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Abstract: Values of \i,..., )\, are determined for which there exist pos-
itive solutions of the iterative system of dynamic equations, u22(t) +
Alal(t)fz(uZJrl(a(t))) =0,1<17<n, unJrl(t) = ul(t), for t € [0,1]?, and
satisfying the boundary conditions, u;(0) = 0 = u;(¢(1)), 1 <i < n, where T
is a time scale. A Guo-Krasnosel’skii fixed point theorem is applied.
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1 Introduction

Let T be a time scale with 0, 02(1) € T. Given an interval J of R, we will use the interval

notation,
Jr:=JNT.

We are concerned with determining values of )\;, 1 < i < n, for which there exist
positive solutions for the iterative system of dynamic equations,

’U,l-AA(t) + )\iai(t)fi(ui+1(a(t))) = O, 1< < n, t e [0, 1]’]1‘, (1)
UnJrl(t) = ul(t)a te [07 1]71'7

satisfying the boundary conditions,
ui(0) =0 = u;(0%(1)), 1 <i<n, (2)

where
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(A) fi € C([0,00), [0700))7 1<e<ny

(B) a; € C([0,0(1)]T,[0,00)), 1 < i < n, and a; does not vanish identically on any
closed subinterval of [0, o (1)]r;

(C) Each of f;p:= lim £i@) and fico := lim f"(x), 1 <i < n, exists as a positive real
rz—0+ 7T r—oo L

number.

There is a great deal of research activity devoted to positive solutions of dynamic
equations on time scales; see, for example [1, 3, 4, 5, 8, 10, 14]. This work entails an
extension of the paper by Chyan and Henderson [9] to eigenvalue problems for systems
of nonlinear boundary value problems on time scales, and also, in a very real sense, an
extension of the recent paper by Benchohra, Henderson and Ntouyas [7]. Also, in that
light, this paper is closely related to the works by Li and Sun [27, 29].

On a larger scale, there has been a great deal of study focused on positive solutions of
boundary value problems for ordinary differential equations. Interest in such solutions is
high from both a theoretical sense [11, 13, 21, 24, 31] and as applications for which only
positive solutions are meaningful [2, 12, 25, 26]. These considerations are formulated
primarily for scalar problems, but good attention also has been given to boundary value
problems for systems of differential equations [6, 15, 16, 17, 18, 19, 20, 22, 23, 28, 30, 32].

The main tool in this paper is an application of the Guo-Krasnosel’skii fixed point
theorem for operators leaving a Banach space cone invariant [13]. A Green’s function
plays a fundamental role in defining an appropriate operator on a suitable cone.

2 Some preliminaries

In this section, we state the well-known Guo-Krasnosel’skii fixed point theorem which
we will apply to a completely continuous operator whose kernel, G(¢, s), is the Green’s
function for

A
y(0) =0 = y(o*(1)).

Erbe and Peterson [10] have found,

)

1 t(o?(1) —o(s)), ift<s,
G(t,s) = (1)
a(s)(o?(1) —t), ifo(s) <t,
from which
G(t,s) > 0,(t,s) € (0,6°(1)r x (0,0(1))r, (3)
a(s)(o?(1) —o(s
Git,s) < Glo(s),s) = ZNTW =06) 4 vy 2y s e 00D, (@)

and it is also shown in [10] that

G(t,s) > kG(o(s),s) =

where
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We note that an n-tuple (uq(t),...,u,(t)) is a solution of the eigenvalue problem (1), (2)
if, and only if

o(1)
ui(t) = )\i/o G(t,8)a;(s) fi(uir1(o(s))As, 0<t <o%(1), 1<i<n

and
Uny1(t) = ui(t), 0 <t < a?(1),

so that, in particular,

a(1) a(1)
ul(t) = )\1‘/0 G(f, sl)al(sl)fl ()\2‘/0 G(O’(Sl),SQ)ag(Sg) X
o(1)
% f2 (Ag/o G(0(s2), s3)az(s3) - x

X fr—1 ()\n /00(1) G(o(sn-1), sn)an(sn)fn(ul(U(sn)))Asn) . -ASg)ASQ)ASl-

Values of A\1,..., A\, for which there are positive solutions (positive with respect to a
cone) of (1), (2), will be determined via applications of the following fixed point theorem
[13].

