(t, e(t)) + (E1 − F3)f(x(t))

+(E2 − F4)f(x(t − h(t))) + F3φ(e(t)) + F4φ(e(t− h(t))) +B1w(t),

(3)

where φ(e(t)) := f(x(t)) − f(x(t) − e(t)) and ψ(t, e(t)) := g(t, x(t)) − g(t, x(t) − e(t)).
Now, we obtain the following state-space model, namely filtering error system:























Ẋ(t) = ÂX(t) + Â1X(t− h(t)) + Â2Ẋ(t− d(t)) + Ĝψ(t, e(t)) + Ê1f(x(t)),

+Ê2f(x(t− h(t))) + Ê3φ(e(t)) + Ê4φ(e(t− h(t))) + B̂w(t),

X(t) =
[

ϕ(t)T ϕ(t)T
]T

, t ∈ [−max{h1, d1}, 0],

z(t) − ẑ(t) = Ĉ1X(t),

(4)

where X(t) = col{x(t), e(t)}, Â =

[

A 0
A− F F −GC2

]

, Â1 =

[

A1 0
A1 − F1 F1

]

, Â2 =
[

A2 0
A2 − F2 F2

]

, B̂ =

[

B1

B1

]

, Ĝ =

[

0
−G

]

, Ê1 =

[

E1

E1 − F3

]

, Ê2 =

[

E2

E2 − F4

]

, Ê3 =

[

0
F3

]

,

Ê4 =

[

0
F4

]

and Ĉ1 =
[

C1 −G1 G1

]

.

Let α, β ∈ ℜ and

s(α, β) =

{

f(α)−f(β)

α−β
, α 6= β,

δ, α = β.
(5)

By Assumption 2.1, it is easy to see

φ(e(t)) − φ(e(t− h(t))) = s(t)(e(t) − e(t− h(t))) = s(t)

∫ t

t−h(t)

ė(s) ds. (6)

Therefore, from the Leibniz-Newton formula, i.e., x(t) − x(t − h) =
∫ t

t−h
ẋ(s) ds, the

filtering error system (4) can be represented in a descriptor model form as










Ẋ(t) = η(t),

η(t) = (Â+ Â1)X(t) + Â2η(t− d(t)) + Ĝψ(t, e(t)) + Ê1f(x(t)) + Ê2f(x(t− h(t)))

+Ê3φ(e(t)) − (Â1 + Ê4Js(t))
∫ t

t−h(t)
η(s) ds+ B̂w(t).

(7)

Definition 2.1 1. The delay-dependent H∞ filter of the type (2) is said to achieve
asymptotic stability in the Lyapunov sense for w(t) = 0 if the augmented system (4) is
asymptotically stable for all admissible nonlinear functions f(x(t)) and g(t, x(t)) .

2. The delay-dependent H∞ filter of the type (2) is said to guarantee robust distur-
bance attenuation if under zero initial condition

Sup‖w‖2 6=0

‖z(t) − ẑ(t)‖2

‖w(t)‖2

≤ γ (8)

holds for all bounded energy disturbances and a prescribed positive value γ.

The filtering problem we address here is as follows: Given a prescribed level of distur-
bance attenuation γ > 0, find the delay-dependent H∞ filter (2) in the sense of Definition
2.1.

Before ending this section, we recall a well-known lemma, which will be used in the
proof our main results.
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Lemma 2.1 ([11]) For any arbitrary column vectors a(t), b(t), matrices Φ(t), H, U
and W the following inequality holds:

−2

∫ t

t−r

a(s)T Φ(s)b(s)ds ≤

∫ t

t−r

[

a(s)
b(s)

]T [

H U − Φ(s)
∗ W

] [

a(s)
b(s)

]

ds,

where

[

H U

∗ W

]

≥ 0.

3 H∞ Filter Design

In this section, both the asymptotic stability and H∞ performance of the filtering error
system is investigated such a sufficient stability condition is derived for the existence of
the filter (2). The approach employed here is to develop a criterion for the existence
of such filter based on the LMI approach combined with the Lyapunov method. In the
literature, extensions of the quadratic Lyapunov functions to the quadratic Lyapunov-
Krasovskii functionals have been proposed for time-delayed systems (see for instance the
references [2, 10, 11, 27, 29] and the references therein).

We choose a Lyapunov–Krasovskii functional candidate for the nonlinear neutral sys-
tem (1) as

V (t) = V1(t) + V2(t) + V3(t), (9)

where

V1(t) = X(t)TP1X(t) =

[

X(t)
η(t)

]T

TP

[

X(t)
η(t)

]

,

V2(t) =

∫ t

t−h(t)

X(s)TQ1X(s) ds+

∫ t

t−d(t)

η(s)TQ2η(s) ds,

V3(t) =

∫ t

t−h1

∫ t

s

η(θ)T (Q3 +Q4)η(θ) dθ ds

with

P :=

[

P1 0
P3 P2

]

, P1 = PT
1 > 0, T :=

[

I 0
0 0

]

. (10)

In the following, we state our main results in terms of LMIs on the delay-dependent H∞

filter design for the nonlinear neutral system (1) based on Lyapunov stability theory.

Theorem 3.1 Consider system (1) and let the matrices U1, U2 and the scalars
h1, d1 > 0, d2 < 1, h2 and γ > 0 be given scalars. If there exist the matrices
P11, P12, P22, G1, H, U, {Wi}

6
i=1, {Mi}

9
i=1, the positive definite matrices P1, {Qi}

4
i=1 and

the scalar ǫ, satisfying the following LMIs









[1, 1] [1, 2] [1, 3] [1, 4]
∗ [2, 2] [2, 3] [2, 4]
∗ ∗ [3, 3] 0
∗ ∗ ∗ [4, 4]









< 0, (11a)

[

H U

∗ Q3

]

≥ 0, (11b)
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where

[1, 1] := sym{









ǫ(Σ1 + Σ2) P1 − ǫ

[

PT
11 PT

22

PT
12 PT

22

]

Σ1 + Σ2 −

[

PT
11 PT

22

PT
12 PT

22

]









} − sym{

[

ǫΣ2

Σ2

]

