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Università di Napoli, V. Claudio 21, 80125 Napoli

Received: July 21, 2008; Revised: June 8, 2009

Abstract: We prove some new results regarding the boundedness, stability and
attractivity of the solutions of a class of initial-boundary-value problems characterized
by a quasi-linear third order equation which may contain time-dependent coefficients.
The class includes equations arising in superconductor theory, and in the theory
of viscoelastic materials. In the proof we use a family of Liapunov functionals W

depending on two parameters, which we adapt to the ‘error’, i.e. to the size σ of the
chosen neighbourhood of the null solution.
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1 Introduction

In this paper we study the boundedness and stability properties of a large class of initial-
boundary-value problems of the form

{ −ε(t)uxxt + utt − C(t)uxx + a′ut = F (u) − aut, x ∈]0,π[, t>t0,

u(0, t) = 0, u(π, t) = 0,
(1.1)

u(x, t0) = u0(x), ut(x, t0) = u1(x). (1.2)
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Here t0 ≥ 0, ε ∈ C2(I, I), C ∈ C1(I,R+) (with I := [0,∞[) are functions of t, with
C(t)≥C=const>0, the conservative force fulfills F (0) = 0, so that the equation admits
the trivial solution u(x, t) ≡ 0; a′ = const≥ 0, a = a(x, t, u, ux, ut, uxx)≥ 0, ε(t)≥ 0, so
that the corresponding terms are dissipative 1 .

Solutions u of such problems describe a number of physically remarkable continuous
phenomena occurring on a finite space interval.

For instance, when F (u) = b sinu, a = 0 we deal with a perturbed Sine–Gordon
equation which is used to describe the classical Josephson effect [8] in the theory of su-
perconductors, which is at the base (see e.g. [12, 1] and references therein) of a large
number of advanced developments both in fundamental research (e.g. macroscopic ef-
fects of quantum physics, quantum computation) and in applications to electronic devices
(see e.g. Chapters 3–6 in [2]): u(x, t) is the phase difference of the macroscopic quantum
wave functions describing the Bose–Einstein condensates of Cooper pairs in two super-
conductors separated by a very thin and narrow dielectric strip (a socalled “Josephson
junction”), the dissipative term (a′+a)ut is due to Joule effect of the residual current
across the junction due to single electrons, whereas the third order dissipative term is
due to the surface impedence of the two superconductors of the strip. Usually the model
is considered with constant (dimensionless) coefficients ε, C, (a′+a), but in fact the lat-
ter depend on other physical parameters like the temperature or the voltage difference
applied to the junction (see e.g. [12]), which can be controlled and varied with time; in
a more accurate description of the model one should take a non-constant a = β cosu,
where β also depends on temperature and voltage difference applied and therefore can
be varied with time.

Other applications of problem (1.1)–(1.2) include heat conduction at low temperature
[13, 7], sound propagation in viscous gases [10], propagation of plane waves in perfect
incompressible and electrically conducting fluids [15], motions of viscoelastic fluids or
solids [9, 14, 16]. For instance, problem (1.1)–(1.2) with a = 0 = a′ describes [14] the
evolution of the displacement u(x, t) of the section of a rod from its rest position x in a
Voigt material when an external force F is applied; in this case c2 = E/ρ, ε = 1/(ρµ),
where ρ is the (constant) linear density of the rod at rest, and E, µ are respectively
the elastic and viscous constants of the rod, which enter the stress-strain relation σ =
Eν + ∂tν/µ, where σ is the stress, ν is the strain. Again, some of these parameters, like
the viscous constant of the rod, may depend on the temperature of the rod, which can
be controlled and varied with time.

The problem (1.1)–(1.2) considered here generalizes those considered in [3, 4, 5, 6], in
that the square velocity C and the dissipative coefficient ε can depend on t. The physical
phenomena just described provide the motivations for such a generalization. While we
require C to have a positive lower bound, in order not to completely destroy the wave
propagation effects due to the operator ∂2

t − C∂2
x, we wish to include the cases that ε

goes to zero as t → ∞, vanishes at some point t, or even vanishes identically. To that

1 This follows from the non-positivity of the corresponding terms in the time derivative of the
Hamiltonian:

H =

π
∫

0

dx

[

u2
t
+Cu2

x

2
−

∫

u(x)

0
F (z)dz

]

⇒ Ḣ = −

π
∫

0

dx
[

(a+a′)u2
t
+εu2

xt

]

+

π
∫

0

dx Ċ
u2

x

2
.

