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1 Introduction

As is known, the direct Liapunov method [12] proves to be one of universal techniques
of qualitative analysis of dynamical systems. Though the results achieved for the last
decades in the development of this method (see [1, 4, 9, 15]) a series of general problems
of motion stability theory shill remain in the focus of attention of many mathematicians
and mechanical scientists. One of such problems is the problem of constructing suitable
Liapunov functions (functionals) for certain classes of systems of equations.

For linear equations with constant coefficients and constant delay the problem on
functional construction in [7, 6] is associated with solution of transcendent equations.
Note that practical solution of the transcendent equation (see [7], p. 441)

det(λI − A − Be−λτ ) = 0, (1.1)
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may prove to be a problem difficult to be solved, especially in the case when the system
under investigation is of large dimensions.

In the case when equation (1.1) is solved, stability of zero solution follows automati-
cally and construction of the functional has the meaning of converse theorem.

In the context of our approach the methods of construction of functionals from [6, 7]
etc. may be useful in the construction of diagonal elements of matrix-valued functional
provided all necessary constants and comparison functions in their above and below
estimates will satisfy appropriate conditions.

General conclusion of the carried out analysis is as follows. The approaches involving
solution of transcendent equation are hardly applicable for the construction of functionals
for large-scale delay systems. In the case of systems of small dimensions the proposed
methods of functional constructions can be applied to construct diagonal elements of
matrix-valued functional, however the methods in themselves can not solve the problem
on stability of the initial large scale system.

The aim of this paper is to present a new method of constructing the Liapunov
functionals for the class of linear delay systems. The method is based on the idea of
approximation of functional differential equation by the system of difference equations
(see [4]) in combination with the idea of application of matrix-valued Liapunov functi-
onal (see [16]). This allows one to extend the class of admissible functionals suitable for
construction of the Liapunov functionals for the system of equations under consideration.

An auxiliary result in this paper is a method of constructing the matrix-valued functi-
on for a system of difference equations of larger dimensions (see [18]).

2 Notation and Assumptions

In this section we introduce main designations used in the paper and assumptions on the
systems under consideration.

Let r > 0 be given and C = C([−r, 0], Rn) be the space of continuous functions
mapping [−r, 0] into Rn. For ϕ ∈ C we define the norm

‖ϕ‖ = sup
−r≤θ≤0

|ϕ(θ)|, (2.1)

where | · | means the Euclidean norm in Rn. Let CH be an open subset of C for the
elements of which ‖ϕ‖ < H and 0 ∈ CH . If x : [−r, a) → Rn and is continuous,
0 < a ≤ +∞, then for each t ∈ [0, a) in CH xt(s) = x(t + s), −r ≤ s ≤ 0. In addition
to norm (2.1) we apply the norm

‖ϕ‖L2
=

{ 0∫

−r

|ϕ(θ)|2d θ

}1/2

(2.2)

in the space L2([−r, 0], Rn) of Lebesque functions integrated with square.
We study below the system with finite delay

dx

dt
= F (x, xt), xt0 = ϕ0 ∈ C, t0 ≥ 0, (2.3)

where x ∈ Rn, F ∈ C(Rn × C, Rn), which has a linear approximation

dx

dt
= Ax(t) + Bx(t − r) + f(x, xt). (2.4)
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Here A and B are constant n × n matrices, x(t) is n-dimensional vector, r ≥ 0, f ∈
C(Rn × C, Rn). The linear approximation of system (2.4)

dx

dt
= Ax(t) + Bx(t − r) (2.5)

is decomposed into two subsystems

dx1

dt
= A11x1(t) + A12x2(t) + B11x1(t − r) + B12x2(t − r),

dx2

dt
= A21x1(t) + A22x2(t) + B21x1(t − r) + B22x2(t − r),

(2.6)

where xi ∈ Rni , i = 1, 2, (xT

1 , xT

2 )T = x, Aij and Bij are constant matrices of the
appropriate dimensions for which the independent sybsystems are

dx1

dt
= A11x1(t) + B11x1(t − r),

dx2

dt
= A22x2(t) + B22x2(t − r).

(2.7)

For system (2.6) the matrix-valued functional

U(x, ϕ(·)) : Rn × Cn → R2×2 (2.8)

is constructed of some scalar elements vij(ϕ1, ϕ2), i, j = 1, 2, under additional assumpti-
ons on matrices Aii and Bii, i = 1, 2 of system (2.7).

The scalar functional (cf. [3])

v(x, ϕ, η) = ηTU(x, ϕ(·))η, η ∈ R2
+, η > 0, (2.9)

together with upper right derivative number [9]

D+v(x, ϕ, η)
∣∣
(2.4)

: Rn × C → R

is the Liapunov–Krasovskii functional, if it solves the problem on stability of the state
x = 0 of the system (2.4).

