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Abstract: In this study, we are concerned with proving the existence of multiple
positive solutions of a general second order nonlinear m-point boundary value problem
(m-PBVP)

u
∆∇(t) + a(t)u∆(t) + b(t)u(t) + λh(t)f(t, u) = 0, t ∈ [0, 1],

u(ρ(0)) = 0, u(σ(1)) =
m−2
∑

i=1

αiu(ηi),

on time scales. The proofs are based on the fixed point theorems in a Banach space.
We present an example to illustrate how our results work.
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rems, time scales.
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1 Introduction

The theory of dynamic equations on time scales unifies the well-known analogies in
the concept of difference equations and differential equations. Some basic definitions
and theorems on time scales can be found in the books [3, 4]. In the past few years
starting with Il’in and Mossiev [8] and Gupta [6], the existence of positive solutions for
nonlinear high-order and second order boundary value problems have been studied by
many authors by using the coincidence degree theory and fixed point theorems in cones
(see [1, 2, 7, 9, 11, 12, 15] and references therein).
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The m-point boundary value problems for dynamic equations on time scales arise in
a variety of different areas of applied mathematics, physics and engineering. Recently
Yaslan [14], Sun and Lee [13] obtained some existence results for three point and multi-
point boundary value problems on time scales.

In 2003, Ma and Wang [12] studied the nonlinear boundary value problem

u′′(t) + a(t)u′(t) + b(t)u(t) + h(t)f(u) = 0, t ∈ (0, 1), u(0) = 0, αu(η) = u(1)

and obtained some existence results if f satisfies either superlinear and sublinear condi-
tions by applying fixed point theorems in cones. We generalized the results of Ma and
Wang in three aspects: (a) we generalized the three point BVP to m-point BVP with a
dynamic equation; (b) we study the eigenvalue problem; (c) we obtain the existence of
at least three positive solutions.

In this paper we deal with the determining the value of λ for which the following
m-point BVP has a positive solution:

u∆∇(t) + a(t)u∆(t) + b(t)u(t) + λh(t)f(t, u) = 0, t ∈ [0, 1], (1)

u(ρ(0)) = 0, u(σ(1)) =

m−2
∑

i=1

αiu(ηi), (2)

where 0 < ηi < 1, ∀i = 1, 2, . . . ,m− 2, h, f, a and b satisfy:

(H1) f ∈ C([ρ(0), σ(1)] × [0,∞), [0,∞));

(H2) h ∈ C([0, 1], [0,∞)) and there exists t0 ∈ [0, 1] such that h(t0) > 0;

(H3) a ∈ C([0, 1], [0,∞)), b ∈ C([0, 1], (−∞, 0]).

This paper is organized as follows. In Section 2, starting with some preliminary
lemmas we state the Krasnosel’skii and Legget-Williams fixed point theorems. In Section
3, we give the main results which state the sufficient conditions for the m-point BVP
(1)-(2) to have at least one or at least three solutions.

2 Preliminaries and Fixed Point Theorems

In this section we state the preliminary information that we need the prove the main
results.

Lemma 2.1 Assume that (H3) holds. Let φ1 and φ2 be the solutions of

φ∆∇
1 (t) + a(t)φ∆

1 (t) + b(t)φ1(t) = 0, (3)

φ1(ρ(0)) = 0, φ1(σ(1)) = 1, (4)

φ∆∇
2 (t) + a(t)φ∆

2 (t) + b(t)φ2(t) = 0, (5)

φ2(ρ(0)) = 1, φ2(σ(1)) = 0 (6)

respectively. Then
(i) φ1 is strictly increasing on [ρ(0), 1], (ii) φ2 is strictly decreasing on [ρ(0), 1].

Lemma 2.2 Assume that (H3) holds. Then (3)-(4) and (5)-(6) have unique solutions
respectively.
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The proofs of the Lemma 2.1 and Lemma 2.2 can be obtained easily by generalizing
the proofs of Lemma 2.1 and Lemma 2.2 in [12] to time scales.

