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Abstract: We formalize and investigate an antagonistic game of two players (A
and B), modeled by two independent marked Poisson processes forming casualties to
the players. The game is observed by a third party point process. Unlike previous
work on this topic, the initial observation moment is chosen not arbitrarily, but at
some random moment of time following initial actions of the players. This caused an
analytic complexity unresolved until recently. This, more realistic assumption, forms
a new phase (“initial phase”) of the game and it turns out to be a short game on its
own. Following the initial phase, the main phase of the game lasts until one of the
players’ cumulative casualties exceed some specified threshold. We investigate the
paths of the game in which player A loses the game.
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1 Introduction

We model an antagonistic stochastic game by two marked Poisson processes A and B,
each representing casualties incurred to players A and B. The mutual attacks are rendered
in accordance with associated Poisson point processes and their marks are distributed
arbitrary and position independent. The game is observed by a third party process T .
Consequently, the information on the game is available upon T , thereby forming the
embedding AT ⊗BT . (The latter is a more general bivariate marked point process with
marks being mutually and position dependent.) The game lasts until one of the players
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gets “exhausted” or “ruined”. This happens whenever the total casualties to the players
exceed some specified thresholds. The real exit from the game takes place with a delay in
accordance with observations T . This is one of the quite common scenarios of games, in
which the co-authors [9] (and most recently, the first author [5–8, 12]) have been involved.

A realistic approach to the modeling was rendered through the embedded delayed
process AT ⊗ BT distorting the real time information. However, in the previous models
the position of the first observation epoch was placed arbitrarily on the positive time axis
with no regard to the start of the conflict. As the result, the initial observation point
could have been placed before the game began. In a recent article by Dshalalow and
Huang, this deficiency was overcome by placing the first observation at some random
time after the conflict has emerged. This alone formed a separate initial phase of the
conflict with a joint functional, which included the time of the beginning of the conflict
and the amount of casualties to the players, all the way to the first observation. To
merge this initial phase with the rest of the game, required some past information (non-
Markovian), all resulting in two separate phases, which we thereby have come to identify.
From the modeling point of view, the present game is simpler than that of [7], which in
contrast, also included a second phase following the initial and first phases.

The first phase of this game ends with player A losing to player B (while in [7] it was
not specified who of the two exactly loses, as their casualties were then limited).

Even though our model is not entirely characterized as a sequential game, it comes
close enough to this literature [1, 3, 5–7, 11, 12, 14, 15, 18, 21, 24]. The tools we are
using in this paper are mainly self-contained and developed methods of fluctuation theory
that originated from applications to random walk processes. We hold on classic random
walk fluctuation analysis, only in a generalized forms. We mention just a few pieces
of literature where applications of the fluctuation theory takes place in the areas such
as economics [17] and physics [20]. More on this can be found in [5–9]. Topically, the
paper falls into the category of antagonistic stochastic games widely applied to economics
[2, 16, 19, 24] and warfare [9, 12, 22, 23]. As in all previous work by the authors and the
first author, the results are directly applicable to economics and warfare, in particular,
in light of a high volatility of the global economy in the recent months. The latter can be
interpreted as an “antagonism” between the economic actions (such as bailout of credit
institutions) against the panic of the market.

Another area of applied mathematics that relates to our work includes hybrid systems
[4, 13], in particular hybrid stochastic games [5]. For more references on this topic see
[5].

The layoff of the paper is as follows. Section 2 deals with the formalism of the game.
Section 3 takes on the initial phase. Section 4 continues with the game beyond the
initial phase until player A is ruined. The merge between the two phases is the main
contribution to this section.

2 A Formal Description of the Model

The results of Sections 2 and 3 are based on Dshalalow and Huang [7]. To make it
self-contained we follow the initial phase of [7].

Let (Ω,F(Ω), Ft, P ) be a filtered probability space and let FA,FB,FS ⊆ F(Ω) be
independent sub-σ-algebras. We suppose that

A : =
∑

j≥1

djεrj
and B : =

∑

k≥1

zkεwk
(2.1)
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are FA-measurable and FB-measurable marked Poisson random measures (εa is a point
mass at a) with respective intensities λA and λB and position independent marking. The
random measures are specified by the transforms

Ee−uA(·) = eλA|·|[hA(u)−1], hA(u) = Ee−ud1 , Re(u) ≥ 0, (2.2)

Ee−vB(·) = eλB |·|[hB(v)−1], hB(v) = Ee−vz1 , Re(v) ≥ 0, (2.3)

where |·| is the Borel–Lebesgue measure and dj and zk are nonnegative r.v.’s representing
the successive strikes of players B and A against each other, respectively, while rj and
wk are the times of the strikes.