We recall that D+v(x, ϕ, η)
∣∣
(2.4)

is calculated by the formula

D+v(x, ϕ, η)
∣∣
(2.4)

= ηTD+U(x, ϕ)
∣∣
(2.4)

η,

where

D+U(x, ϕ)
∣∣
(2.4)

= lim sup
θ→0+

{[U(x + θF (x, ϕ), ϕ(0) + θF (x, ϕ)) − U(x, ϕ(0))]θ−1}

is calculated element-wise. Before we start the solution of the problem on construction
of functional (2.8) we need some results for the system of difference equations.
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3 An Approach to Construction of Liapunov-Krasovskii Functionals

Now we consider autonomous linear system (2.5). Assume that for subsystems (2.7) the
functionals

v11(ϕ1) = ϕT

1 (0)P11ϕ1(0) + 2ϕT

1 (0)

0∫

−r

K1(θ)ϕ1(θ) dθ

+

0∫

−r

ϕT

1 (θ)Γ1(θ)ϕ1(θ) dθ +

0∫

−r

0∫

−r

ϕT

1 (ξ)γ1(ξ, η)ϕ1(η) dξ dη,

v22(ϕ2) = ϕT

2 (0)P22ϕ2(0) + 2ϕT

2 (0)

0∫

−r

K2(θ)ϕ2(θ) dθ

+

0∫

−r

ϕT

2 (θ)Γ2(θ)ϕ2(θ) dθ +

0∫

−r

0∫

−r

ϕT

2 (ξ)γ2(ξ, η)ϕ2(η) dξ dη,

(3.1)

are constructed somehow, where P11, P22 are constant symmetric positive definite matri-
ces,

K1, Γ1 ∈ C([−r, 0], Rn1×n1), K2, Γ2 ∈ C([−r, 0], Rn2×n2),

γ1 ∈ C([−r, 0] × [−r, 0], Rn1×n1), γ2 ∈ C([−r, 0] × [−r, 0], Rn2×n2).

Further we employ the idea of approximation of system (2.6) by system of difference
equations. With this in mind we divide the segment [−r, 0] into N equal parts of length

h, i.e. Nh = r; the derivatives
dxi

dt
, i = 1, 2, are approximated by the differences

(xi(t + h)− xi(t))h
−1. The system of difference equations corresponding to system (2.7)

is (cf. Hale [4])∗

x̃11(τ + 1) = (In1
+ hA11)x̃11(τ) + hB11x̃1N (t) + hA12x̃21(t) + hB12x̃2N (t),

x̃12(τ + 1) = x̃11(τ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x̃1N (τ + 1) = x̃1N−1(τ),

x̃21(τ + 1) = (In2
+ hA22)x̃21 + hB22x̃2N (τ) + hA12x̃21(τ) + hB12x̃2N (τ),

x̃22(τ + 1) = x̃21(τ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x̃2N (τ + 1) = x̃2N−1(τ),

(3.2)

where In1
, In2

are identity matrices of the corresponding dimensions.
The point x̃i(0) = (ϕi(0), ϕi(−h), . . . , ϕi(−Nh))T corresponds to the initial functi-

on specifying solution x̃ = (x̃T

1 , x̃T

2 )T of system of difference equations (3.2).
Further we present system (3.2) in matrix form

x̃1(τ + 1) = A11x̃1(τ) + A12x̃2(τ),

x̃2(τ + 1) = A21x̃1(τ) + A22x̃2(τ),
(3.3)

∗ It should be noted here that for stability analysis of the zero solution of system (2.3) with
decomposition (2.6) a formal approach presented by Hale [4], p. 138 – 141, is employed.
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where x̃1 ∈ Rn1(N+1), x̃2 ∈ Rn2(N+1) and

Ã11 =




In1
+ hA11 On1

. . . On1
hB11

In1
On1

. . . On1
On1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On1
. . . . . . In1

On1


 ,

Ã22 =




In2
+ hA22 On2

. . . On2
hB22

In2
On2

. . . On2
On2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On2
. . . . . . In2

On2


 ,

Ã12 =




hA12 On1×n2
. . . hB12

On1×n2
On1×n2

. . . On1×n2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On1×n2
. . . . . . On1×n2


 ,

Ã21 =




hA21 On2×n1
. . . hB21

On2×n1
On2×n1

. . . On2×n1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On2×n1
. . . . . . On2×n1


 .

Let k be arbitrary number, then vector (x̃T

1 (kh), xT

2 (kh))T is a phase vector for system
(3.3) for any t = kh. For sufficiently small h vector x̃i(kh), i = 1, 2, is an exact enough
approximation of solutions of system (2.7) at points kh, k = 0,−1, . . . ,−N .

Functionals v11(ϕ1) and v22(ϕ2) are approximated by the quadratic forms

ṽ11(x̃1) = x̃T

1 P̃11x̃1, ṽ22(x̃2) = x̃T

2 P̃22x̃2, (3.4)

where

P̃11 =




NP11 kT

11 kT

12 . . . kT

1N

k11 α1
11 α1

12 . . . α1
1N

k12 α1
12 α1

22 . . . α1
2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k1N α1
1N α1

2N . . . α1
NN




,

P̃22 =




NP22 kT

21 kT

22 . . . kT

2N

k21 α2
11 α2

12 . . . α2
1N

k22 α2
12 α2

22 . . . α2
2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k2
2N α2

1N α2
2N . . . α2

NN




.

Here the constant matrices P11, P22, kji, α
j
ij , i = 1, 2, . . . , N , j = 1, 2, of the correspondi-

ng dimensions are determined as

kji = Kj(−hi), α
j
ii = Γj(−ih), i = 1, 2, . . . , N, j = 1, 2,

α1
ij = γ1(−hi,−hj), α2

ij = γ2(−hi,−hj), i, j = 1, 2, . . . , N, i 6= j.

We construct the non-diagonal element v12(x̃1, x̃2) of the matrix-valued functional
U(x̃1, x̃2) in the bilinear form

v12(x̃1, x̃2) = x̃T

1 P̃12x̃2, (3.5)
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where matrix P̃12 satisfies the equation

ÃT

11P̃12Ã22 − P̃12 = −
η1

η2
ÃT

11P̃11Ã12 −
η2

η1
ÃT

21P̃22Ã22 (3.6)

and has the form

P̃12 =




NP12 s2
1 s2

2 . . . s2
N

s1
1 q11 q12 . . . q1N

s1
2 q21 q22 . . . q2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s1
N qN1 qN2 . . . qNN




.

