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Abstract: A new approach to parameter estimation in groundwater hydrol-
ogy is developed using hybrid ant colony system with simulated annealing.
Based on the information from the observed water heads and calculated wa-
ter heads, an objective function for inverse problem is proposed. The inverse
problem of parameter identification is formulated as an optimization problem.
Simulated annealing has the ability of probabilistic hill-climbing and is com-
bined with ant colony system to produce an adaptive algorithm. A hybrid
ant colony optimization is presented to identify the transmissivity and storage
coefficient for a two-dimensional, unsteady state groundwater flow model. The
ill-posedness of the inverse problem as characterized by instability and non-
uniqueness is overcome by using computational intelligence. As compared with
the gradient-based optimization methods, hybrid ant colony system is a global
search algorithm which can find parameter set in a stable manner. A numerical
example is used to demonstrate the efficiency of hybrid ant colony system.
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1 Introduction

Parameter identification, or model calibration, is a critical step in the application of
mathematical models in hydrologic sciences. Unfortunately, parameter identification is
an inherently difficult process and, as an inverse problem, it is plagued by the well-
documented problems of nonumiquenes, nonidentificability and instability [1]. Numer-
ous optimization techniques have been used to solve groundwater remediation design and
parameter identification problems. In a parameter identification problem, the objective
function can be the weighted difference between the observed and calculated values at
certain observation points in the aquifer. The identified parameters can be hydraulic
conductivity or other aquifer parameters, such as storage coefficient [2]. In recent years,
global optimization methods are being increasingly used to solve groundwater remedi-
ation design and parameter identification problems. These methods include simulated
annealing, genetic algorithm, tabu search and ant colony system. As compared with
gradient based local search methods, global optimization methods do not require the ob-
jective function to be continuous, convex, or differentiable. They have also shown other
attractive features such as robustness, ease of implementation, and the ability to solve
many types of highly complex, nonlinear problems. One common drawback of these
global optimization methods is that many objective function evaluations are typically
required to obtain optimal or near-optimal solutions [3]. Karimi investigated the prob-
lem of robust dynamic parameter-dependent output feedback (RDP-DOF) stabilization
under H1 performance index for a class of linear time invariant parameter-dependent
(LTIPD) systems with multi-time delays in the state vector and in the presence of norm-
bounded non-linear uncertainties [4]. Li proposed a new interpretation to solve the
inverse heat conduction problem using hybrid genetic algorithm. In order to identify
parameters of non-linear heat transfer efficiently and in a robust manner, the hybrid
genetic algorithm, which combines genetic algorithm with simulated annealing and the
elitist strategy, is presented for the identification of the material thermal parameters [5].
Lou studied the robust stability of nonlinear uncertain neural networks with constant or
time-varying delays. An approach combining the Lyapunov-Krasovskii functional with
the linear matrix inequality is taken to study the problems [6]. Yu proposed an on-
line learning algorithm for feedforward neural networks (FNN) based on the optimized
learning rate and adaptive forgetting factor for online financial time series prediction [7].
The ant colony system is a kind of natural algorithm inspired by behavior or processes
presented in nature. Ant colony system has been widely used in the traveling salesman
problem, job-shop scheduling problem and quadratic assignment problem. When com-
pared with traditional first-order methods, the ant colony system is recognized to have a
better capability to find the global optimum solution. The objective of this paper is to
present a new method based on hybrid ant colony system for obtaining the parameters
of a linear groundwater flow model.