For the rest of the paper we need the following assumption

(H4) 0 <
m−2
∑

i=1

αiφ1(ηi) < 1.

In the following lemma we express the Green’s function and the form of the solution of
the linear m-point BVP corresponding to (1)-(2).

Lemma 2.3 Assume that (H3) and (H4) hold. Let y ∈ C[ρ(0), σ(1)]. Then the
problem

u∆∇(t) + a(t)u∆(t) + b(t)u(t) + y(t) = 0, t ∈ [0, 1], (7)

u(ρ(0)) = 0, u(σ(1)) =
m−2
∑

i=1

αiu(ηi) (8)

is equivalent to the integral equation

u(t) =

∫ σ(1)

ρ(0)

G(t, s)p(s)y(s)∇s +Aφ1(t), (9)

where

A =
1

1 −
m−2
∑

i=1

αiφ1(ηi)

m−2
∑

i=1

αi

(

∫ σ(1)

ρ(0)

G(ηi, s)p(s)y(s)∇s

)

, (10)

p(t) = ea(ρ(t), ρ(0)), (11)

G(t, s) =
1

φ∆
1 (ρ(0))

{

φ1(t)φ2(s), s ≥ t,
φ1(s)φ2(t), t ≥ s.

(12)

Proof First we show that the unique solution of (7)-(8) can be represented by (9).
From Lemma 2.1, we know that the homogenous part of (7) has two linearly independent
solutions φ1(t) and φ2(t) since

∣

∣

∣

∣

φ1(ρ(0)) φ△1 (ρ(0))

φ2(ρ(0)) φ△2 (ρ(0))

∣

∣

∣

∣

= −φ∆
1 (ρ(0)) 6= 0.

Now by the method of variations of constants, we can obtain the unique solution of
(7)-(8) which can be represented by (9) whereA andG are as in (10) and (12) respectively.
Next we check the function defined in (9) is the solution of the BVP (7)-(8). For this
purpose we first show that (9) satisfies (7). From the definition of the Green’s function
(12), we get

u(t) =
1

φ∆
1 (ρ(0))

(

∫ t

ρ(0)

φ1(s)φ2(t)p(s)y(s)∇s+

∫ σ(1)

t

φ1(t)φ2(s)p(s)y(s)∇s

)

+Aφ1(t).
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Hence the derivatives u∆ and u∆∇ are as follows:

u∆(t) =
1

φ∆
1 (ρ(0))

(

φ∆
2 (t)

∫ t

ρ(0)

φ1(s)p(s)y(s)∇s+ φ∆
1 (t)

∫ σ(1)

t

φ2(s)p(s)y(s)∇s

)

+Aφ∆
1 (t)

and

u∆∇(t) =
1

φ∆
1 (ρ(0))

(

φ∆∇
2 (t)

∫ ρ(t)

ρ(0)

φ1(s)p(s)y(s)∇s + φ∆
2 (t)φ1(t)p(t)y(t)

+φ∆∇
1 (t)

∫ σ(1)

ρ(t)

φ2(s)p(s)y(s)∇s − φ∆
1 (t)φ2(t)p(t)y(t)

)

+Aφ∆∇
1 (t).

Replacing the derivatives in (7), we deduce

u∆∇(t) + a(t)u∆(t) + b(t)u(t) = A
(

φ∆∇
1 (t) + a(t)φ∆

1 (t) + b(t)φ1(t)
)

+
( 1

φ∆
1 (ρ(0))

∫ t

ρ(0)

φ1(s)p(s)y(s)∇s
)

(

φ∆∇
2 (t) + a(t)φ∆

2 (t) + b(t)φ2(t)
)

+
( 1

φ∆
1 (ρ(0))

∫ σ(1)

t

φs(s)p(s)y(s)∇s
)

(

φ∆∇
1 (t) + a(t)φ∆

1 (t) + b(t)φ1(t)
)

+
1

φ∆
1 (ρ(0))

(

φ∆∇
2 (t)

