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Abstract: This paper investigates the problem of active flutter suppression for a
two-dimensional three degrees of freedom (3DOF) airfoil. With the influence of un-
steady aerodynamic forces and parametric uncertainties, the output suboptimal con-
trol law design for a 3DOF airfoil control system is transformed into a constrained
optimization problem. Then, the flutter robust suppression control law could be ex-
pediently obtained by linear matrix inequalities (LMIs), which realizes active flutter
suppression by increasing the flutter critical speed. Simulation results show that the
flutter phenomenon could be well suppressed in spite of the uncertainty of damping
coefficients.
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1 Introduction

Recently, techniques of active aeroelastic wing [8], thrust vector control [1, 4] and flying-
wing layout [2, 4] have became the hottest issues in aeronautic area. At the same time,
high-altitude long-endurance aircrafts are taken into account by more and more countries
[7]. The general features of high-altitude long-endurance aircraft are high aspect ratio,
light structural weight, and well flexibility. Therefore, the future aircrafts are in the
nature of more flexibility. With the increase of flexibility, the flutter phenomenon is more
and more prominent. Flutter is a vibration caused by airstream energy being absorbed by
the lifting surface, which is more likely to occur in the wings, ailerons and other flexible
parts. Furthermore, this aeroelastic phenomenon increasing with the flight velocities can
cause the wing fatigue to be increased. If the flight velocity is above the critical flutter
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speed and the flutter phenomenon is not suppressed, the structure of aircrafts may be
destroyed. To reduce or suppress this phenomenon is very important in the aeronautic
industry.

Over the past several decades, this severe problem has been studied using many
different techniques. Traditional technique is the passive flutter suppression method,
which adds structural weight to change the aircraft stiffness, and some components have
to be moved to keep balance. So this technique deteriorates some flight performances, and
is not always feasible. Later the active flutter suppression method appears to suppresses
flutter phenomenon without adding structural weight and redesign. The idea of this
method is to introduce a certain deformation based on the structure flexibility, which
can suppress the flutter actively. Therefore, there are above two main techniques that
we can use.

With the development of active control technology in the aeronautic area, flexibility
at the support of active control technology exhibits more potential. Nowadays, more
and more active control techniques are used to suppress the flutter phenomenon. Shana
D. Olds uses Linear Quadratic Regulation theory to design a state feedback controller
for an aeroelastic system [6]. Good performances are illustrated, but the results are not
feasible in practice because all states are assumed to be measurable. Samuel da Silva and
Vicente L. Júnior used the LMI technique to solve the active flutter suppression problem
with robustness to polytopic parametric uncertainties [9]. In their paper, they designed
a state feedback control law based on full-order state observer. The dimension of state
observer is equal to that of controlled plant. Therefore, there are twenty-order states in
their closed-loop aeroelastic system. Though the state feed back control law and observer
can be designed respectively according to separate principle, the full-order observer is
difficult to carry out in actual engineering application because of high order. In the view
of engineering practice, convenient and effective design process play an important role in
actual aeroelastic system, which motivates us to carry out the present study.

In this paper, for the sake of analysis, the model is simplified on the assumption that
the stiffness of control surface is very large, which is different from the aeroelastic model
of aforementioned papers [6, 9]. We adopt the output as the feedback information to de-
sign a robust controller for active flutter suppression of a two-dimensional 3DOF airfoil
aeroelastic system. Considering the system with polytopic parametric uncertainties and
the influence of unsteady aerodynamic forces, we transform the output suboptimal con-
trol law design for a 3DOF airfoil control system into a constrained optimization problem,
then obtain the output feedback control law by LMI technique and the minimum norm
method. Despite the uncertainties of two-dimensional 3DOF airfoil aeroelastic system,
this proposed approach makes it design easier for engineering application. In addition, it
considers both response performance and control performance. This approach can con-
veniently and effectively realize robust active flutter suppression. The simulation results
show that the flutter phenomenon could be well suppressed in spite of the uncertainty of
damping coefficients.

2 Aeroelastic System Formulation

The schematic diagram of a 3DOF airfoil aeroelastic system with control surface is shown
in Figure 2.1. Here, in order to develop the motion equations a coordinate system is
introduced, which originates at the midpoint of airfoil chord. The x axis lies along the
chord in the horizontal direction. The z axis shown in Figure 2.1 is perpendicular with x
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direction. The quantity b is half chord. And two springs, one of which is line spring, the
other is torsional spring, are put on the point E of airfoil elastic axis which is located at
a distance of ab from the mid-chord. The flap hinge is located at a distance of cb from
the mid-chord. Then, the three degrees of freedom are respectively the plunge h which
is measured at the elastic axis E and positive in the downward direction, the pitching
angle α which rotates on the elastic axis E and positive nose-up, the deflective angle of
control surface β which represents the angular deflection of the flap about the flap hinge
and positive for the flap trailing edge down.
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Figure 2.1: Configuration of a two-dimensional 3DOF airfoil.