The game starts with hostile actions initiated by one of the players A or B at r1 or
w1. The players can exchange with several more strikes before the first information is
noticed by an observer at time t0. We therefore assume that

t0 ≥ max{r1, w1}. (2.4)

The initial observation time t0 will be formalized below. All forthcoming observations
will be rendered in accordance with a point process

T0 =
∑

i≥0

εti
= εt0 + S, with S =

∑

i≥1

εti
,

0 < t0 < t1 < . . . < tn < . . . (tn → ∞, with n → ∞).

(2.5)

We introduce the extension of T :

T : = εt
−1 + T0, with t−1 : = min{r1, w1}, (2.6)

such that the tail S =
∑

i≥1 εti
of T0 is FS-measurable. The increments ∆1 : = t1 −

t0, ∆2 : = t2 − t1, ∆3 : = t3 − t2, . . . are all independent and identically distributed,
and all belong to the equivalence class [∆] of r.v.’s with the common Laplace-Stieltjes
transform

δ(θ) : = Ee−θ∆. (2.7)

Now we define the initial observation as

t0 = max{r1, w1} + ∆0, (2.8)

where ∆0 ∈ [∆] and ∆0 is independent from the rest of the ∆’s. t0 is included in T0 of
equation (2.5) and because it contains some of the A and B, T0 is not FS-measurable.
However, T0 is a delayed renewal process, while T is not.

We assign to t−1 the genuine start of the game at time min{r1, w1} of (2.6). That is,

t−1 = min{r1, w1}. (2.9)

Now, since t−1 and t0−t−1 are dependent (through r1 and w1), the extended process T
of (2.6) is not a renewal process, and not even a delayed renewal, as it was in [5, 6, 8, 9, 12].

It should be clear that t0 depends upon r1 and w1 and thus on A and B, which makes
T0 A⊗ B-measurable. Define the continuous time parameter process

(α(t), β(t)) : = A⊗ B([0, t]), t ≥ 0, (2.10)



280 JEWGENI H. DSHALALOW AND AILADA TREERATTRAKOON

to be adapted to the filtration (Ft)t≥0. Also introduce its embedding over T0 :

(αj , βj) : = (α(tj), β(tj)) = A⊗ B([0, tj]), j = 0, 1, . . . , (2.11)

which forms observations of A⊗ B over T0, with respective increments

(ξj , ηj) : = A⊗ B((tj−1, tj ]), j = 1, . . . . (2.12)

In addition, let

(ξ0, η0) : = A⊗ B((max{r1, w1}, t0]) (2.13)

to be used later on.
Introduce the embedded bivariate marked random measures

AT0 ⊗ BT0 : = (α0, β0)εt0 +
∑

j≥1

(ξj , ηj)εtj
, (2.14)

where the marginal marked point processes

AT0 = α0εt0 +
∑

i≥1

ξiεti
and BT0 = β0εt0 +

∑

i≥1

ηiεti
(2.15)

are with position dependent marking and with ξj and ηj being dependent. For the
forthcoming sections we introduce the Laplace-Stieltjes transform

g(u, v, θ) : = Ee−uξj−vηj−θ∆j , Re(u) ≥ 0, Re(v) ≥ 0, Re(θ) ≥ 0, j ≥ 1, (2.16)

which will be evaluated as the follows:

E
[

e−uξj−vηj−θ∆j
]

= E
[

e−θ∆jE
[

e−uξj−vηj
∣

∣∆j

]]

= E
[

e−θ∆jE
[

e−uA((tj−1,tj ])
∣

∣∆j

]

E
[

e−vB((tj−1,tj])
∣

∣∆j

]]

= E
[

e−θ∆j · eλA∆j(hA(u)−1) · eλB∆j(hB(v)−1)
]

= E
[

e−{θ+λA(1−hA(u))+λB(1−hB(v))}∆j
]

= δ(θ∗), j = 1, 2, . . . , (2.17)

with

θ∗ : = θ + λA(1 − hA(u)) + λB(1 − hB(v)), (2.18)

and δ defined in (2.7).