Here P12, s
j
i , qij are matrices and η1, η2 are positive constants.

In terms of equation (3.6) we get

(NP12 + rAT

11P12 + s1
1)(In2

+ hA22) + s2
1 + hAT

11s
2
1 + q11 − NP12

= −
rη1

η2
P11A12 − hr

η1

η2
A11P11A12 − h

η1

η2
k11A11k

T

1NA12

− r
η2

η1
AT

21P22 − r
η1

η2
hAT

21P22A22 −
η2

η1
hAT

21k2NAT

21k
T

21,

(3.7)

s2
i − s2

i−1 + hAT

11s
2
i + q1i = −

η2

η1
hAT

21k2i, i = 2, . . . , N, (3.8)

hs1
i B22 − qi−1,N = −

η1

η2
hkT

1iB12, i = 2, . . . , N, (3.9)

hBT

11s
2
i − qN,i−1 = −

η2

η1
hBT

21k2i, i = 2, . . . , N, (3.10)

rP12B22 + hrAT

11P12B22 + hs1
1B22 − s2

N = −
η1

η2
rP11B12

−
rη1

η2
hAT

11P11B12 −
η1

η2
hk11B12 −

rη2

η1
hAT

21P22B22,
(3.11)

rBT

11P12 + hrBT

11P12A22 + hBT

11s
2
1 − s1

N = −
rη1

η2
hBT

11P11A12

−
rη2

η1
BT

21P22 −
rη2

η1
hBT

21P22A22 −
η2

η1
hBT

21k
T

12,
(3.12)

s1
i + hs1

i A22 − s1
i−1 + qi1 = −hk1iA12, i = 2, . . . , N, (3.13)

qNN = h

(
BT

11B22 +
η1

η2
B11B12 +

η2

η1
B21B22

)
, (3.14)

qii = const, qij = qi−1,j−1, i, j = 2, . . . , N. (3.15)

From equation (3.7), in view of (3.4) and h → 0 we get∗

AT

11P12 + P12A22 = −
η1

η2
P11A12 −

η2

η1
AT

21P22 −
1

r
(S1(0) + S2(0)). (3.16)

Similarly in view of (3.15) we get from (3.9)

q1i = qN+1−i,N = h(s1
N+2−iB22 + kT

1,N+2−iB12). (3.17)

∗ From here on in formulas (3.7) – (3.14) and (3.18) passage to the limit as h → 0 is formal.
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Then, in view of (3.17) equations (3.9) imply

(s2
i − s2

i−1)h
−1 + AT

11s
2
i + s1

N+2−iB22 +
η1

η2
k1,N+2−iB12 = −

η2

η1
AT

21k
T

2i, i = 2, . . . , N,

(3.18)
and passing to the limit as h → 0 we obtain

−
dS2

dθ
+ AT

11S2(θ) + S1(−r − θ)B22 +
η1

η2
K1(−r − θ)B12 = −

η2

η1
AT

21K
T

2 (θ). (3.19)

Similarly to the above, in view of (3.14) we get from (3.19)

−
dS1

dθ
+ S1(θ)A22 + BT

11S2(−r − θ) +
η2

η1
BT

21K
T

2 (−r − θ) = −
η1

η2
K1(θ)A12. (3.20)

Taking into account (3.14) we find from (3.11) and (3.12) as h → 0 the initial conditions

S2(−1) = r

(
P12B22 +

η1

η2
P11B12

)
,

S1(−1) = r

(
BT

11P12 +
η2

η1
BT

21P22

)
.

(3.21)

In the expression of the bilinear form 1
N v12(x̃1, x̃2) the formal limiting passage (h → 0)

yields the expression for the functional

v12(ϕ1, ϕ2) = ϕT

1 (0)P12ϕ2(0) +
1

r
ϕT

1 (0)

0∫

−r

S2(θ)ϕ2(θ) dθ

+
1

r
ϕT

2 (0)

0∫

−r

ST

1 (θ)ϕ1(θ) dθ +
1

r

0∫

−r

dξϕT

1 (ξ)

ξ∫

−r

{
S1(ξ − η − r)B22

+
η1

η2
KT

1 (ξ − η − r)B12

}
ϕ2(η) dη +

1

r

0∫

−r

dξϕT

1 (ξ)

0∫

ξ

{
BT

11S2(η − ξ − r)

+
η1

η2
BT

21K2(η − ξ − r)

}
ϕ2(η)dη.

(3.22)

In order to formulate stability conditions for system (2.6) in terms of the matrix-
valued functional U(ϕ1, ϕ2) with components (3.1) and (3.22) it is necessary to estimate
its and their upper right derivative numbers along solutions of system (2.6). To this end
we define concretely the choice of functionals (3.1) as

v11(ϕ1) = ϕT

1 (0)P11ϕ1(0) +

0∫

−r

k(θ)ϕT

1 (θ)D1ϕ1(θ) dθ, (23)

v22(ϕ2) = ϕT

2 (0)P22ϕ2(0) +

0∫

−r

k(θ)ϕT

2 (θ)D2ϕ2(θ) dθ, (24)
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where P11, P22, D1 and D2 are positive definite matrices of the corresponding dimensions

and k(θ) = 1 +
1

2r
θ.