∫ ρ(t)

t

φ1(s)p(s)y(s)∇s + φ∆∇
1 (t)

∫ t

ρ(t)

φ2(s)p(s)y(s)∇s
)

+
1

φ∆
1 (ρ(0))

(

φ∆
2 (t)φ1(t) − φ∆

1 (t)φ2(t)
)

p(t)y(t)

=
1

φ∆
1 (ρ(0))

(

φ∆∇
2 (t)(ρ(t) − t)φ1(t)p(t)y(t) − φ∆∇

1 (t)(ρ(t) − t)φ2(t)p(t)y(t)

+φ∆
2 (t)φ1(t)y(t) − φ∆

1 (t)φ2(t)y(t)
)

=
1

φ∆
1 (ρ(0))

p(t)y(t)
(

φ∆
2 (t)φ1(t) − φ∆

1 (t)φ2(t)
)

−
1

φ∆
1 (ρ(0))

p(t)y(t)(ρ(t) − t)
(

φ∆∇
1 (t)φ2(t) − φ∆∇

2 (t)φ1(t)
)

=
1

φ∆
1 (ρ(0))

p(t)y(t)
{(

φ∆
2 (t)φ1(t) − φ∆

1 (t)φ2(t)
)

+(ρ(t) − t)
(

φ∆
2 (t)φ1(t) − φ∆

1 (t)φ2(t)
)∇}

=
1

φ∆
1 (ρ(0))

p(t)y(t)
(

φ∆
2 (ρ(t))φ1(ρ(t)) − φ∆

1 (ρ(t))φ2(ρ(t))
)

=
1

φ∆
1 (ρ(0))

p(t)y(t)e⊖a(ρ(t), ρ(0))
(

− φ∆
1 (ρ(0))

)

= −y(t).

Therefore the function defined in (9) satisfies (7). Further we obtain that (8) is satisfied
by (9). The first boundary condition of (8) follows from (9), (10) and (12). Now we
verify the second boundary condition. Since

G(σ(1), s) =
1

φ∆
1 (ρ(0))

φ1(s)φ2(σ(1)) = 0,
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we obtain

u(σ(1)) =

∫ σ(1)

ρ(0)

G(σ(1), s)p(s)y(s)∇s +Aφ1(σ(1)) = A. (13)

On the other hand, by using equation (10) we find

m−2
∑

i=2

αiu(ηi) =

m−2
∑

i=2

αi

(

∫ σ(1)

ρ(0)

G(ηi, s)p(s)y(s)∇s+Aφ1(ηi))

)

=

m−2
∑

i=2

αi

(

∫ σ(1)

ρ(0)

G(ηi, s)p(s)y(s)∇s+

m−2
∑

i=1

αiφ1(ηi)
∫ σ(1)

ρ(0)
G(ηi, s)p(s)y(s)∇s

1 −
m−2
∑

i=1

αiφ1(ηi)

)

=
1

1 −
m−2
∑

i=1

αiφ1(ηi)

m−2
∑

i=1

αi

(

∫ σ(1)

ρ(0)

G(ηi, s)p(s)y(s)∇s

)

= A. (14)

Combining the equations (13) and (14) finishes the proof. 2

In this study we consider the Banach space B of continuous functions defined on
[ρ(0), σ(1)] with the supremum norm. Now we set

q(t) = min

{

φ1(t)

||φ1(t)||
,
φ2(t)

||φ2(t)||

}

. (15)

Lemma 2.4 Assume that (H3) and (H4) hold. Let y ∈ C ([ρ(0), σ(1)], [0,∞)). Then
the unique solution of (7)-(8) satisfies u(t) ≥ ||u||q(t).

Proof Let t0 be the point in (ρ(0), σ(1)) such that ||u|| = u(t0). Next we verify

G(t, s) ≥ G(t0, s)q(t). (16)

For this purpose, we consider the following four cases:

(i) t, t0 ≤ s : In this case,

G(t, s)

G(t0, s)
=

φ1(t)

φ1(t0)
≥
φ1(t)

||φ1||
≥ min{

φ1(t)

||φ1(t)||
,
φ2(t)

||φ2(t)||
} = q(t).

