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Abstract: The aim of this study is to present new oscillation theorems for certain
classes of second-order nonlinear functional differential equations of the type

x
′′(t) + p(t)f(x(t), x(τ (t))) = 0, (∗)

x
′′(t) + p1(t)f1(t, x(t), x

′(t))x′(t) + q(t)g1(x(τ (t)) = 0, t ∈ [t0, ∞), t0 > 0.

In the study of Eq. (∗), no sign condition on p(t) is explicitly assumed. Also, we study
the behavior of the nonoscillatory solution of Eq. (∗).

Keywords: nonlinear; functional differential equations; oscillatory solution;

nonoscillatory solution.
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1 Introduction

Over the last three decades, many studies have dealt with the oscillation theory for
functional differential equations. For an excellent bibliography and later developments
of this theory, we refer to the books by Agarwal, Bohner and Wan–Tong Li [1], Erbe,
Kong and Zhang [3], Gopalsamy [4], Györi and Ladas [6], Ladde, Lakshmikantham and
Zhang [10]. In this note, we consider the second-order nonlinear functional differential
equations of the form

x′′(t) + p(t)f(x(t), x(τ(t))) = 0, (1.1)

x′′(t) + p1(t)f1(t, x(t), x
′(t))x′(t) + q(t)g1(x(τ(t)) = 0, t ∈ [t0, ∞), (1.2)
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where p ∈ C([t0, ∞), R), p1, q ∈ C([t0, ∞), R+), f ∈ C(R2, R), f1 ∈ C([t0, ∞) ×
R2, R+), g1 ∈ C(R, R), yg1(y) > 0, ∀ 0 6= y ∈ R, τ ∈ C1([t0, ∞), R+), τ ′(t) > 0
for all large t and τ(t) → ∞ as t → ∞. In case p(t) is positive, the oscillation crite-
ria for Eq. (1.1) and its special case

x′′(t) + p(t)F1(x(τ(t))) = 0, t ∈ [t0, ∞)

is extensively studied by many investigators in this area (see, [7, 8, 13–15] and the refer-
ences cited therein). All of them restrict the sign condition on p(t); i.e., p(t) ≥ 0, ∀ t ∈
[t0, ∞). For the oscillation of Eq. (1.1), our study is free from such restriction. Also, as
far as the author knows there is no oscillation result in literature for Eq. (1.2). The ideas
of [2] are used to extend the oscillation results for Eq. (1.2). Let ψ : [τ(t0), t0] → R is a
continuous function. By a solution of Eq. (1.1) (resp. Eq. (1.2)), we mean a continuously
differentiable function x : [τ(t0), ∞] → R such that x(t) = ψ(t) for τ(t0) < t0 and x
satisfies Eq. (1.1) (resp. Eq. (1.2)) ∀ t ≥ t0. We restrict our discussion to the nontrivial
solutions of Eq. (1.1) (resp. Eq. (1.2)). A nontrivial solution of Eq. (1.1) (resp. Eq. (1.2))
is said to be oscillatory if it has arbitrarily large zeros, i.e., for any T1 > t0, ∃ t ≥ T1

such that x(t) = 0, otherwise the solution is said to be nonoscillatory.

The paper is organized as follows. Section 2 deals with the oscillation theorems for
Eqs. (1.1) and (1.2). The behavior of nonoscillatory solution of Eq. (1.1) is discussed in
Section 3. In Section 4, we construct some examples for the illustration of these results.

2 Oscillation Theorems

We begin this section with the list of hypotheses:

(H1) p(t) > 0 for t sufficiently large.

(H2) f(y1, y2) > 0 if yi > 0; f(y1, y2) < 0 if yi < 0, ∀ i = 1, 2.

(H3) f(y1, y2) is a continuously differentiable function w. r. t. y1 and y2 and

suppose there exists α > 0 such that ∂
∂yi

f(y1, y2) ≥ α for yi 6= 0, ∀ i = 1, 2.

(H4) There exist a C1 function u defined on [t0, ∞), a C1 function F on R and

a continuous function J on R such that F ′(u) =
√
αJ(u), F (u) ≥ (J(u))2

4 .

(H5) lim inf
t→∞

1
t

t
∫

t0

[(u′(s))2 − p(s)F (u(s))]ds < 0.

(H6) Let U = {(t, s) ∈ [t0, ∞) × [t0, ∞) such that t > s ≥ 0}.

