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Abstract: In this note, the problem of H∞ filtering for a class of nonlinear neutral
systems with delayed states and outputs is investigated. By introducing a descriptor
technique, using Lyapunov-Krasovskii functional and a suitable change of variables,
new required sufficient conditions are established in terms of delay-dependent linear
matrix inequalities (LMIs) for the existence of the desired H∞ filters. The explicit
expression of the filters is derived to satisfy both asymptotic stability and a prescribed
level of disturbance attenuation for all admissible known nonlinear functions. A
numerical example is provided to show the proposed design approach.
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1 Introduction

Delay (or memory) systems represent a class of infinite-dimensional systems [1, 2] largely
used to describe propagation and transport phenomena or population dynamics [3, 4].
Delay differential systems are assuming an increasingly important role in many disci-
plines like economic, mathematics, science, and engineering. For instance, in economic
systems, delays appear in a natural way since decisions and effects are separated by some
time interval. The presence of a delay in a system may be the result of some essential
simplification of the corresponding process model. The delay effects problem on the
(closed-loop) stability of (linear) systems including delays in the state and/or input is
a problem of recurring interest since the delay presence may induce complex behaviors
(oscillation, instability, bad performances) for the (closed-loop) schemes [2, 5–9].
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Neutral delay systems constitute a more general class than those of the retarded type.
It is important to point out that the highest order derivative of a retarded differential
equation does not contain any delayed variables. When such a term does appear, then we
have a differential equation of neutral type. Stability of these systems proves to be a more
complex issue because the system involves the derivative of the delayed state. Especially,
in the past few decades increased attention has been devoted to the problem of robust
delay-independent stability or delay-dependent stability and stabilization via different
approaches for linear neutral systems with delayed state and/or input and parameter
uncertainties (see for instance [2, 10, 11]). Among the past results on neutral delay
systems, the LMI approach is an efficient method to solve many control problems such as
stability analysis and stabilization [12–17],H∞ control problems [18–24] and guaranteed-
cost (observer-based) control design [25–29].

On the other hand, the state estimation problem has been one of the fundamental
issues in the control area and there have been many works following those of Kalman
filter or H2 optimal estimators (in the stochastic framework) and Luenberger filter (in
the deterministic framework) [30]. Nevertheless there has been an increasing interest in
the robust H∞ filtering, which is concerned with the design of an estimator ensuring
that the L2-induced gain from the noise signal to the estimation error is less than a
prescribed level, in the past years [31-35]. Compared with the conventional Kalman
filtering, the H∞ filter technique has several advantages. First, the noise sources in the
H∞ filtering setting are arbitrary signals with bounded energy or average power, and no
exact statistics are required to be known [36]. Second, the H∞ filter has been shown to
be much more robust to parameter uncertainty in a control system. These advantages
render the H∞ filtering approach very appropriate to some practical applications. When
parameter uncertainty arises in a system model, the robustH∞ filtering problem has been
studied, and a great number of results on this topic have been reported (see the references
[37–39]). In the case when parameter uncertainty and time delays appear simultaneously
in a system model, the robust H∞ filtering problem was dealt with in [40] via LMI
approach, respectively. The corresponding results for uncertain discrete delay systems
can be found in [41]. However, it is noted that the H∞ filtering of nonlinear neutral
systems has not been been fully investigated in the past and remains to be important
and challenging. This motivates the present study.

In this paper, we are concerned to develop a new delay-dependent stability criterion
for H∞ filtering problem of nonlinear neutral systems with known nonlinear functions
which satisfy the Lipschitz conditions. The main merit of the proposed method is the
fact that it provides a convex problem with additional degree of freedom which lead to
less conservative results. Our analysis is based on the Hamiltonian–Jacoby–Isaac (HJI)
method. By introducing a descriptor technique, using Lyapunov–Krasovskii functional
and a suitable change of variables, we establish new required sufficient conditions in terms
of delay-dependent LMIs under which the desired H∞ filters exist, and derive the explicit
expression of these filters to satisfy both asymptotic stability and H∞ performance. A
desired filter can be constructed through a convex optimization problem, which can be
solved by using standard numerical algorithms. Finally, a numerical example is given to
illustrate the proposed design method.