2.1 Unsteady aerodynamic force calculation

The precise calculation of unsteady aerodynamic forces is an important step in two-
dimensional airfoil flutter analysis. According to the Theodorsen theory, the aerodynamic
lift L, pitching moment Tα, and control surface moment Tβ of a unit wingspan length
are respectively:
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where k is the air reduced frequency which is dimensionless, ρ is the air density, and V

is the flow velocity. Definitions of other coefficients could be found in [10].

2.2 Aeroelastic System Modeling

In the dynamic schematic diagram Figure 2.1, any point displacement of the airfoil can
be expressed as

z = h + (x − ab)α + (x − cb)βUstep (x − cb) ,

where Ustep (x − cb) is an unit step function.

Then, the system kinetic energy is
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β ,

kh, kα, kβ are stiffness coefficients, m̄ is airfoil mass of unit area. Definitions of other
coefficients could be found in [11].

According to Lagrange’s equation and principle of virtual work, the equation of mo-
tion for this two-dimensional 3DOF airfoil aeroelastic system is
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On the assumption of perfect rigidity, i.e. the stiffness of control surface is very large,
after introducing some damping coefficients, and the unsteady aerodynamic forces, the
open-loop motion model of a 3DOF airfoil can be represented as [11]

(

s2
[

Ms Mc

]

+ s
[

Ds 0
]

+
[

Ks 0
])

[

qs (s)
β (s)

]

+qd

[

Ãs (s) Ãc (s)
]

[

qs (s)
β (s)

]

= 0 (2.1)

where qs =
[

h α
]T

, Ms, Ds, Ks are respectively the mass matrix, structural damping
matrix, and structural stiffness matrix of plunge and pitching modes, Mc is the coupled
mass matrix among the control surface and structural modes, Ãs (s) and Ãc (s) are the
matrices of aerodynamic forces, qd = 1

2
ρV 2 is the dynamic pressure of a gas flow.

For the sake of convenience, Eq. (2.1) could be rearranged into the following form:
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And aerodynamic augmented states
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are introduced.
According to formula (2.2), (2.3) and (2.4), Eq. (2.1) can be rewritten into the state

space form:
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In practice, information of displacement, velocity, and acceleration can be obtained
by sensors, such as accelerometers and angular rate gyros. It is assumed that in this two
dimensional 3DOF aeroelastic system the acceleration information can be measured by
gyros which takes the following form [11]
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where Φ is the coefficient matrix. Then the output state function of the two-dimensional
3DOF aeroelastic system could be denoted as

Yh = ChXh + Dhuh.

Furthermore, we adopt the following transfer function to describe the relation between
the deflective angle of control surface and the command of actuator

β
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Then, the final open-loop aeroelastic state and output functions are
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Since matrix A depends on the flow velocity V explicitly, in the following matrix A is
substituted by A (V ). It is clear that eigenvalues of A (V ) change their positions on
complex plan with V . According to the linear control theories, the system is stable if
and only if the eigenvalues of state matrix are located in the open left-half complex plane.
Therefore, when the locus of a eigenvalue crosses the imaginary axis from the left-half
complex plane, the aeroelastic system is critically stable. And the corresponding flow
velocity is called a critical flutter speed.
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3 Robust Control Law Design for Active Flutter Suppression

3.1 Problem Formulation

In the aeroelastic control systems, the most common technique for active flutter suppres-
sion is the theory of Linear Quadratic Regulation by state feedback. Since the aerody-
namic augmented states are immeasurable, this technique has difficulties to be applied
in practice. Therefore, output feedback is adopted in this paper.

According to the two-dimensional 3DOF aeroelastic system model

Ẋ = A (V )X + Bu,

Y = CX, (3.1)

and supposing that the matrix C is of full row rank, we design the following output
feedback control law

u = −KY (3.2)

to minimize the cost function

J =
1

2

∫

∞

0

(

XT QX + uT Ru
)

dt. (3.3)

Generally the weighting matrices Q and R are selected via engineering experiences. In
this paper, the two weighting matrices are both assumed to be positive definite. Q is
limited to 10−3 level, and R is limited to an identity matrix.

Usually there are three approaches, i.e. the Levine-Athans method, the least error
excitation method, and the minimum norm method [13], to solve the output suboptimal
problem and obtain the output feedback control law K indirectly. But the actual two-
dimensional 3DOF system works in a changing environment, which differs from the model
that we discuss and design, especially when the damping coefficients are difficult to be
obtained precisely. Therefore the model we analysis possesses uncertainties. In this
paper, we assume that the dynamic matrix has a parametric uncertainty which can be
described by a polytope, i.e.