Basing on the system of equations

dS2

dθ
= AT

11S2(θ) + S1(−r − θ)B22, (25)

dS1

dθ
= S1(θ)A22 + BT

11S2(−r − θ), (26)

AT

11P12 + P12A22 = −
η1

η2
P11A12 −

η2

η1
AT

21P22 −
1

r
(S1(0) + S2(0)) (27)

under initial conditions

S2(−r) = r
(
P12B22 +

η1

η2
P11B12

)
,

S1(−r) = r
(
BT

11P12 +
η2

η1
BT

21P22

)
,

(3.28)

where P12 ∈ Rn1×n2 , S1, S2 ∈ C1([−r, 0], Rn1×n2), η1, η2 are positive constants we
construct functional v12(ϕ1, ϕ2) in the form

v12(ϕ1, ϕ2) = ϕT

1 (0)P12ϕ2(0) +
1

r
ϕT

1 (0)

0∫

−r

S2(θ)ϕ2(θ) dθ

+
1

r
ϕT

2 (0)

0∫

−r

ST

1 (θ)ϕ1(θ) dθ +
1

r

0∫

−r

dξϕT

1 (ξ)

ξ∫

−r

S1(ξ − η − r)B22ϕ2(η) dη

+
1

r

0∫

−r

dξϕT

1 (ξ)

0∫

ξ

BT

11S2(η − ξ − r)ϕ2(η) dη.

(3.29)

Since for the functionals vij(·), i, j = 1, 2, the lower estimates

v11(ϕ1) ≥ λm(P11)|ϕ1(0)|2 +
1

2
λm(D1)‖ϕ1‖

2
L2

v22(ϕ2) ≥ λm(P22)|ϕ2(0)|2 +
1

2
λm(D2)‖ϕ2‖

2
L2

v12(ϕ1, ϕ2) ≥ −‖P12‖|ϕ1(0)||ϕ2(0)| − κ2|ϕ1(0)|‖ϕ2‖L2

− κ1|ϕ2(0)|‖ϕ1‖L2
− (κ21‖B11‖ + κ12‖B22‖)‖ϕ1‖L2

‖ϕ2‖L2
,

(3.30)

and the upper estimates

v11(ϕ1) ≤ λM (P11)|ϕ1(0)|2 +
1

2
λM (D1)‖ϕ1‖

2
L2

v22(ϕ2) ≤ λM (P22)|ϕ2(0)|2 +
1

2
λM (D2)‖ϕ1‖

2
L2

v12(ϕ1, ϕ2) ≤ ‖P12‖|ϕ1(0)||ϕ2(0)| + κ2|ϕ1(0)|‖ϕ2‖L2

+ κ12|ϕ2(0)|‖ϕ1‖L2
+ (κ21‖B11‖ + κ12‖B22‖)‖ϕ1‖L2

‖ϕ2‖L2
,

(3.31)
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are satisfied, where

κ1 =
1

r

{ 0∫

−r

‖S1(θ)‖
2dθ

}1/2

, κ2 =
1

r

{ 0∫

−r

‖S2(θ)‖
2dθ

}1/2

,

κ12 =
1

r

{ 0∫

−r

0∫

−r

‖S1(ξ − η − r)‖2dξdη

}1/2

,

κ21 =
1

r

{ 0∫

−r

0∫

−r

‖S2(ξ − η − r)‖2dξdη

}1/2

,

for the functional

v(ϕ1, ϕ2, η) = ηTU(ϕ1, ϕ2)η = η2
1v11(ϕ1) + 2η1η2v12(ϕ1, ϕ2) + η2

2v22(ϕ2)

the bilateral estimate

uTHTCHu ≤ v(ϕ1, ϕ2, η) ≤ uTHTCHu, (3.32)

is valid, where

u = (|ϕ1(0)|, |ϕ2(0)|, ‖ϕ1‖L2
, ‖ϕ2‖L2

),

H = diag(η1, η2, η1, η2), ζ = κ21‖B11‖ + κ12‖B22‖,

C =




λM (P11) ‖P12‖ 0 κ2

‖P12‖ λM (P22) κ1 0
0 κ1 λM (D1) ζ

κ2 0 ζ λM (D2)


 ,

C =




λm(P11) −‖P12‖ 0 −κ2

−‖P12‖ λm(P22) −κ1 0

0 −κ1
1

2
λm(D1) −ζ

−κ2 0 −ζ
1

2
λm(D2)




.

Further together with functionals (3.23), (3.24) and (3.29) we use the upper right deri-
vative numbers D+vij(·)

∣∣
(2.6)

, i, j = 1, 2:

D+v11(ϕ1)
∣∣
(2.6)

= ϕT

1 (0)(AT

11P11 + P11A11 + D1)ϕ1(0)

−
1

2
ϕT

1 (−r)D1ϕ1(−r) + ϕT

1 (0)P11B11ϕ1(−r) + ϕT

1 (0)P11A12ϕ2(0) (33)

+ ϕT

1 (0)P11B12ϕ2(−r) −
1

2r

0∫

−r

ϕT

1 (θ)D1ϕ1(θ) dθ,

D+v22(ϕ2)
∣∣
(2.6)

= ϕT

2 (0)(AT

22P22 + P22A22 + D2)ϕ2(0)

−
1

2
ϕT

2 (−r)D1ϕ2(−r) + ϕT

2 (0)P22B22ϕ2(−r) + ϕT

2 (0)P22A21ϕ1(0) (34)
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+ ϕT

2 (0)P22B21ϕ1(−r) −
1

2r

0∫

−r

ϕT

2 (θ)D2ϕ2(θ) dθ,

D+v12(ϕ1, ϕ2)
∣∣
(2.6)