We also see that the last term is respectively dissipative, forcing if Ċ is negative, positive. H can play
the role of Liapunov functional w.r.t. the reduced norm dε=0(u, ut).
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end, we consider the t-dependent norm

d2(ϕ, ψ) ≡ d2
ε(ϕ, ψ) =

π
∫

0

dx [ε2(t)ϕ2
xx+ϕ2

x+ϕ2+ψ2]. (1.3)

ε2 plays the role of a weight for the second order derivative term ϕ2
xx so that for ε = 0 this

automatically reduces to the proper norm needed for treating the corresponding second
order problem. Imposing the condition that ϕ, ψ vanish in 0, π one easily derives that
|ϕ(x)|, ε|ϕx(x)| ≤ d(ϕ, ψ) for any x; therefore a convergence in the norm d implies also
a uniform (in x) pointwise convergence of ϕ and a uniform (in x) pointwise convergence
of ϕx for ε(t) 6=0. To evaluate the distance of u from the trivial solution we shall use the
t-dependent norm d(t) ≡ dε(t)

[

u(x, t), ut(x, t)
]

; we use the abbreviation d(t) whenever
this is not ambiguous.

In Section 2 we state the hypotheses necessary to prove our results, give the relevant
definitions of boundedness and (asymptotic) stability, introduce a 2-parameter family of
Liapunov functionals W and tune these parameters in order to prove bounds for W, Ẇ .
In Sections 3, 4 we prove the main results: a theorem of stability and (exponential)
asymptotic stability of the null solution (Section 3), under stronger assumptions theorem
of eventual and/or uniform boundedness of the solutions and eventual and/or exponential
asymptotic stability in the large of the null solution (Section 4). In Section 5, we mention
some examples to which these results can be applied.

We note that for constant ε the existence and uniqueness of the solution of the problem
(1.1)–(1.2) follows from the theorem in section 2 of [6], as we can replace at the left-hand
side C(t) by inft C and include in the right-hand side the difference [inft C − C(t)]uxx.

2 Main Assumptions, Definitions and Preliminary Estimates

For any function f(t), we denote f = inft>0 f(t), f = supt>0 f(t). We assume that there
exist constants A≥0, τ >0, k≥0, ρ>0, µ>0 such that

F (0)=0 & Fz(z)≤k if |z|<ρ. (2.1)

C≥k, C−ε̇≥µ(1+ε), µ+
C

2
−2k>0, ε̈>−∞. (2.2)

0 ≤ a≤Adτ (u, ut), a′+
ε

2
>0 (2.3)

We are not excluding the following cases: ε(t) = 0 for some t, ε
t→∞−→ 0, ε(t) ≡ 0, ε

t→∞−→ ∞
[in view of (2.2)2 the latter condition requires also C

t→∞−→ ∞]; but by condition (2.3)2 at
least one of the dissipative terms must be nonzero. Eq. (2.1) implies

∫ ϕ

0

F (z)dz≤kϕ
2

2
, ϕF (ϕ)≤kϕ2 if |ϕ|<ρ. (2.4)

We shall consider also the cases that, in addition to (2.1), either one of the following
inequalities [which are stronger than (2.4)] holds:

∫ ϕ

0

F (z)dz≤0, ϕF (ϕ)≤0 if |ϕ|<ρ. (2.4′)
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To formulate our results, we need the following definitions. Fix once and for all κ ∈ R,
ξ>0 and let Iκ := [κ,∞[, d(t) := dε(t)

[

u(x, t), ut(x, t)
]

.

Definition 2.1 The solution u(x, t) ≡ 0 of (1.1) is stable if for any σ ∈]0, ξ] and
t0∈Iκ there exists a δ(σ, t0) > 0 such that

d(t0) < δ(σ, t0) ⇒ d(t) < σ ∀t ≥ t0.

If δ can be chosen independent of t0, δ = δ(σ), u(x, t) ≡ 0 is uniformly stable.

Definition 2.2 The solution u(x, t) ≡ 0 of (1.1) is asymptotically stable if it is
stable and moreover for any t0∈Iκ there exists a δ(t0)>0 such that d(t0)<δ(t0) implies
d(t) → 0 as t→ ∞, namely for any ν>0 there exists a T (ν, t0, u0, u1) > 0 such that

d(t0) < δ(t0) ⇒ d(t) < ν ∀t ≥ t0 + T.

The solution u(x, t) ≡ 0 is uniformly asymptotically stable if it is uniformly stable and
moreover δ, T can be chosen independent of t0, u0, u1, i.e. d(t) → 0 as t → ∞ uniformly
in t0, u0, u1.

Definition 2.3 The solutions of (1.1) are eventually uniformly bounded if for any
δ > 0 there exist a s(δ) ≥ 0 and a β(δ) > 0 such that if t0 ≥ s(δ), d(t0) ≤ δ, then
d(t) < β(δ) for all t ≥ t0. If s(δ) = 0 the solutions of (1.1) are uniformly bounded.

Definition 2.4 The solutions of (1.1) are bounded if for any δ > 0 there exist a
β̃(δ, t0) > 0 such that if d(t0) ≤ δ, then d(t) < β̃(δ, t0) for all t ≥ t0.

Definition 2.5 The solution u(x, t) ≡ 0 of (1.1) is eventually exponential-
asymptotically stable in the large if for any δ > 0 there are a nonnegative constant
s(δ) and positive constants D(δ), E(δ) such that if t0 ≥ s(δ), d(t0) ≤ δ, then

d(t) ≤ D(δ) exp [−E(δ)(t− t0)] d(t0), ∀t ≥ t0. (2.5)

If s(δ) = 0 then u(x, t) ≡ 0 is exponential-asymptotically stable in the large.