A ∈ Ω = Co {A1, A2, · · · , An} =

{

n
∑

i=1

λiAi; λi ≥ 0,

n
∑

i=1

λi = 1

}

,

where n is the number of vertexes of the polytopic system. In addition, the formula
qd = 1

2
ρV 2 is included in every matrix Ai. Therefore, the matrix Ai also depends on the

flow velocity V .

3.2 Robust Control Law Design

The problem to be investigated in this paper is how to design the output feedback control
law (3.2). With the control law, the two-dimensional 3DOF aeroelastic system (3.1) can
be represented as:

Ẋ = (A − BKC)X, A ∈ Ω.

Then, the cost function could be rewritten into the following form:

J =
1

2

∫

∞

0

XT
(

Q + CT KT RKC
)

Xdt.
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The system described by (3.1) is quadratically stable if and only if there exists a sym-
metric matrix P = PT > 0 such that

(A − BKC)T
P + P (A − BKC) + Q + CT KT RKC ≤ 0. (3.4)

Along any trajectory of the closed-loop system, the derivative of XT (t)PX (t) is

d

dt

[

XT (t)PX (t)
]

= XT (t)
[

(A − BKC)
T

P + P (A − BKC)
]

X (t)

≤ −XT (t)
(

Q + CT KT RKC
)

X (t) . (3.5)

After integrating both sides of the inequality (3.5) from t = 0 to t = ∞, we have

J =
1

2

∫

∞

0

XT
(

Q + CT KT RKC
)

Xdt ≤ XT (0)PX (0) .

Therefore the suboptimal control problem could be transformed into a constrained opti-
mization problem

min
1

2
XT (0)PX (0)

s.t.

{

(A − BKC)
T

P + P (A − BKC) + Q + CT KT RKC ≤ 0,

P > 0, Q > 0, R > 0.
(3.6)

It is noted that since our purpose is to determine the matrix K, inequality (3.4)
is actually a nonlinear matrix inequality. This drawback can be overcome by defining
P1 = P−1, P2 = −KCP1, and inequality (3.4) is equivalent to the following LMI





P1A
T + AP1 + PT

2 BT + BP2 P1 PT
2

P1 −Q−1 0
P2 0 −R−1



 ≤ 0.

Obviously, when the dynamic matrix A has a polytopic parametric variation, we only
need analyze this problem on the vertexes [3, 5, 12]. Thus, the optimization problem
(3.6) could be transformed further into the following form:

min γ

s.t.







































P1A
T
i + AiP1 + PT

2 BT + BP2 P1 PT
2

P1 −Q−1 0
P2 0 −R−1



 ≤ 0,

[

γ XT (0)

X (0) P1

]

≥ 0,

P1 > 0,

(3.7)

where P1 = P−1, P2 = −KCP1, i = 1, 2, · · ·n.
Because the output matrix C is not always square, we could not directly inverse

CP1 to derive K from equation P2 = −KCP1. In this paper, we apply the minimum
norm method to determine the matrix K indirectly. Define F ∗ , −P2P

−1
1 , F , KC.

Supposing that the matrices P1 and P2 have been derived from the optimization problem
(3.7), minimizing the following objective function

J =‖ F − F ∗ ‖=

√

Trace (F − F ∗)
T

(F − F ∗),
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we can get the approximate solution

K = F ∗CT
(

CCT
)

−1
.

4 Numerical Simulation

4.1 Open-loop Simulation

In order to validate the effectiveness of the proposed method, numerical simulation are
set up in this section with the following parameters. Here parameter variations are not

Parameter Value Parameter Value
m 1.285kg Sα 0.0209kgm
Sβ 0.0006608kgm Iα 0.005142kgm2

a −0.5 b 0.1m
c 0.5 ρ 1.025kg/m3

kh 2742N/m kα 2.912Nm/rad
kβ 90042Nm/rad dh 30.43Ns/m
dα 0.04Ns/m dβ 418.8977Ns/m

Table 4.1: List parameters.

considered. Under the influence of the unsteady aerodynamic forces, the root locus of
the open loop aeroelastic system are showed in Figure 4.1. And the real parts of the
eigenvalues of A(V ) with respect to the flow velocities are showed in Figure 4.2. If the
real parts of all of the eigenvalues of A (V ) are negative, that is, the eigenvalues are in
the open left half plane, the two-dimensional 3DOF aeroelastic system is asymptotically
stable. From Figure 4.1 and Figure 4.2 we can see that the pitching mode will be in
the right half plane when the flow velocity exceeds 47.5m/s, and then flutter occurs.
The flutter speed, Vf = 47.5m/s, is the speed at which the open loop system becomes
marginally stable.
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Figure 4.1: The root locus of the
open loop aeroelastic system.
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Figure 4.2: The relation between
real parts of eigenvalues and flow ve-
locity.