Notations. The superscript ′T ′ stands for matrix transposition; ℜn denotes the n-
dimensional Euclidean space; ℜn×m is the set of all real n by m matrices. ‖.‖ refers to the
Euclidean vector norm or the induced matrix 2-norm. col{· · · } and sym(A) represent,
respectively, a column vector and the matrix A + AT . λmin(A) and λmax(A) denote,
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respectively, the smallest and largest eigenvalue of the square matrix A. The notation
P > 0 means that P is real symmetric and positive definite; the symbol ∗ denotes the
elements below the main diagonal of a symmetric block matrix. In addition, L2[0,∞) is
the space of square-integrable vector functions over [0,∞). Matrices, if the dimensions are
not explicitly stated, are assumed to have compatible dimensions for algebraic operations.

2 Problem Description

We consider a class of nonlinear neutral systems with delayed states and outputs repre-
sented by



















ẋ(t) = Ax(t) +A1x(t− h(t)) +A2ẋ(t−d(t))+E1f(x(t)) + E2f(x(t− h(t))) +B1w(t),

x(t) = ϕ(t), t ∈ [−max{h1, d1}, 0],

z(t) = C1x(t),

y(t) = C2x(t) + g(t, x(t)),

(1)
where x(t) ∈ ℜn, w(t) ∈ Ls

2[0,∞), z(t) ∈ ℜz and y(t) ∈ ℜp are corresponded to state
vector, disturbance input, estimated output and measured output. The time-varying
function ϕ(t) is continuous vector valued initial function and the parameters h(t) and
d(t) are time-varying delays satisfying

0 ≤ h(t) ≤ h1, ḣ(t) ≤ h2,

0 ≤ d(t) ≤ d1, ḋ(t) ≤ d2 < 1.

Assumption 2.1 1) The nonlinear function f : ℜn → ℜn is continuous and satisfies
f(0) = 0 and the Lipschitz condition, i.e., ‖f(x0) − f(y0)‖ ≤ ‖U1(x0 − y0)‖ for all
x0, y0 ∈ ℜn and U1 is a known matrix.

2) The nonlinear function g : ℜ × ℜn → ℜp is continuous and satisfies the Lipschitz
condition, i.e., ‖g(t, x0)− g(t, y0)‖ ≤ ‖U2(x0 − y0)‖ for all x0, y0 ∈ ℜn and U2 is a known
matrix.

In this paper, the author’s attention will be focused on the design of an n−th order
delay-dependent H∞ filter with the following state-space equations



















˙̂x(t) = F x̂(t) + F1x̂(t− h(t)) + F2
˙̂x(t− d(t)) + F3f(x̂(t)) + F4f(x̂(t− h(t)))

+G(y(t) − C2x̂(t) − g(t, x̂(t))),

x̂(t) = 0, t ∈ [−max{h1, d1}, 0],

ẑ(t) = G1x̂(t),

(2)

where the state-space matrices F, F1, F2, F3, F4, G and G1 of the appropriate dimensions
are the filter design objectives to be determined. In the absence of w(t), it is required
that

‖x(t) − x̂(t)‖2 → 0 as t→ ∞,

where x̂(t) and ẑ(t) are the estimation of x(t) and of z(t), respectively, and e(t) =
x(t)− x̂(t) is the estimation error. Then, the error dynamics between (1) and (2) can be
expressed by

ė(t) = (A− F )x̂(t) + (A1 − F1)x̂(t− h(t)) + (A2 − F2) ˙̂x(t− d(t))
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+(F −GC2)e(t) + F1e(t− h(t)) + F2ė(t) −Gψ(t, e(t)) + (E1 − F3)f(x(t))