J − (U +M1)J}

+h1H +

[

Q1 + JTUT
1 U1J 0

∗ Q2 + h1(Q3 +Q4) + ĴT (UT
1 U1 + UT

2 U2)Ĵ

]

,

[1, 2] := −U −M1 +

[

ǫΣ2

Σ2

]

+ JTMT
2 ,

[2, 2] := −(1 − h2)Q1 − sym{M2} + JTUT
1 U1J + ĴTUT

1 U1Ĵ ,

[1, 3] :=

[[

ǫΣ3

Σ3

]

+ JTMT
3

[

ǫΣ4

Σ4

]

+ JTMT
4

[

ǫΣ5

Σ5

]

+ JTMT
5

[

ǫ(Σ6 − Σ7)
Σ6 − Σ7

]

+ JTMT
6

]

,

[2, 3] :=
[

−MT
3 −MT

4 −MT
5 −MT

6

]

,

[3, 3] := diag{−(1− d2)Q2,−I,−I,−I},

[1, 4] :=

[[

ǫΣ7

Σ7

]

+ JTMT
7

[

ǫΣ8

Σ8

]

+ JTMT
8

[

ǫΣ9

Σ9

]

+ JTMT
9 JT ĈT

1

]

,

[2, 4] :=
[

−MT
7 −MT

8 −MT
9 0

]

,

[4, 4] := diag{−I,−I,−γ2I,−I}

with

Σ1 :=

[

(PT
11 + PT

22)A−W1 W1 −W6C2

(PT
11 + PT

22)A−W1 W1 −W6C2

]

, Σ2 :=

[

(PT
11 + PT

22)A1 −W2 W2

(PT
11 + PT

22)A1 −W2 W2

]

,

Σ3 :=

[

(PT
11 + PT

22)A2 −W3 W3

(PT
11 + PT

22)A2 −W3 W3

]

, Σ4 :=

[

(PT
11 + PT

22)E1

(PT
12 + PT

22)E1

]

− Σ6,

Σ5 :=

[

(PT
11 + PT

22)E2

(PT
12 + PT

22)E2

]

− Σ7, Σ6 :=

[

W4

W4

]

, Σ7 :=

[

W5

W5

]

,

Σ8 := −

[

W6

W6

]

, Σ9 :=

[

(PT
11 + PT

22)B1

(PT
12 + PT

22)B1

]

,

where J := [I, 0] and Ĵ := [0, I], then there exists a delay-dependent H∞ filter of the
type (2) which achieve the asymptotic stability and H∞ performance, simultaneously, in
the sense of Definition 2.1. Moreover, the state-space matrices of the filter are given by

[

F F1 F2 F3 F4 G
]

:= (PT
22)

−1
[

W1 W2 W3 W4 W5 W6

]

,

and G1 fromLMIs (11). (12)
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Proof Differentiating V1(t) in t along the trajectory of the filtering error system (4)
we obtain

V̇1(t) = 2X(t)TP1Ẋ(t) = 2

[

X(t)
η(t)

]T

PT

[

Ẋ(t)
0

]

= 2

[

X(t)
η(t)

]T

PT

[

η(t)
(.)

]

= 2

[

X(t)
η(t)

]T

PT (Ā

[

X(t)
η(t)

]

+

[

0

Â2

]

η(t− d(t)) +

[

0

Ĝ

]

ψ(t, e(t)) +

[

0

Ê1

]

f(x(t))

+

[

0

Ê2

]

f(x(t− h(t))) +

[

0

Ê3

]

φ(e(t)) −

[

0

Â1 + Ê4Js(t)

] ∫ t

t−h(t)

η(s) ds+

[

0

B̂

]

w(t)),

(13)

where

(.) := −η(t) + (Â+ Â1)X(t) + Â2η(t− d(t)) + Ĝψ(t, e(t)) + Ê1f(x(t))

+Ê2f(x(t− h(t))) + Ê3φ(e(t)) − (Â1 + Ê4Js(t))

∫ t

t−h(t)

η(s) ds + B̂w(t)

and time derivative of the second and third terms of V (t) are, respectively, as

V̇2(t) = X(t)TQ1X(t) − (1 − ḣ(t))X(t− h(t))TQ1X(t− h(t))

+η(t)TQ2η(t) − (1 − ḋ(t))η(t − d(t))TQ2η(t− d(t))

≤ X(t)TQ1X(t) − (1 − h2)X(t− h(t))TQ1X(t− h(t))

+η(t)TQ2η(t) − (1 − d2)η(t− d(t))TQ2η(t− d(t))

(14)

and

V̇3(t) = h1η(t)
T (Q3 +Q4)η(t) −

∫ t

t−h1

η(s)T (Q3 +Q4)η(s) ds

= h1η(t)
T (Q3 +Q4)η(t) −

∫ t

t−h1

η(s)TQ3η(s) ds

−

∫ t

t−h(t)

η(s)TQ4η(s) ds−

∫ t−h(t)

t−h1

η(s)TQ4η(s) ds.

(15)

Construct a HJI function in the form of

J [X(t), w(t)] =
d

dt
V (t) + (z(t) − ẑ(t))T (z(t) − ẑ(t)) − γ2w(t)Tw(t), (16)

where derivative of V (t) is evaluated along the trajectory of the filtering error system (4).
It is well known that a sufficient condition for achieving robust disturbance attenuation
is that the inequality J [X(t), w(t)] < 0 for every w(t) ∈ Ls

2[0, ∞) results in a function
V (t), which is strictly radially unbounded (see for instance the reference [42]).
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From (13)–(16) we obtain

J [X(t), w(t)] = 2η̄(t)TPT (Āη̄(t) +

[

0

Â2

]

η(t− d(t)) +

[

0

Ĝ

]

ψ(t, e(t)) +

[

0

Ê1

]

f(x(t))

+

[

0

Ê2

]

f(x(t− h(t))) +

[

0

Ê3

]

φ(e(t)) −

[

0

Â1 + Ê4Js(t)

] ∫ t

t−h(t)

η(s) ds+

[

0

B̂

]

w(t))

+X(t)T (Q1 + ĈT
1 Ĉ1)X(t) − (1 − h2)X(t− h(t))TQ1X(t− h(t))

