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1 Introduction

It is useful to consider state equations that are close (in an appropriate sense) to another
linear state equation that is uniformly stable or uniformly exponentially stable. Prompted
by Lyapunov [6], DaCunha [4] showed that if the stability of the uniformly regressive
time varying linear dynamic system

x∆(t) = A(t)x(t), x(t0) = x0, (1.1)

has already been determined by an appropriate generalized Lyapunov function, then cer-
tain conditions on the perturbation matrix F (t) guarantee specific stability characteristics
of the perturbed linear system

z∆(t) = [A(t) + F (t)]z(t), z(t0) = z0. (1.2)
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In Brogan [2], Chen [3], and Rugh [8], the stability of linear systems and perturbed linear
systems is investigated on the lackluster time scales of R and Z. As is known in the time
scales community, analysis on either of these two domains rarely offers the complexity
and challenge of the same study on an arbitrary closed set of the reals. One of the
main reasons for this is that the uniform graininess of each makes for a run of the mill
investigation. Despite these shortcomings of R and Z, this paper is motivated by these
works to unify and extend to the more general area of time scales, as were Gard and
Hoffacker [5] in the scalar dynamic equation case and Pötzsche, Siegmund, and Wirth [7]
in the constant and Jordan reducible linear systems case. Our aim in this exposition is
to prove analogous results for the universal time scales setting.

This paper is organized as follows. Section 2 introduces two dynamic inequalities
which are generalizations of Gronwall’s inequality. In addition to bounds for solutions to
linear dynamic systems using the system matrix coefficients, linear systems with pertur-
bations and their stability characteristics versus the unperturbed system are investigated
in Section 3. Section 4 gives slightly more general stability results for linear systems with
nonlinear perturbations. The author’s conclusions end the paper.

2 Generalizations of Gronwall’s Inequality

To begin with, we state two theorems from the introductory time scales text [1]. One
important result that is supplied from the following is a way to show uniqueness of
solutions for initial value problems of linear dynamic systems.

Theorem 2.1 [1, Thm. 6.1] Let f, x ∈ Crd and p ∈ R+. Then

x∆(t) ≤ p(t)x(t) + f(t), for all t ∈ T

implies

x(t) ≤ ep(t, t0)x0 +

∫ t

t0

ep(t, σ(s))f(t)∆s, for all t ∈ T.

Theorem 2.2 (Gronwall’s inequality) [1, Thm. 6.4] Let f, x ∈ Crd, p ∈ R+,
and p ≥ 0 for all t ≥ t0. Then

x(t) ≤ f(t) +

∫ t

t0

p(s)x(s)∆s, for all t ∈ T

implies

x(t) ≤ f(t) +

∫ t

t0

ep(t, σ(s))f(s)p(s)∆s, for all t ∈ T. (2.1)

By employing these previous two theorems, in particular, the generalized Gronwall
inequality, we have the following two new generalized dynamic inequalities.

Theorem 2.3 Let x ∈ Crd, f ∈ C1
rd, p ∈ R+, and p ≥ 0 for all t ≥ t0. Then

x(t) ≤ f(t) +

∫ t

t0

p(s)x(s)∆s, for all t ∈ T (2.2)

implies

x(t) ≤ ep(t, t0)f(t0) +

∫ t

t0

ep(t, σ(s))f∆(s)∆s, for all t ∈ T. (2.3)
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Proof Applying Gronwall’s inequality from Theorem 2.2 to the inequality (2.2), we
obtain the inequality (2.1).

Defining the function r(t) as the right hand side of the inequality (2.1), using the fact
that p ≥ 0, and then delta differentiating r(t) we obtain

r∆(t) = f∆(t) + f(t)p(t) +

∫ t

t0

p(t)ep(t, σ(s))f(s)p(s)∆s = f∆(t) + p(t)r(t).

Multiplying both sides by the positive function e⊖p(σ(t), t0) we have

e⊖p(σ(t), t0)(r
∆(t) − p(t)r(t)) = e⊖p(σ(t), t0)f

∆(t)

which is equivalent to

[e⊖p(t, t0)r(t)]
∆

= e⊖p(σ(t), t0)f
∆(t).

On both sides, integrate from t0 to t, then multiply by ep(t, t0) and obtain

r(t) = ep(t, t0)r(t0) +

∫ t

t0

e⊖p(σ(s), t)f∆(s)∆s.

