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Abstract: In this paper, we establish some criteria under which the second
order formally self-adjoint dynamic equation

(p(t)a™)Y +q(t)z =0

is of limit-point type on a time scale T. As a special case when T = R, our
results include those of Wong and Zettl [11] and Coddington and Levinson
[5]. Our results are new in a general time scale setting and can be applied to
difference and g-difference equations.
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1 Introduction

In this paper, assume that inf T = ¢y, and supT = co. We will sometimes refer to T as
[to, 00) which we mean to be the real interval [tg, c0) intersected with T. Assume that
p(t) # 0 and ¢(t) # 0 for ¢ € T are continuous functions on T. We will consider the
formally self-adjoint equations

Lz = (pt)a®)" + q(t)x =0 (1.1)
and A
Ly= <£)yv> + ﬁy =0. (1.2)
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Let D be the set of functions = : T — R such that 22 : T — R is continuous, and

(pz®)V : T, — R is continuous. Let D be the set of functions z : T — R such that
A

v

zV : T, — R is continuous, and | —x : T, — R is continuous. We say (1.1) and

(1.2) are reciprocal equations of each other. See [7] for more on reciprocal equations and
[8], [9] and [10] for other results dealing with second-order equations, and [6] and [4] for
more on general theories used in this paper.

These equations are said to be formally self-adjoint because they satisfy the following
Lagrange identity.

Theorem 1.1 (Lagrange identity)

(i) Let u,v € D. Then
w(t)Lo(t) — v(t)Lu(t) = {u; v}V (t)

fort € Ty, where the Lagrange bracket {u;v} is defined by
{u; v}(t) := p(OW (u, v) (1),

where

(ii) Let @, € D. Then

1w

N N A
At Io(t) — o) La(t) = (q W@ 5)@))

fort € Ty, where

For a proof of Theorem 1.1 (i), see Theorem 4.33 in [3].

Corollary 1.1 (Abel’s formula)
(i) If x and y both solve (1.1) then

pO)W(z,y)(t) =a teT,

where a 1s a constant.

(i) If x and y both solve (1.2) then

mW(x,y}(t} =a teT,,

where a is a constant.

For a proof of Corollary 1.1 for the case of (1.1), see Corollary 4.34 in [3].

Definition 1.1 The set L%[tg,c0) is defined to be the set of all functions f(t) such
that the Lebesgue integral

/: FA(t)At < oo.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9 (1) (2009) 99-108 101

We define the L2-norm of a function f € L?[ty, 00) by

0o 1/2
1llze = 1] = (/ f2(t)At> |

Definition 1.2 We say that the operator L is (A-)limit-circle type if for every solu-
tion « of Lz = 0, we have the Lebesgue integral

/OO 22(t) At < oo.

to

If not, we say that the operator L is (A-)limit-point type.

Refer to Wong and Zettl, [11], and Coddington and Levinson, [5], for an analysis of
the differential equations case.

2 Preliminary Lemmas
1
Lemma 2.1 If there exists a function B(t) with 3 ¢ L%[ty,00) such that pz®(t) =
O(B(t)) ast — oo for every solution x of (1.1), then L is limit-point type.

Proof Suppose (1.1) is limit-circle type, and let 21, x2 be linearly independent solu-
tions of (1.1), so we have by Corollary 1.1 part (i)

p(t)(x1(t)x2 (t) — z2(t)z () =a teT.

Then there exist constants ¢, d > 0 such that

z1(8)|lp(t)ay ()] + |22 ()] [p(t)a (1))
cB(t)|x1(t)] + dB(t)|z2(t)|  for large t € T.

a

IAIA

Thus, for large t € T,

5 < clay (t)] + dlz2(t)).

It follows that for T large,

a/T %(S)AS < /T (221 (s) + 2cda1(s)z2(s) + d?a3(s)]As

< Al l® + 2edan [[|lz2ll + d? [l

< 0

by the Cauchy-Schwarz inequality (Theorem 6.15, [2]). This contradicts the fact that
1 9 e .
B & L*[tp,0), so L is limit-point type.

Lemma 2.2 Suppose q € Cl[tg,0). If there exists a positive function 3 with % ¢

L?[ty,00) such that y(t) = O(B(t)) as t — oo for every solution y of (1.2), then L is
limit-point type.
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Proof Let z be a solution of (1.1), and put y = pz®. Then yV = —gz and
A
1
q p

y(t) = (p2®)(t) = O(B(1)) as t — oo,

Hence, y solves (1.2). Thus,

Thus, by Lemma 2.1, L is limit-point type.
A useful corollary to these lemmas is obtained by letting 5(t) = 1.

Corollary 2.1 If (px®)(t) is bounded for every solution x of (1.1), or if every solu-
tion y of (1.2) is bounded, then L is limit-point type.