= ϕT

1 (0)
(
AT

11P12 + P12A22 +
1

r
(S1(0) + S2(0))

)
ϕ2(0)

+
1

2
ϕT

1 (0)(P12A21 + AT

21P
T

12)ϕ1(0) +
1

2
ϕT

2 (0)(AT

12P12 + PT

12A12)ϕ2(0)

+ ϕT

1 (0)P12B21ϕ1(−r) + ϕT

2 (−r)BT

12P12ϕ2(0)

+
1

r
ϕT

2 (−r)BT

12

0∫

−r

S2(θ)ϕ2(θ) dθ +
1

r
ϕT

2 (0)AT

12

0∫

−r

S2(θ)ϕ2(θ) dθ (35)

+
1

r
ϕT

1 (0)AT

21

0∫

−r

ST

1 (θ)ϕ1(θ) dθ +
1

r
ϕT

1 (−r)BT

21

0∫

−r

ST

1 (θ)ϕ1(θ) dθ

−
η1

η2
ϕT

1 (0)P11B12ϕ2(−r) −
η2

η1
ϕT

1 (−r)BT

21P22ϕ2(0).

In view of expressions (3.33) – (3.35) for the upper right derivative number of functional
v(ϕ1, ϕ2, η) in the domain of values Rn × Cn we have the estimate

D+v(ϕ1, ϕ2, η)
∣∣
(2.6)

≤ uT

1 Σ1u1 + uT

2 Σ2u2, (3.36)

where
u1 = (|ϕ1(0)|, |ϕ1(−r)|, ‖ϕ1‖L2

)T,

u2 = (|ϕ2(0)|, |ϕ2(−r)|, ‖ϕ2‖L2
)T

and Σ1 = [σ1
ij ]

3
i,j=1, Σ2 = [σ2

ij ]
3
i,j=1 are constant matrices with the elements

σ1
11 = λM (AT

11P11 + P11A11 + D1)η
2
1 + η1η2λM (P12A21 + AT

21P
T

12),

σ1
22 = −

1

2
λm(D1)η

2
1 , σ1

33 = −
1

2r
λm(D1)η

2
1 ,

σ1
12 = ‖P11‖ ‖B11‖η

2
1 + ‖P12‖ ‖B21‖η1η2,

σ1
23 = κ1‖B21‖η1η2, σ1

13 = κ1‖A21‖η1η2,

σ2
11 = λM (AT

22P22 + P22A22 + D2)η
2
2 + η1η2λM (P21A12 + AT

12P
T

21),

σ2
22 = −

1

2
λm(D2)η

2
2 , σ2

33 = −
1

2r
λm(D2)η

2
2 ,

σ2
12 = ‖P22‖ ‖B22‖η

2
2 + ‖P12‖ ‖B12‖η1η2,

σ2
23 = κ2‖B12‖η1η2, σ2

13 = κ2‖A12‖η1η2,

σ1
ij = σ1

ji, σ2
ij = σ2

ji, i, j = 1, 2, 3, i 6= j.

In the partial case when B11 = 0 and B22 = 0 system (2.6) becomes

dx1

dt
= A11x1(t) + A12x2(t) + B12x2(t − r),

dx2

dt
= A21x1(t) + A22x2(t) + B21x1(t − r).

(3.37)
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Besides, system of equations (3.25) – (3.27) becomes

dS2

dθ
= AT

11S2(θ),
dS1

dθ
= S1(θ)A22

AT

11P12 + P12A22 = −
η1

η2
P11A12 −

η2

η1
AT

21P22 −
1

r
(S1(0) + S2(0))

(3.38)

under the initial conditions

S2(−r) =
rη1

η2
P11B12, S1(−r) =

rη2

η1
BT

21P22. (3.39)

The first group of equations (3.38) can be integrated in the explicit form

S1(θ) =
rη2

η1
BT

21P22 exp{A22(θ + r)},

S2(θ) =
rη1

η2
exp{AT

11(θ + r)}P11B12.
(3.40)

Letting θ = 0 we find

S1(0) =
rη2

η1
BT

21P22 exp{A22r},

S2(0) =
rη1

η2
exp{AT

11r}P11B12.

Therefore equation (3.27) becomes

AT

11P12 + P12A22 = −
η1

η2
(P11A12 + exp{AT

11r}P11B12)

−
η2

η1
(AT

21P22 + BT

21P22 exp{A22r}).
(3.41)

Necessary and sufficient existence conditions for unique solution of equation (3.41) follow
from Lankaster [11].

Diagonal elements of the matrix-valued functional U(ϕ1, ϕ2) are taken in the form
of (3.23), (3.24) for w1(ϕ1) = v11(ϕ1) and w2(ϕ2) = v22(ϕ2), and non-diagonal element
w12(ϕ1, ϕ2) is represented as

w12(ϕ1, ϕ2) = ϕT

1 (0)P12ϕ2(0) +
η1

η2
ϕT

1 (0)

0∫

−r

exp{AT

11(θ + r)}P11B12ϕ2(θ) dθ

+
η2

η1
ϕT

2 (0)

0∫

−r

BT

21P22 exp{A22(θ + r)}ϕ1(θ) dθ.

(3.42)

For estimation of functional (3.42) we shall formulate one auxiliary result (see [2]).