Theorem 2.1 Let B be a Banach space, and let P C B be a cone in B. Assume (2
and Qo are open subsets of B with 0 € Q1 C Q1 C Qo, and let

T:PN(Q\Y)—7P
be a completely continuous operator such that, either
(1) [|Tu]] < |lull,u e PN, and ||Tul| > |Ju|,w € PN ON, or
(i) |Tu| > ||lull,w € P NI, and ||Tul|| < ||u|,u € P N ONs.
Then T has a fized point in PN (Qa \ Q).

3 Positive solutions in a cone

In this section, we apply Theorem 2.1 to obtain solutions in a cone (that is, positive
solutions) of (1), (2). Assume throughout that [0,0%(1)]r is such that

§=min{t€T|t2#}

and

302(1
w:max{té'ﬂtﬁ 04( )}

both exist and satisfy
o?(1) 302(1)
1 .
Next, let 7; € [£,w|r be defined by

/; G(7i,8)a(s)As = min /: G(t, s)ai(s) As.

telg,wlr
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Finally, we define

G(o(w), 5)

l= min ———22
s€[0,02()]r G(o(s),s)

and let

m = min{k, [}. (6)

For our construction, let B = {x | z : [0,0%(1)]r — R} with supremum norm, ||z| =
sup{|z(t)| : t € [0,0%(1)]7}, and define a cone P C B by

P = {x € B | x(t) > 0on [0,0%(1)]r and [?11(11 . z(t) > m|x||}
tel§,o(w)]T

We next define an integral operator T': P — B, for u € P, by

o(1) a(1)
Tu(t) = M / Gt sl fi (% / Glo(s1), s)as(sz) x
o(1)
xfg()\3/0 G(o(52), 53)as(ss) -+ x (7)

X fn_1 (/\n /0‘7(1) G(o(sn-1), sn)an(sn)fn(u(a(sn)))Asn) . .A53)A52)A51.

Notice from (A), (B) and (3) that, for u € P, Tu(t) > 0 on [0,0%(1)]p. Also, for
u € P, we have from (4) that

o(1) a(1)
Tu(t) < )\1‘/0 G(o(sl),sl)al(sl)fl()\g/o G(U(Sl),SQ)ag(Sg) X
o(1)
Xf2 ()\3‘/0 G(O’(Sg), 53)(13(53) e X
o(1)

X fn—1 (/\n/o G(o(sn-1), sn)an(sn)fn(u(a(sn)))Asn) . ~A53)A52)A51.

so that
o(1) a(1)

ITul < x [ Gletssmenf (e [ Glotn).saas) x

o(1)
ng (Ag/o G(O’(Sg), Sg)dg(Sg) e X (8)

X fr_1 ()\n /00(1) G(o(sp-1), sn)an(sn)fn(u(o(sn)))Asn) .. As3)A32)A81.
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Next, if u € P, we have from (5), (6) and (8),

min _ Tu(t)
te§,o(w)lr

o(1) a(1)
= min ]T)\l/o G(t,sl)al(sl)fl ()\2‘/0 G(U(Sl),SQ)ag(Sg) X

telé,o(w)
o(1)

X f2 ( : 'fnl()\n/(;

G((5n—1), 5n)an(sn) fn(u(a(sn)))Asn) . .)Asz)Asl

> Alm/og(l) G(o(s1),s1)a1(s1)f1 ()\2 /00(1) G(o(s1), 82)az(s2) X
X fo ( c fon ()\n /00(1) G(o(sn_1), sn)an(sn)fn(u(a(sn)))Asn) . .)Asz)Asl
> m||Tul.

Consequently, T': P — P. In addition, the standard arguments can be used to verify
that T is completely continuous.
By the remarks in Section 2, we seek suitable fixed points of T' belonging to the cone P.

For our first result, define positive numbers L; and Ly by

w —1
L= 113?<Xn{ |:m/§- G(Ti, S)ai(S)AS,fioo:| } )

o(1) -t
Lo := min l/o G(U(S),S)ai(S)Asfi0‘| )

1<i<n

and

where we recall that G(o(s),s) = %W
Theorem 3.1 Assume conditions (A), (B) and (C) are satisfied. Then, for
AL, ..., An Satisfying
Li<X<Ly 1<i<n, )
there exists an n-tuple (u1,...,u,) satisfying (1), (2) such that u;(t) > 0 on (0,02(1))T,
1<i<n.