+η(t)T (Q2 +h1(Q3 +Q4))η(t)− (1−d2)η(t−d(t))
TQ2η(t−d(t))−

∫ t

t−h1

η(s)TQ3η(s) ds

−

∫ t

t−h(t)

η(s)TQ4η(s) ds−

∫ t−h(t)

t−h1

η(s)TQ4η(s) ds− γ2w(t)Tw(t), (17)

where η̄(t) := col{X(t), η(t)} and Ā :=

[

0 I

Â+ Â1 −I

]

. By Lemma 2.1 and (11b), it is

clear that

−2η̄(t)TPT

[

0

Â1 + Ê4Js(t)

] ∫ t

t−h(t)

η(s) ds

≤

∫ t

t−h(t)

[

η̄(t)
η(s)

]T





H U − PT

[

0

Â1 + Ê4Js(t)

]

∗ Q3





[

η̄(t)
η(s)

]

ds

≤

∫ t

t−h1

η(s)TQ3η(s) ds+ h1η̄(t)
THη̄(t) + 2η̄(t)T (U − PT

[

0

Â1

]

)(X(t) −X(t− h(t)))

−2η̄(t)TPT

[

0

Ê4

]

(φ(e(t)) − φ(e(t− h(t)))). (18)

Using Assumption 2.1, we have

0 ≤ −f(x(t))T f(x(t)) + x(t)TUT
1 U1x(t), (19a)

0 ≤ −f(x(t− h(t)))T f(x(t− h(t))) + x(t − h(t))TUT
1 U1x(t − h(t)), (19b)

0 ≤ −φ(e(t))Tφ(e(t)) + e(t)TUT
1 U1e(t), (19c)

0 ≤ −φ(e(t− h(t)))Tφ(e(t− h(t))) + e(t− h(t))TUT
1 U1e(t− h(t)) (19d)

and
0 ≤ −ψ(t, e(t))Tψ(t, e(t)) + e(t)TUT

2 U2e(t). (19e)

Moreover, from the Leibniz–Newton formula, the following equation holds for any matrix
M with an appropriate dimension

2υ(t)TM(X(t) −X(t− h(t)) −

∫ t

t−h(t)

η(s) ds) = 0, (20)

where M := col{M1,M2, · · · ,M9} and υ(t) := col{η̄(t), X(t − h(t)), η(t −
d(t)), f(x(t)), f(x(t − h(t))), φ(x(t)), φ(x(t − h(t))), ψ(t, e(t)), w(t)}.
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By adding the right- and the left-hand sides of (19) and (20), respectively, to (17)
and using the inequality (18), it follows that

J [X(t), w(t)] ≤ υ(t)T (Π + h1MQ−1

4
MT )υ(t) −

∫ t−h(t)

t−h1

η(s)TQ4η(s) ds

−

∫ t

t−h(t)

(υ(t)TM + η(s)TQ4)Q
−1

4
(υ(t)TM + η(s)TQ4)

T ds, (21)

where the matrix Π is given by

Π =









Π11 Π12 Π13 Π14

∗ Π22 Π23 Π24

∗ ∗ Π33 0
∗ ∗ ∗ Π44









with

Π11 = sym{PT Ā} − sym{PT

[

0

Â1

]

J − (U +M1)J} + h1H

+

[

Q1 + ĈT
1 Ĉ1 + JTUT

1 U1J 0

∗ Q2 + h1(Q3 +Q4) + ĴT (UT
1 U1 + UT

2 U2)Ĵ

]

,

Π12 = −U −M1 + PT

[

0

Â1

]

+ JTMT
2 ,

Π22 = −(1 − h2)Q1 − sym{M2} + JTUT
1 U1J + ĴTUT

1 U1Ĵ

Π13 =

[

PT

[

0

Â2

]

+ JTMT
3 PT

[

0

Ê1

]

+ JTMT
4 PT

[

0

Ê2

]

+ JTMT
5

]

,

Π23 =
[

−MT
3 −MT

4 −MT
5

]

, Π14 =
[

PT

[

0

Ê3 − Ê4

]

+ JTMT
6 PT

[

0

Ê4

]

+ JTMT
7 PT

[

0

Ĝ

]

+ JTMT
8 PT

[

0

B̂

]

+ JTMT
9

]

,

Π24 =
[

−MT
6 −MT

7 −MT
8 −MT

9

]

,

Π33 = diag{−(1 − d2)Q2,−I,−I}, Π44 = diag{−I,−I,−I,−γ2I}.

Thus, if the inequality
Π + h1MQ−1

4
MT < 0 (22)

holds, it follows from J [X(t), w(t)]|w(t)≡0 ≤ 0 that d
dt
V (t) ≤ 0 or V (t) ≤ V (0) . Then,

from (9), it can be deduced

V (0) = X(0)TP1X(0) +

∫ 0

−h(0)

X(s)TQ1X(s) ds+

∫ 0

−d(0)

η(s)TQ2η(s) ds

+

∫ 0

−h1

∫ 0

s

η(θ)T (Q3 +Q4)η(θ) dθ ds

≤ λmax(P1)‖ϕ‖
2

2 + λmax(Q1)

∫ 0

−h(0)

X(s)TX(s) ds+ λmax(Q2)

∫ 0

−d(0)

η(s)T η(s) ds
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+λmax(Q3 +Q4)

∫ 0

−h1

∫ 0

s

η(θ)T η(θ) dθ ds ≤ σ1‖ϕ‖
2

2 + σ2‖η‖
2

2,

where σ1 := λmax(P1) + h1λmax(Q1) and σ2 := d1λmax(Q2) + 0.5h2
1λmax(Q3 + Q4).

Then, we have:
λmin(P1)‖ϕ‖

2

2 ≤ V (t) ≤ σ1‖ϕ‖
2

2 + σ2‖η‖
2

2.