3 Riccati Substitution

Suppose y is a solution of (1.2) with q(t)y(t)y°(t) > 0 for t > to. We can then make the
Riccati substitution

for ¢ € [tg, ).

Then, we have

=0= (%) i)
A o A
-(5) )+ () ()
v o, A
B _z% " yq(g) (y tﬁyc’( 8))
_ 1 2yt
p(t) y(t)

We now use the following lemma, due to Atici and Guseinov [1]:

Lemma 3.1 If f : T — R is A-differentiable on T* and if f* is continuous on T*,
then f is V-differentiable on T, and

fY(t) = fA°(t) teT,.

If g : T — R is V-differentiable on T, and if gV is continuous on T, then g is A-
differentiable on T* and

9o () =gv7(t) teT"

See also Corollary 4.11 and Theorem 4.8 and Corollary 4.10 in [3] for a generalization
of this result.
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Thus, we get
N OO O I Ok 0y
y(t) yo(t) —u®)y2(t) 1 - () v;"(g)
¢°(t)(z7(t)* (27(1))?

T 0270 - ah @)

Hence, we get that z(t) solves the so-called Riccati equation associated with (1.2)

VI S i LY (3.1)

1
Notice that —— — u(t)z7(t) > 0 for all t > ¢:

q°(t)
L oo L y2(t)
7o MO0 =G SO GG m
_ 1 o _ A
- qd(t)yg(t) [y (t) /J,(t)y (t)]
oyt
e "

Hence, we have proven the following lemma:

Lemma 3.2 Ify(t) is a solution of (1.2) with q(t)y(t)y (t) > 0 then z(t) :=

1
is a solution of (3.1) that satisfies —— — u(t)z7(t) >0 for allt € T.

q° (1)
4 Main Results
> 1

Theorem 4.1 Suppose that p(t) > 0 and q(t) > 0 on [tg, c0), and/ mAt = 0.
to P

(a) If (1.2) is nonoscillatory, then L is limit-point.
(b) If (1.1) is nonoscillatory, then L is limit-point.

Proof Suppose (1.2) is nonoscillatory. Let y be a positive solution of (1.2) on [tg, 00),

Y
t
and make the Riccati substitution z(t) = y () . Then z solves
q(t)y(t)
1 o\2
JA & . (=7)

Integrate both sides from tg to t:

IR U BV N )
2(t) — 2(to) /t ol /t — e TREIRE (4.1)
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Since
(27(1))?
Fm — Ht)2(t) ~

for all t > tg, we get that the right hand side of (4.1) goes to —oo as t goes to oo. Thus,
2(t) — —oco as t — o0, 50 z, and hence yV, is eventually negative. Thus, eventually
y(t) > 0 and yV(t) < 0, hence y is bounded. Thus, by Corollary 2.1 we get that L is
limit-point.

Now suppose (1.1) is nonoscillatory. Let = be a positive solution of (1.1) on [tg, 00).
Since ¢(t) > 0, we have (p(t)z> (t))v = —q(t)z(t) <0 on [tg, 00).
Claim: p(t)z®(t) > 0 on [to, o0).
To see this, suppose not. Then there exists t; > to with p(t1)z® (t1) < 0. Since p(t)z> (t)
is decreasing, p(t)z®(t) < p(t1)z®(t1) < 0 on [t1,00). Then, dividing by p(t) and
integrating, we get

z(t) — z(ty) < p(t1)z™(t) /t LAs.

t P(s)
Thus, tlim x(t) = —oo. This contradicts the fact that x(t) > 0 for all ¢ > t,. Hence

the claim holds and we see then that p(t)z>(t) is bounded, so by Corollary 2.1, L is
limit-point.

Definition 4.1 The set L% [tg, 00) is defined to be the set of all functions f(¢) such
that the Lebesgue integral

/Oo P8V < 0.

We define the L%-norm of a function f € L [to, 00) by

0o 1/2
T ( / f2<t>w) |

Definition 4.2 The operator L is said to be V-limit-circle if all solutions of Lz = 0
satisfy x,2? € L%[tg, 00). We say L is V-limit-point if there is a solution z(t) of Lz = 0
such that « & L% [tg, 00) or z” & L% [tg, 00).

Theorem 4.2 Let M be a positive V-differentiable function and k1,ks > 0 such that
there is a T € T, sufficiently large such that
(1) q(t) < kaM(t) for t € [T, 00),
(ii) [ (P MP) V2V = o,
(i) (pp(t) )”2 MY (1)
Mpr(t) M(t)
Then L is V-limit-point.

< ky forte [T, o0).