3 The Initial Phase of the Game

The entire game will include the recording of the conflict between players A and B known
to an observer upon process T (informally, {t−1, t0, t1, . . .}) from its inception upon t−1

followed by the initial observation at time t0. T is defined below. The actual start of the
game at t−1 is unknown to the observer, as this moment takes place prior to t0. From the
construction of the extended game, the point process T is obviously “doubly delayed”
(in light of its attachment t−1). The information on t−1 will be used in section 4 during
the merging process.
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The initial phase of the game is specified as follows. Define the respective damages
to the players at t−1 as

(ξ−1, η−1) : = (α−1, β−1) : = (α(t−1), β(t−1)) = (d11{r1≤w1}, z11{r1≥w1}). (3.1)

Therefore, the embedded process
∑

k≥−1 εtk
(αk, βk) satisfies the extended initial condi-

tions

At
−1 ⊗ Bt

−1 = (α−1, β−1) = (d1, 0), on trace σ-algebra F(Ω) ∩ {r1 < w1}, (3.2)

At
−1 ⊗ Bt

−1 = (α−1, β−1) = (0, z1), on F(Ω) ∩ {r1 > w1}, (3.3)

At
−1 ⊗ Bt

−1 = (α−1, β−1) = (d1, z1), on F(Ω) ∩ {r1 = w1}. (3.4)

The extended version of the game is defined as the bivariate marked point process

AT ⊗ BT : = (ξ−1, η−1)εt
−1 + (α0 − ξ−1, β0 − η−1)εt0 +

∑

j≥1

(ξj , ηj)εtj
(3.5)

(embedded over T ).
As we will see it in the next section, the game will require knowledge of AT ⊗BT at

t−1 and t0. Consequently, we begin to work on the functional

φ0 : = φ0(a0, b0, ϑ0, u0, v0, θ0) = E[e−a0α
−1−u0α0−b0β

−1−v0β0−ϑ0t
−1−θ0t0 ] (3.6)

that describes what we call, the initial phase of the game. The following theorem is due
to Dshalalow and Huang [7].

Theorem 3.1 The functional φ0 of the initial phase of the game satisfies the follow-
ing formula:

φ0 =
λAλBδ(θ∗0)

ϑ0 + θ0 + λA + λB

(

1

θA + λB

hA(a0 + u0)hB(v0) +
1

θB + λA

hA(u0)hB(b0 + v0)

)

,

(3.7)

where

θ∗0 : = θ0 + λA(1 − hA(u0)) + λB(1 − hB(v0)), (3.8)

θA : = θ0 − λA(hA(u0) − 1), (3.9)

θB : = θ0 − λB(hB(v0) − 1), (3.10)

δ(θ) : = E
[

e−θ∆0
]

, ∆0 ∈ [∆]. (3.11)

4 The Main Phase of the Game

After passing the initial phase, the game continues with its status registered at epochs
T and it ends when at least one of the players sustains damages in excess of thresholds
M or N . To further formalize the game past t0 we introduce the following random exit
indices

µ : = inf {j ≥ 0 : αj = α0 + ξ1 + . . . + ξj > M}, (4.1)

ν : = inf {k ≥ 0 : βk = β0 + η1 + . . . + ηk > N}. (4.2)

Related on µ and ν are the following r.v.’s:
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tµ is the nearest observation epoch when player A’s damages exceed threshold M ,
tν is the first observation of T when player B’s damages exceed threshold N .

Apparently, αµ and βν are the respective cumulative damages to players A and B at
their ruin times. We will be concerned, however, with the ruin time of player A and thus
restrict our game to the trace σ-algebra F(Ω)∩{µ < ν}. Accordingly, we will target the
following functional

φµ : = φµ(a, b, ϑ, u, v, θ) = E[e−aαµ−1−uαµ−bβµ−1−vβµ−ϑtµ−1−θtµ1{µ<ν}]. (4.3)

To calculate a tractable form of φµ we will use the bivariate Laplace-Carson transform

LCpq(·)(x, y) : = xy

∫ ∞

p=0

∫ ∞

q=0

e−xp−yq(·)d(p, q), Re(x) > 0, Re(y) > 0, (4.4)

with the inverse

LC−1
xy (·)(p, q) = L−1

xy (·
1

xy
), (4.5)

where L−1 is the inverse of the bivariate Laplace transform.

Theorem 4.1 The functional φµ of the game on trace σ-algebra F (Ω) ∩ {µ < ν}
satisfies the following formula:

φµ = LC−1
xy

(

(Φ1
0 − Φ0) +

Φ∗
0

1 − g
(G1 − G)

)

(M, N), (4.6)

where

G : = g(u + x, v + y, θ), (4.7)

G1 : = g(u, v + y, θ), (4.8)

Φ∗
0 : = φ0(0, 0, 0, a + u + x, b + v + y, ϑ + θ), (4.9)

Φ0 : = φ0(a, b, ϑ, u + x, v + y, θ), (4.10)

Φ1
0 : = φ0(a + x, b, ϑ, u, v + y, θ), (4.11)

with g and φ0 of (2.16) and (3.7), respectively.