Therefore, we conclude that the filtering error system (4) is asymptotically stable. Notice
that the matrix inequality (22) includes multiplication of filter matrices and Lyapunov
matrices which are unknown and occur in nonlinear fashion. Hence, the inequality (22)
cannot be considered an LMI problem. In the literature, more attention has been paid to
the problems having this nature, which called bilinear matrix inequality (BMI) problems
[43]. In the following, it is shown that, by considering P3 = ǫP2, where

P2 =

[

P11 P12

P22 P22

]

(23)

and introducing change of variables

[

W1 W2 W3 W4 W5 W6

]

:= PT
22

[

F F1 F2 F3 F4 G
]

(24)

the matrix inequality (22) is converted into LMI (11a) and can be solved via convex
optimization algorithms. It is also easy to see that the inequality (22) implies Π11 < 0.
Hence by Proposition 4.2 in the reference [19], the matrix P is nonsingular. Then,
according to the structure of the matrix P in (10), the matrix P2 (or P22 ) is also
nonsingular. This completes the proof.

Remark 3.1 It is worth noting that in the case when x(t) ∈ ℜn, w(t) ∈ ℜs, z(t) ∈ ℜz

and y(t) ∈ ℜp , the number of the variables to be determined in the LMIs (11) is
0.5n(17n+ 2p+ 2z + 5) + 5. It is also observed that the LMIs (11) are linear in the set
of matrices P11, P12, P22, G1, H, U, {Wi}

6
i=1

, {Mi}
9
i=1

, P1, {Qi}
4
i=1

, and the scalars ǫ, γ2.
This implies that the scalar γ2 can be included as one of the optimization variables
in LMIs (11) to obtain the minimum disturbance attenuation level. Then, the optimal
solution to the delay-dependentH∞ filtering can be found by solving the following convex
optimization problem

min λ

subject to (11) with λ := γ2.

4 Simulation Results

In this section, we will verify the proposed methodology by giving an illustrative example.
We solved LMIs (11) by using Matlab LMI Control Toolbox [44], which implements
state-of-the-art interior-point algorithms and is significantly faster than classical convex
optimization algorithms [45]. The example is given below.

Consider the system (1) with the following matrices

A =

[

−1 0.5
0.3 −2

]

, A1 =

[

−0.5 0.1
0.1 −0.6

]

, A2 =

[

0.1 0.2
0 0.1

]

, B1 =

[

0.1
0.1

]

,

E1 = E2 = I2;C1 = 10C2 =
[

1 1
]

, f(x(t)) = g(t, x(t)) = 0.5(|x(t) + 1| − |x(t) − 1|).
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Figure 4.1: The disturbance signal.

−0.1 −0.05 0 0.05 0.1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x
1
(t)

x 2(t
)

Figure 4.2: The phase trajectories.
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Figure 4.3: Curves of estimation error signal.
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Figure 4.4: Curve of function ‖z(t) − ẑ(t)‖2/‖w(t)‖2.
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The delays h(t) = d(t) = (1 − e−t)/(1 + e−t) are time varying and satisfy 0 ≤ h(t) =
d(t) ≤ 1 and ḣ(t) = ḋ(t) ≤ 0.5 . For simulation purposes, a uniformly distributed random
signal, shown in Figure 4.1, with minimum and maximum -1 and 1, respectively, as the
disturbance is imposed on the system. With the above parameters, the filtering error
system (4) exhibits the chaotic behaviours such the state trajectories of the system with
initial condition x(0) = [0, 0] is depicted in Figure 4.2.

By solving the LMIs (11) in Theorem 3.1 with the disturbance attenuation γ = 0.2
we get the following state-space matrices of the delay-dependent H∞ filter (2):

F =

[

−2.8807 1.1770
1.0575 −4.9106

]

, F1 =

[

−0.3991 0.2557
0.2297 −0.7907

]

, F2 =

[

−0.0835 −0.1410
0.0209 −0.1002

]

,

F3 =

[

1.5747 −0.4885
−0.3693 2.7097

]

, F4 =

[

1.1810 −0.3664
−0.2770 2.0323

]

,

G =

[

−0.0226
−0.0662

]

, G1 =
[

0.5414 0.4628
]

.

For initial conditions x(0) = [−1, 1], the simulation results are shown in Figures 4.3 and
4.4. The trajectories of the estimation error are plotted in Figure 4.3. Finally, to observe
the H∞ performance, curve of the function ‖z(t) − ẑ(t)‖2/‖w(t)‖2 is depicted in Figure
4.4 which shows that the H∞ constraint in (8) is satisfied as well.

5 Conclusion

The problem of delay-dependent H∞ filtering was proposed for a class of nonlinear neu-
tral systems with delayed states and outputs. New required sufficient conditions were
established in terms of delay-dependent LMIs for the existence of the desired robust H∞

filters. The explicit expression of the robustH∞ filters was derived to satisfy both asymp-
totic stability and a prescribed level of disturbance attenuation for all admissible known
nonlinear functions. A numerical example was presented to illustrate the effectiveness of
the designed filter.
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Abstract: The aim of this study is to present new oscillation theorems for certain
classes of second-order nonlinear functional differential equations of the type

x
′′(t) + p(t)f(x(t), x(τ (t))) = 0, (∗)

x
′′(t) + p1(t)f1(t, x(t), x

′(t))x′(t) + q(t)g1(x(τ (t)) = 0, t ∈ [t0, ∞), t0 > 0.

In the study of Eq. (∗), no sign condition on p(t) is explicitly assumed. Also, we study
the behavior of the nonoscillatory solution of Eq. (∗).

Keywords: nonlinear; functional differential equations; oscillatory solution;
nonoscillatory solution.
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1 Introduction

Over the last three decades, many studies have dealt with the oscillation theory for
functional differential equations. For an excellent bibliography and later developments
of this theory, we refer to the books by Agarwal, Bohner and Wan–Tong Li [1], Erbe,
Kong and Zhang [3], Gopalsamy [4], Györi and Ladas [6], Ladde, Lakshmikantham and
Zhang [10]. In this note, we consider the second-order nonlinear functional differential
equations of the form

x′′(t) + p(t)f(x(t), x(τ(t))) = 0, (1.1)

x′′(t) + p1(t)f1(t, x(t), x
′(t))x′(t) + q(t)g1(x(τ(t)) = 0, t ∈ [t0, ∞), (1.2)