(ii) t, t0 ≥ s : In this case,

G(t, s)

G(t0, s)
=

φ2(t)

φ2(t0)
≥
φ2(t)

||φ2||
≥ min{

φ1(t)

||φ1(t)||
,
φ2(t)

||φ2(t)||
} = q(t).

(iii) t0 ≤ s ≤ t : In this case,

G(t, s)

G(t0, s)
=

φ1(s)φ2(t)

φ1(t0)φ2(s)
≥
φ2(t)

φ2(s)
≥
φ2(t)

||φ2||
≥ min{

φ1(t)

||φ1(t)||
,
φ2(t)

||φ2(t)||
} = q(t).

(iv) t ≤ s ≤ t0 : In this case,

G(t, s)

G(t0, s)
=

φ1(t)φ2(s)

φ1(s)φ2(t0)
≥
φ1(t)

φ1(s)
≥
φ1(t)

||φ1||
≥ min{

φ1(t)

||φ1(t)||
,
φ2(t)

||φ2(t)||
} = q(t).
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In the third and the fourth cases we make use of Lemma 2.1. It follows from the fact
1 ≥ φ1(t) ≥ q(t), ∀t ∈ [ρ(0), σ(1)] and the inequality (16) that

u(t) = λ
{

∫ σ(1)

ρ(0)

G(t, s)p(s)y(s)∇s +Aφ1(t)
}

≥λ
{

q(t)

∫ σ(1)

ρ(0)

G(t0, s)p(s)y(s)∇s+Aφ1(t)
}

≥ λq(t)
(

∫ σ(1)

ρ(0)

G(t0, s)p(s)y(s)∇s+A
)

≥λq(t)
(

∫ σ(1)

ρ(0)

G(t0, s)p(s)y(s)∇s+Aφ1(t0)
)

= q(t)u(t0) = q(t)||u||. 2

Assume that ξ := inf{t ∈ T : t > ρ(0)}, w := sup{t ∈ T : t < σ(1)} both exist and
are included in [ρ(0), σ(1)], and also satisfy ρ(0) < ξ < w < σ(1). Also assume that
σ(w) < σ(1) and ρ(ξ) > ρ(0) hold.

Lemma 2.5 Assume that (H3) and (H4) hold. Let y ∈ C ([ρ(0), σ(1)], [0,∞)). Then
there exists γ > 0 such that unique solution of (7)–(8) satisfies u(t) > γ||u||.

Proof Choose
γ = min{q(t) : t ∈ [ξ, w]}. (17)

It is clear that γ > 0 and u(t) ≥ q(t)||u|| > γ||u||, ∀t ∈ [ξ, w]. 2

To make use of the fixed point theorems we consider the cone

P = {u ∈ B : u(t) > 0, t ∈ [ρ(0), σ(1)], min
t∈[ξ,w]

u(t) ≥ γ||u||} (18)

on the Banach space B, and set Pr = {x ∈ P : ||x|| < r}.

Theorem 2.1 [5] (Krasnosel’skii Fixed Point Theorem) Let E be a Banach space,
and let K ⊂ E be a cone. Assume Ω1 and Ω2 are open, bounded subsets of E with
0 ∈ Ω1,Ω1 ⊂ Ω2, and let A : K ∩ (Ω2 \ Ω1) → K be a completely continuous operator
such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or

(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Theorem 2.2 [11] (Legget–Williams Fixed Point Theorem) Let P be a cone in a real
Banach space E. Set

P(ψ, a, b) := {x ∈ P : a ≤ ψ(x), ‖x‖ ≤ b}.

Suppose A : Pr → Pr be a completely continuous operator and ψ be a nonnegative, con-
tinuous, concave functional on P with ψ(u) ≤ ‖u‖ for all u ∈ Pr. If there exist
0 < p < q < l ≤ r such that the following conditions hold:

(i) {u ∈ P(ψ, q, l) : ψ(u) > q} 6= ∅ and ψ(Au) > q for all u ∈ P(ψ, q, l),

(ii) ‖Au‖ < p for all ‖u‖ ≤ p,

(iii) ψ(Au) > q for u ∈ P(ψ, q, r) with ‖Au‖ > l.