Definition 2.6 The solution u(x, t) ≡ 0 of (1.1) is (uniformly) exponential-
asymptotically stable if there exist positive constants δ,D,E such that

d(t0) < δ ⇒ d(t) ≤ D exp [−E(t− t0)] d(t0), ∀t ≥ t0. (2.6)

Definition 2.7 The solution u(x, t) ≡ 0 of (1.1) is asymptotically stable in the large
if it is stable and moreover for any t0 ∈ Iκ, ν, α > 0 there exists T (α, ν, t0, u0, u1) > 0
such that

d(t0) < α ⇒ d(t) < ν ∀t ≥ t0 + T.

We recall Poincaré inequality, which easily follows from Fourier analysis:

φ ∈ C1(]0, π[), φ(0) = 0, φ(π) = 0 ⇒
∫ π

0

dxφ2
x(x) ≥

∫ π

0

dxφ2(x). (2.7)

We introduce the non-autonomous family of Liapunov functionals

W ≡W (ϕ, ψ, t; γ, θ) :=

∫ π

0

1

2

{

γψ2+(εϕxx−ψ)2+ [C(1+γ)−ε̇+ε(a′+θ)]ϕ2
x (2.8)

+a′θϕ2+2θϕψ−2(1+γ)

∫ ϕ(x)

0

F (z)dz
}

dx
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where θ, γ are for the moment unspecified positive parameters. W coincides with the
Liapunov functional of [3] for constant ε, C and γ = 3, θ = a′. Let W (t; γ, θ) :=
W (u, ut, t; γ, θ). Using (1.1), from (2.8) one finds

Ẇ (t; γ, θ) =

π
∫

0

{

(εuxx−ut)(εuxxt−utt+ε̇uxx)+[Ċ(1+γ)−ε̈+ε̇(a′+θ)]u
2
x

2

+[C(1+γ)−ε̇+ε(a′+θ)]uxuxt+a
′θuut+θu

2
t +(γut+θu)utt−(1+γ)F (u)ut

}

dx

=

π
∫

0

{

(εuxx−ut)[(a+a′)ut−Cuxx−F (u)+ε̇uxx]+[Ċ(1+γ)−ε̈+ε̇(a′+θ)]u
2
x

2

−[C(1+γ)−ε̇+ε(a′+θ)]uxxut+a
′θuut+θu

2
t

+(γut+θu)[Cuxx+εuxxt+F (u)−(a+a′)ut]−(1+γ)F (u)ut} dx

=

π
∫

0

{

εuxx[(ε̇−C)−F (u)]uxx+[εuxx(a+a′)−(a+a′)ut+Cuxx+F (u)−ε̇uxx−C(1+γ)uxx

+ε̇uxx−ε(a′+θ)uxx+a′θu+θut+γCuxx+γεuxxt+γF (u)−(a+a′)γut−θ(a+a′)u

−(1+γ)F (u)]ut+θu[Cuxx+εuxxt+F (u)]+[Ċ(1+γ)−ε̈+ε̇(a′+θ)]u
2
x

2

}

dx

=

π
∫

0

{

ε[(ε̇−C)uxx−F (u)]uxx+ut[εauxx−(a+a′)(1+γ)ut−εθuxx

+θut+γεuxxt−aθu]+θu[Cuxx+εuxxt+F (u)]+[Ċ(1+γ)−ε̈+ε̇(a′+θ)]u
2
x

2

}

dx

= −
π
∫

0

{

ε(C−ε̇)u2
xx+[(a+a′)(1+γ)−θ]u2

t +
[

2θC+ε̈−ε̇(a′+θ)−(1+γ)Ċ
] u2

x

2
+εγu2

xt

+θauut−θuF (u)+ε[−aut+F (u)]uxx

}

dx. (2.9)

2.1 Upper bound for Ẇ

After some rearrangement of terms and integration by parts of the last term, we obtain

Ẇ = −
∫ π

0

{

εγu2
xt+

[

(a+a′)(1+γ)−θ−ε a2

C−ε̇−θ
a2

C

]

u2
t +ε(C−ε̇)

[

a

C−ε̇ut−
uxx

2

]2

+
3

4
ε(C−ε̇)u2

xx+

[

C

(

θ

2
−a′

)

+ε̈+(C−ε̇)(a′+θ)−(1+γ)Ċ−2εFu

]

u2
x

2

+
θC

4
(u2

x−u2)+
θC

4

[

u+
2a

C
ut

]2

−θuF (u)

}

dx.
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Using (2.7) with φ(x) = ut(x, t), u(x, t) we thus find, provided |u|<ρ, θ>2a′, µ(a′+θ)>2k

Ẇ ≤−
∫ π

0

{[

εγ+(a+a′)(1+γ)−θ−a2

(

1

µ
+
θ

C

)]

u2
t +

3

4
µε2u2

xx+

[

C

(

θ

2
−a′
)