+(E2 − F4)f(x(t − h(t))) + F3φ(e(t)) + F4φ(e(t− h(t))) +B1w(t),

(3)

where φ(e(t)) := f(x(t)) − f(x(t) − e(t)) and ψ(t, e(t)) := g(t, x(t)) − g(t, x(t) − e(t)).
Now, we obtain the following state-space model, namely filtering error system:























Ẋ(t) = ÂX(t) + Â1X(t− h(t)) + Â2Ẋ(t− d(t)) + Ĝψ(t, e(t)) + Ê1f(x(t)),

+Ê2f(x(t− h(t))) + Ê3φ(e(t)) + Ê4φ(e(t− h(t))) + B̂w(t),

X(t) =
[

ϕ(t)T ϕ(t)T
]T

, t ∈ [−max{h1, d1}, 0],

z(t) − ẑ(t) = Ĉ1X(t),

(4)

where X(t) = col{x(t), e(t)}, Â =

[

A 0
A− F F −GC2

]

, Â1 =

[

A1 0
A1 − F1 F1

]

, Â2 =
[

A2 0
A2 − F2 F2

]

, B̂ =

[

B1

B1

]

, Ĝ =

[

0
−G

]

, Ê1 =

[

E1

E1 − F3

]

, Ê2 =

[

E2

E2 − F4

]

, Ê3 =

[

0
F3

]

,

Ê4 =

[

0
F4

]

and Ĉ1 =
[

C1 −G1 G1

]

.

Let α, β ∈ ℜ and

s(α, β) =

{

f(α)−f(β)
α−β

, α 6= β,

δ, α = β.
(5)

By Assumption 2.1, it is easy to see

φ(e(t)) − φ(e(t− h(t))) = s(t)(e(t) − e(t− h(t))) = s(t)

∫ t

t−h(t)

ė(s) ds. (6)

Therefore, from the Leibniz-Newton formula, i.e., x(t) − x(t − h) =
∫ t

t−h
ẋ(s) ds, the

filtering error system (4) can be represented in a descriptor model form as










Ẋ(t) = η(t),

η(t) = (Â+ Â1)X(t) + Â2η(t− d(t)) + Ĝψ(t, e(t)) + Ê1f(x(t)) + Ê2f(x(t− h(t)))

+Ê3φ(e(t)) − (Â1 + Ê4Js(t))
∫ t

t−h(t) η(s) ds+ B̂w(t).

(7)

Definition 2.1 1. The delay-dependent H∞ filter of the type (2) is said to achieve
asymptotic stability in the Lyapunov sense for w(t) = 0 if the augmented system (4) is
asymptotically stable for all admissible nonlinear functions f(x(t)) and g(t, x(t)) .

2. The delay-dependent H∞ filter of the type (2) is said to guarantee robust distur-
bance attenuation if under zero initial condition

Sup‖w‖2 6=0
‖z(t) − ẑ(t)‖2

‖w(t)‖2
≤ γ (8)

holds for all bounded energy disturbances and a prescribed positive value γ.

The filtering problem we address here is as follows: Given a prescribed level of distur-
bance attenuation γ > 0, find the delay-dependent H∞ filter (2) in the sense of Definition
2.1.

Before ending this section, we recall a well-known lemma, which will be used in the
proof our main results.
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Lemma 2.1 ([11]) For any arbitrary column vectors a(t), b(t), matrices Φ(t), H, U
and W the following inequality holds:

−2

∫ t

t−r

a(s)T Φ(s)b(s)ds ≤

∫ t

t−r

[

a(s)
b(s)

]T [

H U − Φ(s)
∗ W

] [

a(s)
b(s)

]

ds,

where

[

H U
∗ W

]

≥ 0.

