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Abstract: In this paper, the global robust dissipativity of a class of neural networks
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with previous robust dissipativity results derived in the literature. It is shown that
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1 Introduction

In recent years, the stability of dynamical neural networks has received much attention
and has been used in signal processing, pattern recognition, associative memory and
optimization problems [1–10]. However, it is possible that there are no equilibrium points
of dynamical systems in some situations. As pointed in [11–15], the global dissipativity is
a more general concept and is of great importance to study in dynamical neural networks.
It has found applications in the areas such as stability theory, chaos and synchronization
theory and robust control [12]. The authors of [12] analyzed the global dissipation of
neural networks with both variable and unbounded delays. In [11], some conditions for
globally robust dissipativity of neural networks with time-varying delays are derived.

In this paper, motivated by the above discussions, we obtain several new sufficient
conditions for the global robust dissipativity of integro-differential models of neural net-
works with variable and unbounded delays. The results compared with those presented
in [11] can be checked easily. Some numerical examples illustrate the proposed conditions
may provide useful and less conservative results for the problem.
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2 System Description

In this paper, we consider the model of neural network with variable and unbounded
delays as follows [11]:

dxi(t)

dt
= −dixi(t) +

n
∑

j=1

aijfj(xj(t)) +

n
∑

j=1

bijfj(xj(t − τij(t)))

+

n
∑

j=1

cij

∫ t

−∞

Kij(t − s)fj(xj(s))ds + ui. (1)

for i = 1, 2, ..., n, where n denotes the number of the neurons in the neural network, xi(t)
is the state of the ith neuron at time t, f(x(t)) = [f1(x1(t)), f2(x2(t)), ..., fn(xn(t))]T is
the activation function of the jth neuron at time t, D = diag(d1, d2, ..., dn) is a positive
definite diagonal matrix, A = (aij)n×n, B = (bij)n×n and C = (cij)n×n are the feedback
matrix and the delayed feedback matrix, respectively, u = (u1, u2, ..., un)T is a constant
external input vector. The assumption on the transmission delay τ(t) is proposed as

0 < τij(t) ≤ σ, τ(t) is a differential function such that
dτij(t)

dt
≤ τ∗ ≤ 1, for i, j = 1, 2, ...n.

The delay kernel function k(·) = (Kij(·))n×n, i, j = 1, 2, ..., n is assumed to satisfy the
following conditions simultaneously:

(1) Kij : [0,∞) → [0,∞);
(2) Kij are bounded and continuous on [0,∞);
(3)

∫ ∞

0
Kij(s)ds = 1;

(4) there exists a positive number ε such that
∫ ∞

0 Kij(s)e
εsds < ∞,

(5)
∫ ∞

0 eβsKij(s)ds = pij(β), for i, j = 1, 2, ..., n, where pij(β) is continuous function
in [0, δ), δ > 0, and pij(0) = 1.

The initial conditions associated with the system (1) are given by xi(s) = φi(s),−σ ≤
s ≤ 0, i = 1, 2, ..., n, where φi(·) is bounded and continuous on [−σ, 0].

Throughout this paper, we will employ the following classes of activation functions :
(1) The set of bounded activation functions is defined as

Γ = {f(x)||fi(xi)| ≤ ki, i = 1, 2, ..., n}.

(2) The set of Lipschitz-continuous activation functions is defined as

Ψ = {f(x)|0 ≤
fi(xi) − fi(yi)

xi − yi

≤ li, li > 0, ∀xi, yi ∈ R, xi 6= yi, i = 1, 2, ..., n}.

(3) The general set of monotone non-decreasing activation functions is defined as

Φ = {f(x)|D+fi(xi) ≥ 0, i = 1, 2, ..., n}.

(4) There exist constants ϑi > 0 such that |fi| ≤ ϑi|x|, i = 1, 2, ..., n,∀x ∈ R. This
class of functions will be denoted by f(x) ∈ Υ.

