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Abstract: In this paper, we establish some criteria under which the second
order formally self-adjoint dynamic equation

(p(t)x∆)∇ + q(t)x = 0

is of limit-point type on a time scale T. As a special case when T = R, our
results include those of Wong and Zettl [11] and Coddington and Levinson
[5]. Our results are new in a general time scale setting and can be applied to
difference and q-difference equations.
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1 Introduction

In this paper, assume that inf T = t0, and supT = ∞. We will sometimes refer to T as
[t0,∞) which we mean to be the real interval [t0,∞) intersected with T. Assume that
p(t) 6= 0 and q(t) 6= 0 for t ∈ T are continuous functions on T. We will consider the
formally self-adjoint equations

Lx =
(
p(t)x∆

)∇
+ q(t)x = 0 (1.1)

and

L̃y =

(
1

q(t)
y∇
)∆

+
1

p(t)
y = 0. (1.2)
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Let D be the set of functions x : T → R such that x∆ : T → R is continuous, and
(px∆)∇ : Tκ → R is continuous. Let D̃ be the set of functions x : T → R such that

x∇ : Tκ → R is continuous, and

(
1

q
x∇
)∆

: Tκ → R is continuous. We say (1.1) and

(1.2) are reciprocal equations of each other. See [7] for more on reciprocal equations and
[8], [9] and [10] for other results dealing with second-order equations, and [6] and [4] for
more on general theories used in this paper.

These equations are said to be formally self-adjoint because they satisfy the following
Lagrange identity.

Theorem 1.1 (Lagrange identity)

(i) Let u, v ∈ D. Then
u(t)Lv(t) − v(t)Lu(t) = {u; v}∇(t)

for t ∈ Tκ, where the Lagrange bracket {u; v} is defined by

{u; v}(t) := p(t)W (u, v)(t),

where

W (u, v)(t) :=

∣∣∣∣
u(t) v(t)
u∆(t) v∆(t)

∣∣∣∣ .

(ii) Let ũ, ṽ ∈ D̃. Then

ũ(t)L̃ṽ(t) − ṽ(t)L̃ũ(t) =

(
1

q(t)
W̃ (ũ, ṽ)(t)

)∆

for t ∈ Tκ, where

W̃ (ũ, ṽ)(t) :=

∣∣∣∣
ũ(t) ṽ(t)
ũ∇(t) ṽ∇(t)

∣∣∣∣ .

For a proof of Theorem 1.1 (i), see Theorem 4.33 in [3].

Corollary 1.1 (Abel’s formula)
(i) If x and y both solve (1.1) then

p(t)W (x, y)(t) = a t ∈ T,

where a is a constant.
(ii) If x and y both solve (1.2) then

1

q(t)
W̃ (x, y)(t) = a t ∈ Tκ,

where a is a constant.

For a proof of Corollary 1.1 for the case of (1.1), see Corollary 4.34 in [3].

Definition 1.1 The set L2[t0,∞) is defined to be the set of all functions f(t) such
that the Lebesgue integral ∫

∞

t0

f2(t)∆t <∞.
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We define the L2-norm of a function f ∈ L2[t0,∞) by

‖f‖L2 = ‖f‖ :=

(∫
∞

t0

f2(t)∆t

)1/2

.

Definition 1.2 We say that the operator L is (∆-)limit-circle type if for every solu-
tion x of Lx = 0, we have the Lebesgue integral

∫
∞

t0

x2(t)∆t <∞.

If not, we say that the operator L is (∆-)limit-point type.

Refer to Wong and Zettl, [11], and Coddington and Levinson, [5], for an analysis of
the differential equations case.

2 Preliminary Lemmas

Lemma 2.1 If there exists a function β(t) with
1

β
6∈ L2[t0,∞) such that px∆(t) =

O(β(t)) as t→ ∞ for every solution x of (1.1), then L is limit-point type.