∗ Corresponding author: jtyagi1@gmail.com
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where p ∈ C([t0, ∞), R), p1, q ∈ C([t0, ∞), R+), f ∈ C(R2, R), f1 ∈ C([t0, ∞) ×
R2, R+), g1 ∈ C(R, R), yg1(y) > 0, ∀ 0 6= y ∈ R, τ ∈ C1([t0, ∞), R+), τ ′(t) > 0
for all large t and τ(t) → ∞ as t → ∞. In case p(t) is positive, the oscillation crite-
ria for Eq. (1.1) and its special case

x′′(t) + p(t)F1(x(τ(t))) = 0, t ∈ [t0, ∞)

is extensively studied by many investigators in this area (see, [7, 8, 13–15] and the refer-
ences cited therein). All of them restrict the sign condition on p(t); i.e., p(t) ≥ 0, ∀ t ∈
[t0, ∞). For the oscillation of Eq. (1.1), our study is free from such restriction. Also, as
far as the author knows there is no oscillation result in literature for Eq. (1.2). The ideas
of [2] are used to extend the oscillation results for Eq. (1.2). Let ψ : [τ(t0), t0] → R is a
continuous function. By a solution of Eq. (1.1) (resp. Eq. (1.2)), we mean a continuously
differentiable function x : [τ(t0), ∞] → R such that x(t) = ψ(t) for τ(t0) < t0 and x

satisfies Eq. (1.1) (resp. Eq. (1.2)) ∀ t ≥ t0. We restrict our discussion to the nontrivial
solutions of Eq. (1.1) (resp. Eq. (1.2)). A nontrivial solution of Eq. (1.1) (resp. Eq. (1.2))
is said to be oscillatory if it has arbitrarily large zeros, i.e., for any T1 > t0, ∃ t ≥ T1

such that x(t) = 0, otherwise the solution is said to be nonoscillatory.

The paper is organized as follows. Section 2 deals with the oscillation theorems for
Eqs. (1.1) and (1.2). The behavior of nonoscillatory solution of Eq. (1.1) is discussed in
Section 3. In Section 4, we construct some examples for the illustration of these results.

2 Oscillation Theorems

We begin this section with the list of hypotheses:

(H1) p(t) > 0 for t sufficiently large.

(H2) f(y1, y2) > 0 if yi > 0; f(y1, y2) < 0 if yi < 0, ∀ i = 1, 2.

(H3) f(y1, y2) is a continuously differentiable function w. r. t. y1 and y2 and

suppose there exists α > 0 such that ∂
∂yi

f(y1, y2) ≥ α for yi 6= 0, ∀ i = 1, 2.

(H4) There exist a C1 function u defined on [t0, ∞), a C1 function F on R and

a continuous function J on R such that F ′(u) =
√
αJ(u), F (u) ≥ (J(u))

2

4
.

(H5) lim inf
t→∞

1

t

t
∫

t0

[(u′(s))2 − p(s)F (u(s))]ds < 0.

(H6) Let U = {(t, s) ∈ [t0, ∞) × [t0, ∞) such that t > s ≥ 0}.

There exists a function G ∈ C(U, R) such that G(t, s) > 0,

∂
∂s
G(t, s) ≤ 0 on U and G(t, t) = 0, ∀ t ≥ t0.

(H7) Let there existh ∈ C1(([t0,∞), (0, ∞)) such that h′(t) ≤ 0, ∀t ∈ [t0,∞) and
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(i)
∞
∫

t0

q(s)h(s)ds = ∞.

(ii) lim sup
t→∞

1

G(t, t∗)

t
∫

t0

G(t, s)q(s)h(s)ds = ∞, ∀ t∗ ≥ t0.

(H8) Let there exist h ∈ C1([t0, ∞), (0, ∞)) such that −∞ <
∞
∫

t0

h′

(t)

h(t)
dt <∞

and
∞
∫

t0

q(t)h(t) exp
−

t
∫

t
∗

h
′(s)

h(s)
ds

dt = ∞ for some t∗ > t0.

(H9) g1 ∈ C1(B, R) such that yg1(y) > 0, ∀ 0 6= y ∈ R and ∃ β > 0 such that

g′1(y) ≥ β > 0, ∀ 0 6= y ∈ B, where B = (−∞, −N) ∪ (N, ∞), N > 0.

(H10)
∞
∫

t0

(

∞
∫

u

q(s)ds

)

du = ∞.

Remark 2.1 Hypotheses (H4), (H5) are the extension of the conditions introduced
by V. Komkov [9] and (H9), (H10) are given by Bacuĺiková [2].

Lemma 2.1 Let x be a nonoscillatory solution of (1.1) on [T, ∞) and let (H1)–(H3)
hold. Then for all large t, we have x(t)x′(t) > 0.

Proof Without any loss of generality, this solution can be supposed to be such that
x(t) > 0 for t ≥ T1 ≥ T. Further, we observe that the substitution u = −x transforms
(1.1) into the Eq.

u′′(t) + p(t)f̄(u(t), u(τ(t))) = 0, (2.1)

where f̄(u1, u2) = −f(−u1, −u2). The function f̄ is subject to the same conditions as f.
So, there is no loss of generality to restrict our discussion to the case when the solution x
is positive on [T1, ∞). If this lemma is not true, then either x′(t) < 0 for all large t or x′(t)
oscillates. By (H1), we choose T1 sufficiently large so that p(t) > 0, x′(t) < 0, ∀ t ≥ T1.

This implies that
∫ t

T1

p(s)ds ≥ 0, and x′(τ(t)) < 0, ∀ t ≥ T1.

Hence, we have

∫ t

T1

p(s)f(x(s), x(τ(s)))ds = f(x(t), x(τ(t)))

∫ t

T1

p(s)ds−

∫ t

T1

( ∂

∂x(s)
f(x(s), x(τ(s))))x′(s)

+
∂

∂x(τ(s))
f(x(s), x(τ(s))))x′(τ(s))τ ′(s)

)

(∫ s

T1

p(σ)dσ

)

ds ≥ 0, ∀ t ≥ T1.

Now integrating (1.1), we get

x′(t) ≤ x′(T1) < 0, ∀ t ≥ T1,

which contradicts the fact that x(t) is nonoscillatory.
If x′(t) is oscillatory. Then ∃ {tn} ⊂ [t0, ∞) such that tn → ∞ as n → ∞ and

x′(tn) = 0, ∀n ∈ N. Let t̂ > T1 be the zero of x′. This implies that x′(t̂) = 0, x′′(t̂) < 0,
from which one can prove that x′ can not have another zero after it vanishes for large t,
which is a contradiction. This completes the proof of the lemma.
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Remark 2.2 For a lemma, similar to Lemma 2.1 under a similar hypothesis, we refer
the reader to [11].