The quantities di, aij , bij and cij may be considered as intervals as follows [15]:

DI : = {D = diag(di) : D ≤ D ≤ D, i.e., di ≤ di ≤ di, i = 1, ..., n,∀D ∈ DI},

AI : = {A = (aij)n×n : A ≤ A ≤ A, i.e., aij ≤ aij ≤ aij , i, j = 1, ..., n,∀A ∈ AI},

BI : = {B = (bij)n×n : B ≤ B ≤ B, i.e., bij ≤ bij ≤ bij , i, j = 1, ..., n,∀B ∈ BI},

CI : = {C = (cij)n×n : C ≤ C ≤ C, i.e., cij ≤ cij ≤ cij , i, j = 1, ..., n,∀C ∈ CI}. (2)

Similar to [11], we give the following definitions.
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Definition 2.1 The neural network definied by (1) is said to be a dissipative system,
if there exists a compact set S ⊂ Rn, such that ∀x0 ∈ Rn, ∃T > 0, when t ≥ t0 +
T, x(t, t0, x0) ⊆ S, where x(t, t0, x0) denotes the solution of Eq. (1) from initial state x0

and initial time t0. In this case, S is called a globally attractive set. A set S is called
positive invariant if ∀x0 ∈ S implies x(t, t0, x0) ⊆ S for t ≥ t0.

Definition 2.2 If R → R is a continuous function, then the upper right derivative
D+f(t)

dt
of f(t) is defined as

D+f(t) = lim
θ→0+

f(t + θ) − f(t)

θ
. (3)

Lemma 2.1 [16] Let D, S and P be real matrices of appropriate dimensions with
P > 0. Then for any vectors x, y with appropriate dimensions,

2xT DSy ≤ xT DPDT x + yT ST P−1Sy.

3 Main Results

Theorem 3.1 Let f(x) ∈ Γ, then neural network system (1) is a robust dissipative
system and the set S1 is a positive invariant and globally attractive set, where

S1 = {x||xi| ≤ d−1
i

n
∑

j=1

[(a∗
ij + b∗ij + c∗ij)kj + |ui|)], i = 1, 2, ..., n}, (4)

a∗
ij = max(|aij |, aij), b

∗
ij = max(|bij |, bij) and c∗ij = max(|cij |, cij).

Proof Let us use a radically unbounded and positive definite Lyapunov functional

V (x) =

n
∑

i=1

1

r
|xi|

r.

Computing dV
dt

along the positive half trajectory of (1), we have

dV

dt
=

n
∑

i=1

|xi|
r−1sgn(xi)

dxi

dt

≤

n
∑

i=1

[−di|xi|
r +

n
∑

j=1

(a∗
ij + b∗ij + c∗ij)kj |xi|

r−1 + |ui||xi|
r−1]

= −
n

∑

i=1

|xi|
r−1[di|xi| −

n
∑

j=1

[(a∗
ij + b∗ij + c∗ij)kj + |ui|] < 0, (5)

where x ∈ Rn\S1, i.e., x∈S1. Eq. (5) implies that the neural network system (1) is a
robust dissipative system and S1 is a positive invariant and globally attractive set. 2

Theorem 3.2 Let f(x) ∈ Ψ, f(0) = 0 and |fi(xi)| → ∞ as |xi| → ∞. If

A + A
T

+
1

1 − τ∗
BB

T
+ (1 + ‖C∗‖∞ + ‖C∗‖1)I ≤ 0,

where C∗ = (c∗ji)n×n, then the neural network system (1) is a robust dissipative system

and the set S2 = {x||fi(xi(t))| ≤
li|ui|

di

, i = 1, 2, ..., n is a positive invariant and globally

attractive set.
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Proof We use the following positive definite and unbounded Lyapunov functional:

V (x(t)) = 2
n

∑

i=1

∫ xi(t)

0

fi(s)ds +
n

∑

i=1

∫ t

t−τi(t)

f2
i (xi(s))ds

+

n
∑

i=1

n
∑

j=1

c∗ji

∫ ∞

0

Kji(s)(

∫ t

t−s

f2
i (xi(ξ)dξ)ds.

