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Abstract: This paper presents an original practical criterion of global stability anal-
ysis of nonlinear polynomial systems. This criterion derived from the application of
the Lyapunov direct method with a quadratic function generalizes the famous Lya-
punov stability condition for linear systems. Useful mathematical transformations
have allowed the formulation of the obtained conditions as an LMI (Linear Matrix
Inequalities) problem according to the polynomial system parameters.
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1 Introduction

The problem of stability analysis of nonlinear systems has received considerable attention
in the field of research in automatic control and different approaches have been proposed
in the literature related with this subject [1]– [16]. The polynomial technique of studying
stability of nonlinear systems is one of the most important developed approaches. It is
based on the modeling of the considered nonlinear analytical systems by a polynomial
system [17]– [27]. Notice that the class of polynomial systems is large enough to include
the description of numerous physical processes such as electrical machines and robot
manipulators [28]. Moreover, the description of polynomial systems can be simplified
using the Kronecker product and power of vectors and matrices [17, 29, 30].

In previous works, sufficient algebraic conditions of global asymptotic stability of poly-
nomial systems have been derived using the direct Lyapunov method with a quadratic
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function [17, 18, 25, 29, 31, 32] or non quadratic function as polynomial or monomial
Lyapunov functions [33, 34]. The advantage of the proposed criteria is that they are
expressed according to the studied polynomial system parameters, generalizing the fa-
mous Lyapunov condition known for the linear systems. However, the implementation
of the general form of the derived stability conditions of polynomial systems requires
the resolution of nonlinear matrix inequalities [35, 36]. To overcome this difficulty, we
propose in this paper a new development which leads to the formulation of a practical
LMI stability condition for polynomial systems.

This paper is organized as follows: Section 2 is concerned with the description of the
studied systems and some useful notations. Then, in the third section we present the
derived global stability condition for polynomial systems. The fourth section shows how
the obtained condition can be implemented as an LMI problem. Section 5 is devoted to
a numerical example which illustrates the availability of the proposed approach.

2 System Description and Notations

2.1 System description

The considered nonlinear polynomial systems are described by the following state equa-
tion:

Ẋ = f (X) , (2.1)

where f (X) is a polynomial vector function of X .

f (X) =
r∑

i=1

AiX
[i] =

r∑
i=1

ÃiX̃
[i] (2.2)

with X = [x1, . . . , xn]T ∈ R
n, X [i] is the Kronecker power of the vector X defined as:

{
X [0] = 1,

X [i] = X [i−1] ⊗ X = X ⊗ X [i−1] for i ≥ 1,
(2.3)

⊗ designates the symbol of the Kronecker product [30], X̃
[i]
i=1,...,r ∈ R

ni ,

ni =

(
n + i − 1

i

)
is the nun-redundant Kronecker power of the state vector X defined

as:

X̃ [1] = X [1] = X,

∀ i ≥ 2, X̃ [i] = [xi
1, xi−1

1 x2, ..., xi−1
1 xn, ..., xi−2

1 x2
n, ..., xi−3

1 x3
2, ..., xi

n]T ,
(2.4)

where the repeated components of the redundant (ith-power) X [i] are omitted,

Ai,i=1,...,r ∈ R
n×ni

(resp. Ãi ∈ R
n×ni) are constant matrices. The polynomial order

r is considered odd: r = 2s − 1, with s ∈ N
∗. Let’s recall that this class of systems

describes a large set of processes as electrical machines and robot manipulators and that
any analytical system can be approached by a polynomial model.

2.2 Notations

In this section, we introduce some useful notations and needed rules and functions. Let
the matrices and vectors be of the following dimensions: A(p × q), B(r × s), C(q × f),
E(n × p), X(n× 1), Y (m × 1).
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(i) We consider the following notations: In is an (n × n) identity matrix; 0n×m is an
(n×m) zero matrix; 0 is a zero matrix of convenient dimension; AT is a transpose
of matrix A; A > 0(A ≥ 0) is a symmetric positive definite (semi-definite) matrix;
e

q
k is a q dimensional unit vector which has 1 in the kth element and zero elsewhere.

(ii) The relation between the redundant and the nun-redundant Kronecker power of
the state vector X can be stated as follows:

{
∀i ∈ N ∃ Ti ∈ R

ni
×ni

X [i] = TiX̃
[i]

}
, (2.5)

where (ni) stands for the binomial coefficient. A procedure of the determination of
the matrix Ti is given in [37].