2 Calculation of Groundwater Flow Models

The partial differential equation for groundwater flow, assuming constant fluid density
and viscosity, can be expressed as follows

∇ · (K∇h) + w = Ss∂h/∂t, (1)

where h is the hydraulic head, K is the hydraulic conductivity tensor, w is the fluid
sink/source term, and Ss is the specific storage coefficient of the aquifer. The first kind
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boundary condition is expressed as follows:

h(x, y, z)|Γ1
= h0(x, y, z), (2)

where h0(x, y, z) is the already known head. The second kind boundary condition is
written as follows:

Q0(x, y, z)|Γ2
= kx

∂h

∂x
lx + ky

∂h

∂y
ly + kz

∂h

∂z
lz, (3)

where Q0(x, y, z) is the drainage already known, lx, ly and lz are the direction cosines of
the exterior normal of the boundary in x, y and z direction, respectively. And kx, ky and
kz are permeability coefficient in x, y and z direction, respectively. When the boundary
condition and the predicted permeability coefficient are determined, the finite element
equation is adopted to compute the distribution of the water head and the drainage
in the whole seepage field, which provides modal data to the analysis of the inversion
problem of the permeability coefficient. The numerical methods are based on spatial
and temporal discretization which divides the continuous space and time domains into a
network of discrete nodal points and a series of finite time intervals. When the various
aquifer parameters are known, the hydraulic heads at any nodal points and time intervals
can be obtained using finite-element code.

3 Classical Ant Colony System

Ant colonies have always fascinated human beings. Social insects, such as ants, bees,
termites and wasps, often exhibit a collective problem-solving ability [8].The ant colony
system is first applied to the traveling salesman problem. In Ant System, the traveling
salesman problem is expressed as a graph (N, E), where N is the set of towns and E is
the set of edges between towns. The objective of the traveling salesman problem is to
find the minimal length closed tour that visits each town once. Each ant is a simple
agent to fulfill the task. It obeys the following rules: 1) It chooses the next town with a
probability which is a function of the town distance and of the amount of trail present on
the connecting edge; 2) before a tour is completed, it can not choose the already visited
towns; 3) when it completes a tour, it lays a substance called trail on each edge (i, j)
visited; 4) it lives in an environment where time is discrete.

It must choose the next town at time t, and be there at time t + 1. Let m, n be the
total number of ants and towns. An iteration of the Ant system is called, as the m ants
all carry their next moves during time interval (t, t + 1). The n iterations constitute a
cycle. In one cycle, each ant has completed a tour. Let τij(t) denote the intensity of trail
on edge (i, j). After a cycle, the trail intensity is updated as [9]:

τij(t + 1) = ρτij(t) + ∆τij , (4)

where ρ is a coefficient, and 1− ρ represents the evaporation of trail between times t and
t + 1

∆τij =

Z
∑

k=1

∆τk
ij , (5)

where ∆τij is the quantity per unit of length of trail substance placed on path(i, j) by
the k-th ant between times t and t + 1 [10]

∆τk
ij =

{

Q/Jk, path(i, j) is selected
0, otherwise

, (6)
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where Q is a constant related to the quantity of trail laid by ants. Ants build solutions
using a probabilistic transition rule. The probability pk

ij(t) with which ant k in town i
at iteration t chooses the next town j to move to is a function of the heuristic function
of the desirability ηij and the artificial pheromone trail τij(t):

pk
ij(t) =

[τij ]
α[ηij ]

β

L
∑

l=1

[τij ]α[ηij ]β
, (7)

where α, β are adjustable constants, which can weigh the relative importance of
pheromone trail and of objective function. A reasonable heuristic function is written
as follows:

ηij =
1

Jk

, (8)

where Jk is the objective function of k-th ant path. Ant colony system could not perform
well without pheromone evaporation. From Eq. (7), it is obvious that the transition
probability is proportional to the visibility and the trail intensity at time t. The visibility
shows that the closer towns have a higher probability of being chosen. The mechanism
behind this is a greedy constructive heuristic. While the trail intensity shows that the
more trail on edge (i, j), the more attractive it is. The process can be characterized by
a positive feedback loop, in which an ant chooses a path thus reinforces it. In order to
constrain the ants not to visit a previous visited town, a data structure called the tabu
list is associated with each ant. All the visited towns are saved in it. When an ant
finishes a cycle, the tabu list is then emptied and the ant is free again to choose. Let
tabu k denote the tabu list of the k-th ant.