There exists a function G ∈ C(U, R) such that G(t, s) > 0,

∂
∂s
G(t, s) ≤ 0 on U and G(t, t) = 0, ∀ t ≥ t0.

(H7) Let there existh ∈ C1(([t0,∞), (0, ∞)) such that h′(t) ≤ 0, ∀t ∈ [t0,∞) and
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(i)
∞
∫

t0

q(s)h(s)ds = ∞.

(ii) lim sup
t→∞

1
G(t, t∗)

t
∫

t0

G(t, s)q(s)h(s)ds = ∞, ∀ t∗ ≥ t0.

(H8) Let there exist h ∈ C1([t0, ∞), (0, ∞)) such that −∞ <
∞
∫

t0

h′(t)
h(t) dt <∞

and
∞
∫

t0

q(t)h(t) exp
−

t
∫

t∗

h
′(s)

h(s)
ds

dt = ∞ for some t∗ > t0.

(H9) g1 ∈ C1(B, R) such that yg1(y) > 0, ∀ 0 6= y ∈ R and ∃ β > 0 such that

g′1(y) ≥ β > 0, ∀ 0 6= y ∈ B, where B = (−∞, −N) ∪ (N, ∞), N > 0.

(H10)
∞
∫

t0

(

∞
∫

u

q(s)ds

)

du = ∞.

Remark 2.1 Hypotheses (H4), (H5) are the extension of the conditions introduced
by V. Komkov [9] and (H9), (H10) are given by Bacuĺiková [2].

Lemma 2.1 Let x be a nonoscillatory solution of (1.1) on [T, ∞) and let (H1)–(H3)
hold. Then for all large t, we have x(t)x′(t) > 0.

Proof Without any loss of generality, this solution can be supposed to be such that
x(t) > 0 for t ≥ T1 ≥ T. Further, we observe that the substitution u = −x transforms
(1.1) into the Eq.

u′′(t) + p(t)f̄(u(t), u(τ(t))) = 0, (2.1)

where f̄(u1, u2) = −f(−u1, −u2). The function f̄ is subject to the same conditions as f.
So, there is no loss of generality to restrict our discussion to the case when the solution x
is positive on [T1, ∞). If this lemma is not true, then either x′(t) < 0 for all large t or x′(t)
oscillates. By (H1), we choose T1 sufficiently large so that p(t) > 0, x′(t) < 0, ∀ t ≥ T1.
This implies that

∫ t

T1

p(s)ds ≥ 0, and x′(τ(t)) < 0, ∀ t ≥ T1.

Hence, we have

∫ t

T1

p(s)f(x(s), x(τ(s)))ds = f(x(t), x(τ(t)))

∫ t

T1

p(s)ds−
∫ t

T1

( ∂

∂x(s)
f(x(s), x(τ(s))))x′(s)

+
∂

∂x(τ(s))
f(x(s), x(τ(s))))x′(τ(s))τ ′(s)

)

(
∫ s

T1

p(σ)dσ

)

ds ≥ 0, ∀ t ≥ T1.

Now integrating (1.1), we get

x′(t) ≤ x′(T1) < 0, ∀ t ≥ T1,

which contradicts the fact that x(t) is nonoscillatory.
If x′(t) is oscillatory. Then ∃ {tn} ⊂ [t0, ∞) such that tn → ∞ as n → ∞ and

x′(tn) = 0, ∀n ∈ N. Let t̂ > T1 be the zero of x′. This implies that x′(t̂) = 0, x′′(t̂) < 0,
from which one can prove that x′ can not have another zero after it vanishes for large t,
which is a contradiction. This completes the proof of the lemma.
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Remark 2.2 For a lemma, similar to Lemma 2.1 under a similar hypothesis, we refer
the reader to [11].

Theorem 2.1 Under the hypotheses (H1)–(H5), Eq. (1.1) is oscillatory.

Proof Suppose on the contrary, (1.1) has a nonoscillatory solution x(t). Then there
exists some t1 ≥ t0 such that either x(t) > 0 or x(t) < 0, ∀ t ≥ t1.