Thus, the desired inequality (2.3) is obtained. 2

Theorem 2.4 Let f, w, x ∈ Crd, where f is a constant, p ∈ R+, and p ≥ 0 for all
t ≥ t0. Then

x(t) ≤ f +

∫ t

t0

w(s) + p(s)x(s)∆s, for all t ∈ T (2.4)

implies

x(t) ≤ ep(t, t0)f +

∫ t

t0

ep(t, σ(s))w(s)∆s, for all t ∈ T. (2.5)

Proof We define the function r(t) by writing the right hand side of the inequal-
ity (2.4). Observe that with (2.4) and the fact that p ≥ 0,

r∆(t) = w(t) + p(t)x(t) ≤ w(t) + p(t)r(t).

Multiplying both sides by the positive function e⊖p(σ(t), t0) we have

e⊖p(σ(t), t0)(r
∆(t) − p(t)r(t)) = e⊖p(σ(t), t0)w(t)

which is equivalent to

[e⊖p(t, t0)r(t)]
∆

= e⊖p(σ(t), t0)w(t).

On both sides, integrate from t0 to t, then multiply by ep(t, t0) and obtain

r(t) = ep(t, t0)r(t0) +

∫ t

t0

e⊖p(σ(s), t)w(s)∆s.

Thus, we obtain the desired inequality (2.5). 2

Example 2.1 Given the time varying system (1.1), we can use Theorem 2.1 (with
f(t) ≡ 0) or Theorem 2.4 (with w ≡ 0) to derive a bound on the solution using the
system matrix. Observe that

||x(t)|| ≤ ||x0|| +

∫ t

t0

||A(s)|| ||x(s)||∆s =⇒ ||x(t)|| ≤ e||A||(t, t0)||x0||, for all t ∈ T.
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3 Linear Perturbations

We begin this section with a few useful definitions.

Definition 3.1 [7, Lem. 4.5] A regressive mapping λ ∈ Crd(T,C) is uniformly re-
gressive on the time scale T if there exists a constant δ > 0 such that

0 < δ−1 ≤ |1 + µ(t)λ(t)|, (3.1)

for all t ∈ T.
Further, the n×n linear dynamic system (1.1) is uniformly regressive if all eigenvalues

{λi}
k
i=1, k ≤ n, of A satisfy (3.1) for all t ∈ T.

We now define the concepts of uniform stability and uniform exponential stability.
These two concepts involve the boundedness of the solutions of the uniformly regressive
time varying linear dynamic equation (1.1).

Definition 3.2 The time varying linear dynamic equation (1.1) is uniformly stable
if there exists a finite constant γ > 0 such that for any t0 and x(t0), the corresponding
solution satisfies

||x(t)|| ≤ γ||x(t0)||, t ≥ t0.

For the next definition, we define a stability property that not only concerns the bound-
edness of a solutions to (1.1), but also the asymptotic characteristics of the solutions as
well. If the solutions to (1.1) possess the following stability property, then the solutions
approach zero exponentially as t→ ∞ (i.e. the norms of the solutions are bounded above
by a decaying exponential function).

Definition 3.3 The time varying linear dynamic equation (1.1) is called uniformly
exponentially stable if there exist constants γ, λ > 0 with −λ ∈ R+ such that for any
t0 and x(t0), the corresponding solution satisfies

||x(t)|| ≤ ||x(t0)||γe−λ(t, t0), t ≥ t0.

It is obvious by inspection of the previous definitions that we must have γ ≥ 1. By using
the word uniform, it is implied that the choice of γ does not depend on the initial time
t0.

Definition 3.4 [7] The regressive stability region for the scalar IVP is defined to be
the set

S(T) =

{

γ(t) ∈ C : lim sup
T→∞

1

T − t0

∫ T

t0

lim
sցµ(τ)

log |1 + sγ(τ)|

s
∆τ < 0

}

.

It is easy to see that the regressive stability region is always contained in {γ ∈ C :
Re(γ) < 0}. The reader is referred to [7] for more explanation.

Theorem 3.1 Suppose the linear system (1.1) is uniformly stable. Then there exists
some β > 0 such that if

∫ ∞

τ

||F (s)||∆s ≤ β

for all τ ∈ T, the perturbed system (1.2) is uniformly stable.
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Proof See [4] for proof. 2

Theorem 3.2 Suppose the linear system (1.1) is uniformly exponentially stable.
Then there exists some β > 0 such that if

∫ ∞

τ

||F (s)||∆s ≤ β

for all τ ∈ T, the perturbed system (1.2) is uniformly exponentially stable.