Lemma 3.1 Let A be a constant n × n–matrix, then estimate

‖ expAt‖ ≤ e∆t
n−1∑

k=0

1

k!
(2t‖A‖)k, t ≥ 0,

is valid, where ∆ = max{Reλ λ ∈ σ(A)}, σ(A) is a spectrum of matrix A.
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Using this result one can estimate ‖ expAt‖ as follows. Let ε > 0 be a sufficiently small
positive number. Consider function [17]

f(t) = e−εt
n−1∑

k=0

1

k!
(2t‖A‖)k, t ≥ 0.

In view of the fact that f(t) → 0 as t → ∞ we conclude that there exists Mε = max
t≥0

f(t)

and find the estimate

‖ exp{At}‖ ≤ Mεe
(∆+ε)t for t ≥ 0. (3.43)

Applying estimate (3.43) it is easy to find

κ1 =
1

r

{ 0∫

−r

λM (S1(θ)S
T

1 (θ))

}1/2

≤
η2

η1
‖B21‖ ‖P22‖Mε1

[
e2(∆1+ε)r − 1

2(∆1 + ε)

]1/2

= ξ1,

κ2 =
1

r

{ 0∫

−r

λM (S2(θ)S
T

2 (θ))

}1/2

≤
η1

η2
‖B12‖ ‖P11‖Mε2

[
e2(∆2+ε)r − 1

2(∆2 + ε)

]1/2

= ξ2,

where Mε1 and Mε1 are the corresponding constants and ∆1 and ∆2 are maximal real
values of spectra of matrices A11 and A22 respectively.

Thus, for the scalar functional

w(ϕ1, ϕ2, η) = ηT U(ϕ1, ϕ2)η (3.44)

the estimate

uTHTCHu ≤ w(ϕ1, ϕ2, η) ≤ uTHT CHu, (3.45)

is valid, where

u = (|ϕ1(0)|, |ϕ2(0)|, ‖ϕ1‖L2
, ‖ϕ2‖L2

)T, H = diag(η1, η2, η1, η2),

C =




λM (P11) ‖P12‖ 0 ξ2

‖P12‖ λM (P22) ξ1 0
0 ξ1 λM (D1) 0
ξ2 0 0 λM (D2)


 ,

C =




λm(P11) −‖P12‖ 0 −ξ2

−‖P12‖ λm(P22) −ξ1 0

0 −ξ1
1

2
λm(D1) 0

−ξ2 0 0
1

2
λm(D2)




.

In view of estimates (3.36) and (3.43) in the region of values Rn × Cn it is easy to find
the estimate of the upper right derivative number of functional (3.44) along solutions of
system (3.37)

D+v(ϕ1, ϕ2, η)
∣∣
(3.37)

≤ uT

1 Ω1w1 + uT

2 Ω2w2, (3.46)
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and Ω1 = [ω1
ij ]

3
i,j=1, Ω2 = [ω2

ij ]
3
i,j=1 are constant matrices with the elements

ω1
11 = λM (AT

11P11 + P11A11 + D1)η
2
1 + η1η2λM (P12A21 + AT

21P
T

12),

ω1
22 = −

1

2
λm(D1)η

2
1 , ω1

33 = −
1

2r
λm(D1)η

2
1 ,

ω1
12 = ‖P12‖ ‖B21‖η1η2, ω1

23 = ξ1‖B21‖η1η2, ω1
13 = ξ1‖A21‖η1η1,

ω2
11 = λM (AT

22P22 + P22A22 + D2)η
2
2 + η1η2λM (P21A12 + AT

12P
T

21),

ω2
22 = −

1

2
λm(D2)η

2
2 , ω2

33 = −
1

2r
λm(D2)η

2
2 ,

ω2
12 = ‖P12‖ ‖B12‖η1η2, ω2

23 = ξ2‖B12‖η1η2, ω2
13 = ξ2‖A12‖η1η2,

ω1
ij = ω1

ji, ω2
ij = ω2

ji, i, j = 1, 2, 3, i 6= j.

Under some restrictions on the sign-definiteness of matrices C, C, and Σ1, Σ2 the
constructed functional is the Liapunov-Krasovskii functional and applying this functional
in Section 4 we shall establish new sufficient conditions for asymptotic stability of the
equilibrium state x = 0 of quasilinear system. For system (3.37) the proposed method of
constructing matrix-valued functional is more efficient, since system of equations (3.38) –
(3.39) is integrable in the explicit form. By means of functional v(ϕ1, ϕ2) in Section 4 we
shall establish sufficient stability conditions for the equilibrium state of system (3.37).

4 Stability Analysis of Quasilinear Delay Systems

We consider an autonomous quasilinear delay system (2.4) with decomposition

dx1

dt
= A11x1(t) + A12x2(t) + B11x1(t − r) + B12x2(t − r) + f1(x, xt),

dx2

dt
= A21x1(t) + A22x2(t) + B21x1(t − r) + B22x2(t − r) + f2(x, xt),

(4.1)

where xi ∈ Rni , i = 1, 2, x = (xT

1 , xT

2 )T, Aij and Bij are constant matrices of appropri-
ate dimensions.

We make the following assumptions on the functions fi(x, xt), i = 1, 2.

Assumption 1 The functions fi(x, xt), i = 1, 2, satisfy the following conditions

(1) the functions fi ∈ C(Rn × Cn, Rn) for i = 1, 2;

(2) the functions fi(0, 0) = 0 iff x = xt = 0;

(3) there exist constants cij , lij > 0, i, j = 1, 2, such that

|fi(x, xt)| ≤ ci1|x1(0)| + ci2|x2(0)| + li1‖x1‖L2
+ li2‖x2‖L2

,

where | · | is an Euclidean norm in Rni , ‖ · ‖L2
is the L2-norm.