(iii) The permutation matrix denoted by (Un×m) is defined as:

Un×m =

n∑

i=1

m∑

j=1

(
en

i · ej
mT

)
⊗

(
em

j · ei
nT

)
. (2.6)

This matrix is square (nm × nm) and has precisely a single 1 in each row and in
each column. Among the main properties of this matrix presented in [30], we recall
the following useful ones:

(B ⊗ A) = Ur×p(A ⊗ B)Uq×s, (2.7)

(X ⊗ Y ) = Un×m(Y ⊗ X), (2.8)

∀i ≤ k X [k] = Uni
×nk−iX [k]. (2.9)

(iv) An important vector valued function of matrix denoted by vec(.) was defined in
[30] as follows:

A =
[

A1 A2 ... Aq

]
∈ R

p×q, Ai ∈ R
p, i ∈ {1, ..., q} ,

vec(A) =




A1

A2

...
Aq


 ∈ R

pq.

We recall the following useful rules [30] of vec-function:

vec(EAC) = (CT ⊗ E)vec(A), (2.10)

vec(AT ) = Up×qvec(A). (2.11)

(v) A special function mat(n,m) (.) can be defined as follows:
If V is a vector of dimension p = nm then M = mat(n,m)(V ) is the (n × m)
matrix verifying: V = vec(M).
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(vi) For a polynomial vectorial function:

f (X) =

r∑

i=1

AiX
[i], (2.12)

where X ∈ R
n, Ai, i=1,...,r are (n × ni) constant matrices and r = 2s − 1, s ∈ N

∗,
M(f) designates the set of matrices defined by:

M(f) = {Mλ(f) ∈ R
υ×υ ; λ = [λij ] ∈ R

s×s} (2.13)

such that:

Mλ(f) =




λ11M11 λ12M12 ... λ1kM1k ... λ1sM1s

λ21M21 λ22M22 ... λ2kM2k ... λ2sM2s

...
...

. . .
...

...
...

λk1Mk1 λk2Mk2

... λkkMkk

... λksMks

...
...

...
...

. . .
...

λs1Ms1 λs2Ms2 ... λskMsk ... λssMss




, (2.14)

υ = n + n2 + ... + ns, and

• for k = 1, ..., r = 2s − 1,

• for j = gk, ..., hk where gk = sup(1, k + 1 − s) and hk = inf(s, k)

we have:

Mk+1−j,j =




mat(nk−j ,nj)

(
A1T

k

)

mat(nk−j ,nj)

(
A2T

k

)

...
mat(nk−j ,nj)

(
AnT

k

)


 , (2.15)

Ai
k is the ith row of the matrix Ak:

Ak =




A1
k

A2
k
...

An
k


 . (2.16)

Notice that, for all integer numbers i and j such that 1 ≤ i, j ≤ s, there exist
k ∈ N

∗ such that 1 ≤ k ≤ 2s − 1, i = k + 1 − j and gk ≤ j ≤ hk.
λij are arbitrary reals verifying:

hk∑
j=gk

λk+1−j,j = 1. (2.17)

(vii) We introduce the matrix R defined by:

R = τ
+[2]
1 · U · H · τ2, (2.18)
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where

τ1 =




T1

T2 0
T3

0
. . .

Ts




, (2.19)

τ2 =




T2 0
T3

. . .

0 T2s


 , (2.20)

U =




Un×η0
0

Un2
×η0

. . .

0 Uns
×η0


 , (2.21)

H =




Iη1
0

0η2×η1
Iη2

0η3×(η1+η2) Iη3

...
. . .

0ηs×(η1+η2+...+ηs−1) Iηs




, (2.22)

for j = 1, ....., s, : ηj = nj ·

(
s∑

i=1

ni

)
,

τ+
1 is the Moore-Penrose pseudo-inverse of τ1.

We note Γ is the matrix defined by:

Γ =
(
Iη2 + Uη×η

) (
R+TRT − Iη2

)
(2.23)

with η =
s∑

j=1

nj =
s∑

j=1

(
n + j − 1

j

)
and R+ is the Moore-Penrose pseudo-inverse

of R.