Proof Suppose (1.1) is limit-circle type, and let x1, x2 be linearly independent solu-
tions of (1.1), so we have by Corollary 1.1 part (i)

p(t)(x1(t)x
∆
2 (t) − x2(t)x

∆
1 (t)) ≡ a t ∈ T.

Then there exist constants c, d ≥ 0 such that

a ≤ |x1(t)||p(t)x
∆
2 (t)| + |x2(t)||p(t)x

∆
1 (t)|

≤ cβ(t)|x1(t)| + dβ(t)|x2(t)| for large t ∈ T.

Thus, for large t ∈ T,
a

β(t)
≤ c|x1(t)| + d|x2(t)|.

It follows that for T large,

a

∫ t

T

1

β2(s)
∆s ≤

∫ t

T

[c2x2
1(s) + 2cdx1(s)x2(s) + d2x2

2(s)]∆s

≤ c2‖x1‖
2 + 2cd‖x1‖‖x2‖ + d2‖x2‖

2

<∞

by the Cauchy-Schwarz inequality (Theorem 6.15, [2]). This contradicts the fact that
1

β
6∈ L2[t0,∞), so L is limit-point type.

Lemma 2.2 Suppose q ∈ C1[t0,∞). If there exists a positive function β with 1
β 6∈

L2[t0,∞) such that y(t) = O(β(t)) as t → ∞ for every solution y of (1.2), then L is
limit-point type.
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Proof Let x be a solution of (1.1), and put y = px∆. Then y∇ = −qx and

(
1

q
y∇
)∆

= −x∆ = −
y

p
.

Hence, y solves (1.2). Thus,

y(t) = (px∆)(t) = O(β(t)) as t→ ∞.

Thus, by Lemma 2.1, L is limit-point type.

A useful corollary to these lemmas is obtained by letting β(t) ≡ 1.

Corollary 2.1 If (px∆)(t) is bounded for every solution x of (1.1), or if every solu-
tion y of (1.2) is bounded, then L is limit-point type.

3 Riccati Substitution

Suppose y is a solution of (1.2) with q(t)y(t)yσ(t) > 0 for t ≥ t0. We can then make the
Riccati substitution

z(t) =
y∇(t)

q(t)y(t)
for t ∈ [t0,∞).

Then, we have

z∆(t) =

((
y∇(t)

q(t)

)(
1

y(t)

))∆

=

(
y∇(t)

q(t)

)∆(
1

y(t)

)
+

(
y∇(t)

q(t)

)σ (
1

y(t)

)∆

= −
1

p(t)
+

(
y∇(t)

q(t)

)σ (
−y∆(t)

y(t)yσ(t)

)

= −
1

p(t)
−
zσ(t)y∆(t)

y(t)
.

We now use the following lemma, due to Atici and Guseinov [1]:

Lemma 3.1 If f : T → R is ∆-differentiable on T
κ and if f∆ is continuous on T

κ,
then f is ∇-differentiable on Tκ and

f∇(t) = f∆ρ(t) t ∈ Tκ.

If g : T → R is ∇-differentiable on Tκ and if g∇ is continuous on Tκ, then g is ∆-
differentiable on T

κ and

g∆(t) = g∇σ(t) t ∈ T
κ.

See also Corollary 4.11 and Theorem 4.8 and Corollary 4.10 in [3] for a generalization
of this result.
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Thus, we get

zσ(t)y∆(t)

y(t)
=

zσ(t)y∆(t)

yσ(t) − µ(t)y∆(t)
=

zσ(t)y∇σ(t)
yσ(t)

1 − µ(t)y∇σ(t)
yσ(t)

=
qσ(t)(zσ(t))2

1 − µ(t)qσ(t)zσ(t)
=

(zσ(t))2

1
qσ(t) − µ(t)zσ(t)

.