For the linear system

dx1

dt
= A11x1(t) + A12x2(t) + B11x1(t − r) + B12x2(t − r),

dx2

dt
= A21x1(t) + A22x2(t) + B21x1(t − r) + B22x2(t − r),

(4.2)
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using the results of Section 3 we construct the matrix-valued functional

U : Rn × Cn → R2×2

with the elements (3.23), (3.24) and (3.29).
Applying functional U(ϕ1, ϕ2) one can establish sufficient stability conditions for

solution x = 0 of system (4.1). First, we introduce the designations

∆Σ1 =




2c11‖P11‖ + c21‖P12‖ 0 ‖P11‖l11 +
1

2
‖P12‖l21

0 0 0

‖P11‖l11 +
1

2
‖P12‖l21 0 0


 ,

∆Σ2 =




2c22‖P22‖ + c12‖P12‖ 0 ‖P22‖l22 +
1

2
‖P12‖l12

0 0 0

‖P22‖l22 +
1

2
‖P12‖l12 0 0


 ,

∆Σ12 =




2c12‖P11‖ + 2c21‖P22‖ + c22‖P12‖ + c11‖P12‖ 0 2‖P22‖l21 + ‖P12‖l12
0 0 0

2‖P11‖l12 + ‖P12‖l22 0 0


 .

Theorem 4.1 Let system of equations (4.1) be such that

(1) there exist solutions of equations (3.25) – (3.27) under initial conditions (3.28) for
some η ∈ R2

+, η > 0;

(2) matrices C and C in estimate (3.32) are positive definite;

(3) matrices Σ1 + ∆Σ1 and Σ2 + ∆Σ2 are negative definite;

(4) inequality
‖Σ12‖ < λM (Σ1 + ∆Σ1)λM (Σ2 + ∆Σ2)

holds true.

Then the solution x = 0 of system (4.1) is uniformly asymptotically stable.

Proof Condition (2) of Theorem 4.1 ensures the possibility of constructing the
“scalar” functional v Rn × Cn × R2

+ → R+, v(ϕ1, ϕ2, η) = ηT U(ϕ1, ϕ2)η, satisfying
the conditions of definite positiveness and decrease. The upper right derivative number
of the functional v(ϕ1, ϕ2, η) admits the estimate

D+v(ϕ1, ϕ2, η)
∣∣
(4.1)

≤ uT

1 (Σ1 + ∆Σ1)u1 + 2uT

1 Σ12u2 + uT

2 (Σ2 + ∆Σ2)u2,

where

u1 = (|ϕ1(0)|, |ϕ1(−r)|, ‖ϕ1‖L2
)T, u2 = (|ϕ2(0)|, |ϕ2(−r)|, ‖ϕ2‖L2

)T.

Conditions (3) and (4) ensure definite negativeness of D+v(ϕ1, ϕ2, η)|(4.1). Thus, the
solution x = 0 of system (4.1) is uniformly asymptotically stable and the constructed
functional v(ϕ1, ϕ2, η) is the matrix-valued Liapunov-Krasovskii functional. 2

Corollary 4.1 Let system of equations (4.2) be such that
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(i) there exist solutions of equations (3.25) – (3.27) under initial conditions (3.28) for
some η ∈ R2

+, η > 0;

(ii) matrices C and C in estimate (3.32) are positive definite;

(iii) matrices Σ1 and Σ2 are negative definite.

Then solution x = 0 of system (4.2) is uniformly asymptotically stable.

In the partial case, when B11 = 0 and B22 = 0 sufficient conditions of uniform
asymptotic stability of solution x = 0 are formulated in terms of estimates (3.45) and
(3.46) for matrix-valued functional U(ϕ1, ϕ2) with the elements

w11(ϕ1) = ϕT

1 (0)P11ϕ1(0) +

0∫

−r

k(θ)ϕT

1 (θ)D1ϕ1(θ) d θ,

w22(ϕ2) = ϕT

2 (0)P22ϕ2(0) +

0∫

−r

k(θ)ϕT

2 (θ)D2ϕ2(θ) d θ,

w12(ϕ1, ϕ2) = ϕT

1 (0)P12ϕ2(0)

+
η1

η2
ϕT

1 (0)

0∫

−r

exp{AT

11(θ + r)}P11B12ϕ2(θ) dθ

+
η2

η1
ϕT

2 (0)

0∫

−r

BT

21P22 exp{A22(θ + r)}ϕ2(θ) dθ.

Theorem 4.2 Let system of equations (4.1) be such that

(1) B11 = 0, B22 = 0;

(2) matrices C and C in estimates (3.45) are positive definite;

(3) matrices Ω1 + ∆Σ1 and Ω2 + ∆Σ2 from estimate (3.46) are negative definite;

(4) inequality
‖Σ12‖ < λM (Ω1 + ∆Σ1)λM (Ω2 + ∆Σ2)

holds true.

Then solution x = 0 of system (4.1) is uniformly asymptotically stable.

The proof is similar to the proof of Theorem 4.1.

Corollary 4.2 Let system of equations (4.2) be such that

(i) matrices B11 = 0 and B22 = 0;

(ii) matrices C and C in estimate (3.45) are positive definite;

(iii) matrices Ω1 and Ω2 in estimate (3.46) are negative definite.