Proof For any initial conditions, the solution of (1.2) satisfies

z(t) = ΦA(t, t0)z0 +

∫ t

t0

ΦA(t, σ(s))F (s)z(s)∆s,

where ΦA(t, t0) is the transition matrix for the system (1.1). By the uniform exponential
stability of (1.1), there exist constants λ, γ > 0 with −λ ∈ R+ uniformly such that
||ΦA(t, τ)|| ≤ γe−λ(t, τ), for all t, τ ∈ T with t ≥ τ . Taking the norms of both sides and
utilizing the uniform regressivity, we see

||z(t)|| ≤ γe−λ(t, t0)||z0|| +

∫ t

t0

γe−λ(t, s)δ||F (s)|| ||z(s)|| ∆s, t ≥ t0.

Defining ψ(t) := e−λ(t0, t)||z(t)||, this implies

ψ(t) ≤ γ||z0|| +

∫ t

t0

γδ||F (s)|| ψ(s)∆s.

Applying Gronwall’s inequality, we obtain

||z(t)|| ≤ γ||z0||e−λ⊕γδ||F ||(t, t0)

= γ||z0||e−λ(t, t0) exp

(
∫ t

t0

Log(1 + µ(s)γδ||F (s)||)

µ(s)
∆s

)

≤ γ||z0||e−λ(t, t0) exp

(
∫ ∞

t0

Log(1 + µ(s)γδ||F (s)||)

µ(s)
∆s

)

≤ γ||z0||e−λ(t, t0) exp

(

γδ

∫ ∞

t0

||F (s)||∆s

)

≤ γ||z0||e
γδβe−λ(t, t0), t ≥ t0.

Since γ and −λ can be used for any initial conditions, the system (1.2) is uniformly
exponentially stable. 2

Theorem 3.3 Suppose the linear system (1.1) is uniformly exponentially stable.
Then there exists some β > 0 such that if

||F (t)|| ≤ β (3.2)

for all t ≥ t0 with t, t0 ∈ T, the perturbed system (1.2) is uniformly exponentially stable.
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Proof For any initial conditions, the solution of (1.2) satisfies

z(t) = ΦA(t, t0)z0 +

∫ t

t0

ΦA(t, σ(s))F (s)z(s)∆s,

where ΦA(t, t0) is the transition matrix for the system (1.1). By the uniform exponential
stability of (1.1), there exist constants γ, λ > 0 with −λ ∈ R+ such that ||ΦA(t, τ)|| ≤
γe−λ(t, τ), for all t, τ ∈ T with t ≥ τ . By taking the norms of both sides, we have

||z(t)|| ≤ γe−λ(t, t0)||z0|| +

∫ t

t0

γe−λ(t, σ(s))||F (s)|| ||z(s)|| ∆s, t ≥ t0.

Rearranging and applying the uniform regressivity bound and the inequality (3.2), we
obtain

e−λ(t0, t)||z(t)|| ≤ γ||z0|| +

∫ t

t0

γβδe−λ(t0, s)||z(s)|| ∆s, t ≥ t0.

Defining ψ(t) := e−λ(t0, t)||z(t)||, we now have

ψ(t) ≤ γ||z0|| +

∫ t

t0

γβδψ(s) ∆s, t ≥ t0.

By Gronwall’s inequality, we obtain

ψ(t) ≤ γ||z0||eγβδ(t, t0), t ≥ t0.

Thus, substituting back in for ψ(t), we conclude

||z(t)|| ≤ γ||z0||e−λ⊕γβδ(t, t0), t ≥ t0.

We need −λ ⊕ γβδ ∈ R+ and negative for all t ∈ T. Observe, since γβδ > 0, it is
positively regressive, and so γβδ ∈ R+. Since R+ is a subgroup of R, we see that
−λ⊕ γβδ ∈ R+. So we must have

−λ⊕ γβδ < 0 =⇒ β <
λ

γδ(1 − µ(t)λ)
,

for all t ∈ T. Thus, by choosing β accordingly and since γ is independent of the initial
conditions, the system (1.2) is uniformly exponentially stable. 2

Theorem 3.4 Consider the uniformly regressive linear dynamic system (1.2), with
the matrices A(t) and F (t) constant. Let the uniformly regressive constants λ ∈ R+ and
γ > 0 such that

||eA(t, t0)|| ≤ γeλ(t, t0), t ≥ t0.

