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1 Introduction

Let T be a time scale and a,b € T be fixed points with a < b such that the time scale
interval

(a,b) ={teT:a<t<b}

is not empty. Throughout, all the intervals are time scale intervals. For standard notions
and notations related to time scales calculus see [1, 2].
In this paper, we deal with the nonlinear boundary value problem (BVP)

yAv(t) + f(tvy(t)> =0, te (CL, b)v (1)

y(a) = y(b) = 0. (2)

A function y : [a,b] — R is called a solution of the BVP (1), (2) if the following
conditions are satisfied:
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(a) y is continuous on [a,b] and delta differentiable on (a,b) and such that there exist
(finite) limits

y2(a) ;= lim y2(t) and ¢y2(b) := lim y2(¢).

t—at t—b—
(b) y? is V-differentiable on (a, b].
(c) y satisfies equation (1) and boundary conditions (2).
The main result of this paper is the following theorem.

Theorem 1.1 Suppose f : [a,b]xR — R is continuous, f(b,0) = 0 in the case b is
left-scattered, and suppose f satisfies the Lipschitz condition

|f(t7§)_f(t7n)| Sng_T/l (3)

for allt € [a,b] and &,n € R, where L > 0 is a constant (Lipschitz constant), R denotes
the set of real numbers. Suppose further that

L <M\, (4)
where A1 is the least positive eigenvalue of the problem
y2V(t) + My(t) =0, t€ (ab), (5)
y(a) = y(b) = 0. (6)
Then the BVP (1), (2) has a unique solution.

Proof of Theorem 1.1 is presented in Section 2 and it uses a Hilbert space technique.
In Section 3, we compute the eigenvalues of (5), (6) explicitly in the cases T = R and
T = Z (the set of integers) and show that

and

8
A o=dsin? > if T=2.
! S 2(b—a) — (b—a)? '

Finally, in Section 4, we show that in the general case of arbitrary time scale T the

estimation
4

(b—a)?

holds and therefore the more explicit condition of the form

AL >

(b—a)?

implies condition (4) of Theorem 1.1.
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2 Proof of Theorem 1.1

Denote by H the Hilbert space of all real V-measurable functions y : (a,b] — R such
that y(b) = 0 in the case b is left-scattered, and that

b
/ y? (1) Vt < oo,
with the inner product
b
)= [ wo=ove

and the norm )

2

b
lyll = V{y, y) = {/ y> (1) Vt}

Next denote by D the set of all functions y € H satisfying the following three condi-
tions:

(i) y is continuous on (a, b, y(b) = 0, there exists y(a) := lim;_,,+ y(¢t) and y(a) = 0.
(ii) y is continuously A-differentiable on (a,b), there exist (finite) limits

y2(a) == lim+ y2(t) and y2(b) := hI;l yA(t).
t—a t—b—

(iii) y? is V-differentiable on (a,b] and y2V € H.
Define the operators A: D CH — H and F': ' H — H by
(Ay)(t) = —y2V(t) for yeD,

(Fy)(t) = f(t,y(t)) for ye€H.

Note that the operator A is linear, while F' is nonlinear in general. The eigenvalues
of problem (5), (6) coincide with the eigenvalues of the operator A.
As is shown in [3], the operator A is symmetric and positive:

(Ay,z) = (y,Az) forall y,ze€D,

(Ay,y) >0 forall yeD, y#D0.

Further, A has N = dimH (where N < c0) orthonormal eigenfunctions ¢y which form
a basis for H and the corresponding eigenvalues are simple and positive:

Apr = Mok,
(prr 1) =0if k #land (pp, 1) = 1if k=1,
O< M <X<...
For any function u € H we have (expansion formula and Parseval’s equality)

N

U = ZCksﬁk, cx = (U, @r) (7)

k=1
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N
2
all® = {u,u) = D i

k=1

In the case N = oo the sum in (7) becomes an infinite series and it converges to the
function u in metric of the space H. Since the operator A is positive, it is invertible. We
have

N
Au = ch)\kgok forall weD,

k=1

N
A7y = Z C—kgpk for all we™H,

where ¢, are defined in (7). Hence

41 2_N_i<iN
JA7ul =2 5 < m 2 A2|| ull”.
k=1

Thus we have established the following result: The operator A is invertible and
-1 1
A" | < o™ [lu|| forall weH. (8)
1

The BVP (1), (2) is equivalent to the vector equation
Ay=Fy for yeD,
which can be written in the form
y=A"'Fy for yeH. (9)

Note that the inverse operator A~! maps H onto D and therefore if y € H satisfies (9)
then y € D. Let us set S = A71F. Then we get that the BVP (1), (2) is equivalent to
the equation

y=2Sy (yeH).