Hence, we get that z(t) solves the so-called Riccati equation associated with (1.2)

z∆ +
1

p(t)
+

(zσ)2

1
qσ(t) − µ(t)zσ

= 0. (3.1)

Notice that
1

qσ(t)
− µ(t)zσ(t) > 0 for all t ≥ t0:

1

qσ(t)
− µ(t)zσ(t) =

1

qσ(t)
− µ(t)

y∆(t)

qσ(t)yσ(t)

=
1

qσ(t)yσ(t)
[yσ(t) − µ(t)y∆(t)]

=
y(t)

qσ(t)yσ(t)
> 0.

Hence, we have proven the following lemma:

Lemma 3.2 If y(t) is a solution of (1.2) with q(t)y(t)yσ(t) > 0 then z(t) :=
y∇(t)

q(t)y(t)

is a solution of (3.1) that satisfies
1

qσ(t)
− µ(t)zσ(t) > 0 for all t ∈ T.

4 Main Results

Theorem 4.1 Suppose that p(t) > 0 and q(t) > 0 on [t0,∞), and

∫ ∞

t0

1

p(t)
∆t = ∞.

(a) If (1.2) is nonoscillatory, then L is limit-point.
(b) If (1.1) is nonoscillatory, then L is limit-point.

Proof Suppose (1.2) is nonoscillatory. Let y be a positive solution of (1.2) on [t0,∞),

and make the Riccati substitution z(t) =
y∇(t)

q(t)y(t)
. Then z solves

z∆ = −
1

p(t)
−

(zσ)2

1
qσ(t) − µ(t)zσ

.

Integrate both sides from t0 to t:

z(t) − z(t0) = −

∫ t

t0

1

p(s)
∆s−

∫ t

t0

(zσ(s))2

1
qσ(s) − µ(s)zσ(s)

∆s. (4.1)



104 J. WEISS

Since
(zσ(t))2

1
qσ(t) − µ(t)zσ(t)

≥ 0

for all t ≥ t0, we get that the right hand side of (4.1) goes to −∞ as t goes to ∞. Thus,
z(t) → −∞ as t → ∞, so z, and hence y∇, is eventually negative. Thus, eventually
y(t) > 0 and y∇(t) < 0, hence y is bounded. Thus, by Corollary 2.1 we get that L is
limit-point.

Now suppose (1.1) is nonoscillatory. Let x be a positive solution of (1.1) on [t0,∞).

Since q(t) > 0, we have
(
p(t)x∆(t)

)∇
= −q(t)x(t) < 0 on [t0,∞).

Claim: p(t)x∆(t) ≥ 0 on [t0,∞).
To see this, suppose not. Then there exists t1 ≥ t0 with p(t1)x

∆(t1) < 0. Since p(t)x∆(t)
is decreasing, p(t)x∆(t) ≤ p(t1)x

∆(t1) < 0 on [t1,∞). Then, dividing by p(t) and
integrating, we get

x(t) − x(t1) ≤ p(t1)x
∆(t1)

∫ t

t1

1

p(s)
∆s.

Thus, lim
t→∞

x(t) = −∞. This contradicts the fact that x(t) > 0 for all t ≥ t0. Hence

the claim holds and we see then that p(t)x∆(t) is bounded, so by Corollary 2.1, L is
limit-point.

Definition 4.1 The set L2
∇

[t0,∞) is defined to be the set of all functions f(t) such
that the Lebesgue integral ∫ ∞

t0

f2(t)∇t <∞.

We define the L2
∇

-norm of a function f ∈ L2
∇

[t0,∞) by

‖f‖L2

∇

:=

(∫
∞

t0

f2(t)∇t

)1/2

.

Definition 4.2 The operator L is said to be ∇-limit-circle if all solutions of Lx = 0
satisfy x, xρ ∈ L2

∇
[t0,∞). We say L is ∇-limit-point if there is a solution x(t) of Lx = 0

such that x 6∈ L2
∇

[t0,∞) or xρ 6∈ L2
∇

[t0,∞).