Case 1. x(t) > 0, ∀ t ≥ t1. By Lemma 2.1, we have x(t)x′(t) > 0, for all large t.
So, we choose a T sufficiently large such that x(t)x′(t) > 0, ∀ t ≥ T. This implies that
x′(τ(t)) > 0, ∀ t ≥ T. Now we note that the following identity is valid on [T, ∞) :

(u′(t))2 − p(t)F (u(t)) +
F (u(t))

f(x(t), x(τ(t)))
[x′′(t) + p(t)f(x(t), x(τ(t)))]

=

(

x′(t)F (u(t))

f(x(t), x(τ(t)))

)′

+
( ∂

∂x(τ(t))f(x(t), x(τ(t)))) x′(t)x′(τ(t))τ ′(t)F (u(t))

(f(x(t), x(τ(t)))2

+
( ∂

∂x(t)f(x(t), x(τ(t))))x′(t)x′(t)F (u(t))

(f(x(t), x(τ(t))))2
−
(

x′(t)F ′(u(t))u′(t)

f(x(t), x(τ(t)))

)

+ (u′(t))2.

(u′(t))2 − p(t)F (u(t)) +
F (u(t))

f(x(t), x(τ(t)))
[x′′(t) + p(t)f(x(t), x(τ(t)))]

≥
(

x′(t)F (u(t))

f(x(t), x(τ(t)))

)′

−
(

x′(t)
√
αJ(u(t))u′(t)

f(x(t), x(τ(t)))

)

+
α(x′(t))2(J(u(t)))2

4(f(x(t), x(τ(t))))2
+ (u′(t))2

≥
(

x′(t)F (u(t))

f(x(t), x(τ(t)))

)′

+

[

u′(t) − x′(t)
√
α J(u(t))

2f(x(t), x(τ(t)))

]2

.

Since x being a solution of (1.1), so, we get

(u′(t))2 − p(t)F (u(t)) ≥
(

x′(t)F (u(t))

f(x(t), x(τ(t)))

)′

+

[

u′(t) − x′(t)
√
α J(u(t))

2f(x(t), x(τ(t)))

]2

.

An integration over [T, ∞) yields
∫ t

T

[(u′(s))2 − p(s)F (u(s))]ds

≥
∫ t

T

(

x′(s)F (u(s))

f(x(s), x(τ(s)))

)′

ds

≥ x′(t)F (u(t))

f(x(t), x(τ(t)))
− x′(T )F (u(T ))

f(x(T ), x(τ(T )))
.

So,

1

t

∫ t

T

[(u′(s))2 − p(s)F (u(s))]ds ≥ −1

t

x′(T )F (u(T ))

f(x(T ), x(τ(T )))
→ 0 as t → ∞,

which contradicts to (H5).
Case 2. x(t) < 0, ∀ t ≥ t1. For large t, we have, x(t) < 0, x(τ(t)) < 0, ∀ t ≥ T,

where T is sufficiently large. By Lemma 2.1, we have x′(t) < 0, ∀ t ≥ T. Now the rest
of the proof of case 2 is similar to the proof of case 1 and we omit the proof for brevity.
This completes the proof of the theorem.

The next lemma is used in the proof of the next theorems.
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Lemma 2.2 Let p1(t) ≥ 0 and q(t) be continuous non-negative and not identically
zero on any ray of the form [t∗, ∞), t∗ ≥ t0 and assume that

(i) f1(t, x, y) ≤| y |λ, −∞ < x, y <∞, t ≥ t0 and some constant λ ≥ 0.

(ii)

(

1 +

∫ t

t0

p1(s)ds

)− 1
λ

/∈ L(t0, ∞), if λ > 0,

∫ ∞

t0

exp

(
∫ s

t0

−p1(σ)dσ)

)

ds = ∞, if λ = 0.

If x(t) is a non-oscillatory solution of Eq. (1.2), then x(t)x′(t) > 0 for all large t.

For the proof of this lemma, we refer the reader to [5].

Theorem 2.2 Let p1(t) ≥ 0 and q(t) be continuous non-negative and not identically
zero on any ray of the form [t∗, ∞), t∗ ≥ t0. Let τ(t) < t, for large t. Let the conditions
(i), (ii) hold. Then under the hypotheses (H8)–(H10), Eq. (1.2) is oscillatory.

Proof Suppose on the contrary, (1.2) has a nonoscillatory solution x(t). Then there
exists some t1 ≥ t0 such that either x(t) > 0 or x(t) < 0, ∀ t ≥ t1.