+ε̈+µ(1+ε)(a′+θ)−(1+γ)Ċ−2εk

]

u2
x

2
−θku2

}

dx

≤−
∫ π

0

{[

εγ+(a+a′)(1+γ)−θ−a2

(

1

µ
+
θ

C

)]

u2
t +

3

4
µε2u2

xx+

[

C

(

θ

2
−a′
)

+ε̈+µ(a′+θ)+[µ(a′+θ)−2k]ε−(1+γ)Ċ−2kθ

]

u2
x

2

}

dx. .(2.10)

We now assume that there exists t̄(γ)∈ [0,∞[ such that

Ċ(1 + γ)≤1 for t≥ t̄, Ċ(1 + γ)>1 for 0≤ t< t̄. (2.11)

This is clearly satisfied with t̄(γ)≡0 if Ċ ≤ 0, whereas it is satisfied with some t̄(γ)≥0

if Ċ
t→∞−→ 0. We fix θ by choosing

θ > θ1 := max

{

2a′,
2k

µ
−a′, 5−ε̈−a

′(µ−C)

µ+C/2−2k

}

. (2.12)

Then for all t > t̄

θ

(

µ+
C

2
−2k

)

+[µ(a′+θ)−2k]ε+ε̈−(1+γ)Ċ+a′(µ−C) > 4. (2.13)

Next, provided d(u, ut)≤σ<ρ, we choose

γ > γ1(σ) :=
1+θ

a′+ε
+ γ32σ

2τ , γ32 :=
A2

(a′+ε)

(

1

µ
+
θ

C

)

, (2.14)

what implies, for d ≤ σ,

εγ+(a+a′)(1+γ)−θ−a2

(

1

µ
+
θ

C

)

= a+a′+ (a+a′+ε)γ−θ−a2

(

1

µ
+
θ

C

)

≥ a′+
a+a′+ε

a′+ε

[

(1+θ) +A2

(

1

µ
+
θ

C

)

σ2τ

]

−θ−A2

(

1

µ
+
θ

C

)

d2τ ≥ 1+a′. (2.15)

Equations (2.10), (2.13) and (2.15) imply for all t ≥ t̄

Ẇ (u, ut, t; γ, θ)≤−
∫ π

0

{[

εγ+(a+a′)(1+γ)−θ−a2

(

1

µ
+
θ

C

)]

u2
t +

3

4
µε2u2

xx+

[

θ

(

µ+
C

2
−2k

)

+[µ(a′+θ)−2k]ε+ε̈−(1+γ)Ċ+a′(µ−C)

]

u2
x + u2

4

}

dx

< −η d2(t), η := min {1, 3µ/4} (2.16)

provided 0<d(t)<σ. If, in addition to (2.3) with k > 0, the inequality (2.4’) [which is
stronger than (2.4)] holds, then it is easy to check that we can avoid assuming (2.2)3 and
obtain again the previous inequality, provided we replace k by 0 in the definition (2.12)
of θ1.
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Remark 2.1 One can check that if we had adopted the same Liapunov functional
as in [5, 6] formulae (4.2), i.e. W of (2.8) with θ=0=a′, we would have not been able to
obtain (2.16) (which is essential to prove the asymptotic stability of the null solution) in
a number of situations, e.g. if ε→0 sufficiently fast as t→∞.

2.2 Lower bound for W

From the definition (2.8) it immediately follows

W (ϕ, ψ, t; γ, θ) =

π
∫

0

1

2

{(

γ−θ2− 1

2

)

ψ2+
(εϕxx− 2ψ)2

4
+

(εϕxx−ψ)2

2
+ε2

ϕ2
xx

4

+[C(1+γ)−ε̇+ε(a′+θ)]ϕ2
x+(a′θ−1)ϕ2+[θψ+ϕ]

2−2(1+γ)

∫ ϕ(x)

0

F (z)dz

}

dx. (2.17)

Using (2.2)2, (2.4) and (2.7) with φ(x) = ϕ(x) we find for |ϕ|<ρ

W ≥
π
∫

0

1

2

{(

γ−θ2− 1

2

)

ψ2+ε2
ϕ2

xx

4
+[(C−k)γ+ µ+(µ+a′+θ)ε]ϕ2

x+[a′θ−1−k]ϕ2

}

dx

≥
π
∫

0

1

2

{(

γ−θ2− 1

2

)

ψ2+ε2
ϕ2

xx

4
+

[

(C−k)γ+µ+

(

µ+a′+
θ

2

)

ε

]

ϕ2
x

+

[(

a′+
ε

2

)

θ−1−k
]

ϕ2

}

dx. (2.18)

Choosing

θ > θ2 := max

{

θ1,
k+5/4

a′+ε/2

}

, γ ≥ γ2(σ) := γ1(σ)+θ2+1, (2.19)

we find that for d ≤ σ

W (ϕ, ψ, t; γ, θ) ≥ χd2(ϕ, ψ), χ :=
1

2
min

{

1

4
, (C−k)γ+µ+

(

µ+a′+
θ

2

)

ε

}

. (2.20)

(Note that 0 < χ ≤ 1/8). If, in addition to (2.1) (with some k>0), the inequality (2.4’)1
holds, then it is easy to check that we obtain (2.20) [with the replacement k → 0 in the
definition of χ] by choosing θ, γ as in (2.19), but replacing k → 0 there.