Proof : First we modify (4.1) and (4.2) for the random exit indices µ and ν which
depend on parameters M and N , now to depend on p and q (being arbitrary nonnegative
real numbers), respectively, and working with them as parametric families of r.v.’s:

µ(p) : = inf {j ≥ 0 : αj = α0 + ξ1 + . . . + ξj > p}, p ≥ 0, (4.12)

ν(q) : = inf {k ≥ 0 : βk = β0 + η1 + . . . + ηk > q}, q ≥ 0. (4.13)

The functional φµ will now change to

Φpq = E[e−aαµ(p)−1−uαµ(p)−bβµ(p)−1−vβµ(p)−ϑtµ(p)−1−θtµ(p)1{µ(p)<ν(q)}]. (4.14)

This will follow the paths of the game on the trace σ-algebra F(Ω) ∩ {µ(p) < ν(q)} and
yield:

Φpq =
∑

j≥0

∑

k>j

E[e−aαj−1−uαj−bβj−1−vβj−ϑtj−1−θtj1{µ(p)=j,ν(q)=k}]. (4.15)

By Fubini’s theorem, and that
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LCpq

(

1{µ(p)=j,ν(q)=k}

)

(x, y) = (e−xαj−1 − e−xαj)(e−yβk−1 − e−yβk),

(which can be readily shown) we have

LCpq(Φpq)(x, y) =
∑

j≥0

∑

k>j

E[e−aαj−1−uαj−bβj−1−vβj−ϑtj−1−θtj

× (e−xαj−1 − e−xαj )(e−yβk−1 − e−yβk)].

(4.16)

We distinguish two cases.
(i) Case j = 0. This case will include the entire information on the initial phase

observed at t0 and prior to t0, including t−1. In a few lines below, we are going to
implement the result of Theorem 3.1 and utilize all necessary versions of the functional
φ0 :

∑

k>0

E[e−aα
−1−uα0−bβ

−1−vβ0−ϑt
−1−θt0(e−xα

−1 − e−xα0)(e−yβk−1 − e−yβk)]

=
∑

k>0

E[e−aα
−1−uα0−bβ

−1−vβ0−ϑt
−1−θt0(e−xα

−1 − e−xα0)

× e−yβ0e−y(η1+ldots+ηk−1)(1 − e−yηk)]

=
{

E[e−(a+x)α
−1−uα0−bβ

−1−(v+y)β0−ϑt
−1−θt0 ]

− E[e−aα
−1−(u+x)α0−bβ

−1−(v+y)β0−ϑt
−1−θt0 ]

}

∑

k>0

E[e−y(η1+...+ηk−1)(1 − e−yηk)]

=
{

φ0(a + x, b, ϑ, u, v + y, θ) − φ0(a, b, ϑ, u + x, v + y, θ)
}

×
∑

k>0

[g(0, y, 0)]k−1
(

1 − g(0, y, 0)
)

= Φ1
0 − Φ0, (4.17)

where the summation over k > 0 converges to 1 as per Lemma 1 of Dshalalow and
Huang [5]: the associated convergence of

∑

k>0[g(0, y, 0)]k−1 is guaranteed provided that
Re(y) > 0. The last line in (4.17) is due to notation (4.9-4.11).

(ii) Case j > 0. This case also contains parts of functional φ0 in the information
related to the reference point t0.
Transformation (4.16) for this case is

∑

j>0

∑

k>j

E[e−aαj−1−uαj−bβj−1−vβj−ϑtj−1−θtj(e−xαj−1 − e−xαj)(e−yβk−1 − e−yβk)]

=
∑

j>0

∑

k>j

{

E[e−(a+u+x)αj−1−(b+v+y)βj−1−(ϑ+θ)tj−1 ]

× E[e−uξj (1 − e−xξj )e−(v+y)ηj−θ∆j ]E[e−y(ηj+1+...+ηk−1)(1 − e−yηk)]
}

=
∑

j>0

{

E[e−(a+u+x)α0−(b+v+y)β0−(ϑ+θ)t0 ]