Case 1. x(t) > 0, ∀ t ≥ t1. By Lemma 2.2, we have x(t)x′(t) > 0, ∀ t ≥ T, where
T > t0 is sufficiently large. We define

w(t) =
x′(t)h(t)

g1(x(τ(t)))
, ∀ t ≥ T, (2.2)

where h is appearing in (H8). Differentiating w(t) and by Eq. (1.2), we get

w′(t) =
−h(t)p1(t)x

′(t)f1(t, x(t), x
′(t))

g1(x(τ(t)))
− q(t)h(t) +

x′(t)h′(t)

g1(x(τ(t)))

−x
′(t)g′1(x(τ(t)))x

′(τ(t))τ ′(t)h(t)

(g1(x(τ(t))))2

≤ −q(t)h(t) − w(t)g′1(x(τ(t)))x
′(τ(t))τ ′(t)

g1(x(τ(t)))
+
h′(t)w(t)

h(t)
.

Since x′ is a decreasing function for t ≥ T and τ(t) < t. So,

w′(t) ≤ −q(t)h(t) − (w(t))2g′1(x(τ(t)))τ
′(t)

h(t)
+
h′(t)w(t)

h(t)
. (2.3)

Now we claim that x(t) → ∞ as t → ∞. Suppose not, then 0 < x(t) ≤ M < ∞, as
t → ∞. We may also assume that 0 < x(τ(t)) ≤ M < ∞, as t → ∞. Since x′(t) is
positive and decreasing, so limt→∞ x′(t) exists and is finite. An integration of Eq. (1.2)
from t to ∞, yields
∫ ∞

t

x′′(s)ds = −
∫ ∞

t

p(s)f1(s, x(s), x
′(s))x′(s)ds−

∫ ∞

t

q(s)g1(x(τ(s)))ds, t ≥ T.

This implies that x′(∞) − x′(t) ≤ −
∞
∫

t

q(s)g1(x(τ(s)))ds or

x′(t) ≥
∫ ∞

t

q(s)g1(x(τ(s)))ds, t ≥ T. (2.4)
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Let
δ = min

u∈[L, M ]
g1(u)

for some L > 0. Then 0 < δ ≤ g1(x(τ(s))). From inequality (2.4), we get

x′(t) ≥ δ

∫ ∞

t

q(s)ds.

An integration over (t0, t) of the above inequality yields

x(t) ≥ x(0) + δ

∫ t

t0

(
∫ ∞

u

q(s)ds

)

du.

Letting t → ∞ in above inequality, we get a contradiction from (H10). So, our claim is
true and hence x(τ(t)) ∈ B for all large t. Now from (2.3) and (H9), we get

w′(t) ≤ −q(t)h(t) − (w(t))2βτ ′(t)

h(t)
+
h′(t)w(t)

h(t)
≤ −q(t)h(t) +

h′(t)w(t)

h(t)
. (2.5)

From inequality (2.5), we get

w(t) ≤ w(T1) exp
−

T1
∫

T

h
′(s)

h(s)
ds

exp

t
∫

T

h
′(s)

h(s)
ds

− exp

t
∫

T

h
′(s)

h(s)
ds

t
∫

T1

q(s)h(s) exp
−

s
∫

T

h
′(u)

h(u)
du

ds, (2.6)

where t ≥ T1 > T. Letting t→ ∞, from (H8),we getw(t) → −∞, which is a contradiction
as w(t) > 0.

Case 2. x(t) < 0, ∀ t ≥ t1. The proof of case 2 is similar to the proof of case 1 and
we omit the proof for brevity. This completes the proof of the theorem.

Theorem 2.3 Let (H8) be replaced by (H7(i)) in Theorem 2.2. Then Eq. (1.2) is
oscillatory.

Proof Suppose on the contrary, (1.2) has a nonoscillatory solution x(t). As in the
foregoing text, there exists some t1 ≥ 0 such that either x(t) > 0 or x(t) < 0, ∀ t ≥ t1.
Case 1. x(t) > 0, ∀ t ≥ t1. By Lemma 2.2, we have x(t)x′(t) > 0, ∀ t ≥ T, where T > 0
is sufficiently large. We define

w(t) =
x′(t)h(t)

g1(x(τ(t)))
, ∀ t ≥ T, (2.7)

where h is appearing in (H7). As in the proof of Theorem 2.2, we have Inequality (2.5)

w′(t) ≤ −q(t)h(t) +
h′(t)w(t)

h(t)
.