Proof. Let A;, 1 <j <n, beasin (9). And let € > 0 be chosen such that

1<i<n ~1<j<n

max {{m/;) G(ri, 8)ai(s)As(fioo —e)]l} < min )

and
—1

o(1)
max A; < min [/0 Glo(s), s)ai(s)As(fio + )

1<i<n 1<i<n

We seek fixed points of the completely continuous operator T : P — P defined by (7).
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Now, from the definitions of f;g, 1 < i < n, there exists an H; > 0 such that, for each
1<t <n,
fi(z) < (fio +€)x, 0 <2 < H;y.
Let u € P with |lu|| = Hy1. We first have from (4) and the choice of ¢, for 0 < s,,_1 <
o(1),

o(1)
An / G0 (501 50)atn(50) Fo (00 (50))) D
0

o(1)

< A / G(0(5n), 5n)atn (50) fo (1((5))) A
o(1)

< /\n/o G(0(8n), 8n)an(5n)(frno + €)(u(o(sn)))Asy
o(1)

< A / G(0(5n), 5n)n(50) D (Fro + )

< ull

= H,.

It follows in a similar manner from (4) and the choice of € that, for 0 < s,_2 < o(1),
o(1)
)\n—l/ G(U(Sn—2)7Sn—l)an—l(sn—l) X
0

X fr (/\n /0 v G(0(5n—1), 5n)an(n) fn(u(a(sn)))Asn)Asn,l

IN
=

o(1)
. / G0 (5n-1)s 801 )an1(8n—1)D8m_1(fa_r.0 + )l]ull
0

il

H;.

IN

Continuing with this bootstrapping argument, we reach, for 0 <t < o2(1),

o(1)
)\1/0 Glt, 51)ar(50) fi(- - Fu(u(o(50))) s - - YAs1 < H,

so that, for 0 <t < o2(1),

Tu(t) < Hy,
or
[Tull < Hy = [ful].
If we set
O ={xeB| || < H},
then

[Tul < [|ull, for u € PN o;. (10)
Next, from the definition of fiso, 1 < i < n, there exists Hy > 0 such that, for each
1<t <n, o
fi(2) = (fico — €)z, > Ha.
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Let _
H
H2 = max{2H1, —2} .
m
Let w € P and ||u|| = Hz. Then

min  u(t) > m|u| > Ha.
telé,o(w)]r

Consequently, from (5) and the choice of ¢, for 0 < s,_1 < (1),

o(1)
A / G(0(5n-1), $n)n(50) f(u(0(50))) A

> T G0 (5no1): 50)an(50) fu (u(0 () As
£
> / G (T $n)tn(5n) (foo — €)(u(0(50))) Asn
3
mA\, G(Tn, 8n)an(8n)Asp (froo — €)||u
> L()()(f )l
>l
= H.

It follows similarly from (5) and the choice of € that, for 0 < s,,_2 < (1),

o(1)
)\n—l / G(U(Sn—2)7Sn—l)an—l(sn—l) X
0

> m)\n—l / G(Tn—h Sn—l)an—l(sn—l)ASn—l(fn—l,oo - 6)HUH
3

Z |l

= H.

Again, using a bootstrapping argument, we reach

o(1)
Tu(m) = )\1/0 G(1,81)a1(s1)f1(- -+ fa(u(o(sn)))Asn -+ )As1 > [Jul| = Ha,

so that || Tu| > |lul|. So, if we set

Qo = {z € B [jz]| < Ha},

then
| Twul| > |Jul|, for u € P N INa. (11)
Applying Theorem 2.1 to (10) and (11), we obtain that 7' has a fixed point u €
PN(22\21). As such, setting u; = u,4+1 = u, we obtain a positive solution (uq, ..., uy,)

of (1), (2) given iteratively by

o(1)
uj(t) = Aj /0 G(t,s)aj(s)fi(ujt1(o(s))As, j=n,n—1,...,1.
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The proof is complete. O