Then A has at least three positive solutions u1, u2 and u3 in Pr satisfying

‖u1‖ < p, ψ(u2) > q, p < ‖u3‖ with ψ(u3) < q.
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3 Main Results

We are concerned with determining values of λ, for which there exist positive solutions
of m-point boundary value problem (1)-(2). We use Krasnosel’skii fixed point theorem
and Legget-Williams fixed point theorem to prove the main results. From Lemma 2.3, it
is clear that the solutions of (1)-(2) are the fixed points of the operator

Φλu(t) = λ
{

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s +Aφ1(t)
}

. (19)

To state the main results we need to define the following extended real numbers:

f0 = lim
u→0+

inf min
t∈[ρ(0),σ(1)]

f(t, u)

u
, (20)

f0 = lim
u→0+

sup max
t∈[ρ(0),σ(1)]

f(t, u)

u
, (21)

f∞ = lim
u→∞

inf min
t∈[ρ(0),σ(1)]

f(t, u)

u
, (22)

f∞ = lim
u→∞

sup max
t∈[ρ(0),σ(1)]

f(t, u)

u
. (23)

Let K and L be defined by

K = min
t∈[ξ,w]

∫ w

ξ

G(t, s)p(s)h(s)∇s, (24)

L = max
t∈[ρ(0),σ(1)]

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)∇s ≤

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)∇s. (25)

In the following three main results, we state the criteria on λ to make sure the existence
of positive solutions of (1)-(2).

Theorem 3.1 Assume that (H1)-(H4) are satisfied. Then for each λ satisfying either
one of the following conditions

(a)
1

γKf∞
< λ <

1

Lf0

(

1 −
m−2
∑

i=1

αiφ1(ηi)

1 +
m−2
∑

i=1

αi

)

; (b)
1

γKf0
< λ <

1

Lf∞

(

1 −
m−2
∑

i=1

αiφ1(ηi)

1 +
m−2
∑

i=1

αi

)

,

there exists at least one positive solution of (1)-(2).

Proof We claim that Φλ : P → P Let u ∈ P . First from the nonnegativity of G
and from the assumptions (H2) and (H3), it is clear that Φλu(t) ≥ 0 for t ∈ [ρ(0), σ(1)].
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Next by using (16) and (15), we get

min
t∈[ξ,w]

Φλu(t) = min
t∈[ξ,w]

λ
{

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s +Aφ1(t)
}

≥ λ
{

∫ σ(1)

ρ(0)

q(t)G(t0, s)p(s)h(s)f(s, u(s))∇s +Aφ1(t)
}

≥ q(t)
{

λ

∫ σ(1)

ρ(0)

G(t0, s)p(s)h(s)f(s, u(s))∇s +A
}

≥ γ
{

λ

∫ σ(1)

ρ(0)

G(t0, s)p(s)h(s)f(s, u(s))∇s +A
}

≥ γ
{

λ

∫ σ(1)

ρ(0)

G(t0, s)p(s)h(s)f(s, u(s))∇s +Aφ1(t0)
}

= γ||Φλu||.

Thus Φλu ∈ P . Also complete continuity of Φλu(t) can be obtained easily by the analysis
methods. Now we seek for the fixed points of Φλu(t) which belongs to P .

Assume (a) holds. Since λ <
1

Lf0

(

1 −
m−2
∑

i=1

αiφ1(ηi)

1 +
m−2
∑

i=1

αi

)

there exists ǫ > 0 such that

λL(f0 + ǫ)
(

1 +
m−2
∑

i=1

αi

1 −
m−2
∑

i=1

αiφ1(ηi)

)

≤ 1.

The use of the definition of f0 guarantees that there exists r1 > 0, sufficiently small such
that

f(t, u)

u
< f0 + ǫ, ∀u ∈ [0, r1].