β = rank(Γ) and Ci, i=1,...,β are β linearly independent columns of Γ.

(iix) For a (n × n) matrix P , we define the (υ × υ) matrix Ds(P ) as:

Ds(P ) =




P 0
P ⊗ In

. . .

0 P ⊗ Ins−1


 . (2.24)

Notice that if P is a definite symmetric positive matrix then so is Ds(P ).
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3 Stability Criterion of Polynomial Systems

We consider the analytical nonlinear autonomous systems described by the following
polynomial state-space equation:

Ẋ = f (X) =
r∑

k=1

AkX [k], r = 2s − 1. (3.1)

The Lyapunov’s direct method leads to a sufficient condition of the global asymptotic
stability of the equilibrium (X = 0) of the polynomial system (3.1). This condition is
stated in the following theorem.

Theorem 1 Consider the nonlinear polynomial system defined by the equation (3.1)
where the integer r is odd: r = 2s − 1. If there exist:

• an (n × n)-symmetric positive definite matrix P,

• an (s × s)-matrix λ = [λij ] verifying
hk∑

j=gk

λk+1−j,j = 1,

• arbitrary parameters µi,i=1,...,β ∈ R

such that the (η × η) symmetric matrix Q defined by:

Q = −τT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1 +

β∑
i=1

µimat(η,η)(Ci) (3.2)

is positive definite, then the equilibrium X = 0 of the considered system (3.1) is globally
asymptotically stable.

Proof Consider the quadratic Lyapunov function:

V (X) = XT PX. (3.3)

Differentiating V (X) along the trajectory of the system (3.1), one obtains:

V̇ (X) =
r∑

k=1

(XT PAkX [k] + X [k]T AT
k PX) = 2

r∑
k=1

XT PAkX [k]. (3.4)

Using the rule of the vec-function (2.10), the relation (3.4) can then be written as:

V̇ (X) = 2
r∑

k=1

V T
k X [k+1], (3.5)

where

Vk = vec(PAk). (3.6)

To ensure the global asymptotic stability of the equilibrium (X = 0) of the system (3.1),
it is sufficient to have V̇ (X) negative definite for ∀X ∈ R

n.
Let the following notations be used for k = 1, ..., 2s− 1 and j = gk, ..., hk

Nk+1−j, j = mat(nk+1−j , nj)(Vk). (3.7)

Then, using the relation (3.7), we can write:

V T
k X [k+1] =

hk∑
j=gk

λk+1−j,jX
[k+1−j]T Nk+1−jX

[j] (3.8)
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such that
hk∑

j=gk

λk+1−j,j = 1. It can be shown [17] that one has:

Nk+1−j,j = mat(nk+1−j ,nj)(V ec(PAk)) = Unk−j
×n(P ⊗ Ink−j ).Mk+1−j,j , (3.9)

where Mk+1−j,j is defined in (2.15).
Using the result (3.9) and the relation (2.9), we can write:

X [k+1−j]T Nk+1−j,jX
[j] = X [k+1−j]T Unk−j

×n(P ⊗ Ink−j )Mk+1−j,jX
[j]

= X [k+1−j]T (P ⊗ Ink−j )Mk+1−j,jX
[j]. (3.10)

Consequently, we obtain:

V T
k X [k+1] =

hk∑
j=gk

λk+1−j,jX
[k+1−j]T (P ⊗ Ink−j )Mk+1−j,jX

[j] = X TDS(P )Mk(λ)X

with

X =
[

XT X [2]T · · · X [s]T
]T

(3.11)

and

Mk(λ) =




0 λ1kM1k

. .
.

λk−1,2Mk−1,2

λk1Mk1 0


 . (3.12)

Then V̇ (X) can be written as:

V̇ (X) = 2

2s−1∑

k=1

V T
k X [k+1] = X T (DS(P )Mλ(f) + Mλ(f)TDS(P ))X , (3.13)

where Mλ(f) =
r∑

k=1

Mk(λ) is defined in (2.14).

Using the nun-redundant form, the vector X can be written as:

X = τ1X̃ , (3.14)

where X̃ ∈ R
η, η =

s∑
j=1

nj and τ1 is defined in (2.19).