4 Parameter Estimation Approach in Groundwater Hydrology

Using Hybrid Ant Colony System

4.1 Solution definition of inverse problem and its ill-posedness

The parameter identification problem can be formulated to find the model parameters
by adjusting m until the measured data match the corresponding data computed from
the parameter set in a least-squares fashion. The objective function is defined as follows
[11]

J(m) = [hm − hc(m)]T w[hm − hc(m)], (9)

where hm is the measured displacement vector; hc is the computing displacement vector,
which is related to the identified parameter vector m. w is weighting matrix in order to
take into account the different observed equipments for the water head measurements.
This objective function clearly depends on the measured data and the parameters of
model.

Figure 4.1 shows the groundwater flow model, in which the four observing points
for water heads are set in order to get measurement data and to identify the aquifer
parameters. The objective function can become complex as shown in Figure 4.1, such as
non-convex, or even multi-modal if errors contained in the model equation or /and errors
in the measurement data are large. The multi local minima can be found from Figure
4.1. In such a case, the solution may vibrate or diverge when conventional gradient-based
optimization methods are used, which gives rise to the necessary for a robust optimization
method such that a stable convergence is always achieved.
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Figure 4.1: Configuration of the two-dimensional groundwater flow model.

Figure 4.2: Configuration of the two-dimensional groundwater flow model.
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The solution of the inverse problem consists in obtaining a minimum of an objective
function which is defined taking into account the mathematical structure of the material
model and asset of experimental data. This generally results in a non-linear programming
constrained problem of the form [12]:

min{J(m, hm) , m ∈ R
P

, hm ∈ RM ; gj < 0}, (10)

where m represents the variable vector, which belongs to the space of admissible pa-
rameters RP , hm the vector of measured data, which belongs to the space RM . gj are
inequality constraints, which define the feasible domain S:

S = {m ∈ RP , gj < 0}. (11)

The constraints can represent physical links between the primary physical variables
and the model parameters, information concerning the values of parameters and condi-
tions to guarantee that all mathematical functions involved can be defined and calcu-
lated. In the optimization process, the difference between the experimental result and
the theoretical prediction is measured by a norm value, here referred to as the individual
norm. The individual norms of the tests form an objective function F (x) which then
gives a scalar measure of the error between the experimental observations and the model
predictions. From mathematical point of view, the optimization problem involves the
minimization of the objective function [13]:

J(m) → min, (12)

where m is a vector containing the optimization variables (here model parameters) with
the bound constraints:

ml < m < mu, (13)

where ml and mu are the lower and upper bounds of m respectively.

4.2 Simulated annealing algorithm for neighborhood search

Simulated annealing is another important algorithm which is powerful in optimization
and high-order problems. It uses random processes to help guide the form of its search
for minimal energy states. Simulated annealing is a generalization of a Monte Carlo
method for examining the equations of state and frozen states of n-body systems. The
concept is based on the manner in which liquids freeze or metals recrystalize in the
process of annealing [14]. In an annealing process a melt, initially at high temperature
and disordered, is slowly cooled so that the system at any time is approximately in
thermodynamic equilibrium. As cooling proceeds, the system becomes more ordered
and approaches a ”frozen” ground state at T=0. Hence the process can be thought
of as an adiabatic approach to the lowest energy state. If the initial temperature of
the system is too low or cooling is done insufficiently slowly the system may become
quenched forming defects or freezing out in meta-stable states, that is, trapped in a
local minimum energy state. Simulated annealing is a very general optimization method
which stochastically simulates the slow cooling of a physical system. The idea is that
there is a objective function F , which associates an objective function with a state of
the system, a temperature T, and various ways to change the state of the system. The
algorithm works by iteratively proposing change and either accepting or rejecting each
change. Having proposed a change we may evaluate the change δ in F. The proposed
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change may be accepted or rejected by the Metropolis criterion; if the objective function
decreases (δJ < 0), the change is accepted unconditionally; otherwise it is accepted but
only with probability exp(−δJ/T ). For given old solution, a new solution can be created
as follows [15]:

mnew = mold + ∆m, (14)

where ∆m is a random perturbation of solution. The accepted probability of the new
solution, pnew, will be expressed:

pnew =

{

1, Jold ≥ Jnew

exp[−δJ/Tk], Jold < Jnew
, (15)

where δJ = Jnew −Jold. Three parameters essential for implementation of the simulated
annealing algorithm are as follows: 1) initial value of the control parameter Ti, 2) the
number of perturbations generated at each T , and 3) the decrement of the control param-
eter T . These parameters affect the speed of the algorithm and the quality of the final
solution. A simple approach is to choose a value for Ti, that allows a large percentage of
non-improving solutions to be accepted [14]. The number of solutions generated at each
T is selected to allow equilibrium to take place before decreasing T. The decrement of T
is chosen such that it allows only small changes in the value of T . The equation used for
decreasing T is expressed as follows:

Tk+1 = ξTk, (16)

where ξ = 0.9 is a typical selection. A crucial requirement for the proposed changes is
reachability or ergodicity that there be a sufficient variety of possible changes that one
can always find a sequence of changes so that any system state may be reached from
any other. When the temperature is zero, changes are accepted only if F decreases,
an algorithm also known as hill-climbing, or more generally, the greedy algorithm. The
initial temperature can be determined as [16]

Ti = −
1

ln pi

, (17)

where pi is the desired initial acceptable probability. It is usually between 0.7 and 0.9.
similarly, the final temperature can be determined as

Tf = −
1

ln pf

, (18)

where pf is the desired final acceptable probability. It is usually very close to zero. The
system soon reaches a state in which none of the proposed changes can decrease the
objective function, but this is usually a poor optimum. In real life, we might be trying to
achieve the highest point of a mountain range by simply walking upwards; we soon arrive
at the peak of a small foothill and can go no further. On the contrary, if the temperature
is very large, all changes are accepted, and we simply move at random ignoring the cost
function. Because of the reachability property of the set of changes, we explore all states
of the system, including the global optimum. The system evolves until a stop criterion
is reached.

Very fast simulated annealing scheme proposed by Ingber is applied to produce new
solution [17]

∆mi = ηi(mimax
− mimin

), (19)
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ηi = sign(ui − 0.5)Ti[(1 +
1

Ti
)|2ui−1| − 1], (20)

where mmax and mmin represent up and down bounds for parameters respectively; ui is a
random value in [-1,1) domain, the value of ηi is just located in [-1,1). The whole process
for parameter identification using simulated annealing is shown as follows: Step 1: Initial
parameters(initial T and temperature descent rate α) are fixed; Step 2: Initial solution is
generated and the corresponding J is calculated; Step 3: The system solution is updated
according to the mechanism designed; Step 4: Parameter T is modified according to the
descent rate established; Step 5: One comes back to the step 3 to calculate the next
solution from the current one up to T or ε reaches a value fixed beforehand; Step 6: The
best solution visited is written as last solution of inverse problem.

4.3 Hybrid ant colony system for parameter identification

Ant colony system is global search techniques for optimization. However, it is poor at hill-
climbing. Simulated annealing has the ability of probabilistic hill-climbing. Therefore,
the two techniques are combined here to produce a new algorithm that has the merits
of both ant colony system and simulated annealing, by introducing a local search. A
new hybridization of ant colony system with simulated annealing is proposed. The main
concept of inverse problem of parameter identification with the hybrid ant colony system
can be summarized in the following steps: Step 1: depict each unknown parameter by
an interval based on available prior information; Step 2: discretize each interval into a
number of strata, let the middle of each stratum represent that stratum; Step 3: run
the simulation model of choice for all, or a randomly selected subset of all the possible
parameter combinations; Step 4: evaluate each stratum on the basis of the smallest value
of the objective function in such a way that small values of the objective function receive
higher scores; Step 5: Produce new individual based on SA neighborhood structures;
Step 6: Accept new individual based on SA accepted probability; Step 7: on the basis of
the value of the objective function, place a certain amount of trail(pheromone in the case
of real ants) on each stratum visited along its pathway; Step 8: Decrease temperature of
SA according to decreasing scheme; Step 9: repeat step 4 to step 8 until some convergence
criterion is satisfied.