Prior to our next result, let &;, 1 < i < n, be defined by

o(1) o(1)
/ G(&,s)ai(s)As = max | / G(t, s)a;(s)As.
0 tJo

tell,02(1)

Then, we define positive numbers L3 and L4 by

" —1
Ls:= 11%1%)(” { [mfg G(Tms)ai(S)ASin} }

and

o(1) -1
L4 := min [/0 G(éi,s)ai(S)AS,fioo‘|

1<i<n

Theorem 3.2 Assume conditions (A)—(C) are satisfied. Then, for each Ai,..., A\,
satisfying
Ly<X <Ly 1<i<n, (12)

there exists an n-tuple (u1,...,uy) satisfying (1), (2) such that u;(t) > 0 on (0,0%(1))r,
1<i<n.

Proof Let A\;,1 <j <mn, be asin (12). And let € > 0 be chosen such that

w -1
max { [m/g G(7i,8)ai(s)As(fio — e)} } < i Aj

and
—1

o(1)
max A; < min l/o G(o(s),8)a;(s)As(fico + €)

1<<n 1<i<n

Let T be the cone preserving, completely continuous operator that was defined by (7).
From the definition of f;p, 1 < i < n, there exists Hs > 0 such that, for each 1 < i < n,

filx) > (fio —€)w, 0 <z < Hj.

Also, from the definition of fio, it follows that fi0(0) =0, 1 < i < n, and so there exist
0< K, < K,_1<-+< Ky < Hs such that

K1
fog(l) G(&i,s)ai(s)As

Xifi(t) < , te[0,Kilr, 3<i<n,

and
0
170 Gler, 5)as(s)As

/\sz(t) < , L€ [O,KQ]'[.
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Choose u € P with |Ju|| = K,,. Then, we have

o(1)
An / G0 (5n-1), $n)an(50) f(u(0(50))) A

o(1)
< )‘n/o G(§mSn)an(sn)fn(u(o(sn)))Asn

fod(l) G(gn; Sn)an(sn)anlASn

17V Gn, 5n)an(sn) sy
S anl-

<

Bootstrapping yields the standard iterative pattern, and it follows that

o(1) _
)\2 /0 G(O’(Sl), 32)a2(32)f2(- t )ASQ S H3.

Then
a(1)
Tu(r) = )\1/ G(11,81)a1(s1)fi (A2 -+ ) Asy
0
> Alm/ G(71,51)a1(s1)(f1,0 — €)[|ul|As
3
> lull.

So, [|[Tul| > ||ul|. If we put
O ={zeB]||z|| < K},

then
(| Twul| > |Jul|, for u€ P NIN;.

Since each f;o is assumed to be a positive real number, it follows that f;, 1 <1i < n,
is unbounded at oo.
For each 1 <1 < n, set
fi(@) = sup fi(s).
0<s<lz
Then, it is straightforward that, for each 1 < ¢ < n, f/ is a nondecreasing real-valued
function, f; < f*, and
*
x
@)

r—00 €T

= fi:

Next, by definition of fis, 1 < ¢ < n, there exists H, such that, for each 1 < i < n,
fi (@) < (fico + €)x, x> Hy.

It follows that there exists Hy > max{2Hj, H,} such that, for each 1 <i < n,

fz*(:v) < fz*(H4)7 0<z< Hy.
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Choose u € P with ||u|| = Hy. Then, using the usual bootstrapping argument, we

have

Tu(t)

o(1)
)\1/ G(t,sl)al(sl)fl(/\g--')Asl
0

a(1)

< / G(t, s1)ar(s1)Ff (Aa - )Asy
0
a(1)

< N / G(€1, 51)a (1) ff (Ha) Asy
0
o(1)

< )\1/ G(&1,51)a1(81)As1(f100 + €)Hy
0

< Hy

= lull

and so || Tu|| < ||ul|. So, if we let

Qo ={z e B ||z < Ha},

then

| Tul| < [Jull, for u € PN OQy.

Application of part (ii) of Theorem 2.1 yields a fixed point u of T belonging to

PN (Q2\Q), which in turn, with u; = u, 11 = u, yields an n-tuple (uy, ..., u,) satisfying

(1),

(2) for the chosen values of \;, 1 <i < n. The proof is complete. O
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