3 H∞ Filter Design

In this section, both the asymptotic stability and H∞ performance of the filtering error
system is investigated such a sufficient stability condition is derived for the existence of
the filter (2). The approach employed here is to develop a criterion for the existence
of such filter based on the LMI approach combined with the Lyapunov method. In the
literature, extensions of the quadratic Lyapunov functions to the quadratic Lyapunov-
Krasovskii functionals have been proposed for time-delayed systems (see for instance the
references [2, 10, 11, 27, 29] and the references therein).

We choose a Lyapunov–Krasovskii functional candidate for the nonlinear neutral sys-
tem (1) as

V (t) = V1(t) + V2(t) + V3(t), (9)

where

V1(t) = X(t)TP1X(t) =

[

X(t)
η(t)

]T

TP

[

X(t)
η(t)

]

,

V2(t) =

∫ t

t−h(t)

X(s)TQ1X(s) ds+

∫ t

t−d(t)

η(s)TQ2η(s) ds,

V3(t) =

∫ t

t−h1

∫ t

s

η(θ)T (Q3 +Q4)η(θ) dθ ds

with

P :=

[

P1 0
P3 P2

]

, P1 = PT
1 > 0, T :=

[

I 0
0 0

]

. (10)

In the following, we state our main results in terms of LMIs on the delay-dependent H∞

filter design for the nonlinear neutral system (1) based on Lyapunov stability theory.

Theorem 3.1 Consider system (1) and let the matrices U1, U2 and the scalars
h1, d1 > 0, d2 < 1, h2 and γ > 0 be given scalars. If there exist the matrices
P11, P12, P22, G1, H, U, {Wi}

6
i=1, {Mi}

9
i=1, the positive definite matrices P1, {Qi}

4
i=1 and

the scalar ǫ, satisfying the following LMIs









[1, 1] [1, 2] [1, 3] [1, 4]
∗ [2, 2] [2, 3] [2, 4]
∗ ∗ [3, 3] 0
∗ ∗ ∗ [4, 4]









< 0, (11a)

[

H U
∗ Q3

]

≥ 0, (11b)
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where

[1, 1] := sym{









ǫ(Σ1 + Σ2) P1 − ǫ

[

PT
11 PT

22

PT
12 PT

22

]

Σ1 + Σ2 −

[

PT
11 PT

22

PT
12 PT

22

]









} − sym{

[

ǫΣ2

Σ2

]

J − (U +M1)J}

+h1H +

[

Q1 + JTUT
1 U1J 0

∗ Q2 + h1(Q3 +Q4) + ĴT (UT
1 U1 + UT

2 U2)Ĵ

]

,

[1, 2] := −U −M1 +

[

ǫΣ2

Σ2

]

+ JTMT
2 ,

[2, 2] := −(1 − h2)Q1 − sym{M2} + JTUT
1 U1J + ĴTUT

1 U1Ĵ ,

[1, 3] :=

[[

ǫΣ3

Σ3

]

+ JTMT
3

[

ǫΣ4

Σ4

]

+ JTMT
4

[

ǫΣ5

Σ5

]

+ JTMT
5

[

ǫ(Σ6 − Σ7)
Σ6 − Σ7

]

+ JTMT
6

]

,

[2, 3] :=
[

−MT
3 −MT

4 −MT
5 −MT

6

]

,

[3, 3] := diag{−(1− d2)Q2,−I,−I,−I},

[1, 4] :=

[[

ǫΣ7

Σ7

]

+ JTMT
7

[

ǫΣ8

Σ8

]

+ JTMT
8

[

ǫΣ9

Σ9

]

+ JTMT
9 JT ĈT

1

]

,

[2, 4] :=
[

−MT
7 −MT

8 −MT
9 0

]

,

[4, 4] := diag{−I,−I,−γ2I,−I}

with

Σ1 :=

[

(PT
11 + PT

22)A−W1 W1 −W6C2

(PT
11 + PT

22)A−W1 W1 −W6C2

]