Computing dV
dt

along the positive half trajectory of (1), we can conclude that

dV

dt
= −2

n
∑

i=1

difi(xi(t))xi(t) + 2

n
∑

i=1

n
∑

j=1

aijfi(xi(t))fj(xj(t)) +

n
∑

i=1

f2
i (xi(t))

+ 2

n
∑

i=1

n
∑

j=1

bijfi(xi(t))fj(xj(t − τj(t))) −

n
∑

i=1

(1 −
dτi(t)

dt
)f2

i (xi(t − τi(t)))

+ 2

n
∑

i=1

n
∑

j=1

cijfi(xi(t))

∫ t

−∞

Kij(t − s)fj(xj(s))ds + 2

n
∑

i=1

fi(xi(t))ui

+

n
∑

i=1

n
∑

j=1

c∗ji

∫ ∞

0

Kji(s)[f
2
i (xi(t)) − f2

i (xi(t − s))]ds

≤ −2

n
∑

i=1

di

li
f2

i (xi(t)) + fT (x(t))(A + AT )f(x(t)) + 2fT (x(t))Bf(x(t − τ(t)))

+ fT (x(t))f(x(t)) + 2
n

∑

i=1

n
∑

j=1

c∗ij

∫ ∞

0

Kijfi(xi(t))fj(xj(t − s))ds

+ 2

n
∑

i=1

|ui||fi(xi(t))| +

n
∑

i=1

n
∑

j=1

c∗jif
2
j (xj(t))

− (1 − τ∗)fT (x(t − τ(t)))f(x(t − τ(t))) −

n
∑

i=1

n
∑

j=1

c∗ji

∫ ∞

0

Kij(s)f
2
j (xj(t − s))ds.

(6)

Using Lemma 1 and inequality technique, we have

dV

dt
≤ −2

n
∑

i=1

di

li
|fi(xi(t))|[|fi(xi(t))| −

li|ui|

di

] + fT (x(t))[A + A
T

+
1

1 − τ∗
BB

T

+ (1 + ‖C∗‖∞ + ‖C∗‖1)I]f(x(t)) ≤ −2

n
∑

i=1

di

li
|fi(xi(t))|[|fi(xi(t))| −

li|ui|

di

] < 0 (7)

when x ∈ Rn\S2. Eq. (7) implies that the set S2 is a positive invariant and globally
attractive set. 2

Theorem 3.3 Let f(x) ∈ Ψ, f(0) = 0 and |fi(xi)| → ∞ as |xi| → ∞. If there exists
a positive diagonal matrix P = diag(p1, p2, ..., pn) such that the matrix

Q = P (A − DL−1) + (A
T
− DL−1)P +

1

1 − τ∗
PBB

T
P + (1 + ‖PC∗‖∞ + ‖PC∗‖1)I
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is negative definite, then the neural network system (1) is a robust dissipative system and
the set

S3 =

{

x|

n
∑

i=1

(fi(xi(t)) +
piui

λM (Q)
)2 ≤

n
∑

i=1

(
piui

λM (Q)
)2, i = 1, 2, ..., n

}

is a positive invariant and globally attractive set, where L = diag(L1, L2, ..., Ln), P =
diag(p1, p2, ..., pn) and λM (Q) is the maximum eigenvalue of the matrix Q.

Proof We employ the following positive definite and radially unbounded Lyapunov
functional:

V (x(t)) = 2
n

∑

i=1

pi

∫ xi(t)

0

fi(s)ds +
n

∑

i=1

∫ t

t−τi(t)

f2
i (xi(ξ))dξ

+

n
∑

i=1

n
∑

j=1

pic
∗
ji

∫ ∞

0

Kji(s)(

∫ t

t−s

f2
i (xi(ξ))dξ)ds.

Calculating dV
dt

along the positive half trajectory of (1), we obtain that

dV

dt
= 2

n
∑

i=1

pifi(xi(t))[−dixi(t) +

n
∑

j=1

aijfj(xj(t)) +

n
∑

j=1

bijfj(xj(t − τj(t))) + ui

+

n
∑

j=1

cij

∫ t

−∞

Kij(t − s)fj(xj(s))ds] −

n
∑

i=1

(1 −
dτi(t)

dt
)f2

i (xi(t − τi(t)))

+

n
∑

i=1

n
∑

j=1

pic
∗
ji

∫ ∞

0

Kji(s)[f
2
i (xi(t)) − f2

i (xi(t − s))]ds +

n
∑

i=1

f2
i (xi(t))

≤ −2

n
∑

i=1

pidi

li
f2

i (xi(t)) + fT (x(t))(PA + A
T
P )f(x(t)) + fT (x(t))f(x(t))

+ 2

n
∑

i=1

n
∑

j=1

pic
∗
ij

∫ ∞

0

Kij(s)fi(xi(t))fj(xj(t − s))ds + 2

n
∑

i=1

piuifi(xi(t))

