Neutral Functional Equations with Causal Operators on a Semi-Axis

C. Corduneanu1* and M. Mahdavi2

1 The University of Texas at Arlington, Department of Mathematics
411 S. Nedderman Drive, Arlington, Texas 76019, U.S.A.
2 Bowie State University, Department of Mathematics
14000 Jericho Park Road, Bowie, Maryland 20715, U.S.A.

Received: February 28, 2008; Revised: September 15, 2008

Abstract: This paper is concerned with the global study of a certain class of functional differential equation involving causal (abstract Volterra) operators on a certain function space $E(R_+, R^n)$. It is closely related to our previous joint papers, listed in the References, the difference being motivated by the fact that we consider new function spaces on the half-axis R_+. The approach in this paper is also somewhat different than in preceding papers, by C. Corduneanu, the results being also different. A dynamical interpretation is also indicated.

Keywords: Neutral functional equations; causal operators; global existence.

Mathematics Subject Classification (2000): 34K05, 34K25, 34K40.

1 Statement of the Problem

Let us consider the functional differential equation

\[
\frac{d}{dt} \left[\frac{dx(t)}{dt} - (Lx)(t) \right] = (Vx)(t), \quad t \in R_+,
\]

where $x \in R^n$, $n \geq 1$ is an integer, and L, V are causal operators acting on the function space $C(R_+, R^n)$, consisting of all continuous maps from R_+ into R^n, the topology/convergence being defined by the family of semi-norms $\{ |x|_k : k \geq 1 \}$, with

* Corresponding author: concord@uta.edu

© 2008 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 339