In order to study the performance of the proposed strategy, extensive numerical
experimentations have been performed with Schaffer’s function. The Schaffer’s function
is expressed as follows

f(x, y) = 0.5 −
sin2(x2 + y2)0.5 − 0.5

(1 + 0.001(x2 + y2))2
, −4 < x, y < 4. (21)

Figure 4.3 shows the fundamental structure of hybrid ant colony system with simu-
lated annealing.

The Schaffer’s function shape is shown in Figure 4.3 and searching values with HANC
is listed in Table 4.1. The convergence processes of objective function with different
algorithms are shown in Figure 4.3.

To test the applicability and efficiency of the hybrid ant colony system, a two dimen-
sional flow problem is considered, as shown in Figure 4.1. The aquifer is bound by two
constant-head boundaries with the initial heads both at 11m. at t > 0, the head at right
boundary is instantaneously lowered to 10m. the transient head distribution is simulated
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Figure 4.3: Fundamental structure of hybrid ant colony system with simulated annealing.

Theoretical values Searching values with HANC
x y f x y f
0.00 0.00 1.00 0.00 -0.00 0.9999

Table 4.1: Computational values of Schaffer’s function with hybrid ant colony system.
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Figure 4.4: Schaffer’s function shape.

Figure 4.5: Search processes of Schaffer’s function.
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using finite element method with a time step of 0.1 day. Hydraulic conductivity and spe-
cific storage coefficient are listed in Table 4.2. Table 4.3 records measured water head
data at different points at different times.

Parameters k1 / m2·d−1 k2 / m2·d−1 k3 / m2·d−1 k4 / m2·d−1 Ss

Values 2000.0 100.0 10.0 1000.0 0.02

Table 4.2: Hydraulic conductivity and specific storage coefficient.

Observation
time/d

Observation
point 1# /m

Observation point
2#/m

Observation
point 3#/m

Observation
point 4#/m

0.1
0.2
0.3
0.4
0.5

10.687
10.728
10.697
10.635
10.560

9.9798
9.8074
9.5376
9.198
8.835

9.1706
8.396
7.756
7.028
6.398

3.640
3.374
3.121
1.584
1.423

Table 4.3: Measured water head data at different points at different times.

According to the flow mathematical model with finite element method and measured
water-head data, the aquifer parameters are identified with hybrid ant colony system with
simulated annealing. Figure 4.3 shows the influence of initial temperature of simulated
annealing algorithm on convergence process.

Figure 4.6: Influence of initial temperatures on convergence process.

In order to simulate observation errors, the measured water heads can be simulated
by adding a random error to the theoretical values

h∗
m = hm + sign(R − 0.5) × ∆h, (22)

where h∗
m are the measured data with observation errors, hm are the measured data

without observation errors. Sign is the sign function, and R is a random variable in the
interval [0,1], ∆h is an observation error. Comparison of identified hydraulic conductivity
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and specific storage coefficient with theoretical values is listed in Table 4.4. Figure 4.3
shows the convergence process of objective function with classical ant colony system and
hybrid ant colony system.

Model parameters k1/m
2 · d−1 k2/m

2 · d−1 k3/m
2 · d−1 k4/m

2 · d−1 Ss

Theoretical values

Identified values by HACS

Identified values by ACS

2000.0
2010.3
2022.7

100.0
99.7
110.2

10.0
10.2
9.95

1000.0
1009.0
1012.5

0.02
0.018
0.025

Table 4.4: Comparison of identified hydraulic conductivity and specific storage coefficient with
theoretical values.

Figure 4.7: Convergence process of objective function with different searching method.