Theorem 2.1 Under the hypotheses (H1)–(H5), Eq. (1.1) is oscillatory.

Proof Suppose on the contrary, (1.1) has a nonoscillatory solution x(t). Then there
exists some t1 ≥ t0 such that either x(t) > 0 or x(t) < 0, ∀ t ≥ t1.

Case 1. x(t) > 0, ∀ t ≥ t1. By Lemma 2.1, we have x(t)x′(t) > 0, for all large t.
So, we choose a T sufficiently large such that x(t)x′(t) > 0, ∀ t ≥ T. This implies that
x′(τ(t)) > 0, ∀ t ≥ T. Now we note that the following identity is valid on [T, ∞) :

(u′(t))2 − p(t)F (u(t)) +
F (u(t))

f(x(t), x(τ(t)))
[x′′(t) + p(t)f(x(t), x(τ(t)))]

=

(

x′(t)F (u(t))

f(x(t), x(τ(t)))

)′

+
( ∂

∂x(τ(t))
f(x(t), x(τ(t)))) x′(t)x′(τ(t))τ ′(t)F (u(t))

(f(x(t), x(τ(t)))2

+
( ∂

∂x(t)
f(x(t), x(τ(t))))x′(t)x′(t)F (u(t))

(f(x(t), x(τ(t))))2
−

(

x′(t)F ′(u(t))u′(t)

f(x(t), x(τ(t)))

)

+ (u′(t))2.

(u′(t))2 − p(t)F (u(t)) +
F (u(t))

f(x(t), x(τ(t)))
[x′′(t) + p(t)f(x(t), x(τ(t)))]

≥

(

x′(t)F (u(t))

f(x(t), x(τ(t)))

)′

−

(

x′(t)
√
αJ(u(t))u′(t)

f(x(t), x(τ(t)))

)

+
α(x′(t))2(J(u(t)))2

4(f(x(t), x(τ(t))))2
+ (u′(t))2

≥

(

x′(t)F (u(t))

f(x(t), x(τ(t)))

)′

+

[

u′(t) −
x′(t)

√
α J(u(t))

2f(x(t), x(τ(t)))

]2

.

Since x being a solution of (1.1), so, we get

(u′(t))2 − p(t)F (u(t)) ≥

(

x′(t)F (u(t))

f(x(t), x(τ(t)))

)′

+

[

u′(t) −
x′(t)

√
α J(u(t))

2f(x(t), x(τ(t)))

]2

.

An integration over [T, ∞) yields
∫ t

T

[(u′(s))2 − p(s)F (u(s))]ds

≥

∫ t

T

(

x′(s)F (u(s))

f(x(s), x(τ(s)))

)′

ds

≥
x′(t)F (u(t))

f(x(t), x(τ(t)))
−

x′(T )F (u(T ))

f(x(T ), x(τ(T )))
.

So,

1

t

∫ t

T

[(u′(s))2 − p(s)F (u(s))]ds ≥ −
1

t

x′(T )F (u(T ))

f(x(T ), x(τ(T )))
→ 0 as t → ∞,

which contradicts to (H5).
Case 2. x(t) < 0, ∀ t ≥ t1. For large t, we have, x(t) < 0, x(τ(t)) < 0, ∀ t ≥ T,

where T is sufficiently large. By Lemma 2.1, we have x′(t) < 0, ∀ t ≥ T. Now the rest
of the proof of case 2 is similar to the proof of case 1 and we omit the proof for brevity.
This completes the proof of the theorem.

The next lemma is used in the proof of the next theorems.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9(ISSUE) (2009) 317–326 321

Lemma 2.2 Let p1(t) ≥ 0 and q(t) be continuous non-negative and not identically
zero on any ray of the form [t∗, ∞), t∗ ≥ t0 and assume that

(i) f1(t, x, y) ≤| y |λ, −∞ < x, y <∞, t ≥ t0 and some constant λ ≥ 0.

(ii)

(

1 +

∫ t

t0

p1(s)ds

)−
1
λ

/∈ L(t0, ∞), if λ > 0,

∫

∞

t0

exp

(∫ s

t0

−p1(σ)dσ)

)

ds = ∞, if λ = 0.

If x(t) is a non-oscillatory solution of Eq. (1.2), then x(t)x′(t) > 0 for all large t.

For the proof of this lemma, we refer the reader to [5].

Theorem 2.2 Let p1(t) ≥ 0 and q(t) be continuous non-negative and not identically
zero on any ray of the form [t∗, ∞), t∗ ≥ t0. Let τ(t) < t, for large t. Let the conditions
(i), (ii) hold. Then under the hypotheses (H8)–(H10), Eq. (1.2) is oscillatory.

Proof Suppose on the contrary, (1.2) has a nonoscillatory solution x(t). Then there
exists some t1 ≥ t0 such that either x(t) > 0 or x(t) < 0, ∀ t ≥ t1.

Case 1. x(t) > 0, ∀ t ≥ t1. By Lemma 2.2, we have x(t)x′(t) > 0, ∀ t ≥ T, where
T > t0 is sufficiently large. We define

w(t) =
x′(t)h(t)

g1(x(τ(t)))
, ∀ t ≥ T, (2.2)

where h is appearing in (H8). Differentiating w(t) and by Eq. (1.2), we get

w′(t) =
−h(t)p1(t)x

′(t)f1(t, x(t), x
′(t))

g1(x(τ(t)))
− q(t)h(t) +

x′(t)h′(t)

g1(x(τ(t)))

−
x′(t)g′1(x(τ(t)))x

′(τ(t))τ ′(t)h(t)

(g1(x(τ(t))))2

≤ −q(t)h(t) −
w(t)g′1(x(τ(t)))x

′(τ(t))τ ′(t)

g1(x(τ(t)))
+
h′(t)w(t)

h(t)
.