, Σ2 :=

[

(PT
11 + PT

22)A1 −W2 W2

(PT
11 + PT

22)A1 −W2 W2

]

,

Σ3 :=

[

(PT
11 + PT

22)A2 −W3 W3

(PT
11 + PT

22)A2 −W3 W3

]

, Σ4 :=

[

(PT
11 + PT

22)E1

(PT
12 + PT

22)E1

]

− Σ6,

Σ5 :=

[

(PT
11 + PT

22)E2

(PT
12 + PT

22)E2

]

− Σ7, Σ6 :=

[

W4

W4

]

, Σ7 :=

[

W5

W5

]

,

Σ8 := −

[

W6

W6

]

, Σ9 :=

[

(PT
11 + PT

22)B1

(PT
12 + PT

22)B1

]

,

where J := [I, 0] and Ĵ := [0, I], then there exists a delay-dependent H∞ filter of the
type (2) which achieve the asymptotic stability and H∞ performance, simultaneously, in
the sense of Definition 2.1. Moreover, the state-space matrices of the filter are given by

[

F F1 F2 F3 F4 G
]

:= (PT
22)

−1
[

W1 W2 W3 W4 W5 W6

]

,

and G1 fromLMIs (11). (12)
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Proof Differentiating V1(t) in t along the trajectory of the filtering error system (4)
we obtain

V̇1(t) = 2X(t)TP1Ẋ(t) = 2

[

X(t)
η(t)

]T

PT

[

Ẋ(t)
0

]

= 2

[

X(t)
η(t)

]T

PT

[

η(t)
(.)

]

= 2

[

X(t)
η(t)

]T

PT (Ā

[

X(t)
η(t)

]

+

[

0

Â2

]

η(t− d(t)) +

[

0

Ĝ

]

ψ(t, e(t)) +

[

0

Ê1

]

f(x(t))

+

[

0

Ê2

]

f(x(t− h(t))) +

[

0

Ê3

]

φ(e(t)) −

[

0

Â1 + Ê4Js(t)

]
∫ t

t−h(t)

η(s) ds+

[

0

B̂

]

w(t)),

(13)

where

(.) := −η(t) + (Â+ Â1)X(t) + Â2η(t− d(t)) + Ĝψ(t, e(t)) + Ê1f(x(t))

+Ê2f(x(t− h(t))) + Ê3φ(e(t)) − (Â1 + Ê4Js(t))

∫ t

t−h(t)

η(s) ds + B̂w(t)

and time derivative of the second and third terms of V (t) are, respectively, as

V̇2(t) = X(t)TQ1X(t) − (1 − ḣ(t))X(t− h(t))TQ1X(t− h(t))

+η(t)TQ2η(t) − (1 − ḋ(t))η(t − d(t))TQ2η(t− d(t))

≤ X(t)TQ1X(t) − (1 − h2)X(t− h(t))TQ1X(t− h(t))

+η(t)TQ2η(t) − (1 − d2)η(t− d(t))TQ2η(t− d(t))

(14)

and

V̇3(t) = h1η(t)
T (Q3 +Q4)η(t) −

∫ t

t−h1

η(s)T (Q3 +Q4)η(s) ds

= h1η(t)
T (Q3 +Q4)η(t) −

∫ t

t−h1

η(s)TQ3η(s) ds

−

∫ t

t−h(t)

η(s)TQ4η(s) ds−

∫ t−h(t)

t−h1

η(s)TQ4η(s) ds.