The last equation is a fixed point problem.

We will use the following well-known contraction mapping theorem: Let H be a
Banach space and suppose that S : H — H is a contraction mapping, i.e., there is an «,
0 < o < 1, such that ||Su — Sv|| < a||u — v|| for all u,v € H. Then S has a unique fized
point in H.

It will be sufficient to show that the operator S = A~!F is a contraction mapping on
the space H. We have, using (8),

[|Su — Sv||

|4~ Fu— A~ F
HA (Fu— Fv H

IN

— HFu—FvH (10)
A1
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Next, making use of the Lipschitz condition (3), we get

|Pu— Fol|* = [f(tu(t) = f(t,0(8)]* Ve

so that
|Fu— Fov|| < L|u—wv| foral wu,veH.

Thus, from (10) we obtain
L
[|Su — Sv|| < o lu—v| forall wu,veH.
1

Consequently, we see that under the condition (4), S is a contraction mapping and hence
it has a unique fixed point in H by the contraction mapping theorem. Theorem 1.1 is
proved.

Remark 2.1 The condition that functions y € H satisfy y(b) = 0 in the case b is
left-scattered guarantees the density of D in H (this is needed for the operator theory)
and the condition that f(b,0) = 0 in the case b is left-scattered guarantees F'y € H for
y € H.

3 Examples
In the case T = R, problem (1), (2) takes the form
y'(t) + f(ty(t) =0, te€(ab),

y(a) =y(b) =0,
and eigenvalue problem (5), (6) takes the form

y'(t) + M y(t) =0, te(a,b), (11)
y(a) =y(b) = 0. (12)
The eigenvalues of (11), (12) are
w2 k2
Ak = k=12,...
k (b — a)g ( ) )
with the corresponding orthonormal eigenfunctions
k(t —
or(t) = ag sin% (k=1,2,...),
—a

where oy, are normirating constants. Therefore in this case
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and condition (4) becomes

7T2

BRRCEDE
In the case T = Z, problem (1), (2) takes the form
y(t =1 =2y() +y(t+ 1) + f(t,y(t) =0, tela+1,b-1],
y(a) =y(b) =0,
and eigenvalue problem (5), (6) takes the form
y(t—1) —2y(t) +y(t+1)+ My(t) =0, tela+1,b—1], (13)
y(a) =y(b) = 0. (14)

The eigenvalues of (13), (14) are (cf. [4, Chap.7])

\p = 4sin? 1<k<b—a-1)

wk
2(b—a
with the corresponding orthonormal eigenfunctions

k(t —
cpk(t):aksin% 1<k<b—a-1),

where oy, are normirating constants. Therefore

A = 4sin? — =
1 sin 3—a)

and condition (4) becomes

L < 4sin?

2(b—a)’

Since b — a > 2, using the inequality

2v/2
sinxz—\/_x for nggg,
T

we have that

5 T 8 72 2

20b—a) = 22

s 2 4b—a)2  (b—a)?

and, therefore, the condition of the form

implies condition (15).
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4 An Estimation for \; in General Case

In the case of arbitrary time scale T we have (8). Besides, from Ap; = A1 we have

_ 1 1
[ )\_1%71 =N
Consequently,
1
-1 —
A7 = % (16)

On the other hand, the inverse operator A~! has the form (see [3])

b
(A" u)(t) :/ G(t,s)u(s)Vs for any wu € H,

where ) ( \( '
t—a)(b—s) if t<s,
G(t=8)—b_a{ (s—a)b—t) if t>s (17)
Hence
) b| b 2
[ / /G(t,s)u(s)Vs Vi
b b
<l [ [l6s)Pvsve
so that

-

b b 2
HA—lug{/ / |G(t,s)|2Vth} |

Therefore, taking into account (16), we get

A > {/ab/ab|G(t,s)|2Vth} . (18)

Next, from (17) it follows that

[SE

1
b—a

0<G(ts) < (s—a)(b—29)

for all ¢ and s in [a, b]. Therefore

/ab/ab|G(t,s)|2Vth§ ﬁ/{;b[f(s_ay(b—s)QVth

and observing that

0<(s—a)b—s) < (b—a)”

for s € [a,bl,

b b _ o\
//|G(t,s)|2Vth§(b 16a>.

Comparing this with (18), we obtain

we find
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