Since x′ is a decreasing function for t ≥ T and τ(t) < t. So,

w′(t) ≤ −q(t)h(t) −
(w(t))2g′1(x(τ(t)))τ

′(t)

h(t)
+
h′(t)w(t)

h(t)
. (2.3)

Now we claim that x(t) → ∞ as t → ∞. Suppose not, then 0 < x(t) ≤ M < ∞, as
t → ∞. We may also assume that 0 < x(τ(t)) ≤ M < ∞, as t → ∞. Since x′(t) is
positive and decreasing, so limt→∞ x′(t) exists and is finite. An integration of Eq. (1.2)
from t to ∞, yields
∫

∞

t

x′′(s)ds = −

∫

∞

t

p(s)f1(s, x(s), x
′(s))x′(s)ds−

∫

∞

t

q(s)g1(x(τ(s)))ds, t ≥ T.

This implies that x′(∞) − x′(t) ≤ −
∞
∫

t

q(s)g1(x(τ(s)))ds or

x′(t) ≥

∫ ∞

t

q(s)g1(x(τ(s)))ds, t ≥ T. (2.4)
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Let
δ = min

u∈[L, M ]

g1(u)

for some L > 0. Then 0 < δ ≤ g1(x(τ(s))). From inequality (2.4), we get

x′(t) ≥ δ

∫ ∞

t

q(s)ds.

An integration over (t0, t) of the above inequality yields

x(t) ≥ x(0) + δ

∫ t

t0

(∫

∞

u

q(s)ds

)

du.

Letting t → ∞ in above inequality, we get a contradiction from (H10). So, our claim is
true and hence x(τ(t)) ∈ B for all large t. Now from (2.3) and (H9), we get

w′(t) ≤ −q(t)h(t) −
(w(t))2βτ ′(t)

h(t)
+
h′(t)w(t)

h(t)
≤ −q(t)h(t) +

h′(t)w(t)

h(t)
. (2.5)

From inequality (2.5), we get

w(t) ≤ w(T1) exp
−

T1
∫

T

h
′(s)

h(s)
ds

exp

t
∫

T

h
′(s)

h(s)
ds

− exp

t
∫

T

h
′(s)

h(s)
ds

t
∫

T1

q(s)h(s) exp
−

s
∫

T

h
′(u)

h(u)
du

ds, (2.6)

where t ≥ T1 > T. Letting t→ ∞, from (H8),we getw(t) → −∞, which is a contradiction
as w(t) > 0.

Case 2. x(t) < 0, ∀ t ≥ t1. The proof of case 2 is similar to the proof of case 1 and
we omit the proof for brevity. This completes the proof of the theorem.

Theorem 2.3 Let (H8) be replaced by (H7(i)) in Theorem 2.2. Then Eq. (1.2) is
oscillatory.

Proof Suppose on the contrary, (1.2) has a nonoscillatory solution x(t). As in the
foregoing text, there exists some t1 ≥ 0 such that either x(t) > 0 or x(t) < 0, ∀ t ≥ t1.

Case 1. x(t) > 0, ∀ t ≥ t1. By Lemma 2.2, we have x(t)x′(t) > 0, ∀ t ≥ T, where T > 0
is sufficiently large. We define

w(t) =
x′(t)h(t)

g1(x(τ(t)))
, ∀ t ≥ T, (2.7)

where h is appearing in (H7). As in the proof of Theorem 2.2, we have Inequality (2.5)

w′(t) ≤ −q(t)h(t) +
h′(t)w(t)

h(t)
.

In view of (H7), we get

w′(t) ≤ −q(t)h(t). (2.8)

An integration over (T, ∞) yields

w(t) ≤ w(T ) −

∫ t

T

q(s)h(s)ds.

Letting t→ ∞ in above inequality, we get a contradiction from (H7(i)).
Case 2. x(t) < 0, ∀ t ≥ t1. The proof of case 2 is similar to the proof of case 1 and we
omit the proof. This completes the proof of the theorem.
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Theorem 2.4 Let (H6) hold and suppose (H8) be replaced by (H7(ii)) in Theorem
2.2. Then Eq. (1.2) is oscillatory.

Proof Suppose on the contrary, (1.2) has a nonoscillatory solution x(t).
Case 1. x(t) > 0, ∀ t ≥ t1. By Lemma 2.2, we have x(t)x′(t) > 0, ∀ t ≥ T, where T > 0
is sufficiently large. We define

w(t) =
x′(t)h(t)

g1(x(τ(t)))
, ∀ t ≥ T,

where h is appearing in (H7). From (2.8), we have

∫ t

T

G(t, s)q(s)h(s)ds ≤ −G(t, t)w(t) +G(t, T )w(T ) +

∫ t

T

∂G(t, s)

∂s
w(s)ds

≤ G(t, T )w(T ),

which implies that

1

G(t, T )

∫ t

T

G(t, s)q(s)h(s)ds ≤ w(T ).

Letting t→ ∞, we get a contradiction from (H7(ii)).
Case 2. x(t) < 0, ∀ t ≥ t1. The proof of case 2 is similar to the proof of case 1 and
hence is omitted.

Remark 2.3 Theorems 2.2, 2.3 and 2.4 can be applied to sublinear and superlinear
equations as the boundedness of g′1(y) is not required near zero.

3 Behavior of Nonoscillatory Solutions

In this section, we study the behavior of nonoscillatory solutions of Eq. (∗). In fact, we
study the behavior of nonoscillatory solutions of

x′′(t) + P (t)f(x(t), x(τ(t)))g(x′(t)) = 0, t ∈ [t0, ∞), (3.1)

where P ∈ C([t0, ∞), R+), f ∈ C(R2, R), g ∈ C(R, R). Let there exist k > 0, l >

0 such that f(x, y)

x
≥ k > 0, ∀ 0 6= x ∈ R, y ∈ R and g(y) ≥ l > 0, y ∈ R. Let

τ ∈ C([t0, ∞), R). Let there exists µ > 0. Consider the second-order linear differential
equation

x′′(t) + λP (t)x(t) = 0, λ > 0. (3.2)

We establish that all nonoscillatory solutions x(t) of Eq. (3.1) are such that y(t) = O(x(t))
as t → ∞, where y is any oscillatory solution of Eq. (3.2), ∀λ ∈ (0, µ]. The technique
of Philos et al. [12] is employed to establish the following result. This result gives a new
direction in the study of nonoscillatory behavior of functional differential equations.