− (1 − τ∗)fT (x(t − τ(t)))f(x(t − τ(t))) +

n
∑

i=1

n
∑

j=1

pic
∗
jif

2
i (xi(t))

−

n
∑

i=1

n
∑

j=1

pic
∗
ji

∫ ∞

0

Kji(s)f
2
i (xi(t − s))ds + 2fT (x(t))PBf(x(t − τ(t))). (8)

From Lemma 1 and inequality technique, we can write the following inequalities:

dV

dt
≤ −2

n
∑

i=1

pidi

li
f2

i (x(t)) + fT (x(t))(PA + A
T
P )f(x(t))

+
1

1 − τ∗
fT (x(t))PBB

T
Pf(x(t)) +

n
∑

i=1

n
∑

j=1

pic
∗
ijf

2
i (xi(t))
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+ fT (x(t))f(x(t)) +
n

∑

i=1

n
∑

j=1

pic
∗
ijf

2
j (xj(t)) + 2

n
∑

i=1

piuifi(xi(t))

= 2

n
∑

i=1

piuifi(xi(t)) + fT (x(t))Qf(x(t))

≤ 2

n
∑

i=1

piuifi(xi(t)) + λM (Q)

n
∑

i=1

f2
i (xi(t))

= λM (Q)
n

∑

i=1

[(fi(xi(t)) +
piui

λM (Q)
)2 − (

piui

λM (Q)
)2] < 0, (9)

when x ∈ Rn\S3. Eq. (9) implies that the set S3 is a positive invariant and globally
attractive set. 2

Theorem 3.4 Let f(x) ∈ Φ, f(0) = 0 and |fi(xi)| → ∞ as |xi| → ∞. If the following
condition holds:

A + A
T

+ B +
1

1 − τ∗
B

T
+ (‖C∗‖∞ + ‖C∗‖1)I ≤ 0,

where C∗ = (c∗ji)n×n, then the neural network system (1) is a robust dissipative system

and the set S4 = {x||xi(t) ≤ |ui|
di

, i = 1, 2, ..., n} is a positive invariant and globally

attractive set.

Proof Let us use the following positive definite and radially unbounded Lyapunov
functional:

V (x(t)) = 2

n
∑

i=1

∫ xi(t)

0

fi(s)ds +

n
∑

i=1

n
∑

j=1

∫ t

t−τji(t)

b∗jif
2
i (xi(s))ds

+

n
∑

i=1

n
∑

j=1

c∗ji

∫ ∞

0

Kji(s)(

∫ t

t−s

f2
i (xi(ξ))dξ)ds.

Calculating dV
dt

along the positive half trajectory of (1), we have

dV

dt
= 2

n
∑

i=1

fi(xi(t))[−dixi(t) +
n

∑

j=1

aijfj(xj(t)) +
n

∑

j=1

bijfj(xj(t − τj(t))) + ui

+
n

∑

j=1

cij

∫ t

−∞

Kij(t − s)fj(xj(s))ds] −
n

∑

i=1

n
∑

j=1

(1 −
dτji(t)

dt
)f2

i (xi(t − τji(t)))

+

n
∑

i=1

n
∑

j=1

b∗jif
2
i (xi(t)) +

n
∑

i=1

n
∑

j=1

c∗ji

∫ ∞

0

Kji(s)[f
2
i (xi(t)) − f2

i (xi(t − s))]ds

≤ −2

n
∑

i=1

di|fi(xi(t))||xi(t)| + fT (x(t))(A + A
T
)f(x(t)) + 2

n
∑

i=1

uifi(xi(t))
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+ 2
n

∑

i=1

n
∑

j=1

c∗ij

∫ ∞

0

Kij(s)fi(xi(t))fj(xj(t − s))ds + 2fT (x(t))Bf(x(t − τ(t)))

− (1 − τ∗)fT (x(t − τ(t)))Bf(x(t − τ(t))) + fT (x(t))Bf(x(t))

+

n
∑

i=1

n
∑

j=1

c∗jif
2
i (xi(t)) −

n
∑

i=1

n
∑

j=1

c∗ji

∫ ∞

0

Kji(s)f
2
i (xi(t − s))ds. (10)