Theorem 4.2 Let M be a positive ∇-differentiable function and k1, k2 > 0 such that
there is a T ∈ T, sufficiently large such that

(i) q(t) ≤ k1M(t) for t ∈ [T,∞),

(ii)
∫∞

T (p ρMρ)−1/2∇s = ∞,

(iii)

∣∣∣∣∣

(
p ρ(t)

Mρ(t)

)1/2
M∇(t)

M(t)

∣∣∣∣∣ ≤ k2 for t ∈ [T,∞).

Then L is ∇-limit-point.

Proof Suppose x is a solution of Lx = 0 and x, xρ ∈ L2
∇

[t0,∞). Since (px∆)∇ =
−qx, we get that for some c > 0,

∫ t

c

(px∆)∇x

M
∇s = −

∫ t

c

q

M
x2∇s ≥ −k1

∫ t

c

x2∇s. (4.2)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9 (1) (2009) 99–108 105

Using the integration by parts formula ([2], Theorem 8.47 (vi))

∫ b

a

f(s)g∇(s)∇s = f(s)g(s)|
b
a −

∫ b

a

f∇(s)g ρ(s)∇s,

we get from (4.2)

x

M
px∆

∣∣∣
t

c
−

∫ t

c

(px∆)ρ
( x
M

)∇
∇s =

x

M
px∆

∣∣∣
t

c
−

∫ t

c

p ρx∆ρ

(
x∇M − xM∇

MMρ

)
∇s

=
x

M
px∆

∣∣∣
t

c
−

∫ t

c

p ρ

Mρ
(x∇)2∇s+

∫ t

c

p ρxx∇M∇

MMρ
∇s

≥ −k1

∫ t

c

x2∇s.

Thus, multiplying by −1, we get

−
x

M
px∆

∣∣∣
t

c
+

∫ t

c

p ρ

Mρ
(x∇)2∇s−

∫ t

c

p ρxx∇M∇

MMρ
∇s ≤ k1‖x‖

2 < k3

for some k3 > 0.

Let H(t) =

∫ t

c

p ρ

Mρ
(x∇)2∇s. Then by the Cauchy-Schwarz inequality

∣∣∣∣
∫ t

c

p ρxx∇M∇

MMρ
∇s

∣∣∣∣
2

=

∣∣∣∣∣

∫ t

c

(
p ρ

Mρ

)1/2

M−1M∇

(
p ρ

Mρ

)1/2

xx∇∇s

∣∣∣∣∣

2

≤ k2
2

(∫ t

c

(
p ρ

Mρ

)1/2

xx∇∇s

)2

by (iii)

≤ k2
2H(t)

∫ t

c

x2∇s.

Thus, there exists a constant k4 > 0 such that

−
px∆x

M
+H − k4H

1/2 < k3.

If H(t) → ∞ as t→ ∞, then for all large t,
px∆x

M
>
H

2
. Then x and x∆ have the same

sign for all large t, which contradicts x ∈ L2
∇

[t0,∞). Thus,

H(∞) =

∫
∞

t0

p ρ

Mρ
(x∇)2∇s <∞.

Now suppose L is ∇-limit-circle. Let φ, ψ be two linearly independent solutions of
Lx = 0 with p(t)

(
φ(t)ψ∆(t) − ψ(t)φ∆(t)

)
= 1 and φ, φ ρ, ψ, ψ ρ ∈ L2

∇
[t0,∞). Then

1 = p ρ(t)
(
φ ρ(t)ψ∆ρ(t) − ψ ρ(t)φ∆ρ(t)

)

= p ρ(t)
(
φ ρ(t)ψ∇(t) − ψ ρ(t)φ∇(t)

)
.
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So, if we divide both sides by (p ρMρ)1/2, we get

1

(p ρMρ)1/2
= φ ρ(t)

(
p ρ

Mρ

)1/2

ψ∇(t) − ψ ρ(t)

(
p ρ

Mρ

)1/2

φ∇(t). (4.3)