It follows that f(t, u) < (f0 + ǫ)u for 0 ≤ u ≤ r1 and t ∈ [ρ(0), σ(1)]. If u ∈ ∂Pr1
then

using the fact G(t, s) ≤ G(s, s) we obtain

Φλu(t) = λ
{

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s+Aφ1(t)
}

≤ λ
(

1 +

m−2
∑

i=1

αi

1 −
m−2
∑

i=1

αiφ1(ηi)

)

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)f(s, u(s))∇s

≤ λ
(

1 +
m−2
∑

i=1

αi

1 −
m−2
∑

i=1

αiφ1(ηi)

)

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)f(s, u(s))∇s
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≤ λ
(

1 +
m−2
∑

i=1

αi

1 −
m−2
∑

i=1

αiφ1(ηi)

)

(f0 + ǫ)||u||

∫ σ(1)

ρ(0)

G(s, s)h(s)∇s

= λ
(

1 +
m−2
∑

i=1

αi

1 −
m−2
∑

i=1

αiφ1(ηi)

)

(f0 + ǫ)||u||L ≤ ||u||.

Hence if we define the open bounded set

Ω1 = {u ∈ P : ||u|| < r1}, (26)

then

||Φλu|| ≤ ||u||, ∀u ∈ ∂Pr1
= P ∩ ∂Ω1. (27)

Now we use the other part of the inequality in part (a),
1

γKf∞
< λ. We distinguish this

part of the proof into two parts and first consider the case f∞ <∞. In this case, we pick
ǫ1 such that γK(f∞ − ǫ1) ≥ 1. The use of the definition of f∞ guarantees that there
exists r > r1, sufficiently large so that

f(t, u)

u
> f∞ − ǫ1, ∀u ≥ r.

Therefore, f(t, u) > (f∞ − ǫ1)u for (t, u) ∈ [ρ(0), σ(1)] × [0, r1]. We pick r2 such that

r2 ≥
r

γ
> r1 and define

Ω2 = {u ∈ P : ||u|| < r2}. (28)

If u ∈ ∂Pr2
, then Lemma 2.5 leads us to have

Φλu(t) = λ
{

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s+Aφ1(t)
}

≥ λ

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s

≥ λ(f∞ − ǫ1)γ||u||

∫ w

ξ

G(t, s)p(s)h(s)∇s

≥ λ(f∞ − ǫ1)γ||u||K

≥ ||u||. (29)

Consequently, we consider the case f∞ = ∞ for which the second part of the inequality
in part (a) becomes λ > 0. If we choose M sufficiently large so that

λMγ

∫ w

ξ

G(t, s)p(s)h(s)∇s ≥ 1 (or λMγK ≥ 1)
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for any t ∈ [ρ(0), σ(1)], then there exists r > r1 so that f(t, u) > Mu for u ≥ r1. Let r2
be defined as above and let u ∈ ∂Pr2

. Then for all t ∈ [ρ(0), σ(s)], we have

Φλu(t) ≥ λM

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)u(s)∇s

≥ λMγ||u||

∫ w

ξ

G(t, s)p(s)h(s)∇ = λMγK||u|| ≤ ||u|| (30)

From the inequalities (29) and (30)

||Φλu|| ≥ ||u||, ∀u ∈ ∂Pr2
= P ∩ ∂Ω2. (31)

Inequalities (27) and (31) show that the conditions of Krasnosel’skii fixed point theorem
(Theorem 2.1) are fulfilled. Thus from Theorem 2.1, we conclude that Φλu has a fixed
point in P ∩ (Ω2 \ Ω1). 2

The following result states the existence of at least one positive solution of problem
(1)-(2) in a different manner and also bounds the positive solution.