Then the bound

||eA+F (t, t0)|| ≤ γe(λ⊕γδ||F ||)(t, t0), t ≥ t0,

is valid.
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Proof We begin by noting that the solutionX to (1.2) with constant system matrices
is given by

eA+F (t, t0) = X(t) = eA(t, t0) +

∫ t

t0

eA(t, σ(s))FX(s)∆s. (3.3)

The solution (3.3) can be bounded by the following

||X(t)|| ≤ γeλ(t, t0) +

∫ t

t0

γeλ(t, σ(s))||F || ||X(s)||∆s. (3.4)

We now employ Gronwall’s inequality on (3.4) by defining ψ(t) := eλ(t0, t)||X(t)||.
Thus,

ψ(t) ≤ γ +

∫ t

t0

γeλ(s, σ(s))||F || ψ(s)∆s ≤ γ +

∫ t

t0

γδ||F || ψ(s)∆s

which implies
||eA+F (t, t0)|| ≤ γe(λ⊕δγ||F ||)(t, t0). 2

Theorem 3.5 Given the uniformly regressive system (1.2) with A(t) ≡ A a constant
matrix, suppose all eigenvalues of A belong to S(T), the matrix F (t) ∈ Crd(T,Rn×n)
satisfies

lim
t→∞

||F (t)|| = 0, (3.5)

and the solution x(t) ∈ C1
rd(T,Rn) is defined for all t ≥ t0. Then given any initial

conditions x(t0) = x0, the solution to (1.2) satisfies

lim
t→∞

x(t) = 0. (3.6)

Proof Since spec(A) ∈ S(T) for all t ∈ T and the system is uniformly regressive, we
have

||eA(t, t0)|| ≤ γe−λ(t, t0), (3.7)

for some γ, λ > 0 with −λ ∈ R+, and all t ≥ t0. Using (3.7), we can bound the solution
by

||x(t)|| ≤ γe−λ(t, t0) +

∫ t

t0

γe−λ(t, σ(s))||F (s)|| ||x(s)||∆s.

Choose an ε > 0 such that −λ ⊕ ε < 0 and −λ ⊕ ε ∈ R+ for all t ∈ T. By Gronwall’s
inequality, we have

||x(t)||e−λ(t0, t) ≤ γ||x0|| exp

[
∫ t

t0

lim
sցµ(τ)

1

s
Log[1 + sγδ||F (τ)||]∆τ

]

. (3.8)

Denoting the upper bound of the graininess of T by µ∗ and employing the generalized
version of L’Hôpital’s rule [1] and (3.5), we have

lim
t→∞

∫ t

t0
limsցµ(τ)

1
s
Log[1 + sγδ||F (τ)||]∆τ

∫ t

t0
limsցµ(τ)

1
s
Log[1 + sε]∆τ

= lim
t→∞

limsցµ(t)
1
s
Log[1 + sγδ||F (t)||]

limsցµ(t)
1
s
Log[1 + sε]

≤
γδ limt→∞ ||F (t)||

1
µ∗

Log[1 + µ∗ε]

= 0,
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thus implying that there exists a T ∈ T such that for t ≥ T we have

∫ t

t0

lim
sցµ(τ)

1

s
Log[1 + sγδ||F (τ)||]∆τ ≤

∫ t

t0

lim
sցµ(τ)

1

s
Log[1 + sε]∆τ.

From (3.8), for t ≥ T we obtain

||x(t)||e−λ(t0, t) ≤ γ||x0||eε(t, t0).

With a correct choice of ε above, it easily follows that

||x(t)|| ≤ γ||x0||e−λ⊕ε(t, t0)

which implies the claim (3.6). 2

4 Nonlinear Perturbations

In the following theorem, we show that under certain conditions on the linear and nonlin-
ear perturbations, the resulting perturbed nonlinear initial value problem will still yield
uniformly exponentially stable solutions.

Theorem 4.1 Given the nonlinear uniformly regressive initial value problem

x∆(t) = [A(t) + F (t)]x(t) + g(t, x(t)), x(t0) = x0, (4.1)

and an arbitrary time scale T, suppose (1.1) is uniformly exponentially stable, the matrix
F (t) ∈ Crd(T,R

n×n) satisfies ||F (t)|| ≤ β for all t ∈ T, the vector-valued function
g(t, x(t)) ∈ Crd(T,Rn) satisfies ||g(t, x(t))|| ≤ ǫ||x(t)|| for all t ∈ T and x(t), and the
solution x(t) ∈ C1

rd(T,R
n) is defined for all t ≥ t0. Then if β and ǫ are sufficiently

small, there exist constants γ, λ∗ > 0 with −λ∗ ∈ R+ such that

||x(t)|| ≤ γ||x0||e−λ∗(t, t0)

for all t ≥ t0.