Finally, we note that if τ=0 in (2.3), i.e. a≤A =const, then γ, t̄(γ) are independent
of σ.

2.3 Upper bound for W

As argued in [3],

∣

∣

∣

∣

∫ ϕ

0

F (z)dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ ϕ

0

dz

∫ ζ

0

Fζ(ζ)dζ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ϕ

0

Fζ(ζ)(ϕ − ζ)dζ

∣

∣

∣

∣

.

Consequently, introducing the non-decreasing funtion m(r) := max {|Fζ(ζ)| : |ζ| ≤ r}
and in view of the inequality |ϕ| ≤ d(ϕ, ψ) we obtain

∣

∣

∣

∣

∫ ϕ

0

F (z)dz

∣

∣

∣

∣

≤ m(|ϕ|)ϕ
2

2
≤ m(d)

d2

2
. (2.21)
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Thus, from definition (2.8) and the inequalities −2ǫϕxxψ≤ǫ2ϕ2
xx+ψ2, 2θϕψ≤θ(ϕ2+ψ2),

(2.2)3 we easily find

W (ϕ, ψ, t; γ, θ)≤
π
∫

0

1

2

{

(γ+2+θ)ψ2+2ε2ϕ2
xx+[C(1+γ)−ε̇

+ε(a′+θ)]ϕ2
x+(a′+1)θϕ2

}

dx+(1+γ)m(d)
d2

2
≤

π
∫

0

1

2

{

(γ+2+θ)ψ2+2ε2ϕ2
xx

+

[

Cγ+(C−ε̇)
(

1+
a′+θ

µ

)]

ϕ2
x+(a′+1)θϕ2

}

dx+(1+γ)m(d)
d2

2
.

Choosing

γ ≥ γ3(σ) := γ2(σ)+1+ a′+θ
µ +(a′+1)θ = γ31 + γ32σ

2τ ,
(2.22)

where γ31 := 1+θ
a′+ε +θ2+2+ a′+θ

µ +(a′+1)θ and setting

g(t) :=C(t)−ε̇(t)/2+1>1, B2(d) := [1+m(d)]d2, (2.23)

we find that for d ≤ σ

W (ϕ, ψ, t; γ, θ) ≤
π
∫

0

1

2

[

(γ+2+θ)ψ2+2ε2ϕ2
xx+γ (2C−ε̇)ϕ2

x+γϕ2
]

dx+(1+γ)m(d)
d2

2

≤ [2γg(t)+(1+γ)m(d)]
d2

2
≤(1+γ) [g(t)+m(d)]d2

≤ [1+γ(σ)] g(t)B2(d). (2.24)

The map d∈ [0,∞[→ B(d)∈ [0,∞[ is continuous and increasing, therefore also invertible.
Moreover, B(d) ≥ d.

3 Asymptotic Stability of the Null Solution

Theorem 3.1 Assume that conditions (2.1)-(2.3) are fulfilled. Then the null solution
u(x, t) of (1.1) is stable if one of the following conditions is fulfilled:

Ċ ≤ 0, ∀t ∈ I, (3.1)

Ċ
t→∞−→ 0; (3.2)

the stability is uniform if the function g(t) defined by (2.23) fulfills g < ∞. The ξ
appearing in Definition 2.1 is a suitable positive constant, more precisely ξ ∈]0, ρ] if
ρ <∞. The null solution is asymptotically stable if, in addition,

∫

∞

0

dt

g(t)
= ∞, (3.3)

and uniformly exponential-asymptotically stable if g <∞.
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Proof As a first step, we analyze the behaviour of

σ2

1+γ3(σ)
=

σ2

1+γ31+γ32σ2τ
=: r2(σ).

The positive constants γ31, γ32, defined in (2.22), are independent of σ, t0. The function
r(σ) is an increasing and therefore invertible map r : [0, σM [→ [0, rM [, where:

σM =∞, rM =∞, if τ ∈ [0, 1[,

σM =∞ rM =1/
√
γ32, if τ=1,

σ2τ
M := 1+γ31

γ32(τ−1) , rM =[ τ−1
1+γ31

]
τ−1

2τ /
√
τγ

1

2τ

32 , if τ >1,

(3.4)

(in the latter case r(σ) is decreasing beyond σM ).