Then solution x = 0 of system (4.2) is uniformly asymptotically stable.
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5 Application

As applications of results of Section 3.3 we consider oscillations of a harmonic oscillator.
The perturbed motion equation of the oscillator is

d2x

dt2
+ µ

dx

dt
+ ω2x(t) + cx(t − r) = 0, (5.1)

where x is a state variable, ω, c, µ > 0 are constants. Introduce an auxiliary variable

y =
dx

dt
and present equation (5.1) as a system

dx

dt
= y,

dy

dt
= −ω2x(t) − µy(t) − cx(t − r).

(5.2)

Applying the proposed technique of construction of the Liapunov functionals for system
(5.2) we construct a scalar functional w(ϕ1, ϕ2) as

w(ϕ1, ϕ2) = v11(ϕ1) + 2v12(ϕ1, ϕ2) + v22(ϕ2), (5.3)

where

v11(ϕ1) = γ2ϕ2
1(0) + γ2d1

0∫

−r

(
1 +

θ

2r

)
ϕ2

1(θ) dθ,

v22(ϕ2) = ϕ2
2(0)d2

0∫

−r

(
1 +

θ

2r

)
ϕ2

2(θ) dθ,

v12(ϕ1, ϕ2) = 2
γ2 − ω2 − ce−µr

µ
ϕ1(0)ϕ2(0) − 2ce−µrϕ2(0)

0∫

−r

e−µθϕ1(θ) dθ,

and γ, d1 and d2 are indefinite positive constants.

Functional (5.3) can be estimated from below by means of the Cauchy–Bunyakovsky
inequality

w(ϕ1, ϕ2) ≥ γ2ϕ2
1(0) + ϕ2

2(0) − 2
γ2 − ω2 − ce−µr

µ
|ϕ1(0)| |ϕ2(0)|

+
γ2d1

2
‖ϕ1(θ)‖

2
L2

+
d2

2
‖ϕ2(θ)‖

2
L2

− 2|c|e−µr

√
e2µr − 1

2µ
|ϕ2(0)| ‖ϕ1(θ)‖L2

.
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The derivative of functional (5.3) along solutions of system (5.2) is

D+w(ϕ1, ϕ2)
∣∣
(5.2)

=

(
d1γ

2 −
2ω2(γ2 − ω2 − ce−µr)

µ

)
ϕ2

1(0)

−
d1γ

2

2
ϕ2

1(−r) −
d1γ

2

2r
‖ϕ1(θ)‖

2
L2

−
2c(γ2 − ω2 − ce−µr)

µ
ϕ1(0)ϕ1(−r)

+ 2ce−µrω2ϕ1(0)

0∫

−r

e−µθϕ1(θ) dθ + 2c2e−µrϕ1(−r)

0∫

−r

e−µθϕ1(θ) dθ

+

(
− 2µ + d2 +

2(γ2 − ω2 − ce−µr)

µ

)
ϕ2

2(0) −
d2

2
ϕ2

2(−r) −
d2

2r
‖ϕ2(θ)‖

2
L2

.

(5.4)

The analysis of (5.4) shows that it is reasonable to take constants γ2 = ω2 + ce−µr +
µ2

2
,

d1 =
µω2

2γ
and d2 =

µ

2
. Applying the Cauchy-Bunyakovsky inequality once again we

estimate derivative (5.4) of functional (5.3)

D+w(ϕ1, ϕ2)
∣∣
(5.1)

≤

(
d1γ

2 −
2ω2(γ2 − ω2 − ce−µr)

µ

)
ϕ2

1(0)

−
d1γ

2

2
ϕ2

1(−r) −
d1γ

2

2r
‖ϕ1(θ)‖

2
L2

+
2|c|(γ2 − ω2 − ce−µr)

µ
|ϕ1(0)||ϕ1(−r)|

+ 2|c|e−µrω2

√
e2µr − 1

2µ
|ϕ1(0)| ‖ϕ1(θ)‖L2

+ 2c2e−µr

√
e2µr − 1

2µ
|ϕ1(−r)| ‖ϕ1(θ)‖

2
L2

+

(
− 2µ + d2 +

2(γ2 − ω2 − ce−µr)

µ

)
ϕ2

2(0) −
d2

2
ϕ2

2(−r) −
d2

2r
‖ϕ2(θ)‖

2
L2

.

Conditions of positive definiteness of functional w(ϕ1, ϕ2) and negative definiteness of
functional D+w(ϕ1, ϕ2)|(5.2) yield new conditions of asymptotic stability of zero solution
of equation (5.2) in the form of the system of inequalities

|c| <
µ

2

√
µ

r(1 − e−2µr)
, ω2 > |c|

√
24r(1 − e−2µr) + 2µ3

µ3 − 4c2r(1 − e−2µr)
,

(
2ω2 + 2ce−µr + µ2

)(
µ2ω2 − 2c2(1 − e−2µr)

)
≥

µ4ω2

2
.

6 Concluding Remarks

It is of interest to apply the proposed approach for a class of neutral functional differential
equations with time-varying delay. In [14] the Liapunov functional V (x(t)) is used and
a condition for asymptotic stability of zero solution of the system under consideration is
established.

Another class of equations being of interest for the application of the method are the
logic-dynamical hybrid systems given by a set of subsystems which are linear differential-
difference equations with constant coefficients and constant delay (see [10]).
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An urgent direction of applications is the analysis of the robust stability of nonlinear
uncertain neural networks with constant or time-varying delay (see [13]) as well as the
problem of robust dynamic parameter-dependent output feedback stabilization under
H∞ performance index for a class of linear time-invariant parameter-dependent systems
with multi-time delays in the state vector and in the presence of norm-bounded nonlinear
uncertainties (see [8]).
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