Theorem 3.2 Let f(t, u) satisfy (H1). Assume that there exist two positive constants
r2 > r1 > 0 such that the following conditions are satisfied:

(H5) f(t, u) ≤
Mr2
λ

for (t, u) ∈ [ρ(0), σ(1)] × [0, r2],

(H6) f(t, u) ≥
Nr1
λ

for (t, u) ∈ [ρ(0), σ(1)] × [0, r1],

where

M =

1 −
m−2
∑

i=1

αiφ1(ηi)

1 +
m−2
∑

i=1

αi

(

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)∇s
)−1

, (32)

N =
(

γ

∫ w

ξ

G(t0, s)p(s)h(s)∇s
)−1

(33)

and t0 ∈ (ρ(0), σ(1)) such that ||u|| = u(t0). Then the problem (1)-(2) has at least one
positive solution u satisfying r1 ≤ ||u|| ≤ r2.

Proof Let Ω2 be defined as in (28). If u ∈ ∂Ω2 then ||u|| = r2.

Φλu(t) ≤ λ
(

1 +
m−2
∑

i=1

αi

1 −
m−2
∑

i=1

αiφ1(ηi)

)

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)f(s, u(s))∇s

≤ λ
(

1 +
m−2
∑

i=1

αi

1 −
m−2
∑

i=1

αiφ1(ηi)

)Mr2
λ

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)∇s = r2.

Therefore,
||Φλu|| ≤ ||u||, ∀u ∈ ∂Ω2. (34)
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Let Ω1 be defined as in (26). Using (16) and (17) we obtain

Φλu ≥ λ

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s ≥ λq(t)

∫ w

ξ

G(t0, s)p(s)h(s)f(s, u(s))∇s

≥ λγ

∫ w

ξ

G(t0, s)p(s)h(s)f(s, u(s))∇s ≥ λγ
Nr1
λ

∫ w

ξ

G(t0, s)p(s)h(s)∇s = r1.

Therefore,

||Φλu|| ≥ ||u||, ∀u ∈ ∂Ω1. (35)

Inequalities (35) and (34) imply that the conditions of Theorem 2.1 hold. Hence Φλu
has at least one fixed point i.e., (1)-(2) has at least one positive solution in P ∩ (Ω2 \Ω1)
satisfying r1 ≤ ||u|| ≤ r2. 2

Theorem 3.3 Let f(t, u) satisfy (H1) and there exist constants 0 < r1 < r2 < r3
such that the following assumptions hold:

(H7) f(t, u) < λ−1Mr1 for all (t, u) ∈ [ρ(0), σ(1)] × [0, r1],

(H8) f(t, u) ≥ λ−1Nr2 for all (t, u) ∈ [ξ, w] × [r2, r3],

(H9) f(t, u) ≤ λ−1Mr3 for all (t, u) ∈ [ρ(0), σ(1)] × [ρ(0), r3].

Then (1)-(2) has at least three positive solutions u1, u2 and u3 satisfying

||u1|| < r1, r2 < min
t∈[ξ,w]

|u2(t)| ≤ r3, r1 < ||u3|| ≤ r3 and min
t∈[ξ,w]

|u3(t)| < r2.

Proof We verify that the conditions of Legget-Williams fixed point theorem (The-
orem 2.2) are satisfied. For this purpose we first define the nonnegative, continuous,
concave functional ψ : P → [0, ∞) to be ψ(u) := min

t∈[ξ,w]
|u(t)|, the cone P is as in (18),

M as in (32) and N as in (33). Then ψ(u) ≤ ‖u‖ for all u ∈ P .
If u ∈ Pr3

, then ‖u‖ ≤ r3. So by using assumption (H9) and the similar calculations as
in Theorem (3.2), we get

Φλu(t) ≤ λ
(

1 +
m−2
∑

i=1

αi

1 −
m−2
∑

i=1

αiφ1(µi)

)

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)f(s, u(s))∇s

≤ λ
(

1 +
m−2
∑

i=1

αi

1 −
m−2
∑

i=1

αiφ1(µi)

)

λ−1M−1r3

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)∇s = r3.