Next, let ξ := min{σM , ρ} if the rhs is finite, otherwise choose ξ ∈ R
+; we shall

consider an “error” σ∈]0, ξ[. We define

δ(σ, t0) := B−1

[

r(σ)

√
χ

√

g(t0)

]

, κ := t̄[γ3(ξ)]. (3.5)

δ(σ, t0) belongs to ]0, σ[, because B(d) ≥ d implies B−1
[

r(σ)
√
χ/
√

g(t0)
]

≤ √
χσ ≤ σ/2

and is an increasing function of σ. The function t̄(γ) was defined in (2.11); t̄[γ3(σ)]≤κ
as the function t̄[γ3(σ)] is non-decreasing. Mimicking an argument of [6], we can show
that for any t0 ≥ κ

d(t0) < δ(σ, t0) ⇒ d(t) < σ ∀t ≥ t0. (3.6)

Ad absurdum, assume that there exists a finite t1> t0 such that (3.6) is fulfilled for all
t ∈ [t0, t1[, whereas

d(t1) = σ. (3.7)

The negativity of the rhs(2.16) implies that W (t) ≡ W [u, ut, t; γ3(σ), θ] is a decreasing
function of t in [t0, t1]. Using (2.20), (2.24) we find the following contradiction with (3.7):

χd2(t1) ≤W (t1) < W (t0) ≤ [1+γ3(σ)] g(t0)B
2 [d(t0)] < [1+γ3(σ)] g(t0)B

2(δ)

= [1+γ3(σ)] g(t0)

{

B

[

B−1

(

σ

√
χ

√

[1+γ3(σ)]g(t0)

)]}2

= χσ2.

Eq. (3.6) amounts to the stability of the null solution; if g <∞ we obtain the uniform

stability replacing (3.5)1 by δ(σ) :=B−1
[

r(σ)
√
χ/
√

g
]

.

Let now δ(t0) := δ(ξ, t0). By (3.6) and the monotonicity of δ(·, t0) we find that for
any t0 ≥ κ

d(t0) < δ(t0) ⇒ d(t) < ξ ∀t ≥ t0. (3.8)

Choosing W (t) ≡W [u, ut, t; γ3(ξ), θ], (2.24) becomes

W (t) ≤ h(ξ)g(t)d2(t), h(ξ) := [1+γ3(ξ)] [1+m(ξ)] , (3.9)
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which together with (2.16), implies Ẇ (t) ≤ −ηW (t)/[hg(t)] and (by means of the com-

parison principle [17]) W (t) < W (t0) exp
[

−η
∫ t

t0
dz/[hg(z)]

]

, whence

d2(t) ≤ W (t)

χ
<
W (t0)

χ
exp



− η
h

t
∫

t0

dz

g(z)





≤ hg(t0)

χ
d2(t0) exp



− η
h

t
∫

t0

dz

g(z)



 <
h(ξ)g(t0)

χ
ξ2 exp



− η

h(ξ)

t
∫

t0

dz

g(z)





Condition (3.3) implies that the exponential goes to zero as t→ ∞, proving the asymp-
totic stability of the null solution; if g<∞ we can replace g(t0), g(z) by g in the last but
one inequality and obtain

d2(t) <
h(ξ)g

χ
exp

[

− η

h(ξ)g
(t−t0)

]

d2(t0),

which proves the uniform exponential-asymptotic stability of the null solution (just set

δ=B−1
[

r(ξ)
√
χ/
√

g
]

, D=
√

h(ξ)g/χ, E=η/
[

2h(ξ)g
]

in Def. 2.6). 2

Remark 3.1 We stress that the theorem holds also if ρ = ∞. In the latter case ξ is
σM , if the latter is finite, an arbitrary positive constant, if also σM = ∞.

Next, we are going to extend some of the previous results in the large.

4 Boundedness of the Solutions and Asymptotic Stability in the Large

Theorem 4.1 Assume that: conditions (2.1)-(2.3), and possibly either one of (2.4’),
are fulfilled with ρ = ∞ and τ < 1; the function g(t) defined by (2.23) fulfills g < ∞;
(3.1) is fulfilled. Then:
1. the solutions of (1.1) are uniformly bounded;
2. the null solution of (1.1) is exponential-asymptotically stable in the large.

If only (3.2), instead of (3.1), is satisfied, then:
3. the solutions of (1.1) are eventually uniformly bounded;
4. the null solution of (1.1) is eventually exponential-asymptotically stable in the large.

Proof As noted, r(σ) can be inverted to an increasing map r−1 : [0, rM [→ [0, σM [,
whence also

β(δ) := r−1

[

√

gB(δ)√
χ

]

(4.1)

defines an increasing map β : [0, δM [→ [0, σM [, where δM :=B−1(rM
√
χ/
√

g). Note that
β(δ)>δ. An immediate consequence of (4.1) is

gB2(δ)

χ
= r2[β(δ)] =

β2(δ)

1+γ3[β(δ)]
. (4.2)

From (2.11) it immediately follows that

s(δ) := t̄{γ3[β(δ)]}
{

= 0, if (3.1) is fulfilled,

<∞, if (3.2) is fulfilled.
(4.3)
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We can now show that for any δ∈]0, δM [, t0≥s(δ)

d(t0) < δ ⇒ d(t) < β(δ), ∀t ≥ t0. (4.4)

Ad absurdum, assume that there exists a finite t2> t0 such that (4.4) is fulfilled for all
t ∈ [t0, t2[, whereas

d(t2) = β(δ). (4.5)

The negativity of the rhs(2.16) implies that W (t) ≡ W{u, ut, t; γ3[β(δ)], θ} is a decreas-
ing function of t in [t0, t2]. Using (2.20), (2.24) and the (4.2) we find the following
contradiction with (4.5):

χd2(t2) ≤W (t2) < W (t0) ≤ {1+γ3[β(δ)]}g(t0)B2 [d(t0)] < {1+γ3[β(δ)]}gB2(δ) = χβ2(δ).