From Lemma 1, it follows that

2fT (x(t))Bf(x(t − τ(t))) ≤
1

1 − τ∗
fT (x(t))BT f(x(t))

+ (1 − τ∗)fT (x(t − τ(t)))BT B−T Bf(x(t − τ(t)))

=
1

1 − τ∗
fT (x(t))BT f(x(t))

+ (1 − τ∗)fT (x(t − τ(t)))Bf(x(t − τ(t))) (11)

By using the inequality 2ab ≤ a2 + b2 for any a, b ∈ R, we have

2

∞
∫

0

Kij(s)fi(xi(t))fj(xj(t − s))ds ≤

∞
∫

0

Kij(s)f
2
i (xi(t))ds +

∞
∫

0

Kij(s)f
2
j (xj(t − s))ds. (12)

From (10) to (12), we get

dV

dt
≤ −2

n
∑

i=1

di|fi(xi(t))||xi(t)| + 2

n
∑

i=1

|fi(xi(t))||ui|

+ fT (x(t))(A + A
T

+ B +
1

1 − τ∗
B

T
+ (‖C∗‖∞ + ‖C∗‖1)I)f(x(t))

≤ −2

n
∑

i=1

di|fi(xi(t))||xi(t)| + 2

n
∑

i=1

|fi(xi(t))||ui| < 0, (13)

when x ∈ Rn\S4. Eq. (13) implies that the set S4 is a positive invariant and globally
attractive set. 2

Theorem 3.5 Let f(x) ∈ Υ, f(0) = 0 and |fi(xi)| → ∞ as |xi| → ∞. If the following
condition holds:

n
∑

j=1

(aij +
1

1 − τ∗
b∗ij + c∗ij) < 0,

where a∗
ij = max(|aij |, aij), b

∗
ij = max(|bij |, bij), c

∗
ij = max(|cij |, cij), then the neural

network system (1) is a robust dissipative system and the set S5 = {x||xi(t) ≤ |ui|
di

, i =

1, 2, ..., n} is a positive invariant and globally attractive set.

Proof Let us use the following positive definite and radially unbounded Lyapunov
functional:

V (x(t)) = xi(t) +
1

1 − τ∗

n
∑

j=1

b∗ij

t
∫

t−τj(t)

|fj(xj(s))|ds +

n
∑

j=1

c∗ijϑj

∞
∫

0

Kij(s)

t
∫

t−s

|xj(ξ)|dξ ds.
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Calculating dV
dt

along the positive half trajectory of (1), we have

dV

dt
= −dixi(t) +

n
∑

j=1

aijfj(xj(t)) +

n
∑

j=1

bijfj(xj(t − τ(t))) + ui

+
1

1 − τ∗

n
∑

j=1

b∗ijfj(xj(t)) +

n
∑

j=1

cij

∫ ∞

0

Kij(s)fj(xj(t − s))ds

−
1

1 − τ∗
(1 −

dτ(t)

dt
)

n
∑

j=1

b∗ijfj(xj(t − τ(t)))

+

n
∑

j=1

c∗ijϑ

∫ ∞

0

Kij(s)|xj(t)|ds −

n
∑

j=1

c∗ijϑj

∫ ∞

0

Kij(s)|xj(t − s)|ds

≤ −di|xi(t)| +

n
∑

j=1

aijϑj |xj | +

n
∑

j=1

bijϑj |xj(t − τ(t))| + |ui| +
1

1 − τ∗

n
∑

j=1

b∗ijϑjxj(t)

−

n
∑

j=1

bijϑjxj(t − τ(t))) +

n
∑

j=1

c∗ijϑj |xj |

= −di|xi(t)| + |ui| +
n

∑

j=1

ϑj(aij +
1

1 − τ∗
b∗ij + c∗ij)|xj | < 0, (14)

when x ∈ Rn\S5. Eq. (14) implies that the set S5 is a positive invariant and globally
attractive set. 2

Remark 3.1 Our activation functions are more general than those in [11]. Hence,
our results improve and generalizes the earlier results.

Remark 3.2 Our methods used in this paper, such as Lyapunov functional and
matrix inequalities used in Theorem 4, are different to those in [11].

Remark 3.3 The neural network system in [14] can be seen as a special case for
model (1). Therefore, the global robust dissipativity of that system can be studied
similarly.