Proof Observe that the solution to (4.1) is given by

x(t) = ΦA(t, t0)x0 +

∫ t

t0

ΦA(t, σ(s))[F (s)x(s) + g(s, x(s))]∆s, (4.2)

for all t ≥ t0. Since (1.1) is uniformly exponentially stable, there exist constants γ, λ > 0
with −λ ∈ R+ such that ||ΦA(t, t0)|| ≤ γe−λ(t, t0) for all t ≥ t0. Recall ||F (t)|| ≤ β,
||g(t, x(t))|| ≤ ǫ||x(t)|| for all t ∈ T, and since the decay factor −λ is uniformly regressive
on T, there exists a δ > 0 such that 0 < δ−1 ≤ (1 − µ(t)λ) for all t ∈ T which implies
that 0 < (1 − µ(t)λ)−1 ≤ δ. Taking the norms of both sides of (4.2), we obtain

||x(t)|| ≤ ||ΦA(t, t0)|| ||x0|| +

∫ t

t0

||ΦA(t, σ(s))||(||F (s)|| ||x(s)|| + ||g(s, x(s))||)∆s

= e−λ(t, t0)

[

γ||x0|| +

∫ t

t0

γδ(β + ǫ)e−λ(t0, s)||x(s)||∆s

]

,
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for all t ≥ t0.
By Gronwall’s inequality,

||x(t)|| ≤ γ||x0||e−λ⊕γδ(β+ǫ)(t, t0).

To conclude, we need −λ ⊕ γδ(β + ǫ) ∈ R+ as well as −λ ⊕ γδ(β + ǫ) < 0. Observe
that γδ(β + ǫ) > 0 implies γδ(β + ǫ) ∈ R+ and since R+ is a subgroup of R, we have
−λ⊕ γδ(β + ǫ) ∈ R+. So we need

−λ⊕ γδ(β + ǫ) < 0 =⇒ β <
λ

(1 − µ(t)λ)γδ
− ǫ.

From this result, we must have λ
(1−µ(t)λ)γδ

− ǫ > 0 for all t ∈ T, i.e. ǫ < λ
(1−µ(t)λ)γδ

for

all t ∈ T.
Thus, to fulfill the requirements of the theorem, we must satisfy the following:

0 < ǫ <
λ

(1 − µ(t)λ)γδ
, 0 < β <

λ

(1 − µ(t)λ)γδ
− ǫ, and − λ∗ := −λ⊕ γδ(β + ǫ)

for all t ∈ T. 2

Corollary 4.1 Given the nonlinear uniformly regressive initial value problem (4.1)
with A(t) ≡ A a constant matrix, suppose spec(A) ∈ S(T) for all t ∈ T, the matrix
F (t) ∈ Crd(T,R

n×n) satisfies ||F (t)|| ≤ β for all t ∈ T, the vector-valued function
g(t, x(t)) ∈ Crd(T,Rn) satisfies ||g(t, x(t))|| ≤ ǫ||x(t)|| for all t ∈ T and x(t), and the
solution x(t) ∈ C1

rd(T,R
n) is defined for all t ≥ t0. Then if β and ǫ are sufficiently

small, there exist constants γ, λ∗ > 0 with −λ∗ ∈ R+ such that

||x(t)|| ≤ γ||x0||e−λ∗(t, t0)

for all t ≥ t0.

Proof The proof follows exactly as in Theorem 4.1, with the observation that
ΦA(t, t0) ≡ eA(t, t0). Since spec(A) ∈ S(T), there exist constants γ, λ > 0 with
−λ ∈ R+ such that ||eA(t, t0)|| ≤ γe−λ(t, t0) for all t ≥ t0, we now have the bound
||ΦA(t, t0)|| ≤ γe−λ(t, t0), for some constants γ, λ > 0 with −λ ∈ R+. 2

Conclusions

The intent of this paper was to add to the completeness of bounds on solutions to linear
systems on time scales. In particular, in Section 2 this was done via introduction of
two generalizations of Gronwall’s inequality, thereby creating addition possibilities for
bounding solutions to systems of the form (1.1) and (1.2).

In Section 3 and Section 4, certain bounds were given on the linear and nonlinear
perturbations which maintained stability of the system (1.2) were investigated. This
included integral bounds and asymptotic bounds on the perturbation matrix F .
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