Here we select three velocity values to see the time response of each modes without
considering uncertainties in any parameter. From Figures 4.3, 4.4 and 4.5 we could see
the plunge, pitching and control surface states are asymptotically stable at V = 46m/s,
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Figure 4.3: The time response curve
of plunge mode at V=46m/s.
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Figure 4.4: The time response curve
of pitching mode at V=46m/s.
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Figure 4.5: The time response curve
of control surface mode at V=46m/s.

0 2 4 6 8 10

−0.1

−0.05

0

0.05

0.1

0.15

Time (sec)

h 
(m

)

Figure 4.6: The time response curve
of plunge mode at V=47.5m/s.
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Figure 4.7: The time response curve
of pitching mode at V=47.5m/s.
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Figure 4.8: The time response curve
of control surface mode at V=47.5m/s.
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Figure 4.9: The time response curve
of plunge mode at V=49m/s.
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Figure 4.10: The time response
curve of pitching mode at V=49m/s.
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Figure 4.11: The time response
curve of control surface mode at
V=49m/s.
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Figure 4.12: The time response
curve of plunge mode at V=49m/s af-
ter robust flutter suppression.

and almost all oscillations disappear at t = 7 seconds. So, the flutter phenomenon could
be suppressed by the aeroelastic system itself. At V = Vf = 47.5m/s, the sates are all
settled into harmonic oscillations as shown in Figures 4.6, 4.7, 4.8. But in Figures 4.9,
4.10, and 4.11, with flow velocity V = 49m/s, the plunge, pitching and control surface
states continue to increase without bound, and after about 6 seconds, the oscillations
are so severe that the airfoil would become unstable. Furthermore, from Figure 4.11 we
could see that the state of control surface β is always stable even though the flow velocity
exceeds the critical flutter speed, which coincides with the assumption of the perfect rigid
control surface.

In brief, for V < Vf the system is asymptotically stable. And for V > Vf the system
is unable, in this case wing separation will occur which is dangerous for a real aircraft.

4.2 Closed-loop Simulation

In this section a robust controller is designed for the two-dimensional 3DOF airfoil aeroe-
lastic system using the proposed method. Because the damping coefficients are difficult
to be obtained precisely, the damping coefficients are assumed to be uncertain which have
possible variations of ±10% around the nominal values. The robust output feedback gain

matrix is obtained by K = F ∗CT
(

CCT
)

−1
, where F ∗ is the solution to the optimization

problem (3.7).

Figures 4.12, 4.13, and 4.14 illustrate the time response curves at V = 49m/s, from
which we can see the flutter phenomenon is well suppressed after about 1 second and the
output feedback is robust to the considered parametric variations.

Furthermore, we are interested in the performance when the flow velocity exceeds
the critical flutter speed and the control is delayed by a few seconds. We investigate the
system response with parametric uncertainties when the control is initiated at a time
greater than t = 0 seconds. Consequently, with flow velocity 49m/s, and the control
initiated at 2 seconds. the time responses are shown in Figures 4.15, 4.16, 4.17. The
oscillation disappear at t = 3 seconds and the output feedback is robust to the considered
parametric variations as well.

The relation between the real parts of A(V ) eigenvalues and the flow velocity with
flutter robust suppression is shown in Figure 4.18, from which we could see the criti-
cal flutter speed is 57.8m/s, that is, the critical speed increase from the original speed
47.5m/s to 57.8m/s. The critical flutter speed increases 21.68%. From the simulations
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Figure 4.13: The time response
curve of pitching mode at V=49m/s
after robust flutter suppression.
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Figure 4.14: The time response
curve of control surface mode at
V=49m/s after robust flutter suppres-
sion.
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Figure 4.15: The time response
curve of plunge mode at V=49m/s af-
ter robust flutter suppression: t=2 sec-
onds.
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Figure 4.16: The time response
curve of pitching mode at V=49m/s
after robust flutter suppression: t=2
seconds.
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Figure 4.17: The time response
curve of control surface mode at
V=49m/s after robust flutter suppres-
sion: t=2 seconds.
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we can conclude that the proposed method not only well suppresses flutter phenomenon,
but also increases the critical flutter speed.

5 Conclusion

In the traditional aircraft design, a passive method is usually adopted, which increases
the structure weight of the aircraft in order to increase the critical flutter speed. In this
paper we present an active control approach, which transforms the suboptimal control law
design problem into a constrained optimization problem, to design the robust control law
of a two-dimensional 3DOF aeroelastic system. The introduced deformation can suppress
the flutter phenomenon by the flexibility of structure. The simulation results show that
the minimum norm method and the LMI technique adopted is valid with the uncertainties
of damping coefficients. When the flow velocity exceeds the critical flutter speed, the
two-dimensional 3DOF airfoil is still stable with the proposed robust controller.
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