4 Comparison and Examples

To compare with [11], we restated Theorem 1 of [11].

Theorem 4.1 Let f(x) ∈ Υ, f(0) = 0 and |fi(xi)| → ∞ as |xi| → ∞, the neu-
ral network defined by (1) is a robust dissipative system and the set S6 = {x||xi(t) ≤
|ui|
d

i

, i = 1, 2, ..., n} is a positive invariant and globally attractive set, if there exist positive

constants pi > 0, i = 1, 2, ..., n such that

pi(−aii −
1

1 − τ∗
b∗ii − c∗ii) −

n
∑

j=1,j 6=i

pj(a
∗
ji +

1

1 − τ∗
b∗ji + c∗ji) ≥ 0, (15)

where i = 1, 2, ..., n, a∗
ij = max(|aij |, aij), b∗ij = max(|bij |, bij), c∗ij = max(|cij |, cij).
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Example 4.1 Consider the system (1) with delays: τij(t) = 1 for i, j = 1, 2,

D =

[

0.4 0
0 1.2

]

, D =

[

1 0
0 1.5

]

, A =

[

−2 0.7
−0.9 −3

]

,

A =

[

−1.5 0.4
0.3 −1.5

]

, B =

[

0.25 −0.5
−0.2 −0.7

]

, B =

[

0.5 0.25
0 −0.5

]

,

C = C = 0, u1 = 1.5, u2 = −2, σ = 1, τ∗ = 0, pi = 1.

The initial values of system (1) is assumed as φ(s) = 0.5, t ∈ [−1, 0). Since
{

a11 + a12 + 1
1−τ∗

b∗11 + 1
1−τ∗

b∗12 + c∗11 + c∗12 = −0.1 < 0,

a21 + a22 + 1
1−τ∗

b∗21 + 1
1−τ∗

b∗22 + c∗21 + c∗22 = −0.3 < 0,

the condition of Theorem 5 in this paper is satisfied; the neural network system (1) is a
globally robust dissipative system, and the set S5 = {(x1(t), x2(t))||x1(t)| ≤

15
4 , |x2(t)| ≤

5
3} is positive invariant and globally attractive. Since

{

−a11 −
1

1−τ∗
b∗11 − c∗11 − (a∗

21 + 1
1−τ∗

b∗21 + c∗21) = −0.1 < 0,

−a22 −
1

1−τ∗
b∗22 − c∗22 − (a∗

12 + 1
1−τ∗

b∗12 + c∗12) = −0.4 < 0,

the condition of Theorem 6 is not satisfied, one can not determine the dissipativity of the
neural network (1). Therefore, our obtained criteria for the global robust dissipativity of
neural networks with variable and unbounded delays are new.

Example 4.2 Consider the system (1) with delays: τij(t) = 1 for i, j = 1, 2,

D =

[

0.4 0
0 1.2

]

, D =

[

1 0
0 1.5

]

, A =

[

−3.3 −0.25
1
3 −3

]

, A =

[

−3 0.25
0.5 −4

]

,

B =

[

1 −1
−1 −1

]

, B =

[

1 1
1 1

]

, C =

[

0.25 −0.25
−0.25 −0.25

]

, C =

[

0.25 0.25
0.25 0.25

]

,

and u1 = 1.5, u2 = −2, σ = 1, τ∗ = 0. The initial values of system (1) are assumed as
φ(s) = 0.5, t ∈ [−1, 0). Since that

A + A
T

+
1

1 − τ∗
BB

T
+ (1 + ‖C∗‖∞ + ‖C∗‖1)I =

[

−2 7
4

7
4 −4

]

≤ 0,

then the conditions of Theorem 2 are satisfied, and the neural networks system (1) is a
globally robust dissipative system, and the set

S2 = {f1(x1(t)), f2(x2(t))||f1(x1(t))| ≤
15

4
l1, |f2(x2(t))| ≤

5

3
l2}

is positive invariant and globally attractive.

5 Conclusion

This paper studies the global robust dissipativity of a class of neural networks with
variable and unbounded delays. Several sufficient conditions are presented to characterize
the global dissipation together with their sets of attraction. Our results would make good
effects in studying the uniqueness of equilibria, global asymptotic stability, instability and
the exsitence of periodic solutions. In addition, several examples are given to demonstrate
the improvements and correctness of our results.
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