(15)

Construct a HJI function in the form of

J [X(t), w(t)] =
d

dt
V (t) + (z(t) − ẑ(t))T (z(t) − ẑ(t)) − γ2w(t)Tw(t), (16)

where derivative of V (t) is evaluated along the trajectory of the filtering error system (4).
It is well known that a sufficient condition for achieving robust disturbance attenuation
is that the inequality J [X(t), w(t)] < 0 for every w(t) ∈ Ls

2[0, ∞) results in a function
V (t), which is strictly radially unbounded (see for instance the reference [42]).
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From (13)–(16) we obtain

J [X(t), w(t)] = 2η̄(t)TPT (Āη̄(t) +

[

0

Â2

]

η(t− d(t)) +

[

0

Ĝ

]

ψ(t, e(t)) +

[

0

Ê1

]

f(x(t))

+

[

0

Ê2

]

f(x(t− h(t))) +

[

0

Ê3

]

φ(e(t)) −

[

0

Â1 + Ê4Js(t)

]
∫ t

t−h(t)

η(s) ds+

[

0

B̂

]

w(t))

+X(t)T (Q1 + ĈT
1 Ĉ1)X(t) − (1 − h2)X(t− h(t))TQ1X(t− h(t))

+η(t)T (Q2 +h1(Q3 +Q4))η(t)− (1−d2)η(t−d(t))
TQ2η(t−d(t))−

∫ t

t−h1

η(s)TQ3η(s) ds

−

∫ t

t−h(t)

η(s)TQ4η(s) ds−

∫ t−h(t)

t−h1

η(s)TQ4η(s) ds− γ2w(t)Tw(t), (17)

where η̄(t) := col{X(t), η(t)} and Ā :=

[

0 I

Â+ Â1 −I

]

. By Lemma 2.1 and (11b), it is

clear that

−2η̄(t)TPT

[

0

Â1 + Ê4Js(t)

]
∫ t

t−h(t)

η(s) ds

≤

∫ t

t−h(t)

[

η̄(t)
η(s)

]T





H U − PT

[

0

Â1 + Ê4Js(t)

]

∗ Q3





[

η̄(t)
η(s)

]

ds

≤

∫ t

t−h1

η(s)TQ3η(s) ds+ h1η̄(t)
THη̄(t) + 2η̄(t)T (U − PT

[

0

Â1

]

)(X(t) −X(t− h(t)))

−2η̄(t)TPT

[

0

Ê4

]

(φ(e(t)) − φ(e(t− h(t)))). (18)

Using Assumption 2.1, we have

0 ≤ −f(x(t))T f(x(t)) + x(t)TUT
1 U1x(t), (19a)

0 ≤ −f(x(t− h(t)))T f(x(t− h(t))) + x(t − h(t))TUT
1 U1x(t − h(t)), (19b)

0 ≤ −φ(e(t))Tφ(e(t)) + e(t)TUT
1 U1e(t), (19c)

0 ≤ −φ(e(t− h(t)))Tφ(e(t− h(t))) + e(t− h(t))TUT
1 U1e(t− h(t)) (19d)

and
0 ≤ −ψ(t, e(t))Tψ(t, e(t)) + e(t)TUT

2 U2e(t). (19e)

Moreover, from the Leibniz–Newton formula, the following equation holds for any matrix
M with an appropriate dimension

2υ(t)TM(X(t) −X(t− h(t)) −

∫ t

t−h(t)

η(s) ds) = 0, (20)

where M := col{M1,M2, · · · ,M9} and υ(t) := col{η̄(t), X(t − h(t)), η(t −
d(t)), f(x(t)), f(x(t − h(t))), φ(x(t)), φ(x(t − h(t))), ψ(t, e(t)), w(t)}.
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By adding the right- and the left-hand sides of (19) and (20), respectively, to (17)
and using the inequality (18), it follows that

J [X(t), w(t)] ≤ υ(t)T (Π + h1MQ−1
4 MT )υ(t) −

∫ t−h(t)

t−h1

η(s)TQ4η(s) ds

−

∫ t

t−h(t)

(υ(t)TM + η(s)TQ4)Q
−1
4 (υ(t)TM + η(s)TQ4)

T ds, (21)

where the matrix Π is given by

Π =









Π11 Π12 Π13 Π14

∗ Π22 Π23 Π24

∗ ∗ Π33 0
∗ ∗ ∗ Π44









with

Π11 = sym{PT Ā} − sym{PT

[

0

Â1

]