If we integrate both sides of (4.3) from t0 to ∞, we get

∫ ∞

t0

1

(p ρMρ)1/2
∇s =

∫ ∞

t0

φ ρ

(
p ρ

Mρ

)1/2

ψ∇∇s−

∫ ∞

t0

ψ ρ

(
p ρ

Mρ

)1/2

φ∇∇s. (4.4)

By assumption, the left-hand side of (4.4) is infinite. But, by the Cauchy-Schwarz
inequality, the right-hand side becomes

∣∣∣∣∣

∫
∞

t0

φ ρ

(
p ρ

Mρ

)1/2

ψ∇∇s−

∫
∞

t0

ψ ρ

(
p ρ

Mρ

)1/2

φ∇∇s

∣∣∣∣∣

≤ ‖φ ρ‖L2

∇

(∫ ∞

t0

p ρ

Mρ
(ψ∇)2∇s

)1/2

+ ‖ψ ρ‖L2

∇

(∫ ∞

t0

p ρ

Mρ
(φ∇)2∇s

)1/2

<∞.

This is a contradiction to the assumption that L is ∇-limit-circle. Thus, we have that L
is ∇-limit-point

5 Example

Fix q > 1. Let T = {qn : n ∈ N0}. Consider the dynamic equation

x∆∇ + (t ln t)2x = 0.

Here, we have p(t) ≡ 1, and q(t) = (t ln t)2. We need to show that the three assumptions
in Theorem 4.2 hold. Fix N > 0 sufficiently large and let T = qN . Also, let M(t) =
(t ln t)2. For (i), if we take k1 = 1, we get that q(t) = M(t) = (t ln t)2 for all t ∈ T, so
certainly q(t) ≤M(t) for t ≥ T .

For (ii), consider

∫
∞

T

(p ρ(s)Mρ(s))−1/2∇s =

∫
∞

T

1

(Mρ(s))1/2
∇s =

∫
∞

T

1

((ρ(s) ln ρ(s))2)1/2
∇s

=

∫ ∞

T

1

ρ(s) ln ρ(s)
∇s =

∞∑

k=N+1

1

qk−1 ln qk−1
ν(qk)

=
∞∑

k=N+1

1

qk−1 ln qk−1
(qk − qk−1) =

∞∑

k=N+1

qk−1(q − 1)

qk−1 ln qk−1

=
q − 1

ln q

∞∑

k=N+1

1

k − 1
=
q − 1

ln q

∞∑

k=N

1

k
= ∞.
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Notice,

M∇(t) =
(qk ln qk)2 − (qk−1 ln qk−1)2

qk − qk−1

=
(qk ln qk − qk−1 ln qk−1)(qk ln qk + qk−1 ln qk−1)

qk − qk−1

=
(qk−1)2(ln q)2(qk − (k − 1))(qk + (k − 1))

qk−1(q − 1)

=
qk−1(ln q)2(q2k2 − (k − 1)2)

q − 1
.

Thus, for part (iii), we have for k ≥ N

∣∣∣∣∣

(
p ρ(t)

Mρ(t)

)1/2
M∇(t)

M(t)

∣∣∣∣∣ =
qk−1(ln q)2(q2k2 − (k − 1)2)

(q − 1)qk−1 ln(qk−1) q2k(ln qk)2

=
qk−1(ln q)2(q2k2 − (k − 1)2)

(q − 1)qk−1q2k(k − 1)k2 ln q(ln q)2

=
q2k2 − (k − 1)2

(q − 1)k2(k − 1)q2k ln q

≤
q2k2

(q − 1)k2(k − 1)q2k ln q

≤
q2

(q − 1)(k − 1)q2k ln q

≤
1

(q − 1)(k − 1)q2k−2 ln q

≤
1

(q − 1)(N − 1)q2N−2 ln q
:= k2

Thus, the assumptions of Theorem 4.2 hold, so we get that

x∆∇ + (t ln t)2x = 0

is ∇-limit-point.
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Applications. Birkhäuser, Boston, 2001.

[3] Bohner, M. and Peterson, A. (Eds.). Advances in Dynamic Equations on Time Scales.
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