Theorem 3.1 Let x be any nonoscillatory solution of Eq. (3.1) and y be an oscilla-
tory solution of Eq. (3.2). Then y(t) = O(x(t)) as t → ∞.

Proof Since x is any nonoscillatory solution of Eq. (3.1), so there exists some T0 ≥ t0
such that x(t) 6= 0, ∀ t ≥ T0. There are two cases.
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Case 1. x(t) > 0, ∀ t ≥ T0. We define

v(t) =
y(t)

x(t)
, ∀ t ≥ T0.

We obtain

v′(t) =
y′(t) − v(t)x′(t)

x(t)
, ∀ t ≥ T0

and

v′′(t) =
y′′(t) − v(t)x′′(t) − 2v′(t)x′(t)

x(t)
, ∀ t ≥ T0. (3.3)

From Eqs. (3.1), (3.2) and (3.3), we get

v′′(t) = −
2v′(t)x′(t)

x(t)
+

−λP (t)y(t)

x(t)
+
v(t)P (t)f(x(t), x(τ(t)))g(x′(t))

x(t)
. (3.4)

Now we will show that v is bounded on the interval [T0, ∞). Assume on the contrary
that v is unbounded on [T0, ∞). As −y is also an oscillatory solution of Eq. (3.2) and
−v = −y

x
on [T0, ∞). We may suppose that v is unbounded from above. Clearly, v is

oscillatory. Thus, we can choose a sufficiently large T ≥ T0 so that

v′(T ) = 0, v(T ) >| v(t) | for T0 ≤ t < T (3.5)

and v′′(T ) ≤ 0, (see, [Thm. 2, 12]). In view of Eq. (3.5), from Eq. (3.4), we get

v(T )P (T )[f(x(t), x(τ(t)))g(x′(T )) − λx(T )] ≤ 0.

That is,

f(x(t), x(τ(t)))g(x′(T )) − λx(T ) ≤ 0. (3.6)

From the hypotheses, we get

f(x(T ), x(τ(T )))

x(T )
≥ k > 0, and g(x′(T )) ≥ l > 0. (3.7)

That is,
f(x(T ), x(τ(T )))g(x′(T )) − klx(T )

x(T )
≥ 0.

We choose µ = kl, sinceλ ∈ (0, µ], we obtain

f(x(T ), x(τ(T )))g(x′(T )) − λx(T )

x(T )
≥ 0. (3.8)

Eqs. (3.6) and (3.8) implies that x(T ) ≤ 0, which is a contradiction.

Case 2. x(t) < 0, ∀ t ≥ T0. The proof of case 2 is similar to the proof of case 1 and
we omit the proof for brevity. This completes the proof of the theorem.

Remark 3.1 As a hypothesis, ′′Eq. (3.2) is oscillatory ∀λ > 0′′ is used by Lynn Erbe
[11].
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4 Examples

Finally, we give some examples to illustrate our results.

Example 4.1 Consider the differential equation

x′′(t)+

(

1 −
sin t

t2

)

[

x(t) + (x(t))2m+1 + x

(

t

2

)

+

(

x

(

t

2

))2n+1
]

= 0, m, n ∈ N, t > 0.

(4.1)
Eq. (4.1) can be viewed as Eq. (1.1) with p(t) = 1− sin t

t2
, f(y1, y2) = y1 + y2m+1

1
+ y2 +

y2n+1

2
, τ(t) = t

2
. With the choice of α = 1, F (u) = u2, u(t) = t, it is easy to see that

the hypotheses of Theorem 2.1 are satisfied. An application of Theorem 2.1 implies that
(4.1) is oscillatory.

Remark 4.1 Here p(t) � 0, ∀ t ∈ [t0, ∞), so none of the known criteria [8, 13, 14]
can obtain this result to Eq. (4.1).

Example 4.2 Consider the differential equation

x′′(t) +

(

e−t +
2

t2
+

1

t4

)

(

x(t) + x

(

t

3

)

+ x

(

t

3

)5
)

= 0, t > 0. (4.2)

Eq. (4.2) can be viewed as Eq. (1.1) with p(t) = e−t + 2

t2
+ 1

t4
, f(y1, y2) = y1 + y2 +

y5
2 , τ(t) = t

3
. With the choice of α = 1, F (u) = u2, u(t) = t, it is easy to see that

the hypotheses of Theorem 2.1 are satisfied. An application of Theorem 2.1 implies that
Eq. (4.2) is oscillatory, whereas none of the known criteria [8, 13, 14] can obtain this result
to Eq. (4.2).

Example 4.3 Consider the differential equation

x′′(t) +
1

t+ 1
x′(t) +

1

t2

(

(

x
(

t
3

))3

| x
(

t
3

)

| +1

)

= 0, t > 0. (4.3)

Eq. (4.3) can be viewed as Eq. (1.2) with p1(t) = 1

t+1
, f1(t, x, y) = 1, q(t) = 1

t2
, g1(y) =

y3

|y|+1
, τ(t) = t

3
. With the choice of h(t) = 1, it is easy to see that the hypotheses of

Theorem 2.2 are satisfied. So, by Theorem 2.2, Eq. (4.3) is oscillatory.

Example 4.4 Consider the differential equation

x′′(t) + (x′(t))2 + et

(

x

(

t

2

))3

= 0. (4.4)

Eq. (4.4) can be viewed as Eq. (1.2) with p1(t) = 1, f1(t, x, y) = y, q(t) = et, g1(y) =
y3, τ(t) = t

2
. Since f1(t, x, y) = y, so in view of Lemma 2.2(i), λ = 1. With the choice

of h(t) = e−t, it is easy to see that the hypotheses of Theorem 2.3 are satisfied and by
Theorem 2.3, Eq. (4.4) is oscillatory in view of Lemma 2.2(i).

Acknowledgments

The author would like to thank the National Board for Higher Mathematics (NBHM),
DAE, Govt. of India for providing him a financial support under the grant no. 40/1/2008–
R&D–II/3230.



326 J. TYAGI

References

[1] Agarwal, R.P., Bohner, M. and Wan–Tong Li. Nonoscillation and oscillation: theory for
functional differential equations. Marcel Dekker, New York, 2004.
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