5 Practical Applications of Inversion Algorithm

Baishan Hydropower Station, as shown in Figure 5.1, is located in the Second Songhua-
jiang River in Jilin province, China. It consists of a 149.5-meter-high concrete heavy-
pressure dam, a weir with four 12×13 meter tunnels on top of the 404-meter-high spillway
dam, three 6×7 meter tunnels for discharging water are 350 meters high, an underground
powerhouse with an installed generating capacity of 900,000 KW and another powerhouse
on the surface with an installed generating capacity of 600,000 KW. The dam is 423.5
meters high and the reservoir has a storage capacity of 6.812 billion cubic meters. Its
highest normal storage water level is 413 meters. The capacity for water control storage
is 3.54 billion cubic meters while the flood control storage capacity is 950 million cubic
meters. Cross-section of Baishan dam at block 18 is shown in Figure 5.2. Figure 5.3
shows the disposition of observation holes for dam uplift pressure at block 18.

In order to identify the permeability coefficients of rock foundation, the three-
dimensional finite element model for seepage calculation is carried out. The seepage
fields of the dam and its rock foundation at different load cases are computed. According
to the prior information of pumping water test in field, the domains of identification
parameters are determined. The training sample pairs are got basing on finite element
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Figure 5.1: Baishan Hydropower Station.

Figure 5.2: Cross-section of Baishan dam at block 18.

Measuring
date

Upstream
water eleva-
tion

Downstream
water eleva-
tion

water
head h1

water
head h2

water
head h3

water
headh4

19980910 413.00 290.80 291.82 283.59 284.74 281.72

Table 5.1: Measured data of water heads in the observation holes.
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Figure 5.3: Disposition of observation holes for dam uplift pressure at block 18.

Rock foundation (I)
k1/10−9m · s−1

Concrete certain
k2/10−9m · s−1

Rock foundation (II)
k3/10−9m · s−1

44.05 6.16 52.80

Table 5.2: Identification results of permeability coefficients.

Measuring
date

No.1 measured
point

No.2 measured
point

No.3 measured
point

No.4 measured
point

19971015
19980108
19980901
19981012

291.82/291.78
291.31/291.29
291.82/291.78
291.82/291.78

283.54/283.49
283.59/283.44
283.59/283.49
283.49/283.49

284.23/283.19
282.19/283.15
284.74/283.19
284.74/283.19

281.72/281.13
281.82/282.14
281.72/282.12
281.72/282.12

Table 5.3: Comparison between measured and forecasted water heads.

Note: measured water heads/computed water heads.
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analysis. The rock foundation is divided into 3 sub-regions, rock base before concrete
certain, concrete certain and rock base after concrete certain.

The measured water heads in four holes are recorded in Table 5.1. Based on the
measured water heads and finite element model for dam seepage calculation, the permis-
sibility coefficients are identified and listed in Table 5.2. Table 5.3 shows the comparison
between measured and forecasted water heads with finite element method according to
estimated permissibility coefficients.

6 Conclusion

Hybrid ant colony system for solving the parameter identification problem is proposed.
The three characteristics of the ant colony system, such as positive feedback process,
greedy constructive heuristic and distributed computation, work together to find the
solution to the inverse problems fast and efficiently. However, classical ant colony system
is poor at hill-climbing. Simulated annealing has the ability of probabilistic hill-climbing.
Therefore, the two techniques are combined here to produce a new algorithm that has
the merits of both ant colony system and simulated annealing, by introducing a local
search. A new hybridization of ant colony system with simulated annealing is proposed..
Modern heuristic search techniques, such as genetic algorithm, simulated annealing and
ant colony system, are well suited for solving the parameter identification problem in
groundwater flow model. The gradient based methods are not applicable for this type of
inverse problem because of the difficulty in evaluating the function derivatives and the
presence of many local minimum points in the objective function. One of the advantages
of ant colony system over other optimization methods is that it is easy to implement
complex inverse problem.
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