Proof Suppose z is a solution of Lz = 0 and z, 2" € L% [tg, 00). Since (pz2)Y =

—qz, we get that for some ¢ > 0,

t AV ¢ t
/ %Vs: _/ %ﬁwz _kl/ 2’Vs. (4.2)
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Using the integration by parts formula ([2], Theorem 8.47 (vi))

b b
/ [0 ($)Vs = Fe)g6)l— [ F7(8)97(s)Vs,

we get from (4.2)

t t v t VM — MY
| = [ty (5) T ve = e = [t (S ) s
L INUNLEY by TP "praz¥ MY
= P c‘/cm(ﬂvﬂ IR

t
> —kl/ 22Vs.

Thus, multiplying by —1, we get

t . p \8Va4
L pa / PP s— [ PG < Rl < by

. MM?

for some k3 > 0.

Let H(t / MP )2Vs. Then by the Cauchy-Schwarz inequality

¢ o\ 1/2 o\ 1/2 2
p —1q24v (P v
/(—p) MM (—p) 22V Vs

2
¢ pPxxy MY

VNP Vs

C

Thus, there exists a constant k4 > 0 such that

A

pxr— 1/2
- H—kH k3.
Mo E
przr  H
If H(t) — oo as t — oo, then for all large ¢, T Then z and 2 have the same

sign for all large ¢, which contradicts z € L% [tg, 00). Thus,

mﬁ(

H(o0) = o MP

zV)?Vs < oco.

Now suppose L is V-limit-circle. Let ¢, be two linearly independent solutions of

La = 0 with p(t) ($(1)02 (1) — $(1)62 (1)) = 1 and 6, ¢¥, v, §° € L tg, 00). Then

L=p"(t) (o7 (20 (1) — 9 (1) (1))
=p"(t) (67 (OVY () — v (1)o7 (1))



106 J. WEISS

So, if we divide both sides by (p?M?)'/2, we get

o\ 1/2 o\ 1/2
o =0 (3) 0w (3) 0. as

If we integrate both sides of (4.3) from ¢y to oo, we get

oo 1 oopppl/Qv oopppl/Qv
/to 7(pPMP)1/2VS_/tO 0] G Y Vs—/to P WG @V Vs. (4.4)

By assumption, the left-hand side of (4.4) is infinite. But, by the Cauchy-Schwarz
inequality, the right-hand side becomes

00 1/2 0o 1/2
[ Gr) o[ (Gm) ot
to to

© p 1/2 © p
<%l ([ @P9s) +htleg ([ 4072

< 00.

1/2

This is a contradiction to the assumption that L is V-limit-circle. Thus, we have that L
is V-limit-point
5 Example
Fix ¢ > 1. Let T = {¢" : n € Ng}. Consider the dynamic equation

2V 4 (tlnt)%z =0,
Here, we have p(t) = 1, and q(t) = (tInt)?. We need to show that the three assumptions
in Theorem 4.2 hold. Fix N > 0 sufficiently large and let T = ¢~. Also, let M(t) =
(tInt)2. For (i), if we take k; = 1, we get that q(t) = M(t) = (tInt)? for all t € T, so

certainly ¢(t) < M (t) for t > T.
For (ii), consider

00 " " 172 . 0o 1 . s 1 .
[ wrenertes= [ QLo )2 / (oL OBEEM

> 1 > 1
= ——— Vs = — ("
I erve 2 )
_ i 1 (¢" — ¢* 1) = ¢ (g1
k=11 gk—1 - k—11p ok—1
k=N+1 q lnq k=N+1 q lnq
g1l & 1 g-1~1_
~ Ing k—1 Ing Zk_OO'
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Notice,
MV(t) B (qk I qk)2 _ (qkfl I qkfl)Q
- qk _ qk—l
_ (¢*Ing" —¢"'Ing" ) (¢" Ing* + ¢* ' Inghh)
qk _ qkfl
_ (@) q)*(gk — (k = 1))(gk + (k — 1))
" 1(g—1)
_ 4" '(ng)*(?k* — (k- 1))
— p— .
Thus, for part (iii), we have for k > N
pP®) 2 MY®)| ¢ (ng)?(¢?K — (k- 1)?)
Mpr(t) M(t) | (¢—1)g" In(g*1) g**(Ingk)?

" (ng)? (K — (k —1)?)
(¢ —1)¢*1¢?* (k — 1)k? Inq(In g)?

B q2k2 _ (k _ 1)2
(g —1)k2(k —1)g%! Ingq

- q2k2

~ (¢—1)k2(k—1)¢?)Ing

< q2

T (g—1)(k—1)¢**Ing
1

=l Dk D 2hg
1

< =k
S @-D(N-1)¢?N ?Ing

Thus, the assumptions of Theorem 4.2 hold, so we get that

22V 4 (tint)?z =0

is V-limit-point.
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