× E[e−(a+u+x)(ξ1+...+ξj−1)−(b+v+y)(η1+...+ηj−1)−(ϑ+θ)
(

∆1+...+∆j−1)] (4.18)

× E[e−uξj (1 − e−xξj )e−(v+y)ηj−θ∆j ]
∑

k>j

E[e−y(ηj+1+...+ηk−1)(1 − e−yηk)]
}

,
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where the third factor can be written as

E[e−uξj−(v+y)ηj−θ∆j ] − E[e−(u+x)ξj−(v+y)ηj−θ∆j ] = G1 − G

(as per notation (4.7-4.8)) and the summation over k > j converges to 1, for Re(y) > 0,
as per Lemma 1 of [5]. Then, after some algebra in (4.18) and the use of notation (4.7-4.8)
and (4.18), we arrive at

φ0(0, 0, 0, a + u + x, b + v + y, ϑ + θ) ·
∑

j>0

gj−1 · (G1 − G)

= Φ∗
0 ·

∑

j>0

gj−1 · (G1 − G) =
Φ∗

0

1 − g
(G1 − G),

(4.19)

with the convergence of
∑

j>0 gj−1 under the condition that the parameters of g satisfy

Re(a + u + x) > 0, Re(b + v + y) > 0, Re(ϑ + θ) > 0, (4.20)

with any two of the three strict inequalities relaxed with ≥.
With the cases j = 0 and j > 0 combined together, we will arrive at

LCpq(Φpq)(x, y) = (Φ1
0 − Φ0) +

Φ∗
0

1 − g
(G1 − G). (4.21)

2

Remark 4.1 For the particular case

ϕµ = ϕµ(u, v, ϑ) = E[e−uαµ−vβµ−θtµ1{µ<ν}] (4.22)

of the functional φµ we get from (4.21)

LCpq(ϕpq)(x, y) = Φ1
0 − Φ0

1 − G1

1 − G
, (4.23)

where ϕpq is the corresponding marginal reduction of Φpq while the rest of the marginal
functionals G, G1, Φ0, and Φ1

0 will shrink but for convenience carry the same characters:

G = g(u + x, v + y, θ), (4.24)

G1 = g(u, v + y, θ), (4.25)

Φ∗
0 = Φ0 = φ0(0, 0, 0, u + x, v + y, θ), (4.26)

Φ1
0 = φ0(x, 0, 0, u, v + y, θ). (4.27)

Explicitly,

LCpq(ϕpq)(x, y) = φ0(x, 0, 0, u, v + y, θ)

− φ0(0, 0, 0, u + x, v + y, θ)
1 − g(u, v + y, θ)

1 − g(u + x, v + y, θ)
,

(4.28)

where from (3.7-3.10) and (2.18), the marginal versions of φ0 needed for (4.28) are

φ0(x, 0, 0, u, v, θ) = E[e−xα
−1−uα0−vβ0−θt0 ]

=
λAλBδ(θ∗)

θ + λA + λB

(

1

θA + λB

hA(x + u)hB(v) +
1

θB + λA

hA(u)hB(v)

)

, (4.29)

φ0(0, 0, 0, u, v, θ) = E[e−uα0−vβ0−θt0 ]

=
λAλBδ(θ∗)

θ + λA + λB

(

1

θA + λB

hA(u)hB(v) +
1

θB + λA

hA(u)hB(v)

)

, (4.30)
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and

θ∗0 : = θ + λA(1 − hA(u)) + λB(1 − hB(v)), (4.31)

θA : = θ − λA(hA(u) − 1), (4.32)

θB : = θ − λB(hB(v) − 1). (4.33)

2

Concluding Remarks. In this paper, we study fully antagonistic stochastic games
of two players (A and B) (initiated in [5-7]), modeled by two independent marked Poisson
processes recording times and quantities of casualties to the players. The game is observed
by a third party renewal point process upon which the information is gathered (and a
decision about upcoming steps can be made or modified). Unlike previous work in
[5, 6, 8, 9], the initial observation moment is not arbitrarily chosen, but it is placed at
random following some initial actions of the players. This caused an analytic complexity
which was unresolved until recently. Due to this more realistic assumption a new phase
in the game emerged, which we name the “initial phase”. This initial phase turned out
to be a short game on its own. Following the initial phase, the main phase of the game
lasts until one of the players is ruined. This takes place when the cumulative casualties
of a losing player exceed some specified threshold. We investigate the paths of the game
in which player A loses the game. The general formulas are obtained in closed forms. In
[10] we will render calculation for a variety of special cases.
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