Then V̇ (X) can be written in the following form:

V̇ (X) = X̃TτT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1X̃ . (3.15)

A sufficient condition of the global asymptotic stability of the equilibrium (X = 0) is
that the quadratic form V̇ (X) should be negative definite. This condition can be ensured
if there exists a symmetric positive definite Q ∈ R

η×η such that:

X̃TτT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1X̃ = −X̃TQX̃ . (3.16)
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Using the vec-function, the equality (3.16) can be expressed as:

vecT
(
τT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1 + Q

)
)X̃ [2] = 0 (3.17)

But, it can be easily checked that X̃ [2] can be written as

X̃ [2] = RX̃2, (3.18)

where

X̃2 =




X̃ [2]

...

X̃ [s+1]

X̃ [s+2]

...

X̃ [2s]




(3.19)

and R is the matrix defined in (2.18). Therefore the equality (3.17) yields the following
equation:

RTvec(S) = 0 (3.20)

with S = τT
1

(
DS(P )Mλ(f) + Mλ(f)TDS(P )

)
τ1 + Q. The η2-vector vec(S) which is a

solution of (3.20) can be expressed as:

vec(S) =
(
R+TRT − Iη2

)
Y, (3.21)

where Y is an arbitrary vector of R
η2

. On the other hand, the matrix S is symmetric
since Q is symmetric, then we have

S = 1
2 (S + ST ) (3.22)

and using the property (2.11) yields

vec(S) = 1
2 (Iη2 + Uη×η)vec(S) =

β∑
i=1

µiCi, (3.23)

where β = rank
[(

Iη2 + Uη×η

) (
R+TRT − Iη2

)]
, Ci,i=1,...,β are β linearly independent

columns of (
Iη2 + Uη×η

) (
R+TRT − Iη2

)
, (3.24)

µi,i=1,...,β are arbitrary values. Consequently, the matrix Q verifying (3.20) is of the
following form:

Q = −τT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1 +

β∑
i=1

µimat(η,η)(Ci) (3.25)

which ends the proof.
Remark. For r = 1, the system (3.1) becomes linear (Ẋ = AX) and by (3.25)

we obtain the famous Lyapunov stability condition for linear system: The asymptotic

stability of the origin equilibrium of the system Ẋ = AX is ensured iff there exist

symmetric positive definite matrices P and Q such that AT P + PA = −Q. Thus, the
criterion stated in Theorem 1 generalizes this linear stability Lyapunov condition for
polynomial systems.
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4 LMI Formulation of the Global Stability Criterion of Polynomial Systems

In this section we show how the stated stability conditions of Theorem 1 can be for-
mulated as LMI conditions. Les us notice that the proved stability condition can be
presented as the following matrix inequality feasibility problem. Find:

• a (n × n) matrix P ;
• λ = [λij ] ∈ R

s×s verifying the relation (2.17);
• real parameters µi,i=1,...,β;

such that:




P > 0,

τT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1 −

β∑
i=1

µimat(η,η)(Ci) < 0.

(4.1)

However, these inequalities are nonlinear with respect of the unknown parameters P ,λij

and µi, since the second inequality of (4.1) is bilinear on (P, λij). To overcome this
problem we make use of the separation lemma [38] and we exploit the generalized Schur’s
complement [35], in order to transform the BMI problem into an LMI one.

Let us remark that the coefficients λij of the matrix λ verify the relations (2.17) which
implies that

λ11 = 1, λss = 1, (4.2)

and the matrix Mλ(f) can be written as

Mλ(f) = N (f) + Nλ(f), (4.3)

where:

N (f) =




M11 0

M22

. . .

0 Mss


 (4.4)

and

Nλ(f) =




0 λ12M12 · · · · · · λ1sM1s

λ21M21 α2M22
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . αs−1Ms−1,s−1 λs−1sMs−1,s

λs1Ms1 · · · · · · λss−1Ms,s−1 0




(4.5)

for k = 2, ..., s − 1,

αk = −
∑

1 ≤ i, j ≤ s

i + j = 2k

i 6= j

λij .

(4.6)

According to the relation (4.3), the second inequality of (4.1) becomes:

−
β∑

i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)TDS(P ))τ1

+ [DS(P )τ1]
T [Nλ(f)τ1] + [Nλ(f)τ1]

T [DS(P )τ1] < 0.

(4.7)
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Making use of the following separation lemma.