In view of (H7), we get

w′(t) ≤ −q(t)h(t). (2.8)

An integration over (T, ∞) yields

w(t) ≤ w(T ) −
∫ t

T

q(s)h(s)ds.

Letting t→ ∞ in above inequality, we get a contradiction from (H7(i)).
Case 2. x(t) < 0, ∀ t ≥ t1. The proof of case 2 is similar to the proof of case 1 and we
omit the proof. This completes the proof of the theorem.
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Theorem 2.4 Let (H6) hold and suppose (H8) be replaced by (H7(ii)) in Theorem
2.2. Then Eq. (1.2) is oscillatory.

Proof Suppose on the contrary, (1.2) has a nonoscillatory solution x(t).
Case 1. x(t) > 0, ∀ t ≥ t1. By Lemma 2.2, we have x(t)x′(t) > 0, ∀ t ≥ T, where T > 0
is sufficiently large. We define

w(t) =
x′(t)h(t)

g1(x(τ(t)))
, ∀ t ≥ T,

where h is appearing in (H7). From (2.8), we have

∫ t

T

G(t, s)q(s)h(s)ds ≤ −G(t, t)w(t) +G(t, T )w(T ) +

∫ t

T

∂G(t, s)

∂s
w(s)ds

≤ G(t, T )w(T ),

which implies that

1

G(t, T )

∫ t

T

G(t, s)q(s)h(s)ds ≤ w(T ).

Letting t→ ∞, we get a contradiction from (H7(ii)).
Case 2. x(t) < 0, ∀ t ≥ t1. The proof of case 2 is similar to the proof of case 1 and
hence is omitted.

Remark 2.3 Theorems 2.2, 2.3 and 2.4 can be applied to sublinear and superlinear
equations as the boundedness of g′1(y) is not required near zero.

3 Behavior of Nonoscillatory Solutions

In this section, we study the behavior of nonoscillatory solutions of Eq. (∗). In fact, we
study the behavior of nonoscillatory solutions of

x′′(t) + P (t)f(x(t), x(τ(t)))g(x′(t)) = 0, t ∈ [t0, ∞), (3.1)

where P ∈ C([t0, ∞), R+), f ∈ C(R2, R), g ∈ C(R, R). Let there exist k > 0, l >

0 such that f(x, y)
x

≥ k > 0, ∀ 0 6= x ∈ R, y ∈ R and g(y) ≥ l > 0, y ∈ R. Let
τ ∈ C([t0, ∞), R). Let there exists µ > 0. Consider the second-order linear differential
equation

x′′(t) + λP (t)x(t) = 0, λ > 0. (3.2)

We establish that all nonoscillatory solutions x(t) of Eq. (3.1) are such that y(t) = O(x(t))
as t → ∞, where y is any oscillatory solution of Eq. (3.2), ∀λ ∈ (0, µ]. The technique
of Philos et al. [12] is employed to establish the following result. This result gives a new
direction in the study of nonoscillatory behavior of functional differential equations.

Theorem 3.1 Let x be any nonoscillatory solution of Eq. (3.1) and y be an oscilla-
tory solution of Eq. (3.2). Then y(t) = O(x(t)) as t → ∞.

Proof Since x is any nonoscillatory solution of Eq. (3.1), so there exists some T0 ≥ t0
such that x(t) 6= 0, ∀ t ≥ T0. There are two cases.
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Case 1. x(t) > 0, ∀ t ≥ T0. We define

v(t) =
y(t)

x(t)
, ∀ t ≥ T0.

We obtain

v′(t) =
y′(t) − v(t)x′(t)

x(t)
, ∀ t ≥ T0

and

v′′(t) =
y′′(t) − v(t)x′′(t) − 2v′(t)x′(t)

x(t)
, ∀ t ≥ T0. (3.3)

From Eqs. (3.1), (3.2) and (3.3), we get

v′′(t) = −2v′(t)x′(t)

x(t)
+

−λP (t)y(t)

x(t)
+
v(t)P (t)f(x(t), x(τ(t)))g(x′(t))

x(t)
. (3.4)

Now we will show that v is bounded on the interval [T0, ∞). Assume on the contrary
that v is unbounded on [T0, ∞). As −y is also an oscillatory solution of Eq. (3.2) and
−v = −y

x
on [T0, ∞). We may suppose that v is unbounded from above. Clearly, v is

oscillatory. Thus, we can choose a sufficiently large T ≥ T0 so that

v′(T ) = 0, v(T ) >| v(t) | for T0 ≤ t < T (3.5)

and v′′(T ) ≤ 0, (see, [Thm. 2, 12]). In view of Eq. (3.5), from Eq. (3.4), we get

v(T )P (T )[f(x(t), x(τ(t)))g(x′(T )) − λx(T )] ≤ 0.