J − (U +M1)J} + h1H

+

[

Q1 + ĈT
1 Ĉ1 + JTUT

1 U1J 0

∗ Q2 + h1(Q3 +Q4) + ĴT (UT
1 U1 + UT

2 U2)Ĵ

]

,

Π12 = −U −M1 + PT

[

0

Â1

]

+ JTMT
2 ,

Π22 = −(1 − h2)Q1 − sym{M2} + JTUT
1 U1J + ĴTUT

1 U1Ĵ

Π13 =

[

PT

[

0

Â2

]

+ JTMT
3 PT

[

0

Ê1

]

+ JTMT
4 PT

[

0

Ê2

]

+ JTMT
5

]

,

Π23 =
[

−MT
3 −MT

4 −MT
5

]

, Π14 =
[

PT

[

0

Ê3 − Ê4

]

+ JTMT
6 PT

[

0

Ê4

]

+ JTMT
7 PT

[

0

Ĝ

]

+ JTMT
8 PT

[

0

B̂

]

+ JTMT
9

]

,

Π24 =
[

−MT
6 −MT

7 −MT
8 −MT

9

]

,

Π33 = diag{−(1 − d2)Q2,−I,−I}, Π44 = diag{−I,−I,−I,−γ2I}.

Thus, if the inequality
Π + h1MQ−1

4 MT < 0 (22)

holds, it follows from J [X(t), w(t)]|w(t)≡0 ≤ 0 that d
dt
V (t) ≤ 0 or V (t) ≤ V (0) . Then,

from (9), it can be deduced

V (0) = X(0)TP1X(0) +

∫ 0

−h(0)

X(s)TQ1X(s) ds+

∫ 0

−d(0)

η(s)TQ2η(s) ds

+

∫ 0

−h1

∫ 0

s

η(θ)T (Q3 +Q4)η(θ) dθ ds

≤ λmax(P1)‖ϕ‖
2
2 + λmax(Q1)

∫ 0

−h(0)

X(s)TX(s) ds+ λmax(Q2)

∫ 0

−d(0)

η(s)T η(s) ds
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+λmax(Q3 +Q4)

∫ 0

−h1

∫ 0

s

η(θ)T η(θ) dθ ds ≤ σ1‖ϕ‖
2
2 + σ2‖η‖

2
2,

where σ1 := λmax(P1) + h1λmax(Q1) and σ2 := d1λmax(Q2) + 0.5h2
1λmax(Q3 + Q4).

Then, we have:
λmin(P1)‖ϕ‖

2
2 ≤ V (t) ≤ σ1‖ϕ‖

2
2 + σ2‖η‖

2
2.

Therefore, we conclude that the filtering error system (4) is asymptotically stable. Notice
that the matrix inequality (22) includes multiplication of filter matrices and Lyapunov
matrices which are unknown and occur in nonlinear fashion. Hence, the inequality (22)
cannot be considered an LMI problem. In the literature, more attention has been paid to
the problems having this nature, which called bilinear matrix inequality (BMI) problems
[43]. In the following, it is shown that, by considering P3 = ǫP2, where

P2 =

[

P11 P12

P22 P22

]

(23)

and introducing change of variables

[

W1 W2 W3 W4 W5 W6

]

:= PT
22

[

F F1 F2 F3 F4 G
]

(24)

the matrix inequality (22) is converted into LMI (11a) and can be solved via convex
optimization algorithms. It is also easy to see that the inequality (22) implies Π11 < 0.
Hence by Proposition 4.2 in the reference [19], the matrix P is nonsingular. Then,
according to the structure of the matrix P in (10), the matrix P2 (or P22 ) is also
nonsingular. This completes the proof.