Formula (4.4) together with (4.3) proves statements 1., 3. under the assumption
τ ∈ [0, 1[, because then by (3.4) δM = ∞, so that we can choose any δ > 0 in Definition
2.3.

With the above choice of θ, by (4.4), (3.9) we find that for t≥ t0≥s(δ) the Liapunov
functional Wδ(t) ≡W

{

u, ut, t; γ3

[

β(δ)
]

, θ(δ)
}

fulfills

Wδ(t)≤h(δ)gd2(t); (4.6)

this, together with (2.16) implies Ẇδ(t) ≤ −ηWδ(t)/[h(δ)g] and (by means of the compar-
ison principle [17]) Wδ(t) < Wδ(t0) exp

[

−η(t−t0)/[h(δ)g]
]

. From the latter inequality,
(2.20) and (4.6) with t= t0 it follows

d2(t) ≤ Wδ(t)

χ
<
Wδ(t0)

χ
exp

[

− η

h(δ)g
(t−t0)

]

≤ h(δ)g

χ
exp

[

− η

h(δ)g
(t−t0)

]

d2(t0)

for all t ≥ t0 ≥ s(δ). Recalling again (4.3), we see that the latter formula proves
statements 2., 4. 2

In the case τ≥1 we find, by (3.4),

δM =B−1

(

rM

√
χ

√

g

)

=B−1







[

τ−1

1+γ31

]

τ−1

2τ

√
χ

√

gτγ
1/τ
32







.

The finiteness of δM prevents us from extending the results in the large of the previous
theorem to the case τ ≥1. One might think to exploit the freedom in the choice of θ to
make δM as large as we wish. From the θ-dependence of γ31, γ32 [formulae (2.22), (2.14)]
we see that δM decreases with θ, so this is impossible. However, we can prove boundedness
and asymptotic stability in the large even for some unbounded g(t), provided τ = 0.

Theorem 4.2 Assume that: conditions (2.3–2.1), and possibly either one of (2.4’),
are fulfilled with ρ = ∞ and τ = 0; the function g(t) defined by (2.23) fulfills (3.3); either
(3.1) or (3.2) is fulfilled. Then:
1. the solutions of (1.1) are bounded;
2. the null solution of (1.1) is asymptotically stable in the large.

Proof The condition τ = 0 means that γ does not depend on σ; then r−1(β) =
β
√

1+γ, which is an increasing map r−1 : I→I. For any fixed t0 setting

β̃(α; t0) :=r
−1

[

√

g(t0)B(α)
√
χ

]

= B(α)

√

g(t0)(1+γ)
√
χ

(4.7)
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also defines an increasing map β̃ : I→ I, with β̃(α; t0)>α. We now prove statement 1,
i.e. for any α>0, t0≥κ := t̄(γ),

d(t0) < α ⇒ d(t) < β̃(α; t0) ∀t≥ t0. (4.8)

Ad absurdum, assume that there exist a finite t2∈ [t0, t] such that (4.8) is fulfilled for all
t ∈ [t0, t2[, whereas

d(t2) = β̃(α; t0). (4.9)

The negativity of the rhs(2.16) implies that W (t) ≡W{u(t), ut(t), t; γ, θ} is a decreasing
function of t in [t0, t2]. Using (2.20), (2.24) and (4.7) we find the following contradiction
with (4.9):

χd2(t2) ≤W (t2) < W (t0) ≤ (1+γ)g(t0)B
2 [d(t0)] < (1+γ)g(t0)B

2(α) = χβ̃2(α; t0),Q.E.D.

By Theorem 3.1 the null solution of (1.1) is stable. Moreover, by (4.8) relation (2.24)
becomes

W (t) ≤ h̃(α, t0)g(t)d
2(t), h̃(α, t0) := (1+γ)

{

1+m
[

β̃(α; t0)
]

}

,

which, together with (2.16), implies Ẇ (t) ≤ −ηW (t)/[h̃g(t)] and employing usual argu-

ments, W (t) < W (t0) exp
[

−η
∫ t

t0
dz/[h̃g(z)]

]

, whence, for all t > t0 ≥ κ,

d2(t) ≤ W (t)

χ
<
W (t0)

χ
exp



− η
h̃

t
∫

t0

dz

g(z)



 ≤ h̃g(t0)

χ
d2(t0) exp



− η
h̃

t
∫

t0

dz

g(z)





<
h̃(α, t0)g(t0)

χ
α2 exp



− η

h(α, t0)

t
∫

t0

dz

g(z)



 .