That is,

f(x(t), x(τ(t)))g(x′(T )) − λx(T ) ≤ 0. (3.6)

From the hypotheses, we get

f(x(T ), x(τ(T )))

x(T )
≥ k > 0, and g(x′(T )) ≥ l > 0. (3.7)

That is,
f(x(T ), x(τ(T )))g(x′(T )) − klx(T )

x(T )
≥ 0.

We choose µ = kl, sinceλ ∈ (0, µ], we obtain

f(x(T ), x(τ(T )))g(x′(T )) − λx(T )

x(T )
≥ 0. (3.8)

Eqs. (3.6) and (3.8) implies that x(T ) ≤ 0, which is a contradiction.

Case 2. x(t) < 0, ∀ t ≥ T0. The proof of case 2 is similar to the proof of case 1 and
we omit the proof for brevity. This completes the proof of the theorem.

Remark 3.1 As a hypothesis, ′′Eq. (3.2) is oscillatory ∀λ > 0′′ is used by Lynn Erbe
[11].
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4 Examples

Finally, we give some examples to illustrate our results.

Example 4.1 Consider the differential equation

x′′(t)+

(

1 − sin t

t2

)

[

x(t) + (x(t))2m+1 + x

(

t

2

)

+

(

x

(

t

2

))2n+1
]

= 0, m, n ∈ N, t > 0.

(4.1)
Eq. (4.1) can be viewed as Eq. (1.1) with p(t) = 1− sin t

t2
, f(y1, y2) = y1 + y2m+1

1 + y2 +

y2n+1
2 , τ(t) = t

2 . With the choice of α = 1, F (u) = u2, u(t) = t, it is easy to see that
the hypotheses of Theorem 2.1 are satisfied. An application of Theorem 2.1 implies that
(4.1) is oscillatory.

Remark 4.1 Here p(t) � 0, ∀ t ∈ [t0, ∞), so none of the known criteria [8, 13, 14]
can obtain this result to Eq. (4.1).

Example 4.2 Consider the differential equation

x′′(t) +

(

e−t +
2

t2
+

1

t4

)

(

x(t) + x

(

t

3

)

+ x

(

t

3

)5
)

= 0, t > 0. (4.2)

Eq. (4.2) can be viewed as Eq. (1.1) with p(t) = e−t + 2
t2

+ 1
t4
, f(y1, y2) = y1 + y2 +

y5
2 , τ(t) = t

3 . With the choice of α = 1, F (u) = u2, u(t) = t, it is easy to see that
the hypotheses of Theorem 2.1 are satisfied. An application of Theorem 2.1 implies that
Eq. (4.2) is oscillatory, whereas none of the known criteria [8, 13, 14] can obtain this result
to Eq. (4.2).

Example 4.3 Consider the differential equation

x′′(t) +
1

t+ 1
x′(t) +

1

t2

(

(

x
(

t
3

))3

| x
(

t
3

)

| +1

)

= 0, t > 0. (4.3)

Eq. (4.3) can be viewed as Eq. (1.2) with p1(t) = 1
t+1 , f1(t, x, y) = 1, q(t) = 1

t2
, g1(y) =

y3

|y|+1 , τ(t) = t
3 . With the choice of h(t) = 1, it is easy to see that the hypotheses of

Theorem 2.2 are satisfied. So, by Theorem 2.2, Eq. (4.3) is oscillatory.

Example 4.4 Consider the differential equation

x′′(t) + (x′(t))2 + et

(

x

(

t

2

))3

= 0. (4.4)

Eq. (4.4) can be viewed as Eq. (1.2) with p1(t) = 1, f1(t, x, y) = y, q(t) = et, g1(y) =
y3, τ(t) = t

2 . Since f1(t, x, y) = y, so in view of Lemma 2.2(i), λ = 1. With the choice
of h(t) = e−t, it is easy to see that the hypotheses of Theorem 2.3 are satisfied and by
Theorem 2.3, Eq. (4.4) is oscillatory in view of Lemma 2.2(i).
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