Hence Φλ : Pr3
→ Pr3

.
In the same way, if u ∈ Pr1

, i.e. ||u|| ≤ r1 assumption (H7) yields ||Φλu|| < r1.
Therefore (ii) of Theorem 2.2 is satisfied.

To check the condition (i) of Theorem 2.2 we choose u(t) = r3, ∀t ∈ [ρ(0), σ(1)]. It
is clear that u(t) = r3 ∈ P(φ, r2, r3). Consequently, since φ(u) = φ(r3) = r3 > r2 then
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{u ∈ P(φ, r2, r3) : φ(u) > r2} 6= ∅. Moreover by taking assumption (H8) and Lemma 2.5
into account, we obtain

φ(Φλu) = min
t∈[ξ,w]

|Φλu(t)| ≥ λγ

∫ w

ξ

G(t0, s)p(s)h(s)f(s, u(s))∇s

≥ λγλ−1Nr2

∫ w

ξ

G(t0, s)p(s)h(s)∇s = r2.

Therefore (i) of Theorem 2.2 holds.

Similarly (iii) of Theorem 2.2 is satisfied. Hence Φλu has at least three fixed points
u1, u2 and u3 satisfying

||u1|| < r1, r2 < min
t∈[ξ,w]

|u2(t)| ≤ r3, r1 < ||u3|| ≤ r3 and min
t∈[ξ,w]

|u3(t)| < r2. 2

To illustrate how our results can be used in practice we present an example.

Example 3.1 Let T =
{

0,
1

4
,
2

4
,
3

4
, 1,

5

4
, ...
}

. We consider the following four point

boundary value problem:

u∆∇(t) +
12

5
u∆(t) −

16

5
u(t) + 10−3(35 + u)e1(t, 0) = 0, t ∈ [0, 1],

u(0) = 0, u(
5

4
) =

1

2
u(

1

4
) +

1

4
u(

1

2
).

This problem can be regarded as a BVP of the form (1)-(2), where a(t) = 12/5, b(t) =
−16/5, λ = 10−3, h(t) = 1 and f(t, u) = (35 + u)e1(t, 0). Clearly (H1)-(H3) are satisfied.
Let φ1(t) and φ2(t) be the solutions of the following linear BVP’s respectively.

u∆∇(t) +
12

5
u∆(t) −

16

5
u(t) = 0 t ∈ [0, 1], u(0) = 0, u(

5

4
) = 1,

u∆∇(t) +
12

5
u∆(t) −

16

5
u(t) = 0 t ∈ [0, 1], u(0) = 1, u(

5

4
) = 0.

It is evident (from the the Corollaries 4.24 and 4.25 and Theorem 4.28 of [4]) that

φ1(t) =
(5
4 )4t − (1

2 )4t

(5
4 )5 − (1

2 )5
and φ2(t) =

(5
4 )5(1

2 )4t − (1
2 )5(5

4 )4t

(5
4 )5 − (1

2 )5
.

Also φ1(t) satisfies (H4). The Green’s function is of the following form:

G(t, s) =
1024

9279

{

{(5
4 )4t − (1

2 )4t}{(5
4 )5(1

2 )4s − (1
2 )5(5

4 )4s}, s ≥ t,
{(5

4 )4s − (1
2 )4s}{(5

4 )5(1
2 )4t − (1

2 )5(5
4 )4t}, t ≥ s.

p(t) = (
2

5
)4t−1 follows from eα(t, t0) =

(

1+αh
)

t−t0
h

on T = hN. Furthermore we obtain

γ ≈ 0, 106,
∫ 5

4

0

G(s, s)
(2

5

)4s−1

∇s ≈ 0, 44 and

∫ 3
4

1
2

G(s, s)
(2

5

)4s−1

∇s ≈ 0, 0025.

and thus M ≈ 19, 84 and N ≈ 3650.
If we choose r2 > r1 > 0 such that r1 = 5 · 10−6 and r2 = 0, 1, then it is straightforward
from Theorem 3.2 that the four point BVP has at least one positive solution satisfying
5 · 10−6 ≤ ‖u‖ ≤ 0, 1.
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