Lemma 1 [38]: For any matrices A and B with appropriate dimensions and for any
positive scalar ǫ > 0, one has: AT B + BT A ≤ ǫAT A + ǫ−1BT B.

Then, the inequality (4.7) is satisfied if there exists a real ǫ > 0 such that

−
β∑

i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)TDS(P ))τ1

+ǫ [DS(P )τ1]
T

[DS(P )τ1] + 1
ǫ
[Nλ(f)τ1]

T
[Nλ(f)τ1] < 0.

(4.8)

This inequality (4.8) can be put as

−
β∑

i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)TDS(P ))τ1

− [DS(P )τ1]
T (−ǫI) [DS(P )τ1] − [Nλ(f)τ1]

T (
− 1

ǫ
I
)
[Nλ(f)τ1] < 0

(4.9)

Using Schur complement, inequality (4.9) holds if and only if


−

β∑
i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)T

DS(P ))τ1 [DS(P )τ1]
T [Nλ(f)τ1]

T

DS(P )τ1 − 1
ǫ
I 0

Nλ(f)τ1 0 −ǫI


 < 0.

(4.10)
Multiplying diag

(
I, I, ǫ−1I

)
for both sides of (4.10), we have



−

β∑
i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)TDS(P ))τ1 [DS(P )τ1]

T
[
Ñλ(f)τ1

]T

DS(P )τ1 −ǫ−1I 0

Ñλ(f)τ1 0 −ǫ−1I


<0,

(4.11)

where λ̃ij = ǫ−1λij . This new inequality (4.11) is linear on the decision variables, and
then we can state the following theorem.

Theorem 2 The equilibrium (X = 0) of the system (3.1) is globally asymptotically stable
if there exist:

• a (s × s)-matrix λ̃ = [λ̃ij ] verifying
hk∑

j=gk

λ̃k+1−j,j = 1;

• a (n × n)-symmetric positive definite matrix P ;
• arbitrary parameters µi,i=1,...,β ∈ R ;
• a real ǫ > 0 ;
such that:

P > 0 (4.12)

and


−

β∑
i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)TDS(P ))τ1 [DS(P )τ1]

T
[
Ñλ(f)τ1

]T

DS(P )τ1 −ǫ−1I 0

Ñλ(f)τ1 0 −ǫ−1I


<0.

(4.13)

The stability analysis of polynomial systems using Theorem 2, can be carried out
using Matlab software.
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5 Illustrative Example

To illustrate the availability of the proposed method we consider the stability study of
the origin equilibrium of the following second order polynomial systems:
{

ẋ1 = −x1 − x2 + x2
1 + x1x2 − x3

1 + x2
1x2 − x1x

2
2 + 2x3

2,

ẋ2 = −x1 − 1.5x2 − 1.1x2
1 + 0.3x1x2 − 1.8x3

1 − 5.6x2
1x2 − 5.3x1x

2
2 − 0.7x3

2.
(5.1)

This system can be written in the following form:

Ẋ = A1X + A2X
[2] + A3X

[3] (5.2)

with

A1 =

[
−1 −1
−1 −1.5

]
, A2 =

[
1 1 0 0

−1.1 0.3 0 0

]
,

A3 =

[
−1 0 1 0 0 0 1 2
−1.8 0.9 −5.2 −1.8 −1.3 4.3 −8.3 −0.7

]
.

Solving the optimization problem formulated by Theorem 2, we obtain:





µ1 = 0
µ2 = 0
µ3 = 3.8529

,





λ11 = 1
λ12 = 0.1419
λ21 = 0.8581
λ22 = 1

, ǫ = 0.1864, P =

[
1.9551 −0.1723
−0.1723 1.1529

]
,

which ensure the global asymptotic stability of the equilibrium X = 0.

6 Conclusion

In this paper, we have presented an original practical criterion for global stability analysis
of nonlinear polynomial systems. This criterion is stated as sufficient conditions derived
from a quadratic Lyapunov function. Furthermore, useful mathematical transformations
have allowed the formulation of the obtained conditions as an LMI problem, which has
facilitated the numerical implementation of the proposed criterion using Matlab LMI
toolboxes.

Let’s notice that the obtained results presented in this paper are developed with a
quadratic Lyapunov function, but they can be easily extended for the case of polynomial
Lyapunov functions. Also, we point out that a similar method can be elaborated for the
stabilization and robust control of polynomial systems.
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