The function Gt0(t) :=
∫ t

t0
dz/g(z) is increasing and by (3.3) diverges with t, what makes

the rhs go to zero as t → ∞; more precisely, we can fulfill Definition 2.7 defining the
corresponding function T (α, ν, t0, u0, u1) by the condition that the rhs of the previous
equation equals ν2

0 :=min{ν2, α2} at t = t0+T , or equivalently

T = G−1
t0

{

− h̃(α, t0)
η

log

[

χ ν2
0

h̃(α, t0) g(t0)α2

]

}

− t0

(the rhs is positive as the argument of the logarithm is less than 1, by the definitions of
χ, h̃ and by the inequality ν0/α ≤ 1); this proves statement 2. 2

5 Examples

Out of the many examples of forcing terms fulfilling (2.1) we just mention F (z) =
b sin(ωz) (this has Fz(z)≤ bω =: k), which makes (1.1) into a modification of the sine-
Gordon equation, and the possibly non-analytic ones F (z) = −b|z|qz with b > 0, q ≥ 0
(this has Fz(z)≤0=:k), or F (z) = b|z|qz (this has Fz(z)=b(q+1)|z|q<b(q+1)|ρ|q =:k if
|z|<ρ). Out of the many examples of t-dependent coefficients that fulfill (2.2-2.3) and
either (3.1) or (3.2), but not the hypotheses of the theorems of [4, 5, 6], we just mention
the following ones:
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Example 5.1 ε(t) = ε0(1+t)−p with constant ε0, p≥0 and C ≡ C0 ≡constant, with

C0>
4(1+ε0)k

3+ε0

. As a consequence ε=0≤ ε≤ ε0 = ε, ε̇=−pε0 ≤ ε̇=−pε0[1+t]−p−1≤0= ε̇,

ε̈=p(p+1)ε0[1+t]
−p−2≥0= ε̈ [condition (2.2)4 is fulfilled], (ε, ε̇, ε̈→0 as t→∞). Conditions

(2.2)1-(2.2)3 are fulfilled with µ=C/(1+ε0). We find g(t) = C0+pε0[1+t]
−p−1+1, whence

g = C0 +pε0+1. Finally we assume that a′ > 0 and a fulfills (2.3)1. Then Theorems
3.1, 4.1, apply: the null solution of (1.1) is uniformly stable and uniformly exponential-
asymptotically stable; it is also uniformly bounded and exponential-asymptotically stable
in the large if in addition ρ = ∞, τ <1.

One can check that if we had adopted the same Liapunov functional as in [5, 6]
formulae (4.2), i.e. W of (2.8) with θ=0=a′, for p>1 (namely ε→0 sufficiently fast as
t→∞) we would have not been able to prove the asymptotic stability .

Example 5.2 ε(t) = ε0(1+t)p, C(t) = C0(1+t)q, with 1 > q ≥ p ≥ 0, ε0≥0 and C0

fulfilling

C0>pε0, C0>
4(1+ε0)k+2p ε0

3+ε0
.

If q, p > 0 then C(t), ε(t) diverge as t → ∞. We immediately find ε(t) ≥ ε0 = ε, ε̇ =
pε0(1+t)p−1 ≥ 0, ε̈= p(p−1)ε0(1+t)p−2 ≤ 0, ε̈= p(p−1)ε0 [condition (2.2)4 is fulfilled],
C(t)≥C0,

C−ε̇
1+ε

=
C0(1+t)q−pε0(1+t)p−1

1+ε0(1+t)p
=
C0(1+t)q−p−pε0(1+t)−1

(1+t)−p+ε0
≥ C0−pε0

1+ε0
,

and conditions (2.2)1-(2.2)3 are fulfilled with µ = (C0−pε0)/(1+ε0). Moreover, Ċ =
qC0(1+t)

q−1 → 0 as t→∞ [condition (3.2) is fulfilled]; g(t) grows as tq, implying that (3.3)
is fulfilled. Finally we assume that a fulfills (2.3)1 [condition (2.3)2 is already satisfied]
. Then Theorem 3.1 applies: the null solution of (1.1) is asymptotically stable. If in
addition ρ = ∞, τ = 0 then Theorem 4.2 applies, and the null solution is also bounded
and asymptotically stable in the large .

Example 5.3 ε(t) fulfilling ε<∞, ε̇<∞, ε̇>−∞, ε̈>−∞ [condition (3.2)]; we note
that this includes regular, periodic ε(t). C(t) = C0+C1(1+t)−q with constant C0, C1, q
fulfilling C1 > 0, q ≥ 0 and

C0>max

{

0, ε̇,
4(1+ε)k+2ε̇

3+ε

}

, C0≥k.

Then conditions (2.2)1–(2.2)3 are fulfilled with µ = (C0− ε̇)/(1+ε). Moreover, Ċ ≤ 0
(condition (3.1) is fulfilled). We find g(t) ≤ C0+C1− ε̇+1=: g<∞. Finally we assume
that a′>0 and a fulfills (2.3)1. Then Theorems 3.1, 4.1, apply: the null solution of (1.1)
is uniformly stable and uniformly exponential-asymptotically stable. It is also uniformly
bounded and exponential-asymptotically stable in the large if in addition ρ = ∞, τ <1.
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