Remark 3.1 It is worth noting that in the case when x(t) ∈ ℜn, w(t) ∈ ℜs, z(t) ∈ ℜz

and y(t) ∈ ℜp , the number of the variables to be determined in the LMIs (11) is
0.5n(17n+ 2p+ 2z + 5) + 5. It is also observed that the LMIs (11) are linear in the set
of matrices P11, P12, P22, G1, H, U, {Wi}

6
i=1, {Mi}

9
i=1, P1, {Qi}

4
i=1, and the scalars ǫ, γ2.

This implies that the scalar γ2 can be included as one of the optimization variables
in LMIs (11) to obtain the minimum disturbance attenuation level. Then, the optimal
solution to the delay-dependentH∞ filtering can be found by solving the following convex
optimization problem

min λ

subject to (11) with λ := γ2.

4 Simulation Results

In this section, we will verify the proposed methodology by giving an illustrative example.
We solved LMIs (11) by using Matlab LMI Control Toolbox [44], which implements
state-of-the-art interior-point algorithms and is significantly faster than classical convex
optimization algorithms [45]. The example is given below.

Consider the system (1) with the following matrices

A =

[

−1 0.5
0.3 −2

]

, A1 =

[

−0.5 0.1
0.1 −0.6

]

, A2 =

[

0.1 0.2
0 0.1

]

, B1 =

[

0.1
0.1

]

,

E1 = E2 = I2;C1 = 10C2 =
[

1 1
]

, f(x(t)) = g(t, x(t)) = 0.5(|x(t) + 1| − |x(t) − 1|).
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Figure 4.1: The disturbance signal.
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Figure 4.2: The phase trajectories.
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Figure 4.3: Curves of estimation error signal.

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (sec)

Figure 4.4: Curve of function ‖z(t) − ẑ(t)‖2/‖w(t)‖2.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9(3) (2009) 301–315 313

The delays h(t) = d(t) = (1 − e−t)/(1 + e−t) are time varying and satisfy 0 ≤ h(t) =
d(t) ≤ 1 and ḣ(t) = ḋ(t) ≤ 0.5 . For simulation purposes, a uniformly distributed random
signal, shown in Figure 4.1, with minimum and maximum -1 and 1, respectively, as the
disturbance is imposed on the system. With the above parameters, the filtering error
system (4) exhibits the chaotic behaviours such the state trajectories of the system with
initial condition x(0) = [0, 0] is depicted in Figure 4.2.

By solving the LMIs (11) in Theorem 3.1 with the disturbance attenuation γ = 0.2
we get the following state-space matrices of the delay-dependent H∞ filter (2):

F =

[

−2.8807 1.1770
1.0575 −4.9106

]

, F1 =

[

−0.3991 0.2557
0.2297 −0.7907

]

, F2 =

[

−0.0835 −0.1410
0.0209 −0.1002

]

,

F3 =

[

1.5747 −0.4885
−0.3693 2.7097

]

, F4 =

[

1.1810 −0.3664
−0.2770 2.0323

]

,

G =

[

−0.0226
−0.0662

]

, G1 =
[

0.5414 0.4628
]

.

For initial conditions x(0) = [−1, 1], the simulation results are shown in Figures 4.3 and
4.4. The trajectories of the estimation error are plotted in Figure 4.3. Finally, to observe
the H∞ performance, curve of the function ‖z(t) − ẑ(t)‖2/‖w(t)‖2 is depicted in Figure
4.4 which shows that the H∞ constraint in (8) is satisfied as well.

5 Conclusion

The problem of delay-dependent H∞ filtering was proposed for a class of nonlinear neu-
tral systems with delayed states and outputs. New required sufficient conditions were
established in terms of delay-dependent LMIs for the existence of the desired robust H∞

filters. The explicit expression of the robustH∞ filters was derived to satisfy both asymp-
totic stability and a prescribed level of disturbance attenuation for all admissible known
nonlinear functions. A numerical example was presented to illustrate the effectiveness of
the designed filter.
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